METHODS OF
MODERN MATHEMATICAL PHYSICS

I: FUNCTIONAL ANALYSIS

Revised and Enlarged Edition

MICHAEL REED BARRY SIMON
Department of Mathematics Departments of Mathematics
Duke University and Physics

Princeton University

ACADEMIC PRESS, INC.

Harcourt Brace Jovanovich, Publishers
San Diego New York Berkeley Boston
London Sydney Tokyo Toronto



To
R. S. Phillips and A. S. Wightman,
Mentors, Colleagues, Friends

CopryriGHT © 1980, BY AcabpEMic Press, INc.

ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER,

ACADEMIC PRESS, INC.
1250 Sixth Avenue, San Diego, California 92101

United Kingdom Edition published by

ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1 7D

Library of Congress Cataloging in Publication Data

Reed, Michael.
Methods of modern mathematical physics.

Vol. 1 Functional analysis, revised and enlarged edition.

Includes bibliographical references.

CONTENTS: v.1. Functional analysis.—v. 2. Fourier
analysis, self—adjointness.—v, 3. Scattering theory.—v. 4.
Analysis of operators.

1. Mathematical physics. I. Simon, Barry, joint
author. II. Title.

QC20.R37 1972 530.1°5 75-182650
ISBN 0-12-585050-6 (v. 1)

AMS (MOS) 1970 Subject Classifications: 46-02,47-02, 42-0.

PRINTED IN THE UNITED STATES OF AMERICA
88 89 90 91 92 10987654



Preface

This book is the first of a multivolume series devoted to an exposition of func-
tional analysis methods in modern mathematical physics. It describes the funda-
mental principles of functional analysis and is essentially self-contained, al-
though there are occasional references to later volumes. We have included a few
applications when we thought that they would provide motivation for the reader.
Later volumes describe various advanced topics in functional analysis and give
numerous applications in classical physics, modern physics, and partial differen-
tial equations.

This revised and enlarged edition differs from the first in two major ways.
First, many colleagues have suggested to us that it would be helpful to include
some material on the Fourier transform in Volume I so that this important topic
can be conveniently included in a standard functional analysis course using this
book. Thus, we have included in this edition Sections IX.1, IX.2, and part of
IX.3 from Volume II and some additional material, together with relevant notes
and problems. Secondly, we have included a variety of supplementary material
at the end of the book. Some of these supplementary sections provide proofs of
theorems in Chapters II-1V which were omitted in the first edition. While these
proofs make Chapters II-IV more self-contained, we still recommend that stu-
dents with no previous experience with this material consult more elementary
texts. Other supplementary sections provide expository material to aid the in-
structor and the student (for example, ‘‘Applications of Compact Operators’’).
Still other sections introduce and develop new material (for example, ‘“Minimi-
zation of Functionals’’).

It gives us pleasure to thank many individuals:

The students who took our course in 1970--1971 and especially J. E. Taylor
for constructive comments about the lectures and lecture notes.

L. Gross, T. Kato, and especially D. Ruelle for reading parts of the manu-
script and for making numerous suggestions and corrections.
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F. Ammstrong, E. Epstein, B. Farrell, and H. Wertz for excellent typing.
M. Goldberger, E. Nelson, M. Simon, E. Stein, and A. Wightman for aid
and encouragement.

Mike ReeD
BARRY SIMON
April 1980



Introduction

Mathematics has its roots in numerology, geometry, and physics. Since the
time of Newton, the search for mathematical models for physical phenomena
has been a source of mathematical problems. In fact, whole branches of
mathematics have grown out of attempts to analyze particular physical
situations. An example is the development of harmonic analysis from Fourier’s
work on the heat equation.

Although mathematics and physics have grown apart in this century,
physics has continued to stimulate mathematical research. Partially because
of this, the influence of physics on mathematics is well understood. However,
the contributions of mathematics to physics are not as well understood. It is
a common fallacy to suppose that mathematics is impostant for physics only
because it is a useful tool for making computations. Actually, mathematics
plays a more subtle role which in the long run is more important. When a
successful mathematical model is created for a physical phenomenon, that is,
a model which can be used for accurate computations and predictions, the
mathematical structure of the model itself provides a new way of thinking
about the phenomenon. Put slightly differently, when a model is successful
it is natural to think of the physical quantities in terms of the mathematical
objects which represent them and to interpret similar or secondary phenomena
in terms of the same model. Because of this, an investigation of the internal
mathematical structure of the model can alter and enlarge our understanding
of the physical phenomenon. Of course, the outstanding example of this is
Newtonian mechanics which provided such a clear and coherent picture of
celestial motions that it was used to interpret practically all physical
phenomena. The model itself became central to an understanding of the
physical world and it was difficult to give it up in the late nineteenth century,
even in the face of contradictory evidence. A more modern example of this
influence of mathematics on physics is the use of group theory to classify
elementary particles.

vii
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viii INTRODUCTION

The analysis of mathematical models for physical phenomena is part of
the subject matter of mathematical physics. By analysis is meant both the
rigorous derivation of explicit formulas and investigations of the internal
mathematical structure of the models. In both cases the mathematical prob-
lems which arise lead to more general mathematical questions not associated
with any particular model. Aithough these general questions are sometimes
problems in pure mathematics, they are usually classified as mathematical
physics since they arise from problems in physics. .

Mathematical physics has traditionally been concerned with the mathe-
matics of classical physics: mechanics, fluid dynamics, acoustics, potential
theory, and optics. The main mathematical tool for the study of these
branches of physics is the theory of ordinary and partial differential equations
and related areas like integral equations and the calculus of variations. This
classical mathematical physics has long been part of curricula in mathematics
and physics departments. However, since 1926 the frontiers of physics have
been concentrated increasingly in quantum mechanics and the subjects opened
up by the quantum theory: atomic physics, nuclear physics, solid state
physics, elementary particle physics. The central mathematical discipline for
the study of these branches of physics is functional analysis, though the
theories of group representations and several complex variables are also
important. Von Neumann began the analysis of the framework of quantum
mechanics in the years following 1926, but there were few attempts to study
the structure of specific quantum systems (exceptions would be some of the
work of Friedrichs and Rellich). This situation changed in the early 1950’s
when Kato proved the self-adjointness of atomic Hamiltonians and Garding
and Wightman formulated the axioms for quantum field theory. These events
demonstrated the usefulness of functional analysis and pointed out the many
difficuit mathematical questions arising in modern physics. Since then the
range and breadth of both the functional analysis techniques used and the
subjects discussed in modern mathematical physics have increased enormously.
The problems range from the concrete, for example how to compute or
estimate the point spectrum of a particular operator, to the general, for
example the representation theory of C *-algebras. The techniques used and
the general approach to the subject have become more abstract. Although
in some areas the physics is so well understood that the problems are exercises
in pure mathematics, there are other areas where neither the physics nor the
mathematical models are well understood. These developments have had
several serious effects not the least of which is the difficulty of communication
between mathematicians and physicists. Physicists are often dismayed at the
breadth of background and increasing mathematical sophistication which are
required to understand the models. Mathematicians are often frustrated by
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their own inability to understand the physics and the inability of physicists
to formulate the problems in a way that mathematicians can understand.

A few specific remarks are appropriate. The prerequisite for reading this
volume is roughly the mathematical sophistication acquired in a typical
undergraduate mathematics education in the United States. Chapter I is
intended as a review of background material. We expect that the reader will
have some acquaintance with parts of the material covered in Chapters II-1V
and have occasionally omitted proofs in these chapters when they seem
uninspiring and unimportant for the reader.

The material in this book is sufficient for a two-semester course. Although
we taught most of the material in a special one-semester course at Princeton
which met five days a week, we do not recommend a repetition of that, either
for faculty or students. In order that the material may be easily adapted for
lectures, we have written most of the chapters so that the earlier sections
contain the basic topics while the later sections contain more specialized and
advanced topics and applications. For example, one can give students the
basic ideas about unbounded operators in nine or ten lectures from
Sections 1-4 of Chapter VIII. On the other hand, by doing the details of
the proofs and by adding material from the notes and problems, Chapter VIII
could easily become a one-semester course by itself.

Each chapter of this book ends with a long set of problems. Some of the
problems fill gaps in the text (these are marked with a dagger). Others develop
alternate proofs to the theorems in the text or introduce new material. We
have also included harder problems (indicated by a star) in order to challenge
the reader. We strongly encourage students to do the problems. It is trite but
true that mathematics is learned by doing it, not by watching other
people do it.

We hope that these volumes will provide physicists with an access to
modern abstract techniques and that mathematicians will benefit by learning
the advanced techniques side by side with their applications.
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The beginner. .. should not be discouraged if... he finds that he does not have the prerequisites
Jor reading the prerequisites. P. Halmos

1.1 Sets and functions

We assume that the reader is familiar with sets and functions but it is
appropriate to standardize our terminology and to introduce here abbrevia-
tions that will occur throughout the book.

If X is a set, x € X means that x is an element of X; x ¢ X means that x is
not in X. The clause “for all x in X is abbreviated (Vx € X) and “there
exists an x € X such that” is abbreviated (3x € X). The symbol {x|P(x)}
stands for the set of x obeying the condition (or conditions) P(x). If 4 is a
subset of X (denoted 4 < X), the symbol X\A4 represents the complement of
Ain X, that is X\4 = {x € X|x ¢ A}. More generally, if 4 and B are subsets
of X, then A\B = {x|x € A, x ¢ B}. When we discuss sets with a topology, 4
will always denote the closure of the set 4. Finally, the set of ordered pairs
{{x,»>|xe X, ye Y} is called the Cartesian product of X and Y and is
denoted X x Y.

We will use the words ““function” and “mapping” interchangeably. In
order to emphasize that certain functions f depend on two variables, we will
sometimes write f(:,*). The symbol f(, y) denotes the function of one
variable obtained by picking a fixed value of y for the second variable. A
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linear function will also be calied an operator or a linear transformation. Our
functions will always be single valued; so a function from a set X to another
set Y, denoted by f: X » Yor X Yorx +— f(x) will have one and only one
value in Y for each x € X. If 4 < X, then f[4] = {f(x)| x € 4} is a subset of
Y and f~[B} = {x| f(x) € B} is a subset of X if B < Y. f[X] will usually be
called the range of f and will be denoted Ran f. X is called the domain of f.
A function f will be called injective (or one-one) if for each y € Ran f there
is at most xe€ X such that f(x) =y; f is called surjective (or onto) if
Ran f= Y. If f is both injective and surjective, we will say it is bijective. The
restriction of £ to a subset 4 of its domain will be denoted by f [ 4.
If X o A we define the characteristic function y ,(x) as

()_1 if xed
XA =10  if x¢4

There are two set theoretic notions which are slightly deeper than mere
notation, so we will discuss them to some extent. A relation Ronaset X isa
subset R of X x X; if {x, y> € R, we say that x is related (or R-related) to
y and write xRy.

Definition A relation R is called an equivalence relation if it satisfies:
(i) (Vxe X) xRx [reflexive]

(i) (Vx,y e X) xRy implies yRx [symmetric]

(iil) (Vx,y,ze X) xRy and yRz implies xRz [transitive]

The set of elements in X that are related to a given xe X is called the
equivalence class of x, denoted usualiy as [x].

It is easy to prove:

Theorem 1.1 Let R be an equivalence relation on a set X. Then each
x € X belongs to a unique equivalence class.

Thus, under an equivalence relation, a set divides up in a natural way into
disjoint subsets.

Example 1 (the integers mod 3) Let X be the integers and write xRy
if x — y is a multiple of 3. This equivalence relation divides the integers into
three equivalence classes:

——
—
[
]
f:’H
|
v
l
— N W
=)
B W
00 = O
v
Nt Nt Nt
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Example 2 (the real projective line) Let R denote the real line and let
X be the nonzero vectors in R (= R x R). We write xRy if there is some
o € R with x = ay. The equivalence classes are lines through the origin (with
<0, 0> removed).

Next, we discuss Zorn’s lemma.

Definition A relation on a set X which is reflexive, transitive, and anti-
symmetric (that is, xRy and yRx implies x = y) is called a partial ordering.
If R is a partial ordering, we often write x < y instead of xRy.

Example 3 Let X be the collection of all subsets of a set Y. Define
A< Bif A < B. Then < is a partial ordering.

We use the word “ partial”’ in the above definition because two elements
of X need not obey x <y or y<x. If for all x and y in X, either x <y or
y < x, X is said to be linearly ordered. For example, R with its usual order <
is linearly ordered.

Now suppose X is partially ordered by < and ¥ < X. An ¢lement pe X
is called upper bound for Yif y <pforall ye Y. If me X and m < x implies
X = m, we say m is a maximal element of X.

Depending on one’s starting point, Zorn’s lemma is either a basic assump-
tion of set theory or else derived from the basic assumptions (it is equivalent
to the axiom of choice). We take Zorn’s lemma and the rest of set theory as
given.

Theorem 1.2 (Zorn’s lemma) Let X bea nonempty partially ordered set
with the property that every linearly ordered subset has an upper bound in X.
Then each linearly ordered set has some upper bound that is also a maximal
element of X

Finally, we will use Halmos’ | to indicate the conclusion of a proof.

1.2 Metric and normed linear spaces

Throughout this work, we will be dealing with sets of functions or operators
or other objects and we will often need a way of measuring the distance
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between the objects in the sets. It is reasonable to define a notion of distance
that has the most important properties of ordinary distance in R3.

Definition A metric space is a set M and a real-valued function d(, -)
on M x M which satisfies:

(@ dxy)=0
@) d(x,y)=0ifandonlyif x=y
(i) d(x,y) = d(y, x)
(iv) d(x,z) <d(x,y) + d(y, 2) [triangle inequality]

The function d is called a metric on M.

We often call the elements of a metric space points. Notice that a metric
space is a set M together with a metric function d; in general, a given set X
can be made into a metric space in different ways by employing different
metric functions. When it is not clear from the context which metric we are
talking about, we will denote the metric space by (M, d>, so that the metric
is explicitly displayed.

Example 1 Let M = R" with the distance between two points x =
{xyy ooy xpand y = (¥, ..., Yar given by

d(x,J’)=\/(x1 _yl)z +-+ (xn_yn)z

Example 2 Let M be the unit circle in R?, that is, the set of all pairs of
real numbers («, B) with «* + 2 =1, and let

(e B, <o, BY) = /(@ — &) + (B — B)*

Another possible metric is d,{p, p'] = arc length between the points p, p’
(see Figure L.1).

FIGURE .1 The metrics 4, and d,.
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Example 3 Let M = C[0, 1], the continuous real-valued functions on
[0, 1] with either of the metrics

h(f,9)= max |/6) = 9@ drlf)=[; 1 /() - g(x)] dx

Now that we have a notion of distance, we can say what we mean by
convergence.

Definition A sequence of elements {x,}:, of a metric space (M, d) is
said to converge to an element x € M, if d(x, x,) —» 0 as n » co. We will often
denote this by x,-—2, x or lim,_, x, = x. If x, does not converge to x, we
will write x, %, x.

In Example 2, d\(p, p') < d,(p, p’) <nd,(p, p’) which we will write
d, <d, < nd,. Thus p,—%, p if and only if p, .22, p. But in Example 3, the
metrics induce distinct notions of convergence. Since d, < d, f, %', fimplies
f,—2_, f, but the converse is false. A counterexample is given by the functions
g, defined in Figure 1.2, which converge to the zero function in the metric d,

FiGUre 1.2 The graph of g.(x).

| : Y X oxis
2n+ 2n 2n-1
but which do not converge in the metric 4,. This may be seen by introducing
the important notion of Cauchy sequence.

Definition A sequence of elements {x,} of a metric space (M, d) is
called a Cauchy sequence if (Ve > 0)(AN) n, m = N implies d(x,, x,) < e.
Proposition Any convergent sequence is Cauchy.

Proof Given x,— x and ¢, find N so n> N implies d(x,, x) < ¢/2. Then
n, m = N implies d(x,, x,,) < d(x,, x) + d(x, x,,) <4e + de. |}
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The reader can prove for himself the following collection of elementary
statements:

Theorem 1.4 Let (X, d) be a metric space:

(a) A set, O, is open if and only if X\O is closed.

(b) x,,—2— x if and only if for each neighborhood N of x, there exists an
M so that m > M implies x,, € N.

(c) The set of interior points of a set is open.

(d) The union of a set E with its limit points is a closed set (denoted by E
and called the closure of E).

(e) A setis open if and only if it is a neighborhood of each of its points.

One of the main uses of open sets is to check for convergence using
Theorem 1.4.b and in particular to check for continuity via the following
criteria, the proof of which we leave as an exercise:

Theorem 1.5 A function f(*) from a metric space X to another space Y
is continuous if and only if for all open sets O < Y, f~![0] is open.

Finally, we warn the reader that often in incomplete metric spaces, closed
sets may not appear to be closed at first glance. For example, [4, 1) is closed in
(0, 1) (with the usual metric).

We complete this section with a discussion of two of the central concepts of
functional analysis: normed linear spaces and bounded linear transformations.

Definition A normed linear space is a vector space, V, over R (or C)
and a function, ||'|| from V¥ to R which satisfies:

@ lvj=0forallvinV

(ii) flvll=0ifand onlyifv =0
@) fowll = || flvli forall vin ¥ and « in R (or C)
iv) v+ wli<|vll+ llw|forallvand win V

Definition A bounded linear transformation (or bounded operator) from
a normed linear space (¥, || |l;> to a normed linear space {(V,, || ;> is a
function, T, from V| to V, which satisfies:

i) T(w + pw) =aT(®) + fT(w) (Vv,we V)(Va, BeR or C)
(i) Forsome C 20, ||Tvl|l, < Cllvli,
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The smallest such C is called the norm of T, written |T| or |[T]l, ,. Thus

ITll= sup [Tvil;

fHelly=1

Since we will study these concepts in detail later, we will not give many
examples now but merely note that R” with the norm

K% s 2l = [P o+ 32
and C[0, 1] with either the norm

1
W= sup [fG] or Wlh=[ |/ dx
x¢[0,1] 0
are normed linear spaces. Observe also that any normed linear space {V, || ||>
is a metric space when given the distance function d(v, w) = ||v — w]||. There
is thus a notion of continuity of functions, and for linear functions this is
precisely captured by bounded linear transformations. The proof of this fact
is left to the reader.

Theorem 1.6 Let 7 be a linear transformation between two normed
linear spaces. The following are equivalent:

(a) T is continuous at one point.
(b) T is continuous at all points.
(c) Tis bounded.

Definition We say (V, [I'l> is complete if it is complete as a metric
space in the induced metric.

If <X, |||I> is a normed linear space, then X has a completion as a metric
space by Theorem 1.3. Using the fact that X is dense in X, it is easy to see that
X can be made into a normed linear space in exactly one natural way.
All these concepts are well illustrated by the following important theorem
and its proof:

Theorem 1.7 (the B.L.T. theorem) Suppose T is a bounded linear trans-
formation from a normed linear space {V}, ||-||;> to a complete normed linear
space (V;, {I*ll,>- Then T can be uniquely extended to a bounded linear
transformation (with the same bound), T, from the completion of ¥, to

Vo 4112
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We now return to the functions in Figure 1.2. It is easy to see that if n # m,
di(gn, gm) = 1. Thus g, is not a Cauchy sequence in {C[0, 1], d;) and therefore
not a convergent sequence. Thus, the sequence {g,} converges in {CI[0, 1], d,)
but not in {(C[0, 1], d,).

Although every convergent sequence is a Cauchy sequence, the following
example shows that the converse need not be true. Let @ be the rational
numbers with the usual metric (that is, d(x, y) = |x — y|) and let x* be any
irrational number (that is, x* € R\Q). Find a sequence of rationals x, with
x, — x* in R. Then x, is a Cauchy sequence of numbers in Q, but it cannot
converge in Q to some ye Q (for, if x, -y in Q, then x,—y in R, so we
would have y = x*).

Definition A metric space in which all Cauchy sequences converge is
called complete.

For example, R is complete, but Q is not. It can be shown (Sections I.3 and
1.5) that {C[0, 1}, d,) is complete but {C|[0, 1], d,) is not. The example of Q@
and R suggests what we need to do to an incomplete space X to make it
complete. We need to enlarge X by adding “all possible limits of Cauchy
sequences.” The original space X should be dense in the larger space X
where:

Definition A set B in a metric space M is called dense if everyme M is a
limit of elements in B.

Of course, if the incomplete space is not already contained in a larger
complete space (like Q is contained in R) it is not clear what *““all possible
limits” means. That this ‘“‘ completion™ can be done is the content of a
theorem that we shall shortly state; but first some definitions:

Definition A function f from a metric space {X, d) to a metric space
(Y, p) is called continuous at x if f(x,) <¥-2>_ f(x) whenever x, X9, x.

We have already had an example of a sequence of elements in C[0, 1] with
f,-%2>0 but f, —4. 0. Thus the identity function from {C[0, 1], d,)> to
{C[0,1],d,> is not continuous but the identity from {C[0,1],d,> to
{C[0, 1}, d,) is continuous.
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Definition A bijection & from (X, d> to (Y, p) which preserves the
metric, that is,
p(h(x), h(y)) = d(x, y)

is called an isometry. It is automatically continuous. (X, d) and (Y, p) are
said to be isometric if such an isometry exists.

Isometric spaces are essentially identical as metric spaces; a theorem con-
cerning only the metric structure of (X, d) will hold in all spaces isometric
to it.

We now state precisely in which sense an incomplete space can be fattened
out to be complete:

Theorem 13 If {M, d) is an incomplete metric space, it is possible to
find a complete metric space M so that M is isometric to a dense subset of M.

Sketch of proof Consider the Cauchy sequences {x,} of elements of M. Call
two sequences, {x,}, {y.}, equivalent if lim,_, . d(x,, y,) = 0. Let M be the
family of equivalence classes of Cauchy sequences under this equivalence
relation. One can show that for any two Cauchy sequences lim,_, , d(x,, y,)
exists and depends only on the equivalence classes of {x,} and {y,}. This limit
defines a metric on M and M is complete. Finally, map M into M by taking x
into the constant sequence in which each x, equals x. M is dense in M and
the map is isometric. {

To complete our discussion of metric spaces, we want to introduce the
notions of open and closed sets. The reader should keep the example of open
and closed sets on the real line in mind.

Definition Let (X, d) be a metric space:

(a) The set {x|x € X, d(x, y) < r}is called the open ball, B(y; r), of radius
r about the point y.

(b) A set O < X is called open if (Vy € O)3r > 0) B(y; r) < O.

(c) A set N < X is called a neighborhood of y € N if B(y; r) = N for some
r>0.

(d) Let F< X. A point x is called a limit point of E, if (Vr>0)
B(x;r) n (E\{x}) # &, that is, x is a limit point of E if E contains points
other than x arbitrarily near x.

(e) A set Fc X is called closed if F contains all its limit points.

(f) If G = X, x € G is called an interior point of G, if G is a neighborhood
of x.
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Proof Let ¥, be the completion of V;. For each x in V,, there is a sequence
of elements {x,} in ¥, with x, — x as n — 0. Since x, converges, it is Cauchy,
so given ¢, we can find N so that n, m > N implies || x, — x,|l; < &/IT}l. Then
Tx, — Txplia = 1T(x, — x )2 < T 1 Xy — Xmll; < € which proves that
Tx, is a Cauchy sequence in V, . Since V, is complete, Tx, — y for some y. Set
Tx = y. We must first show that this definition is independent of the sequence
x, — x chosen. If x, = x and x, — x, then the sequence x,, X}, X5, X3,... = X
so Tx,, Tx}, ... — J for some p by the above argument. Thus lim Tx, = y =
lim Tx,. Moreover, we can show T so defined is bounded because

1Tx|l, = lim || Tx,, (see Problem 8)

n—+ow

<Tim Cllx,l, (see Appendix to 1.2)

n—*ao

= Clixl,

Thus T is bounded. The proofs of linearity and uniqueness are left to the
reader. |

We can use this theorem to give a very elegant definition of the Riemann
integral. Let PCla, b} be the family of bounded piecewise continuous func-
tions on [a, b], which are continuous from the right, thatis, lim, |, f(x) = f(y)
and for which lim,,, f(x) exists at each y and is equal to f(y) for all but
finitely many y. Norm PC with the norm

Ifllo = sup |f(x)|
x €la, b}
Let x4, ..., x, be a partition of the interval [a, 8], xo = a, x, = b. Let x,(x)
be the characteristic function of [x;_;, x;) except for y,(x) which is the
characteristic function of {x,_,, x,]. A function on [ag, b] of the form
Yi 1 s x:(x) with s; real is called a step function (to see why, draw its graph).
The set of all step functions for all possible finite partitions is a normed
linear space with the norm

;;si xdx)

Denote this space by S[a, b]. It is a nice exercise (Problem 10) to prove that
Sla, b] is dense in PCla, b]. For any step function, Y7, s;x;, we define

= sup IZsix,-(x)l=i=r?ax I's:|

x€la, b) .

1 (i::ls,- x.-(x)) = .'Z S{X; — Xi-1)

=1

the intuitive value of the integral | [3_ s, x(x)] dx. I'is a linear transformation
from S[a, b] to the real numbers, and because
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™=

.I(__ls,-xi) l = IZ si(x; — xi—l)l
< max 5] Y |x; — x;_ |
i=t

< T sl o6 — @)

I is a bounded linear transformation. Since the real numbers are complete, [
can be uniquely extended to S, the completion of S (by the B.L.T. theorem).
The extended transformation I(f), restricted to PC is called the Riemann
integral and is denoted by

10)=[ fax

While this method does not appear as the most intuitive definition of the
Riemann integral, it will be seen upon reflection that the proof is really just
the “usual” proof put into the language of completion and the B.L.T.
theorem. It illustrates a main point of general philosophy in functional
analysis: In order to define something on a normed linear space, it is often
convenient to define it on a dense set and extend it by the B.L.T. theorem.
The reader should try his hand at constructing the Riemann-Stieltjes integral
(Problem 11). By using the same method, we can define the Riemann integral
for continuous functions taking values in any complete normed linear space,
in particular, for complex-valued functions.

Appendix to 1.2 Lim sup and lim inf

Lim sup and lim inf are notions which may be unfamiliar to the reader, so
we summarize their definition and properties.

Definition Let A « R be a nonfinite bounded set. Let lim pt(4) = set of
limit points of 4. Then the limit superior of A is defined by

lim sup 4 =Iim 4 = sup{x|x € lim pt(4)}
Similarly

lim inf 4 = lim(A4) = inf{x|x € lim pt(4)}

Remarks 1. When 4 is bounded, lim pt(4) is always nonempty by the
Bolzano-Weierstrass theorem.
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2. If A is not bounded above, one defines im 4 = + 0. If 4 is bounded
above and lim pt(4) = @ one definesim 4 = — 0.

3. Iim A is actually in lim pt(4). For let b = im 4 and let ¢ > 0 be given.
We can find a € lim pt(4) so |b — a| < /2. Since a € lim pt(4), we can find
de A with la — d| < ¢/2; so given ¢, we find de 4 with |b — d| < ¢, that is,
b € lim pt(4).

[im A has a very simple alternative characterization, whose proof we leave
to the reader.

Proposition Let b =Tim A. Then for ¢ > 0, 4 n {ala > b + ¢} is finite
and 4 n{ala > b — ¢} is infinite.

For a sequence {a,}, we say b € lim pt{a,} if for ali N and all ¢, there is an
n> N with |b - a,| < ¢. We define im(a,) = sup{b| b € lim pt{a,}}.

Finally, let us summarize the properties of [im (all for bounded sets; it is a
useful exercise to decide which extend to unbounded sets).

Proposition
(a) Tlim(a, +5,) <lima, +im b,
(b) Im a,b, < (lim a,)(lim &,) if a,, b, > 0
(¢) Tm(ca,) =clma,ifc>0
(d) Tm(ea,) =clima,ifc<0

1.3 The Lebesgue integral

We have just seen that Cla, b] has two quite reasonable metrics on it. In
Section I.5 we will see that it is a complete metric space in the metric

di(f,9)= sup |f(x)—g(x)]

x €(a, b}

In the other metric we considered, d,(f,g) = lIf—gl, with [}, =
2 1h(x)| dx, Cla, b} is not complete. To see this for C[0, 1], let £, be given as
in Figure 1.3. It is not hard to see that f, is Cauchy in {|-||,, but it does not
converge to any function in C[a, b]; rather, in an intuitive sense, it * converges
to the characteristic function of {3, 3] (which is, of course, not in C[0, 1]}).



1.3 The Lebesgue integral 13
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FiGure 1.3 The graph of £,.

We can always complete Cla, b]in || - ||, realizing elements of the completion
as equivalence classes of Cauchy sequences of continuous functions; this
realization is not noteworthy for its transparency. The example above
suggests we might also be able to realize elements of the completion as
functions. If we do realize them as functions, we should be able to define the
integral [% | f(x)| dx (merely as d,(f, 0)!) for any fin the completion.

The simplest way to realize elements of the completion as functions is to
turn the above analysis around: one introduces an extended notion of integral
on a bigger space than Cla, b]; call it L'[a, b]. We will prove L' is complete, so
by general arguments the closure of C in L' is complete (and it turns out
C=1L".

Now, how can one extend the notion of Riemann integral? The usual
definition of the Riemann integral is based on dividing the domain of f into
finer and finer pieces. For * nasty ” functions, this method does not work and

3 a3

3

Xm-1 Xm
The Riemann integra! The Lebesgue integral

FiGUre 1.4



14 |: PRELIMINARIES

so a different method is needed—the simplest modification is to divide the
range into finer and finer pieces (Figure 1.4). This method depends more on
the function and so has the possibility of working for more types of functions.
We are thus interested in sets /'~ '[a, b] and their size. We suppose we have
a size function p on sets which generalizes p([a, b]) = b — a. We will shortly
return to this size function and see that not all sets have a ““ size.” We will then
restrict the types of f by demanding that  "![a, b] have a “size.” Looking at
Figure 1.4, we define for f> 0

< m _iffm m+1
2= £ | [ =0))

Then Y ,, (/) = Y., (f) so that lim,_, Y 5n (f) = sup, (32 (f)) exists (it may
be o0). This limit is defined to be | f dx. We remark that for technical purposes
(that is, proving theorems!) one makes a different definition which can be
shown to agree with this definition only after a lot of work. The definition
as lim Y ,. (/) is however the best to keep in mind when thinking intuitively.

Thus, we have transferred the problem to one of defining an extended
notion of size. We must first decide what sets are to have a size. Why not all
sets ? There is a classical example (see also Probiem 13) which shows that not
all sets in R can have a size if we want that size to be invariant under rotations
and translations (and not to be trivial, such as assigning zero to all sets):
it is possible to break up a unit ball into a finite number of wild pieces, move
the pieces around by rotation and translation and reassemble the pieces to
get two balls of radius one (Banach-Tarski paradox). Thus, all sets cannot
have a size, and so some family £ of sets will be the *‘ measurable sets.” What
properties do we want & to have? We would like both £~ '[[0, a)] and
/" Mla, 00)] to be measurable (f > 0) so we would like & to have the property:
A € # implies R\A € #. Also, when f is continuous, we want /' ~*[(a, b)] to
be in 4, so # should contain the open sets. Finally, we want to have

i 0 4) = 3w

if the A, are mutually disjoint (to meet our intuitive notion of size) so we
would like | J2., A, € 4 if each 4, is in .

Definition The Borel sets of R is the smallest family of subsets of R with
the following properties:

(i) The family is closed under complements.
(i) The family is closed under countable unions.
(iii) The family contains each open interval.
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To see that such a smallest family exists we note that if {#,},. 4 is a collec-
tion of families obeying (i), (ii), and (iii), then so does ﬂae 4 #,. Thus the
intersection of all families obeying (i)—(iii) is the smallest such family.

Now we define the Lebesgue measures of sets in %, the Borel sets in R.

Definition Let S be the family of all countable unions of disjoint open
intervals (which is just the family of open sets) and let

w(J@. o) = ¥ bi-a)
(which may be infinite). For any B € 4, define

W(B) = inf u()
les
Bcl

This notion of size has four crucial properties:

Theorem 1.8

(@ w@=0

(b) If {4,}2, = %# and the A4, are mutually disjoint (4, n 4,, = ¢, all
m #n), then p({ iz 4,) = Yo% 1 w(Ay).

(¢) w(B)=inf{u(l)|B < I, I is open}

(d) u(B) =sup{i(C)|C < B, C is compact}

The infinite sum in (b) contains only positive terms, so it either converges
to a finite number or diverges to infinity, in which case we set it equal to co.
(c) and (d) say that any Borel set can be approximated *from the outside”
by open sets and from the inside by compact sets. We remind the reader that
on the real line a set is compact if and only if it is closed and bounded.

We have thus extended the usual notion of size of intervals and we define
the family of functions we will consider in the obvious way:

Definition A function f is called a Borel function if and only if £ ~'{(a, b)]
is a Borel set for all a, b.

It is often convenient to allow our functions to take the values + oo on
small sets in which case we require f ~![{+ c0}] to be Borel.

Proposition  fis a Borel if and only if, for all B e #, f '[Ble #
(see Problem 14).
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This last proposition implies that the composition of two Borel functions
is Borel. Many books deal with a slightly larger class of functions than the
Borel class. They first define a set M to be measurable if one can write
M U A, = B u A, where B is Borel and A4; < B; with B; Borel and u(B))=0
(thus they add and subtract “ unimportant ” sets from Borel sets). A measur-
able function is then defined as a function, f, for which f~[(a, b)] is always
measurable. It is no longer true that f ¢ g is measurable if fand g are, and
many technical problems arise. In any event, we deal only with Borel sets and
functions and use the words Borel and measurable interchangeably.

Borel functions are closed under many operations:

Proposition (@) 1If f, g are Borel, then so are f+ g, fg, max{f, g} and
min{/, g}. If fis Borel and 4 € R, Afis Borel.

(b) 1If each f, is Borel, n=1,2,..., and f,(p) = f(p) for all p, then f
is Borel.

Since | f| = max{f, —f}, | f] is measurable if fis.

As we sketched above, given f > 0, one can define | f dx (which may be o).
If { | f] dx < o0, we write fe &' and define | fdx = [ f, dx — [ f- dx where
f+ =max{f,0}; f. = max{—f, 0}. £'(a, b) is the set of functions on (g, b)
which are in £! if we extend them to the whole real line by defining them to

be zero outside of (a, b). If fe £'(a, b), we write | fdx =[5 fdx. We then
have:

Theorem L9 Let f and g be measurable functions. Then

(@) Iff,ge ¥'(a,b), so are f+ g and f, for all Le R.

(b) If |g| <fand fe ¥, thenge L.

©) [(f+gydx={fdx+ [gdxiffand g arein L.

@) [ffdx| <[ |f] dxiffisin £,

(e) Iff<g, then [fdx<|gdx,iffand g arein £

(f) If fis bounded and measurable on — o0 < a < b < 0, then fe £* and

15| < 16 -l sup 151)

a<xs<b

This theorem shows that | has all the nice properties of the Riemann
integral even though it is defined for a larger class of functions.

The properties that make the space L' (which we will shortly define)
complete are the following absolutely essential convergence theorems:
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Theorem 1.10 (monotone convergence theorem) Let £, > 0 be measur-
able. Suppose f,(p) — f(p) for each p and that f,,(p) = f.(p) all p and n (in
which case we write f, 7f). If | f,(p) dp <C for all n, then fe &' and
1 /()— fi(p)ldp >0 as n— 0.

Theorem 1.11 (dominated convergence theorem) Let f,(p) - f(p) for
each p and suppose | £,(p)| < G(p) for all n and some G e &£*. Then fe &*

and [ | f(p) — fu(p)| dp—0 as n - 0.

In the latter case, we say G dominates the pointwise convergence. That a
dominating function exists is crucial. For example, let £,(x) = (1/n)x; 5, m(%)-
Then f,(x) — 0 for each x, but | | f,]| dx =2 so [ | fu(x)| dx does not go to
zero. In this case, it is not hard to see that sup, | f,(x)| = G(x) is not in £".

We are almost ready to define £ as a metric space by letting p(f, g) =
§|f—g| dx. We cannot quite do this because | | f—g| dx =0 does not
imply f= g (for example, f and g might differ at a single point). Thus, we
first define the notion of almost everywhere (a.e.):

Definition We say a condition C(x) holds almost everywhere (a.e.) if
{x| C(x) is false} is a subset of a set of measure zero.

Definition We say two functions f, g € ' are equivalent if f(x) = g(x)
a.e. (this is the same as saying | | f— g| dx = 0).

Definition The set of equivalence classes in #! is denoted by as L.
L} with the norm {|f|l; = { | f| dx is a normed linear space.

Thus an element of L' is an equivalence class of functions equal a.e. In
particular when fe L', the symbol f(x) for a particular x does not make sense.
Nevertheless we continue to write *“ f(x)”’ but only in situations where state-
ments are independent of a choice from the equivalence class. Thus, for
example, f,(x) — f(x) for almost all x is independent of the representatives
chosen for fand £, . By this replacement of pointwise convergence with point-
wise convergence almost everywhere, the two convergence theorems carry
over from £ to L.

Having cautioned the reader that f(x) is “technically meaningless” for
fe I}, we remark that in certain special cases it is meaningful. Suppose fe !
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has a representative f (that is, f is a function; f an equivalence class of func-
tions) which is continuous. Then no other representative of f is continuous,
so it is natural to write f(x) for f(x).

The critical fact about L' is:

Theorem 1.12 (Riesz-Fisher) L' is complete.

Proof Let f, be Cauchy in L'. It is enough to prove some subsequence
converges (see Problem 3) so pass to a subsequence (also labeled f,) with
Wfo = fosrh <277 Let

0u¥) = 3. 11,09 = fyni ]

Let g, be the infinite sum (which may be o0). Then g, 7 g, and
§1gml <Y Ifi —fie1l S 1, so by the monotone convergence theorem,
9 € L'. Thus |g(x)| < o0 a.e. As a result

S8 = £ = L0 = )

converges pointwise a.e. to a function f(x). Moreover, |f,.(x)|<
/1)) + g (x) € L' so £, — fin L' by the dominated convergence theorem. J

This proof has a corollary (see Problem 17):

Corollary If f, = fin L', then some subsequence f, converges pointwise
ae. tof.

As a final result which brings us full circle to our original motivation:

Proposition Cla, b] is dense (in ||*}};) in I}[a, b], ie. I is the com-
pletion of C.

Proof See Problem 18.

We defined L'[a, b] as a space of real-valued functions. It is often con-
venient to deal with complex-valued functions, f, whose real and imaginary
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parts are in I'[a, b]. When no confusion arises, we will denote this space, with
the norm

If lly = f "If] dx

also by I}a, b]. The integral of a complex-valued function is defined by

ffdx=fRe(f)dx+ i [Im(f) dx

1.4 Abstract measure theory

One of the most important tools which one combines with abstract func-
tional analysis in the study of various concrete models is ““ general ”” measure
theory, that is, the theory of the last section extended to a more abstract
setting.

The simplest way to generalize the Lebesgue integral is to work with
functions on the real line and with Borel sets but to generalize the underlying
measure; we consider this special case of abstract measure theory first. Recall
that the Lebesgue integral was constructed as follows. We started with a
notion of size for intervals, u({a, b]) = b — a, and extended this in a unique
way to a notion of size for arbitrary Borel sets. Armed with this notion of
size for Borel sets, the integral of Borel functions was obtained by measuring
sets of the form f~!([a, b]). We found the vector space L'([0, 1], dx) con-
structed in the last section is just the completion of C[0, 1] with the metric
dy(f, 9) = §§ | f(x) — g(x)| dx, where we needed only the Riemann integral
to define d, .

Now suppose an arbitrary monotone function «(x) is given (that is, x > y
implies a{x) > a(y)). It is not hard to see that the limit from the right,
lim, o a(x + |£|) and the limit from the left, lim,_,, a(x — |¢]) exist; we write
them as a(x + 0) and a(x — 0) respectively. Since (a, b) does not include the
points a and b, it is natural to define y.((a, b)) = a(b — 0) — a(a + 0). From
this notion of size for intervals, one can construct a measure u, on Borel sets
of R, thatis, amap p,: 2 — [0, o] with i, (JB;) = Y12 #a(B)if B, " B; = &
and u, () = 0. By construction, this measure has the regularity property

uAB) = sup{u(C)|C = B, C compact}
= inf{u(0)|B = O, O open}
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Also, u(C) < oo for any compact set C. A measure with these two regularity
properties is called a Borel measure. In particular, y,([a, b]) = a(b + 0) —
a(a — 0). One can then construct an integral /- | fdu, (we will also write
{ f do)) which has properties (a)-(¢) of Theorem 1.9; it is called a Lebesgue-
Stieltjes integral. I'([a, b], do) and L'(R, de) can be formed as before. These
spaces of equivalence classes of functions are complete in the metric p(f, g) =
j | f—g| do, and analogues of the monotone and dominated convergence
theorems hold. The continuous functions Cfa, b] form a dense subspace of
L({a, b, du); put differently, I*([a, b], dz) is the completion of Cla, b] with
the metric p,(f,9) = {2 | f— g| dx where we need only use the Riemann-
Stieltjes integral to define p, (see Problem 11).

Let us consider three examples which illustrate the variety of Lebesgue-
Stieltjes measures.

Example 1 Suppose a is continuously differentiable. Then u.(a, b) =
{2 (do/dx) dx where dx is Lebesgue measure, so it is to be expected (and is

indeed true!) that
do
rae=[1(5) 4

Thus, these measures can essentially be described in terms of Lebesgue
nieasure.

Example 2 Suppose that a(x) is the characteristic function of [0, c0).
Then u,a,b) =1 if 0e(a,b) and is 0 if O ¢ (a, b). The measure one gets
out is very easy to describe: u(B) =1 if 0 e B, and p,(B) =0 if 0 ¢ B. The
reader is invited to construct explicitly the integral and convince himself that

[rdn=£@)

This measure do is known as the Dirac measure (since it is just like a
6 function). Let us consider L'(R, d«) in this case. In #! we have p(f, g) =
| £(0) ~ 9(0)| so p(f, g) = 0 if and only if f(0) = g(0). As a resuit, we see that
the equivalence classes in I! are completely described by the value £(0) so that
LXR, du) is just a one-dimensional vector space! Notice how different this is
from the case of L'(R, dx) where the value of a “function” at a single point
is not defined (since elements of L' are equivalence classes).

Example 3 Our last example makes use of a fairly pathological function,
a(x), which we first construct. Let S be the subset of [0, 1]

S=GPIvEHVEIVELH V-
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Ficure 1.5 The Cantor set.

that is, remove the middle third of what is not in S at each stage and add it
to S, see Figure 1.5. The Lebesgue measure of Sis 3 + 2(3) + 4(F5) + - = 1.
Let C = [0, 1]\S. It has Lebesgue measure 0. C, which is known as the Cantor
set, is easy to describe if we write each x € [0, 1] in its base three decimal
expansion. Then x € C if and only if this base 3 expansion has no 1’s. Thus C
is an uncountable set of measure 0. To see this, map C in a one-one way onto
{0, 1] by changing 2’s into 1’s and viewing the end result as a base 2 number.
Now construct a(x) as follows: set a(x) =% on (§, $); a(x) =4 on (3, 3);
a(x) =2 on (3, &), etc.; see Figure 1.6. Extend « to [0, I] by making it con-

bl

Ni—-
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Ficure 1.6 The Cantor function.

tinuous. Then « is a nonconstant continuous function with the strange
property that a'(x) exists a.e. (with respect to Lebesgue measure) and is zero
a.e. Now, we can form the measure y,. Since « is continuous, . ({p}) =0
for any set {p} with only one point. Nevertheless, u, is concentrated on the set
C in the sense that u,([0, INC) = u,(S) = 0. On the other hand, the Lebesgue
measure of C is zero. Thus y, and Lebesgue measure *“live” on completely
different sets.

In a sense we now make precise, these three examples are models of the
most general Lebesgue-Stieltjes measures. Suppose u is a Borel measure on R.
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Definition Let M, N be sets with o-fields Zand F. AmapT: M - N
is called measurable (w.r.t. # and #)if andonlyif VAe &, T '[4d]le &®. A
map f: M — R is called measurable if it is measurable w.r.t. & and the Borel
sets of R.

Given a measure y on a measure space M, we can define { fdu for any
positive real-valued measurable function on M and we can form £'(M, du),
the set of integrable functions and L'(M, dy), the equivalence classes of func-
tions in £ equal a.e.[u]. As in the case (M, du) = <R, dx), the following
crucial theorems hold:

Theorem 1.15 (monotone convergence theorem) If £, e LM, dw),
0<fi(x) <fo(x) <+ and f(x) = lim,, f,(x), then fe &£ if and only if
lim, ., {If,]l; < o and in that case lim, ., I/ — f,ll; =0 and lim,_  ||f,]l; =

1l

Theorem 116 (dominated convergence theorem) If f,e!(M,dy),
lim, . o fo(x) = f(x) a.e.[u], and if there is a G € L' with | £,(x)| < G(x) a.e.[u],
for all n, then fe L' and lim,_. [|f —/f,ll; =0.

Theorem 1.17 (Fatows lemma) If f,e¥!, each f(x)>0 and if
lim|if,ll; < co, then f(x) = lim f,(x) is in £ and ||f 1}, < lim || f,1l;-

Note In Fatou’s lemma nothing is said about lim,_ , |f — /.1l

Theorem 1.18 (Riesz-Fisher theorem)  I}(M, du) is complete.

One also has the idea of mutually singular:

Definition Let yu, v be two measures on a space M with o-field #. We
say that y and v are mutually singular if there is a set A € # with p(A4) =0,
v(M\A4) = 0.

It is useful to take a Weaker looking definition of absolute continuity which
is essentially the opposite of singular:

Definition We say v is absolutely continuous w.r.t. u if and only if
u(A) = 0 implies v(4) =0.

That this definition is the same as the previous one is a consequence of’:
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Theorem 1.19 (Radon-Nikodym theorem) v is absolutely continuous
w.r.t. u if and only if there is a measurable function f so that

WA) = (a0 dux)
for any measurable set 4. fis uniquely determined a.e. (w.r.t. p).

Finally the Lebesgue decomposition theorem has an abstract form:

Theorem 1.20 (Lebesgue decomposition theorem) Let p,v be two
measures on a measure space {M, #>. Then v can be written uniquely as
V=V, + Vo Where u and v, are mutually singular and v, is absolutely
continuous w.r.t. u.

sing

There is one final subject in measure theory which we must consider and
that involves changing the order of integration in a multiple integral. We first
must consider what functions can be multiply integrated:

Definition Let (M, &>, (N, ) be two sets with associated g-fields.
Then the o-field, Z @ # of subsets of M x N is defined to be the smallest
o-field containing {R x F|Re &, Fe ¥}. :

Notice that if /1 M x N— R is measurable (w.r.t. # ® #), then for any
me M, the function n+—f(m, n) is measurable (w.r.t. #). If v is a measure
on N such that {f(m,n)dv(n) exists for all m, then one can show that
m > § f(m, n) dv(n) is measurable (w.r.t. #). There is a direct analogue of the
fact that absolute convergent sums can be rearranged at will:

Theorem 1.21 (Fubini’s theorem) Let f/ be a measurable function on
M x N. Let u be a measure on M, v a measure on N. Then

'[M(fN | fm, m] d"(”)) du(m) < o
if and only if

J, ([, 170mm] duom) v < o

and if one (and thus both) of these integrals is finite, then

fN(fo(’", n) d,u(m)) dv(n) = IM (Lf(m, n) dv(n)) du(m)
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First, let P = {x|u({x}) # 0}, that is, P is the set of pure points of u. Since u is
Borel [u(C) < oo for any compact set], P is a countable set. Define

Hpp(X) = ; xu({x}) =uPn X)

Then p,, is a measure and g, = § — f,, is positive. p,,, has the property
Heon{{P}) = O for all p, that is, it has no pure points and u,, has only pure
points in the sense that u (X) =Y, .y #,,((x}).

Definition A Borel measure p on R is called continuous if it has no pure
points. u is called a pure point measure if u(X) =Y, .y u(x) for any Borel
set X.

Thus, we have seen:

Theorem L.13 Any Borel measure can be decomposed uniquelyinto a
SUm f = pp, + fheon Where pi, is continuous and p,,, is a pure point measure.,

We have thus generalized Example 2 by allowing sums of Dirac measures.
Is there any generalization of Examples 1 and 37

Definition We say that u is absolutely continuous with respect to (w.r.t.)

Lebesgue measure if there is a function, f, locally L' (that s, {3 | f(x)] dx < o
for any finite interval (q, b)) so that

f gdp= f gf dx
for any Borel function g in I}(R, d). We then write du = fdx.

This definition generalizes Example 1; we will eventually make a different
(but equivalent!) definition of absolute continuity.

Definition We say u is singular relative to Lebesgue measure if and only
if u(S) = 0 for some set S where R\S has Lebesque measure 0.

The fundamental result is:

Theorem 1.14 (Lebesgue decomposition theorem) Let u be a Borel
measure. Then y = p,. + f,, in @ unique way with p,, absolutely continuous
w.r.t. Lebesgue measure and with y;,, singular relative to Lebesgue measure.
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Thus Theorems 1.13 and 1.14 tell us that any measure g on R has a canonical
decomposition p = py, + U + Uing Where p,, is pure point, u,. absolutely
continuous with respect to Lebesgue measure, and u;,, is continuous and
singular relative to Lebesgue measure. This decomposition will recur in a
quantum-mechanical context where any state will be a sum of bound states,
scattering states, and states with no physical interpretation (one of our
hardest jobs will be to show that this last type of state does not occur; that
is, that certain measures have py,;,, = 0; (see Chapter XIII).)

This completes our study of measures on R. The next level of generalization
involves measures on sets with some underlying topological structure; we will
return to study this case of intermediate generality in Section IV.4. The most
general setting lets us deal with an arbitrary set. We first need an abstraction
of Borel sets:

Definition A nonempty family & of subsets of a set M is called a o-ring
if and only if

(@) A;e®R,i=1,2,... implies J2, A;e R.
(b) If A, Be #, then A\Be A.

If M e &, we say that Z is a o-field.

The definition of measure is obvious(!):

Definition A measure on a set M with g-ring £ is a map u: # — [0, ]
with the properties:

(@ w@)=0
(b) u(iQAi) =§1p(Ai), if AnA,=@ forall i#].

We shall often speak of the measure space (M, u) without explicitly men-
tioning 2, but the o-ring is a crucial element of the definition. Occasionally, we
will write (M, &, uy. For certain pathologically “big” spaces, one wants to
use the notion of o-ring rather than o-field, but to keep things simple, we
will consider measures on o-fields and will suppose the whole space isn’t
too big in the sense:

Definition A measure u on a o-field & is called o-finite if and only if
M =2, 4; with each u(4,) < .

We will suppose all our underlying measures are o-finite.
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In Problem 25, the reader will see that the finiteness of the integral of the
absolute value is critical, :

Fubini’s theorem can be put into perspective by the notion of product
measure:

Theorem 1.22 Let u be a o-finite measure on {M, #) and v a o-finite
measure on (N, #). Then, there is a unique measure £ ® v on {M x N,
R @ F) obeying

(1 ® V)R x F) = p(R)w(F)
(where 0 - o0 = 0). If fis a measurable function on M x N, then

fMUN | f(m, m)]| dv(n)) du(m) < o

if and only if
f [fldp®v) <o
MXxN

and in that case

J‘M x Nf d(ﬂ ® V) - fM (fo dv) d“

One can describe the measure u® v quite explicitly. If Me £ x # and
Mc {2, R, x F; we have (u®@ v)(M) < Y2, u(R)V(F). In fact, for any
Me& x &,

@ ® VM) = inf{iiu(R:)V(F.-)

MCUR;X F,}
i=1

In particular, we can approximate M with a countable union of rectangles
making an arbitrarily small error.

.5 Two convergence arguments

In this section we single out two ““ tricks ” which we will have occasion to
use over and over. While they are elementary and the reader may well have
seen them, it seems reasonable to discuss them explicitly.

The first argument, which we will call the &/3 argument, is best seen in the
proof of:
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Theorem 1.23  Let Cla, b] be the continuous functions on {a, b] with the
metric
di(f,9)= sup |f(x)—g(x)|
agxsbh
induced by the norm || f||, = d,(f, 0). Then Cla, b] with the norm ||-||,, is
complete.

Proof Let f, be a ||‘{|,-Cauchy sequence. Then, for any fixed x ¢ [q, b),
[ /i) = [ < Ufys = Sinllo = 0 @s 1, m— o0 so f,(x) is a Cauchy sequence
of real numbers. Since the reals are complete, for each x there is a number,
JS(x), with f,(x) - f(x). Given ¢, find N so n,m > N implies ||f, — fllo <&
Then

Supblf(X) —fx(®)| = sup lim |f(x) — fa(x)]

asxs asx<d n—w

< sup sup [fa(x) — fu(3)]

asx<bnz

=sup [lf,—falo<e
nzN

Thus, if we can show that fe Cla, b], we can conclude that ||/ — /I, — 0 so
fo—=fin Cla, bl.

We are thus left with proving that f is continuous, or put differently that
‘““a uniform limit of continuous functions is continuous.” Fix x € [a, b] and
¢ > 0. We want to find é so |x — y| < & implies | f(x) — f(y)| <e. Pick n so
that [|f, — fll, < &/3. Now, since f, is continuous, pick J so that |x — y| <&
implies | f/,(x) — /,(»)| < ¢/3. Then |x — y| < & implies

| /G =W < | /) = £ + | L) = LD + 1L0) =S D)
<ie+ de + d¢

Thus fis continuous. |

What is the essence of the g/3 argument? We had a family of convergent
sequences f,(x) — f(x) for each x and had uniform control on the rate of con-
vergence, that is, control independent of the object x that parametrized the
family. We also had some information on the behavior of f,(x) for fixed n
as the parameter x varied but this information was not necessarily uniform in n.
What we did is pictorially indicated in Figure 1.7; one could also call the ¢/3
argument the “up, over, and around” proof. In the next section we will
consider what happens when one has no uniform information on the rate of
convergence but instead has uniform control on how f,(x) behaves as x varies
(uniform in n). There we will see an ¢/3 argument also works. For further
examples of the &/3 trick, see Problems 27, 29.
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AT RS A%

|45 (x) = FLx)| AV {921

Ficure 1.7 The ¢/3 argument.

The second argument which we refer to as the “diagonal sequence trick ”
is illustrated in:

Theorem .24  Let f,(m) be a sequence of functions on the positive
integers which is uniformly bounded, i.e. | f,(m)| < C for all n, m. Then
there is a subsequence { f3;,(m)}2 ; so that for each fixed m, f;;,(m) converges
as i — 0.

Proof Consider the sequence f,(1). It is a bounded set of numbers, so we can
find a subsequence f, ;) 50 f,,;(1) = f€1), for some number f,(1). Now
consider the sequence f, (,(2). We can find a subsequence f,,;,(2) = f(2) as
i — co. Proceeding inductively, we find successive subsequences, f,, ;) so that
(a) fuy . 1y 1s @ subsequence of £, ;, and (b) £, (k) = f,(k) as i - c0. Thus, in
particular, £, () = fo()asi—» oo forj=1,2,..., k. To get a subsequence
Jaiy converging for each j, one is tempted to try to take the limit of the
horizontal sequence (see Figure 1.8a) but that won’t work! (for it may happen
n,(1) > o). The simple way out is to take the diagonal sequence fi(k) =
m(k). Then fauys fox+1ys --- is @ subsequence of f,, ;) 50 fuu)(k) = f.(k) as
i— oo foranyk. J

1.6 Equicontinuity

We have just seen that one can control the x dependence of lim,_, o, f,(x)
if one is given information on the approach to the limit which is uniform in x.
In this section we study what happens when the given information is instead
uniform in n#; what we will see is that one can obtain not only information
about the x behavior of the limit but that one can also turn weak information
about the approach to the limit into stronger information. We first isolate
the notion of “* control on the x behavior uniform in n.”
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AN

- ¢
-

. .

?
(a) (b)
FiGure 1.8 The diagonal trick.

Definition Let & be a family of functions from a metric space (X, p) to
another metric space (Y, d). We say & is an equicontinuous family if and
only if

(Ve)(Vx € X)(F0) (Ve F) p(x, x') < implies d(f(x), f(x)) <e.
We say # is a uniformly equicontinuous family if and only if

(Ve)(3)(Vx e X)(Vfe F) p(x, x) < d implies  d(f(x),f(x")) <e.

For comparison sake, note that to say all fe & are continuous means
(Ve)(Vx € X)(Vfe F)30)p(x, x') <& implies d(f(x), f(x")) <e. Thus, for
mere continuity, & can depend on fand x (as well as ¢), while equicontinuity
says & is independent of f; finally uniform equicontinuity says & is dependent
only on €.

As promised, it is easy to turn information about f,(x), uniform in n into
information about the limit:

Theorem 1.25  Let f, be a sequence of functions from one metric space
to another with the property that the family {f,} is equicontinuous. Suppose
that f,(x) — f(x) pointwise for each x. Then f is continuous.

Proof Given ¢ and x, choose 8 5o p(x, x") < d implies d(f,(x), f,(x")) < %¢ for
all n. Since d is continuous, we have d(f(x), f(x)) = lim, .. ., d(f,(x), f,(x)) so
p(x, x) < & implies d(f(x), f(x) < ¢f2<e. §

The proof makes it clear that if { £, ,,} is an equicontinuous family and for
each m, lim,,, f, » =/, exists, then {f,} is an equicontinuous family.
Equicontinuity has a crucial consequence which we will see combines nicely
with the diagonal sequence trick:

Theorem 1.26  Let {f,} be an equicontinuous family of functions from
one metric space {X, p)> to another (Y, d) with Y complete. Suppose that for
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a dense set D < X, we know f,(x) converges for all x € D. Then f,(x) converges
for all x € X. (Note that by Theorem 1.25, the limit function is continuous.)

Proof See Problem 29.

Theorem 1.26 tells us that, in general, pointwise convergence on a dense set
combined with equicontinuity implies pointwise convergence everywhere.
More spectacularly, for a sequence of functions on {0, 1] (see Problem 30),
uniform equicontinuity and pointwise convergence imply uniform con-
vergence:

Theorem 1.27  Let {/,} be a uniformly equicontinuous family of functions
on [0, 1]. Suppose that f,(x) - f(x) for each x in [0, 1]. Then f,(x) - f(x)
uniformly in x.

Proof Let e be given. Choose é so that |x — y| < & implies | f,(x) — £,(»)| <
&/3 for all n. Now choose y;, ..., y, so that every point of {0, 1] is within
é of some y;. Since y,, ..., ¥, is a finite set, we can find n so n > N implies

L) —f)] <¢f3;i=1, ..., m. By an ¢/3 argument, ||f, —fl, < for
alln>N. |

For functions on [0, 1], every equicontinuous family is uniformly equi-
continuous (Problem 31).

We can combine the convergence theorems (Theorems 1.26 -and 1.27), the
diagonalization trick of Section 1.5 and the above remark (Problem 31) to
prove the beautiful:

Theorem 1.28 (Ascoli’stheorem) Letf, bea family of uniformly bounded
equicontinuous functions on [0, 1]. Then some subsequence f,;, converges
uniformly on [0, 1}.

Proof Let q,,q,,... be a numbering of the rationals. Since the f,’s are
uniformly bounded, | f,(¢m)| < C for all m and n. Thus, by the diagonalization
trick, we can find a subsequence with f,;)(¢..) converging as i — oo for each m.
By Theorem 1.26, the f,;, converge pointwise everywhere and then by
Theorem 1.27, they are uniformly convergent. |

At this point, we discuss no applications in detail. However, we mention
two examples to which we shall return which show the variety of applications:
In Section V.1, we define a metric on all functions, @,,, analytic in a region
D. In Theorem V.25 we use equicontinuity arguments to prove that certain
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subsets of @, are compact. In Chapter XX, we will discuss the limit of
the free energy per unit volume of a “lattice gas” in a box as the volume
goes to infinity. Our proof that this limit exists for a large class of interactions
will proceed in three steps: (1) The interactions will be given a metric and it
will be shown that strictly finite range interactions are dense in all *“ allowable ”
interactions in this metric. (2) If for fixed volume A the free energy per unit
volume F, js treated as a function on the metric space of allowable interactions,
the {F,} are equicontinuous. (3) The lim, ., F,(®) will be shown to exist if
@ is a finite range interaction. Then equicontinuity arguments will be used
to tell us that lim, ., , F,(®) exists for any allowable interaction ® (and the
limit will be continuous in ®).

NOTES

Section 1.1 For a discussion of the subtleties of Zorn’s lemma, the axiom of choice,
etc. intended for the novice, we recommend: P. R. Halmos, Naive Set Theory, Van Nos-
trand-Reinhold, Princeton; New Jersey, 1960.

Section 1.2 For additional discussion of metric space notions, see A. Gleason, Intro-
duction to Abstract Analysis, Addison-Wesley, Reading, Massachusetts, 1966, or A. Kolmo-
gorov and S. Fomin, Elements of the Theory of Functional Analysis, Vol. I, Graylock Press,
1957. For normed linear spaces (and in particular for our discussion of the Riemann inte-
gral) see J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York and
London, 1960 or L. Loomis and S. Sternberg, Advanced Calculus, Addison-Wesley, Reading,
Massachusetts, 1968.

Sections 1.3, 1.4 For a discussion of Lebesgue Integration, see J. Williamson, Intro-
duction to the Lebesgue Integral, Holt, New York, 1962 or W. Rudin, Principles of Modern
Analysis, McGraw-Hill, New York, 1963. For abstract measure theory we particularly rec-
ommend S. K. Berberian, Measure and Integration, Macmillan, New York, 1965 and
H. Royden, Real Analysis, Macmillan, New York, 1968. See also P. Halmos: Measure
Theory, Van Nostrand, Reinhold, Princeton, New Jersey, 1950; N. Dunford and J. Schwartz,
Linear Operators, Chapter 3, Wiley (Interscience), New York, 1958.

For a discussion of the Banach-Tarski paradox, see R. Rosenblum, Elements of Mathe-
matical Logic, p. 150, Dover, New York, 1950, or R. Robinson, Fund. Math., 34 (1947),
246.

We note that one can construct all Borel sets as follows: Start with the open sets and their
complements, the closed sets. Add countable unions of closed sets, called F, sets and their
complements (countable intersections of open sets) called G, sets. Then add countable unions
of G;'s called G.'s and their complements F,,'s. Next add G, etc. After countably many
steps one is still not done, for a union of one G;, one F,;, one Gy, ... may not have been
included. In the end transfinite induction up to the first uncountable ordinal is needed.

As the problems show, the Borel functions are the smallest family closed under pointwise
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limits and containing all continuous functions. As with the Borel sets, their construction
requires transfinite induction. We note however that, given any Bore! measure ., any Borel
function f is equal almost everywhere (w.r.t. 1) to a pointwise limit of continuous functions
(Problems 18 and 19).

By removing the middle 2"-ths at the nth step in {0, 1], one can construct a closed set of
positive measure with an empty interior.

The approach to measures on topological spaces (rather than abstract spaces) which we
discuss in Section IV .4, is fashionable with the French School. See N. Bourbaki, Intégration,
Chapters 1-8, Hermann, Paris, (1952, 1956, 1959, 1963) or (for a beautiful and brief dis-
cussion) L. Nachbin, The Haar Integral, Chapter I, Van Nostrand-Reinhold, Princeton,
New Jersey, 1965.

Section 1.6 The natural setting for Ascoli’s theorem is functions on an arbitrary com-
pact metric space, or more generally, a second countable compact uniform space (which is
actually always metrizable), for example, a compact topological group.

The idea of using equicontinuity in establishing the existence of the thermodynamic limit
goes back at least as far as R. B. Griffiths: ““A Proof that the Free Energy of a Spin System
Is Extensive,” J. Math. Phys. 8 (1964), 1215-1222, The proof we outlined for lattice gases,
which we discuss in Chapter XX, is due to G. Gallavotti and S. Miracle: ** Statistical
Mechanics of Lattice Systems,” Commun. Math. Phys. § (1967), 317-324.

In analytic function theory, equicontinuity is really behind one of the proofs of the
Riemann mapping theorem, see e.g. L. Ahlfors, Complex Analysis, pp. 172-174, McGraw-
Hill, New York, 1953, where.sets of equicontinuous functions are called * normal families.”

PROBLEMS

1. Find a counterexample to the statement: Every symmetric, transitive relation is re-
flexive. What is wrong with the proof *“ xRy and yRx implies xRx (by transitivity)**?

t2. Verify that the proposed metrics of Examples 1-3 in Section 1.2 are in fact metrics.

3. Let x, be a Cauchy sequence in a metric space (X, p>. Suppose that for some subse-
QUENCE Xnety, Xn(hy ——> Xo. Prove that x, = X .

4. Let x, be a sequence in a metric space and let x,, bz given. Suppose that every sub-~
sequence of x, has a sub-subsequence converging to x. . Prove that x, > x.

t5. Fill in the details of the proof of Theorem 1.3.
t6. Prove Theorems 1.4 and L.5.
17. Prove Theorem 1.6.
8. Prove: If x, > x, in a metric space <X, &>, then for any x, lim,.. ., d(x, x,)} == d(x, X).
19. Complete the proof of Theorem 1.7.

+10. Prove Sia, b] is dense in PCla, b} in the || * {lo norm.
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t12.

13.

ti4.

15.

*16.

t17.

t18.

Problems 33

(a) Let a be a function on [0, 1). & is said to be of bounded variation if there isa Cso
that

-1
‘}_:1 la(xia 1) — alx)] < €

for any sequence 0 < x; < x; < - <x, < 1. Prove that any monotone function

is of bounded variation.
{b) Define I, on S[0, 1] by

Id(;::l St Xl) = ‘:‘ silee(x) — axy-1)]

Prove I, is a B.L.T. if and only if « is of bounded variation.
(c) Let « be of bounded variation on [0, 1]. Construct a Riemann-Stieltjes integral

J fda.
Prove the various properties of lim and lim given in the appendix to Section 1.2.

Construct a set ¥ (the Vitali set) as follows: Call two numbers x, y € [0, 1) equivalent
if x — y is rational. Let ¥ consist of exactly one number from each equivalence class.
Let p be Lebesgue measure. Prove V is not Lebesgue measurabie. (Hint: Prove [0, 1)
is a disjoint union of “ translates” of V.)

(a) Let fbe a Borel function Prove f~'[B]€ % for any Be %.
(b) Let fand g be Borel functions. Prove that fo g is Borel.

(a) Letlim,., r,=r for r,, r real numbers. Prove that

r = sup(inf ry)

m a>m

(b) Prove that if £, is a sequence of functions and f(x) = inf f,(x), then
fla @l = A frtla o) Se o= ) Sa+ m, o))

Conclude that the infimum of any sequence of Borel functions is Borel.

(c) Using (a) and (b), prove that any pointwise limit of a sequence of Borel functions
is a Borel function,

(d) Using (a), prove the dominated convergence theorem from the monotone con-
vergence theorem.

Prove that the bounded Borel functions on [0, 1] are the smallest family & which in-
cludes C[0, 1] and has the property: If £, is a sequence of uniformly bounded functions
in # and f, — f pointwise, then fe &.

Prove the coroilary to Theorem 1.12.

(a) Prove that for any open set 4 in [0, 1], x4 is an L' limit of continuous functions.

(b) Let B be a Borel set in [0, 1]. Prove x5 is an L' limit of functions y, with 4 open
(use the regularity of Lebesgue measure).

(c) Prove Cla, b] is L* dense in L*[a, b].
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*19.

*20.

21.

t22.
23.

*24.

23,

26.

27,
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(a) Letf, — fpointwise with f, continuous. Prove f~[(a, )] is a F, set (that is, a union
of closed sets). (Hint: Use Problem 15a.)

(b) Prove that every Borel set on the real line is equal a.e. (w.r.t. Lebesgue measure)
to an F, set and also equal a.e. to a G set.

A function f is called a jump function if it is monotone and continuous except at a
countable number of points (jumps) and if fis piecewise constant on the complement of
these jumps. fis called singular if f’ exists a.e. and is zero a.e. f is called absolutely
continuous if, given &, we can find 8 so that for any »

L]
> X241 — x24] <8
i=0

for points xo< x; < ... < Xza4; implies
‘2:0 1f(x2041) — flx2)] <€

Prove that any monotone function « on [0, 1] can be written (uniquely) « =
Qpp + Ggig + ac Where o, is a jump function, a4, is singular and continuous, and
o, Is absolutely continuous.

Let « be a monotone function. Suppose a’(x) exists a.e. Prove a(b) — a(a) = j".’ a'(x) dx.
Does equality always hold ?

Prove that o-rings are closed under countable intersections.

(a) Let & be a family of substs of M. Prove there is a smallest o-field F with & < &,
We say & generates &

(b) Let T: M~ N where M, N have associated o-fields 2, &. Let & generate &.
Prove T is measurable if and only if T-'[S}< ® for all S¢ &.

Let u, v be two finite measures. Prove v is a.c.w.r.t. g if and only if (V£)(38) pu(4) < &
implies W(A) <e.

Consider the function f(x y) on R? given by

I, x>0, y>0, 0<x—y<l1
fGyy=i-1, x>0, y>0, 0<y—~x<1
0, otherwise

Compute [2, ([« f(x, ) d¥) dx and {2 ([ 2« f(x, ¥) dx) dy and comment on Fubini's
theorem and Theorem 1.22.

Construct a sequence of functions, f,, which are continuous and pointwise convergent
to a function f which is noz continuous. Prove directly: (a) the convergence f,(x) — f(x)
is not uniform in x, (b) the £, are not equicontinuous.

Use an &/3 argument to prove the following: Let B be a complete normed linear space
and suppose T, is a sequence of linear maps T, : B — B with two properties: (i) The 7,
are bounded uniformly in , that is, ||T,}| < C for some C independent of n. (ii) For a
dense set D < B, T,x converges if x € D. Then T,x converges for each x and the
limiting function, Tx, so defined is a bounded linear map.
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30.

31

32.

*33.

Problems 35

Construct a sequence f,(x) of bounded functions on [0, 1] converging to zero in L' so
that f, converges at no point in [0, 1].

Use an &/3 argument to prove Theorem 1.26.

A metric space X is called zotally bounded if for every €, X can be covered by finitely
many e-balls. Prove that a pointwise convergent uniformly equicontinuous sequence
of functions on a totally bounded metric space is uniformly convergent.

(a) Using the Heine-Borel property, prove that a continuous function on [0, 1] is
uniformly continuous.

(b) Prove that an equicontinuous family of functions on [0, 1] is uniformly equicontin-
uous.

Let F(x,y) be a continuous function on [0, 1] X [0, 1] and consider the map Z:
Cl0, 1] - C[0, 1] given by

FN@ = [ Fe 10 dy

Prove that {Z f||Ifllo <1} is an equicontinuous family so that any given sequence f;
with {If,l§ £ 1, all n, has a subsequence f,«), with & f,,, uniformly convergent.

Remark. 1t is thislast subsequence property that makes & what is known as a compact
operator (a class we discuss in Section VI.5). The classical Fredholm theory of integral
equations works because & is a compact operator.

(a) Let D be a domain in the complex plane. Let # be a family of analytic function on
D so that, for any compact set C < D, {|f(z)] |fe ¥, z e C}is bounded. Prove that
& is an equicontinuous family by using the Cauchy integral formula.

(b) Prove the Vitali convergence theorem: If D is a connected domain of the complex
plane and if f, is a sequence of analytic functions on D uniformly bounded on
compact subsets of D and if £,(z) converges pointwise for all z lying in some subset
of D with a limit point in D,then f, converges uniformly on compact subsets to an
analytic function, (Hint: Use Problem 4.)

(c) Prove Vitali's theorem by a Taylor series and analytic continuation argument.

Remark. For a discussion of Vitali's theorem from the point of view of (c), see
E. C. Titchmarsh, Theory of Functions, Oxford Univ. Press, London and New
York, 1939, pp. 168-170.
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Gentlemen: there’s lots of room left in Hilbert space S. MacLane

.1 The geometry of Hilbert space

Finite-dimensional vector spaces have three kinds of properties whose
generalizations we will study in the next four chapters: linear properties,
metric properties, and geometric properties. In this chapter we study vector
spaces that have an inner product, a generalization of the usual dot product
on finite dimensional vector spaces. The geometric properties of these spaces
follow from the notion of angle which is implicit in the definition of inner
product.

Definition A complex vector space V is called an inner product space if
there is a complex-valued function (-, ©) on ¥ x V that satisfies the following
four conditions forall x, y, ze Vand x € C:

(i) (x,x)=>0and(x,x)=0ifand onlyif x =0
(i) (ny+2)=(xy)+(x2)
(i) (x, ay) = alx, y)
(iv) x») =0 x)

The function (', ) is called an inner product.

36
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We note that (ii), (iil), and (iv) imply that (x, &y + 8z) = a(x, ) + B(x, z)
and that (xx, y) = @(x, y). The reader should be aware that some texts use
a convention different from the one introduced in (iii); they take the inner
product to be linear in the first vector and conjugate-linear in the second.

Example 1 (C") Let C" denote the set of all #-tuples of complex num-
bers. For x = (Xy, ..., X,» and y = {yy, ..., Y,y in C* define

x,») = f:, X;¥;

j=1

Example 2 Let Cla, b} denote the complex-valued continuous functions
on the interval [a, b). For f(x), g(x) € Cla, b] define

b
(f,9) = f F()g(x) dx

We now develop those geometrical notions that extend to arbitrary inner
product spaces.

Definition Two vectors, x and y, in an inner product space V are said to
be orthogonal if (x, ) =0. A collection {x;} of vectors in V is called an
orthonormal set if (x;, x;) = 1 for all i, and (x;, x;)) =0 if i # j.

We introduce the shorthand |x|j = ./(x, x). We will shortly see that
II* Il is in fact a norm,

Theorem II.1 (Pythagorean theorem) Let {x,}Y_, be an orthonormal
set in an inner product space V. Then for all x e V,
2

N N
uxﬂz = n;l I(x» xn)lz + ||x — ;l(xn’ X)X

Proof We write x as
N N
x= Y (X, X)x, + (x = Y (x5 x)x,,)
n=1 n=1

A short computation using the properties of inner products shows that

N N

Y (%, x)x, and x- Y (x,,x)x,

n=1 n=1
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are orthogonal. Thus,

2

-

2
+

Tl[\/z

Gens %),
1

(x, x) =

N
X — Z (X,,, X)X,,
n=1

2

™M=

N
X — Z (X,,, x)xn
n=1

[(xs X)1% +
1

Corollary (Bessel’s inequality) Let {x,}¥., be an orthonormal set in
an inner product space, V. Then for all xe ¥,

N
Il = ; I(x, x)|?

Corollary (the Schwarz inequality) If x and y are vectors in an inner
product space V, then

[, )| < Iixl iyl

Proof The case y = 0 is trivial, so suppose y # 0. The vector y/||y| by itself
forms an orthonormal set, so applying Bessel’s inequality to any x € ¥V we get

|(x, »I?

2 2 B
el = |(x, y/ iy D] TG

from which {(x, )| < lix]| llyli follows. }

Another useful geometric equality is the parallelogram law (Problem 4):
lIx + yI? + lx — yI? = 20xI* + 2|ly)

In Section 1.2 we defined normed linear spaces and observed that every
normed linear space is a metric space. The following theorem shows that
every inner product space is a normed linear space.

Theorem I1.2 Every inner product space V is a normed linear space
with the norm |x|| = (x, x)'/?

Proof Since V is a vector space, we need only verify that ||-|| has all the
properties of a norm. All of these properties, except the triangle inequality,
follow immediately from the properties (i)-(iv) of inner products. Suppose
x,y€ V. Then

x4+ 1P =G %)+ G p) + 0, %) + (0, )
= (x, x) + 2 Re(x, ¥) + (v, »)
<X+ 2[00I+ 06 )
< (%, %) + 2(x, )20, P2+ O, p)



40 N: HILBERT SPACES

Example 3 (¢,) Define Z, to be the set of sequences {x,};>, of complex
numbers which satisfy Y =, |x,]|? < co with the inner product

(=1, D) = 3 T

In Section 11.3 we will see that any Hilbert space that has a countable dense
set and is not finite dimensional is isomorphic to £, . In this sense, £, is the
canonical example of a Hilbert space.

Example 4 (I*(R", du))  Let ubea Borel measure on R". [*(R", dy) is the
set of complex-valued measurable functions on R" which satisfy [g- | f(x)|* du
< . IX(R", dy) is a Hilbert space under the inner product

(f,9) = fw F()g(x) du

Example 5 (direct sum) Suppose that s, and 3¢, are Hilbert spaces.
Then the set of pairs (x, y> with x € 3y, y € #, is a Hilbert space with inner
product

Kx1s y10, X2, ¥20) = (x4, X, + (V15 V2o,

This space is called the direct sum of the spaces #, and ##, and is denoted
by # @ #,. If u; and u, are mutually singular Borel measures on R and
{t= g, + u,, then I2(R, dy) is isomorphic in a natural way to I*(R, du,) ®
I2(R, du,) (Problem 3). We can also construct countable direct sums as
follows. Suppose {#,}%, is a sequence of Hilbert spaces. Let # denote
the set of sequences {x,}3-,, with x, € 5,, which satisfy

o 2
Z “X"";p" <@
n=1

J is a Hilbert space under the natural inner product and is denoted by

=@ i,

n=1

Example 6 (vector-valued functions) Suppose { X, u) is a measure space
and ' is a Hilbert space. Let I>(X, du; 5#’) be the set of measurable func-
tions on X with values in s’ which satisfy

[ 1R, dufx) < oo
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by the Schwarz inequality. Thus

lx + yi* < (llxll + llyih?
which proves the triangle inequality. J

This theorem shows that we have a natural metric,

d(x,y) = /(x = y,x = )

in V. We thus have the notions of convergence, completeness, and density
defined for metric spaces in Section 1.2. In particular, we can always complete
V to a normed linear space ¥ in which ¥ is isometrically embedded as a
dense subset. In fact, ¥ is also an inner product space since the inner product
can be extended from ¥ to ¥ by continuity (Problem 1).

Definition A complete inner product space is called a Hilbert space.
Inner product spaces are sometimes called pre-Hilbert spaces.

Definition Two Hilbert spaces o, and J#, are said to be isomorphic
if there is a linear operator U from X, onto X, such that (Ux, Uy),, =
(%, )., for all x, y € ;. Such an operator is called unitary.

We elaborate these ideas and show the reader what types of Hilbert spaces
he is likely to meet by a series of examples.

Example 2 (revisited) Define I*[a, b] to be the set of complex-valued
measurable functions on [a, b], a finite interval, that satisfy {®|f(x)| dx < co.
We define an inner product by

b
(o) =[ TG0 dx
Observe that the inner makes sense since

[fGg(x) | < 3171 + 4 g2

so that f(x)g(x) is in L![a, b]. A proof similar to the Riesz-Fisher theorem
(Theorem 1.12) shows that I?[a, b] is complete and is therefore a Hilbert
space. It is not too difficult to show (Problem 2) that I?[a, b] is the com-
pletion of Cla, b] in the norm

1= ( [ r@r dx)”’
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This set is a Hilbert space with the inner product

(h9) = [ (F02), 9@)e- ()

Of course, we have not said what it means for a vector-valued function to be
measurable. For this definition and related matters see Problem 12 and the
appendix to Section IV.5.

1.2 The Riesz lemma t

In the examples in Section I1.1 we showed several ways of constructing
new Hilbert spaces from old ones. Another way to do this is to restrict
attention to a closed subspace .# of the given Hilbert space s#. Under the
natural inner product that it inherits as a subspace of #, # is a Hilbert
space. We denote by #* the set of vectors in J# which are orthogonal to 4/;
M* is called the orthogonal complement of #. It follows from the linearity
of the inner product that 4" is a linear subspace of »# and an elementary
argument (Problem 6) shaws that #* is closed. Thus .#* is also a Hilbert
space. 4 and .#* have only the zero element in common. The following
theorem shows that there are vectors perpendicular to any closed proper
subspace, indeed there are enough of them so that

H=M+ M ={x+y|xecH,ye M}

This important geometric property is one of the main reasons that Hilbert
spaces are easier to handle than Banach spaces (Chapter I1I). In the following
lemma and theorem, the reader should keep the finite-dimensional case in
mind (see Figure I1.1).

%21

FIGURE 1I.1 The projection of x on A,

+ A supplement to this section begins on p. 344,
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Lemma Let # be a Hilbert space, .# a closed subspace of #, and
suppose x € . Then there exists in 4 a unique element z closest to x.

Proof Letd=inf,. 4 llx — yl|. Choose a sequence {y,}, v, € #, so that
”x - yn” d d
Then

Vs = Yl = 1n = %) = Y — DI :
=20lyn = X1 + 2llym — XIP = 1=2x + yo + Yl
=2/lyn = X1 + 2[yp — x| — 4lx — 3, + yu) I
< 2|y, — xI? + 2|y, — x|? — 4d?
—2d% +2d* — 4d* =0

n~+ oo
n—

The second equality follows from the parallelogram law; the inequality
follows from the fact that 4(y, + y.) € #. Thus {y,} is Cauchy and since
M is closed, {y,} converges to an element z of . It follows easily that
IIx — z|| = d. Uniqueness is left as an exercise. }

Theorem 1.3 (the projection theorem) Let 5 be a Hilbert space, #
a closed subspace. Then every x € J# can be uniquely written x =z + w
where ze A and we A",

Proof Let x be in 5. Then by the lemma there is a unique element z € #
closest to x. Define w = x — z, then we clearly have x =z + w. Let ye #
and re R. If d = ||x — z]|, then

< lx -G+ =w-ul
=d? — 2t Re(w, y) + 2|y |I?
Thus, —2¢Re(w, y) + t2|lyl> = 0 for all ¢, which implies Re(w, y) =0. A

similar argument using ¢/ instead of ¢ shows that Im(w, y) = 0. Thus, w e .#*.
Unigueness is left as an exercise. }

The projection theorem sets up a natural isomorphism between 4 @ 41
and s# given by
{Z, W)z 4w

We will often suppress the isomorphism and simply write o = 4 @ 4.
We have already defined in Section 1.2 what we mean by a bounded linear
transformation from one Hilbert space 5 to another 5#’. We will denote by
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P(#, H') the set of such transformations. L (o, #') is clearly a vector
space and it becomes a Banach space under the norm

T = sup  {Txlle
Bxle=1
The proof of this fact, though not difficult, is postponed until Chapter 111
where it is proven in greater generality. For the time being we are interested
in the special case where #' = C:

Definition The space L(#, C) is called the dual space of ) and is
denoted by 5#°*. The elements of s#* are called continuous linear functionals.

The following important theorem which characterizes #* is due to
F. Riesz and M. Fréchet.

Theorem I1.4 (the Riesz lemma) For each T e o¢*, there is a unique
yr € o such that T(x) = (yy, x) for all x € . In addition |[yzlle = [T l,es.

Proof Let A be the set of x € »# such that T(x) = 0. By the continuity of
T, A is a closed subspace. If & = 5, then T(x) = 0 = (0, x) for all x and
we are finished ; so assume A" is not all of 3. Then by the projection theorem
there is a nonzero vector xo in 4. Define yr = T(xo)lIXoll~ 2xo. We will
verify that the vector y; has the right properties. First, if x € A, then T(x) =
0 = (yr, x). Further, if x = ax,, then

T(x) = T(ax,) = «T(xo) = (T(x0)llxo = 2x0, axo) = (yr, 0xg)

Since the functions T(-) and (yr, -) are linear and agree on 4" and x,, they
must agree on the space spanned by A4 and x,. But &/ and x, span 5 since
every element y € ) can be written

TO) _\, TO)
y=(y_T_0c5x°) T T

Thus T(x) = (yr, ) for all x € #. If T(x) = (', x) also, then ||y’ — yr}|*> =
T(' — yr) — T(V' — yr) =0 s0 y' = yr, proving uniqueness.
To prove that | T|l,e« = |yl We observe that

IT| = sup |T(x)| = sup |(yr,x)| < sup liyrll ixll = Iyl
ixli<t fixli<1 Ixlist

and

ITI= sup |T(O] z|r(i’—)
Ixlist

r )
iyel (y ™ ) = el B
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We note that the Schwarz inequality shows that the converse of the Riesz
lemma is true. Namely, each y € # defines a continuous linear functional
T, on ¥ by T,(x)=(y, x). The Riesz lemma has the following corollary
which is very important in applications.

Corollary Let B(:, -) be a function from s# x # to C which satisfies:

() B(x,ay + Bz) = aB(x,y) + BB(x, 2)
(i) B(ax + By, 2) = aB(x, 2) + BB(y, 2)
(i) |B(x,y)| < Clixli fiyl
for all x, y, ze 3, «, B € C. Then there is a unique bounded linear transfor-
mation A4, from 5 to S so that

B(x,y)=(Ax,y) forall x,yes#
The norm of A is the smallest constant C such that (iii) holds.

Proof Fix x, then (i) and (iii) show that B(x, ‘) is a continuous linear
functional on 5. Thus by the Riesz lemma there is an x’ € o so that

Bix,y)=(&""» forall yes

Define Ax = x". Itis not difficult to show that 4 is a continuous linear operator
with the right properties (Problem 8). |

A bilinear function on # obeying (i) and (ii) is called a sesquilinear form.

1.3 Orthonormal bases

We have already defined what it means for a set of vectors to be ortho-
normal. In this section we develop this idea further; in particular we want to
extend the idea of a *“ basis,”” so useful for finite-dimensional vector spaces, to
complete inner product spaces. If § is an orthonormal set in a Hilbert space
J and no other orthonormal set contains S as a proper subset, then S is
called an orthonormal basis (or a complete orthonormal system) for 7.

Theorem 1.5 Every Hilbert space 5# has an orthonormal basis.

Proof Consider the collection € of orthonormal sets in ¥. We order € by
inclusion; that is, we say S; < S, if S; € §,. With this definition of <, ¥
is partially ordered; it is also nonempty since if v is any element of ¥V, the
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set consisting only of »/||v| is an orthonormal set. Now let {S,}, 4 be any
linearly ordered subset of €. Then | ), 4 S, is an orthonormal set which
contains each S, and is thus an upper bound for {S,},. ,. Since every linearly
ordered subset of € has an upper bound, we can apply Zorn's lemma (Theorem
1.2) and conclude that € has a maximal element; that is, an orthonormal
system not properly contained in any other orthonormal system. |

The following theorem shows that as in the finite-dimensional case every
element of a Hilbert space can be expressed as a linear combination (possibly
infinite) of basis elements.

Theorem 11.6  Let 5 be a Hilbert space and S = {x,},. , an orthonormal
basis. Then for each y € 5,

y =¢;A (xu’y)‘xa (III)
and
Iyi? = ZA 1Geas I (L2

The equality in (II.1) means that the sum on the right-hand side converges
(independent of order) to y in #. Conversely, if Y ,¢ 4 |¢,]> < o0, ¢, € C, then
Y «« 4 € X, converges to an element of .

Proof We have already shown in Section II.1 (Bessel’s inequality) that for
any finite subset 4’ = 4, Y, 4 (%, »)|* < IyI. Thus (x,,y) # 0 for at
most a countable number of a’s in 4 which we order in some way «a,, a;,
&3, ... . Furthermore, since ) - |(x,,,»)|* is monotone increasing and
bounded, it converges to a finite limit as N —» o0. Let y, = Z;!:, (xg, s )%, -
Then for n > m,

n 2 n
"y:: - ymuz = Z (xal’ y)xaj Z I(xﬂj’ y)lz
j=m+1 j=m+1

Therefore {y,} is a Cauchy sequence and converges to an element y’ of #.
Observe that

(y =¥, x,,) = lim (y - Y (X y)x.,,x,,)
B FED

= X)) — (1, %) =0
And if a # a, for some £ we have

(y -y, x)=lim (}’ - i'[:,l(xap .Y)xap xa) =0

L A ]
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Therefore y — y" is orthogonal to all the x, in S. Since S is a complete ortho-
normal system we must have y — y' = 0. Thus

”n
y = llm l(xaj’ y)xaj

R j=

and (I1.1) holds. Furthermore,

» 2
0= lim iy — 3 (x.,, Y)x,,
n—=w =
= lim ("y“z - 'Zli(xq’ }’)‘2)
n—co J=

= “.}’"2 - z I(xa’ }’)lz
aed
so that (11.2) holds also. We omit the easy proof of the converse statement. |

We note that (I1.2) is called Parseval’s relation. The coefficients (x,, y)
are often called the Fourier coefficients of y with respect to the basis {x,}.
The reason for this terminology will become apparent shortly.

We now describe a useful procedure, called Gram-Schmidt orthogonaliza-
tion, for constructing an orthonormal set from an arbitrary sequence of
independent vectors. Suppose the independent vectors u;, u,, ... are given
and define

Wy = Uy, vy = wy/ljw, i

wy = U, — (vy, U)oy, vy = wyfliw, |l
-1

W, = Uy —~ kZ (vk s un)vk’ v, = n/“ w,ll
=1

The family {v;} is an orthonormal set and has the property that for each m,
{u;}7=1 and {v;}7-, span the same vector space. In particular, the set of finite
linear combinations of all the v’s is the same as the finite linear combinations
of the u’s (see Figure I1.2).

Wn

Space spon'ned
n-
by ;.

FiGure I1.2 Gram-Schmidt orthogonalization.
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We remark that the Legendre polynomials (up to constant multiples) are
obtained by applying the Gram-Schmidt process to the functions 1, x, x?,
x>, ..., on the interval [~ 1, 1] with the usual I? inner product.

Definition A metric space which has a countable dense subset is said to be
separable.

Most Hilbert spaces that arise in practice are separable. The following
theorem characterizes them up to isomorphism.

Theorem 1.7 A Hilbert space & is separable if and only if it has a
countable orthonormal basis S. If there are N < oo elements in S, then 5 is
isomorphic to C¥. If there are countably many elements in S, then J# is
isomorphic to £, (Example 3, Section IL1).

Proof Suppose s# is separable and let {x,} be a countable dense set. By
throwing out some of the x,’s we can get a subcollection of independent
vectors whose span (finite linear combinations) is the same as the {x,} and is
thus dense. Applying the Gram-Schmidt procedure to this subcollection we
obtain a countable complete orthonormal system. Conversely, if {y,} is a
complete orthonormal system for a Hilbert space 4 then it follows from
Theorem I1.6 that the set of finite linear combinations of the y, with rational
coefficients is dense in 5. Since this set is countable, & is separable.

Suppose 5 is separable and {y,}%, is a complete orthonormal system.
We define a map #: o# —/, by

U: x _’{(yn’ x)}:)=l

Theorem I1.6 shows that this map is well defined and onto. It is easy to show
it is unitary. The proof that # is isomorphic to CV if S has N elements is
similar. |

Notice that in the separable case, the Gram-Schmidt process allows us to
construct an orthonormal basis without using Zorn’s lemma.

We conclude this section with an example that shows how Hilbert spaces
arose naturally from problems in classical analysis. If f(x) is an integrable
function on [0, 27] we can define the numbers

2x
¢, = @—:)—ﬁ; fo e~"f(x) dx

The formal series 3 = _ , ¢, (27)"1/2 ¢! is called the Fourier series of /. The

n®= =

classical problem is: for which f'and in what sense does the Fourier series of
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fconverge to £ ? This problem which originated with Fourier in 1811 has hac
a rich and eventful history. [t has given rise to an entire branch of modert
mathematics (abstract harmonic analysis). Furthermore, some of the nices
results on the classical case have just been proven recently (see the Notes). A:
an example of a classical result we state (Problems 14 and 15):

Theorem 11.8 Suppose that f(x) is periodic of period 27 and is con
tinuously differentiable. Then the functions ) ¥, c,e™ converge uniformly
to f(x) as M — o0.

This theorem gives sufficient conditions for the Fourier series of a functior
to converge uniformly. But, finding the exact class of functions whost
Fourier series converge uniformly or converge pointwise has proved to be a
hard problem. We can, however, get a nice answer to this question if we
change our notion of “convergence’ and this is just where Hilbert spaces
come in. The collection of functions, {(2r)~ /% ¢™}*®_, is clearly an ortho-
normal set in I*{0, 2n]. If we knew that it was a complete orthonormal set,
then Theorem I1.6 would allow us to conclude that for all functions in
L2[0, 27),

M
f(x)=lim Y (2m)~'/? c,e™
M—-o -M
where convergence means convergence in the 2 norm. Infact, {(2n) " "/? e"™}2
is complete. We will give a proof that relies on the classical theorem stated
above.

Theorem 11.9  If fe I?[0, 2x], then Y™, c, (2n)'/% €™ converges to
fin the I? norm as M— 0.

Proof We need to know that the periodic, continuously differentiable func-
tions C}[0, 2] are dense in L]0, 27). In Problem 2 the reader is asked to show
that the step functions are dense. But a step function can be approximated
(in I?) by a C}[0, 2n}] function by rounding off the corners in a smooth way
and by changing it at one end to make it periodic. The reader should con-
vince himself that this can be done so that the resulting function is arbitrarily
close to the step function in L2 norm.

To show that {(2r)~ /2 ¢™}®_ is a complete set we need only show that
(¢, g) = 0 for all n implies g = 0. Suppose fe C}[0, 2], then by Theorem
I1.8

M
-ZMC'! (27[)— I/Zeinx _'f
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uniformly and thus in the 12 sense also. Therefore,

M
(fr0)= lim (3 co(2n) 126, g) =0

M- \=—
if (¢, g) =0 for all n. But, then g is orthogonal to all f in the dense set
C1{0, 2r] which implies g = 0. Thus {(2n) /% ¢"}®, is a complete ortho-
normal set, and it follows from Theorem 11.6 that the Fourier series of every
I3[0, 2n] function converges in the I>-norm to the function. |

This theorem shows that the * natural” notion of convergence for Fourier
series is [? convergence and illustrates one of the basic principles of functional
analysis: namely, to choose an abstract space and a notion of convergence that
is appropriate to the problem at hand, a space in which one can prove nice
theorems. By doing this one avoids some hard problems; this has both
advantages and disadvantages.

11.4 Tensor products of Hilbert spaces

We described in Sections 11.1 and 1.2 several ways of making new Hilbert
spaces from old ones. In this section we describe the tensor product #, ® #,
of two Hilbert spaces 5, and 5, . The construction of the tensor product
which we use is not the most elegant, but is very direct. The reader can
casily extend our proofs to construct the tensor product #;, ® #,® - -
® #, of finitely many Hilbert spaces.

Let 5#, and X, be Hilbert spaces. For each ¢, € #,, ¢, € #,, let
@, ® @, denote the conjugate bilinear form which acts on J#, x J#, by

(@1 ® @)U, ¥2> = W1, 0)W2, @2)

Let & be the set of finite linear combinations of such conjugate linear forms;
we define an inner product (, ) on & by defining

(e @Y, n®u) = (0. MW, W
and extending by linearity to &.

Proposition 1 (-, *) is well defined and positive definite.

Proof To show that (-, ) is well defined, we must show that (4, A') does not
depend on which finite linear combinations are used to express A and 4’. To
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do this it is sufficient to show that if u is a finite sum which is the zero form,
then (n, u) = Oforalln € &. To see that this is true, let n =Y -, ci(o; @ ¥)),
then
N
(n, ) = ( 2 o ®y), u)

i=1

N
= Z i @iy ¥

i=1
=0

since u is the zero form. Thus, (-, ) is well defined.

Now, suppose 4 = th=ldk(’7k®#k)' Then {n}%, and {m}<, span sub-
spaces M, <« #, and M, < 3¢, respectively. If we let {¢ j}jf’; ,and {¥,)}2, be
orthonormal bases for M, and M,, we can express each 1, in terms of the
@;’s and each y, in terms of the ¥,’s obtaining

My, Mz

A= ';1 Cjz(‘Pj ®Y,)
¢=1

But,
A D) = (X c;@; ®¥0), L. Cinl@: ® ¥n))
= 2 C;Cim@’j, )W, ¥m)
=; lejel?

so if (4, A) = 0, then all the ¢;, = 0 and A is the zero form. Thus (', -) is positive
definite. |}

Definition We define ¢, ® #, to be the completion of & under the
inner product (-, ) defined above. #, ® 5, is called the tensor product of
', and &, .

Proposition 2 If {p,} and {¢,} are orthonormal bases for s, and %,
respectively, then {¢, ® ¥,} is an orthonormal basis for #, ® ;.

Proof To simplify notation, we consider the case in which both s, and 5#,
are infinite dimensional and separable. The other cases are similar. The set
{0, ® Y} is clearly orthonormal and therefore we need only show that & is
contained in the closed space S spanned by {¢, ® ,}. Let ¢ ® Y € &. Since
{o} and {,} are bases, ¢ =) ¢, ¢, and Y =) d, ¥, where Y |¢|* <
and ) |d,|* < 0. Thus Y, .| ¢ d/|* < 0. Therefore by Theorem I1.6, there
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is a vector =3, ,0,d; ¢, ® ¥, in S. By direct computation

le®y —k<ch,‘ d, 0, @Y.l —0

<N

asM,N-oo. |}

To show how the tensor product arises naturally, we will show how it is
related to Hilbert spaces with which the reader is already familiar. First, let
{M,, > and {M,, u,)> be measure spaces. We suppose that [*(M,, du,)
and I*(M,, du,) are separable (see Problems 24 and 25 of this chapter and
Problem 43 of Chapter IV). Let {¢,(x)} and {{/,(y)} be bases for L*(M,, du,)
and I*(M,, du,) respectively. Then {@,(x)¥,(»)} is certainly an orthonormal
set in I2(M, x M,, du, ® du,). The fact that {@,(x)¥,(y)} is actually a basis
can be seen as follows. Suppose that f(x, y) € [2(M, x M,, du; ® du,), and

” S(x, Yo () duy(x) dpy(y) = 0

MixM3z

for all k and /. By Fubini’s theorem this can be rewritten

. ([, T390 duo)) ) () =0
Since {i,} is a basis for [2(M,, u,), this implies that

§aa, L6, V)0u(%) dy(x) = 0

except on a set S, « M, with u,(S,) = 0. Thus, for y ¢ |} S, j'le(x, y) x
@(x) duy(x) = 0 for all k, which implies that f(x,y) =0, a.e. [g;]. Thus,
Sx, y)=0a.e. [1; ® u,}. So, {@(x)W,(»)} is a basis for

L2(M1 X Mzs dl‘x ® dlul)
Now, let
U ®Y,—~ o (X A(»)

Then U takes an orthonormal basis for I>(M,, du,) ® [*(M,, du,) onto an
orthonormal basis for I*(M, x M,, du, ® du,) and extends uniquely to a
unitary mapping of

LMy, du) ® P(M;, dp) onto (M, x M;, du; ® du,).
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Let &(*) be the function from P, to {1, — I} which is one on even permuta-
tions and minus one on odd permutations. Define 4, = (1/n1) Y , . 5, &(0)0;
then A is an orthogonal projection on 3#". A4,s#" is called the n-fold anti-
symmetric tensor product of . In the case where # = [*(R), 4, #" is just
the subspace of I>(R") consisting of those functions odd under interchange
of two coordinates. The subspace

F(#)= © 4, 4"
n=0

is called the antisymmetric Fock space over 5# or the Fermion Fock space
over ).

1.5 Ergodic theory: an introduction

In this section we give a brief introduction to ergodic theory. For our
discussion we need several concepts not formally defined until Chapter VI:
adjoint operators, projection operators, and the kernel and range of an
operator. Any reader not already familiar with these concepts should consult
Chapter VI. We give this discussion here because ergodic theory illustrates
nicely the power and limitations of Hilbert-space methods and serves as a
nice example of the main theme of these books, namely the interplay between
functional analysis and mathematical physics. We will see that it is useful to
reformulate the question of why macroscopic systems approach equilibrium
in terms of abstract spaces, but that one must pay a price: The natural
question in the abstract setting is slightly different from the original question
and one may be tempted to accept weaker results.

The statement ‘‘ any system approaches an equilibrium state > is sometimes
known as the zeroth law of thermodynamics. From a microscopic point of
view it is perhaps surprising that any system should approach equilibrium
since microscopically there is no steady state and therefore no equilibrium.
Nevertheless, any attempt at a microscopic justification of thermodynamics
must explain why the zeroth laws holds macroscopically. There is far from
universal agreement among physicists as to what constitutes a justification
of the zeroth law, but we would like to avoid a discussion of the pros and cons
of the many different approaches which have been suggested (however, see
the Notes). The approach that we use is generally accepted by most physicists.

The first basic idea is that thermodynamical systems undergo fluctuations
(see Problem 17); put differently, by their very nature the laws of thermo-
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dynamics are not absolute statements about a system at a fixed time but are
statements about measurements made over time periods long with respect
to some characteristic times such as relaxation or collision times. Thus,
thermodynamics deals with average measurements of observables over a time
period T. Since the collision times, etc., are dependent on the dynamics, one
can only hope to prove thermodynamic statements about the limit as T — o0,
How large T has to be for the average over the interval T to be approximately
equal to the limit is a detailed dynamical question, but in specific cases one
would hope to be able to prove something.

Let us suppose that we describe the state of a classical mechanical systém
by a point in some phase space I'. For each time ¢; thereisamap T,: T - T,
where T, x is the state which results by taking a state x at ¢, and waiting until
to +t (we are assuming time-translation invariance so ?, never enters).
Obviously, T, ., = T, T,. In classical mechanics, the observables of the system
like energy or angular momentum are functions on phase space. So, our
discussion above suggests that we study

T
lim (UT) [ (T,x) dt
T 0

We would like to show that the limit exists, at least for continuous functions.
Typically I is a metric space, so “continuous” has a meaning. Not only
would we like the limit to exist, but it should be independent of the initial
point x or at least only dependent on a few ‘‘ macroscopic” observables we
can associate with an equilibrium state. For systems which are time-transla-
tion independent, the energy is a conserved quantity, so the average energy is
the initial energy—thus we cannot hope for measurements to be independent
of the initial energy. Therefore, for each energy E we look at the constant
energy surface, Q, in phase space, and for each w € Qg and each continuous
function f on Q; we hope that

T
lim (U/T) [ f(Tw)dt
T-w o

exists and is a number, u(f), independent of w. The map f+ u(f) clearly has
three properties:

(@ wl)=1
(b) u is linear.
© u(N)=0iff=0.

We will eventually see (Section 1V.4) that such a u is always associated with
a measure  on Q; with 4(Qg) = 1, so that

wN = [ 100 dpw)



52 li: HILBERT SPACES

Notice that if fe [2(M,, du,), g € [}(M,, du,), then
Uf®g) = U(Z G ® Z d/‘/’z)
= U(Z adpr ® ‘l’()
ke
= kZICk d, oW (y)
= f(x)g(»)

Because of this property, we often say that [*(M, x M,, du, ® du,) and
2(M,, du,) ® [2(M,, du,) are “‘naturally” isomorphic. Let M; =R and
#; = Lebesgue measure, then we have shown that [*(R?) is naturally iso-
morphic to I*(R) ® *(R).

Let us return for a moment to Example 6 of Section II.1: (M, u) is a
measure space and ' a separable Hilbert space with basis {¢,}. In Problem
12, the reader is asked to show that each g € [*(M, du; ') is a limit

N
g(x) = lim Z (@x> 9(X) % @1
Now k=1

of finite linear combinations of vectors of the form f,(x)¢; , fi(x) € [2(M, dy).
We now define

U: kglfk(x) ® ¢, — kZ}fk(X)(Pk

Then U is a well-defined map from a dense set in [2(M, du) ® #' onto a
dense set in I*(M, du; #') which preserves norms, so U extends uniquely
to a unitary operator from L*(M, du) ® #' to I*(M, du; #’). Notice that
under this map, U(f(x) ® ¢) = f(x)¢ for all ¢ € . In this sense, U is called
the natural isomorphism between I2(M, du) ® #' and I*(M, du; #"). We
summarize this discussion in a theorem:

Theorem I1.10 Let (M, u,> and {M,, u,)> be measure spaces so that
L[*(M,, du,) and I*(M,, du,) are separable. Then

(a) There is a unique isomorphism from L*(M,, du,) ® [*(M,, du,) to
(M, x M,, du, ® du,) so that f® g+ fg.

(b) If #’ is a separable Hilbert space, then there is a unique isomorphism
from [X(M,, du,) ® #' to I}(M,, du,; 3#’) so that f(x) ® ¢+ f(x)o.

() There is a unique isomorphism from I*(M, x M,, du, ® du,) to
L2(M,, du, ; I*(M,, du,)) such that f(x, y)is taken into the function x — f(x, ).
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Example 1 The Hilbert space in the quantum-mechanical description
of a single Schrédinger particle of spin one-half is I2(R>, dx; C?), that is, the
set of pairs {,(x), ¥,(x)} of square-integrable functions (dx is Lebesgue
measure). By what we have shown above, L*(R?, dx; C?) is naturally isomor-
phic to }(R*) ® C2.

Example 2 (Fock spaces)  Let o be a Hilbert space and denote by #”
the n-fold tensor product #"=H Q@@ H Q- QK. Set #°=C and
define

x
F(H#) =@ #"
a=0
F (o) is called the Fock space over o ; it will be separable if # is. For
example, if # = [*(R), then an element y € F () is a sequence of functions

¥ ={Uo, ¥1(x1), ¥alx1, X3), ¥alxy, X3, X3), .. .}
so that

Actually, it is not F(F) itself, but two of its subspaces which are used
most frequently in quantum field theory. These two subspaces are constructed
as follows: Let 2, be the permutation group on #n elements and let {¢,} be a
basis for o#. For each o € 2,, we define an operator (which we also denote
by o) on basis elements of #™ by

(P, @0, ® B p,) = Pracsy ® Prcisy**° @ Puyy

g extends by linearity to a bounded operator (of norm one) on " so we can
define S, = (1/n!) Y ;¢ o, 0. It is an easy exercise (Problem 23) to show that
S2 =§,and S} = S,, so S, is an orthogonal projection (the reader unfamiliar
with adjoints and orthogonal projections should look up their definitions and
elementary properties in Chapter VI). The range of S, is called the n-fold
symmetric tensor product of J#. In the case where # = [*(R) and #" =
PR)® ‘* ® (R) = [*(R"), S, #" is just the subspace of I*(R") of all
functions left invariant under any permutation of the variables. We now define

F(H)= ® S, #"
n=0

F,(H#) is called the symmetric Fock space over 5 or the Boson Fock space
over .
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From now on we denote the linear functional y and the measure {, by the
same letter u.
To summarize: We have shown that if

T
lim (1/T)f (T, w) dt
T-w© 0

exists for each fixed w and is independent of w € Q , then there is a measure
i on Qg so that

lim (l/T)f f(Tyw) dt =f J(w) du(w) (IL.3)
T 0 Qe

The measure u has a very important property. Let s be fixed and suppose
Xr is the characteristic function of a measurable set F < Q. Then

T ) T
WD) [ sl Tow dt = UT) [ 2T Tow)

so if the lim_, . exists, then u(T7!F) = u(F), that is, the measure is invariant.
We also say that T is measure preserving. Classical mechanical systems come
equipped with a natural invariant measure: if I = R®" (N is the number of
particles), the measure d*¥g d*"p is known to be invariant under the Hamil-
tonian flow (Liouville’s theorem). This measure has a restriction to Qg given
formally by

uelF) = [ 3(H(p,q) - E)d*'p d*g

where H(p,q) is the Hamiltonian. Explicitly, if we pick a set of local co-

ordinatesatx € Qg,say Qy, ..., Q¢n~1, Which are orthogonal and normalized,
then

dug = Cd®" ™' Q] |grad H |

C is picked so that ug(Qg) = 1. Thus, the goal in justifying the zeroth law
is to consider

T
M) = (IT) | 7(Tow) s

and to prove that in a suitable sense the function (M4 f)(w) converges as
T — oo to the constant function with value

[ 70w) duglw
Qg

Notice that if we can prove this, we will have proven much more ; not only will
we have shown that measurements over long periods of time are independent
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of the initial conditions (except for the energy), but we will have shown that the
equilibrium state is described by a measure in phase space and this measure is

| 8H(p,q) - EYd*p a®g
F

the “ microcanonical ensemble.”

Hilbert space methods are so powerful that as soon as one has a measure,
it is tempting to try to reformulate the problem in terms of I2(Qg, dug).
Therefore, if fe [2(Q, ug), we define a map /%, fo T;, that is,

(U, N)(w) = f(T,w)

Lemma (Koopman’s lemma) U, is a unitary map of I*(Qg, du;) onto
LX(Qg, dug).

Proof  (U.f, U,9)= [ FTwg(T,w) de(v)

= [ TOW0) duelT; ') = [ TOhg(y) duely)
Qe Qe

=9

where we have used the invariance of the measure pg. Since U, U_, = Uy = 1,
U is invertible and thus unitary. ||

We want to study
1t T
71 N duew)

but it is simpler to consider the discrete analogue

l N-1

.2 U

The following elegant result settles the convergence question in the discrete
case. Problem 18 extends the discrete result to the continuous case.

Theorem I1.11 (mean ergodic theorem, or von Neumann’s ergodic theorem)
Let U be a unitary operator on a Hilbert space s#. Let P be the orthogonal
projection onto {y |y € 3, Uy = }. Then, for any fe #,

N-1t

nm% Y U'f=Pf

N-w® n=0

We first prove an elementary technical lemma:
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Lemma (a) If Uis unitary, Uf = fif and only if U*f=f.
(b) For any operator on a Hilbert space &, (Ran A)* = Ker A4*.

Proof To prove (a), notice that both conditions are equivalent to f = U~/

To prove (b), observe that Y € Ker A* means that (¢, A*J) =0 for all
@ in 5. But, ¥ € (Ran 4)* means that (4¢, ¢) = 0 for all p € #. (b) now
follows from the definition of adjoint. |}

Proof of the mean ergodic theorem Firstletf = g — Uy, thatis, f € Ran(I- U).
Then,

LAt 1 2lgll
N LUV ="-ﬁ(g—0”g) .
as N — co. By an &/3 argument
lN-l
=Y Uf-0
n=0

for any feRan(I— U). By the lemma, (Ran({ — U))* = Ker(I — U*) =
(Y |U* =y} = {y | Uy = y}. Therefore, P/ =0 if and only if f& Ran(l — U).
Now, suppose Pf = f. Trivially,

1 -1

5 L=

converges to f = Pf. Thus the limit statement holds on Ran(/ — U) and on

Ker(I — U*) and therefore on Ran(/ — U) ® Ker(I — U*), which is all of »#
by the projection theorem and (b) above. ||

In the continuous case U, f = fo T,, what are the functions in L(Qg, dug)
which satisfy U, f = f'? Clearly, the constant functions are invariant.

Definition T, is called ergodic if the constant functions are the only
functions in L2(Qg, dug) for which f o T, = f (as L? functions) for all ¢.

Given the continuous analogue of the mean ergodic theorem (Problem 18)
we have:

Corollary  Let T, be ergodic. Then for any f e [*(Qg, dug),

L? —li Lt T, w)dt = d 1.4
—lim = [ fTwydi= [ 10) duet) (11.4)

T-w



II.5 Ergodic theory: an introduction 59

Proof In this case {y |Uy = ¢} is one dimensional. Thus Py is a constant C
and

C=9)=[ w0 dus(w) I

Notice that if (I1.4) holds then Py is constant so that T, must be ergodic;
thus ergodicity is necessary and sufficient for (11.4) to hold.
It is sometimes useful to express ergodicity in terms of the measure.

Proposition T, is ergodic if and only if for all measurable sets F < Q
T,”'F = F for all t implies ug(F) = 0 or ug(F) = 1.

Proof Suppose T, is ergodic and T,”'F=F for all 1. Then f= xr is an
invariant function so y, is constant a.e., which implies y(F) =0 or u(F) = 1.

Conversely, suppose that the second condition holds. Then {w|f(w) < a}
is invariant under T, so f(w) < @ a.e. or f(w) > a a.e. Since this is true for
all a, f(w) is constant a.e. |

The condition that T,”'F = F implies ug(F) = 0 or ug(F) = 1 is sometimes
called metric transitivity. ‘

Let us take stock of what we have proven. We have derived a necessary and
sufficient condition on the flow T, so that

T
lim & [ f(T,w) dt
T~ 1 Jo

is precisely what we want it to be, but not in the sense of convergence for
each w; instead, we have L* convergence of (1/T) [§ f(T, w) dt to the constant
function

[ 700 dutw)
. nE

This is not surprising since pointwise convergence is not an L? notion. By
using Hilbert space methods we have given up the chance of proving that

T
7 [ STy ar

converges pointwise for each w as T — co. Actually, the pointwise limit does
exist but this must be proven by entirely different methods. We state the
result:
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Theorem .12 (individual or Birkhoff ergodic theorem) Let T be a

measure preserving transformation on a measure space {, u). Then for any
fel{Q, p),

l l N-1
im— T"
NI-0 N nzof( X)

exists pointwise a.e. and is some function /* e L/(Q, dy) satisfying f*(Tx) =
S*(x). If u(Q) < oo, then

[ £20dux) = [ fx)dux)
2] Q

Furthermore, if u is ergodic and u(Q) = 1, then

1 ¥

N Z ST > [ S0 du)

for almost all x.

This theorem is closer to what one wants to justify statistical mechanics
than the von Neumann theorem, and it is fashionable to say that the von
Neumann theorem is unsuitable for statistical mechanics. We feel that this is
an exaggeration. If we had only the von Neumann theorem we could probably
live with it quite well. Typically, initial conditions are not precisely measurable
anyway, so that one could well associate initial states with measures fdu
where j Jdu =1, in which case the von Neumann theorem suffices. However,
the Birkhoff theorem does hold and is clearly a result that we are happier to
use in justifying the statement that phase-space averages and time averages
are equal.

Finally, one should ask whether classical mechanical flows on constant
energy surfaces are in fact ergodic. Little is known about this interesting but
difficult question. However, Sinai has shown recently that a gas of hard
spheres in a box is an ergodic system.

NOTES

Section I1.1 A good reference for material on Hilbert spaces is the first chapter of the
book, Introduction to Hilbert Space by Paul Halmos, Chelsea, Bronx, New York, 1957. His
book, A Hilbert Space Problem Book, Van Nostrand-Reinhold, Princeton, New Jersey,
1967, which consists of problems, hints, and solutions, is very advanced but is a useful
learning device as the reader becomes more sophisticated. The standard reference, Functional
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Analysis, Ungar, New York, 1955 by F. Riesz and B. Sz.-Nagy has applications to integral
equations.

Section I1.2 The Riesz Lemma was proved independently by F. Riesz, “Sur une
espece de géométrie analytiques des systems de fonctions summable,” C. R. Acad. Sci. Paris,
144 (1907), 1409-1411, and by M. Fréchet in ** Sur les ensembles de fonctions et les opéra-
tions linéaires,” C. R. Acad. Sci. Paris, 144 (1907), 1414-1416. The Riesz lemma can be used
to give a short proof of the existence of adjoint operators in the case of Hilbert spaces. The
general definition of adjoint for Banach spaces is given in Chapter VI.

Section I1.3 It may seem at first a littie strange that L2[0, 1] is separable since the
functions take values at uncountably many points. However, these values cannot be assigned
arbitrarily since the function must be measurable, a strong restriction, and furthermore we
have identified functions which differ only on a set of measure zero.

The following question often puzzles students of functional analysis. If all infinite-
dimensional separable Hilbert spaces are the same (that is, isomorphic to ;) why do we talk
about them? That is, why worry separately about L*(R", dp) if, as a Hilbert space, it is iso-
morphic to ;. The answer is that we are often interested not just in the space but in some
other structures, for example some bounded operators on the space. It is true that under the
isomorphism these operators go over into bounded operators on ¢, , but their structure may
be easy to analyze on L(R, du) while it is difficult analyze on ¢, . This is one of the general
features of functional analysis: One tries to choose a representation of the structures with
which one is dealing so that the structures are easy to analyze. As a very simple example the
reader should think of the principal axis theorem (spectral theorem) for C” which says that
given a self-adjoint transformation, one can choose an orthonormal basis in C* so that the
matrix of the transformation in that basis is diagonal. That is, if one chooses the right iso-
morphic copy of C* (change of basis) then the operator becomes especially simple. As the
reader will see, this example is the first note of a rather long symphony.

The first proof of the convergence of Fourier series for a large class of functions was given
by Dirichlet in 1829. A good reference for both the classical theory and the modern approach
is An Introduction to Harmonic Analysis, Wiley, New York, 1968, by Y. Katznelson. Recently
Carleson has proven the spectacular result that the Fourier series of a function in L*[0, 27}
converges pointwise a.e. in * On the Convergence and Growth of Partial Sums of Fourier
Series,” Acta Math. 116 (1966), 135-157, and R. Hunt has extended this result to various
L? spaces in * On the Convergence of Fourier Series " appearing in Orthogonal Expansions
and their Continuous Analogues (D. Haimo, ed.), pp. 235-237, Southern Illinois Univ.
Press, 1968.

Section I1.4 A description of finite tensor products of Hilbert spaces was first given by
J. von Neumann and F. Murray in *“On Rings of Operators,” Ann. Math. (2) 37, (1936),
116-229, though tensor products of finite-dimensional spaces were known long before that.
For a modern treatment of tensor products, see F. Tréves, Topological Vector Spaces, Dis-
tributions and Kernels, Academic Press, New York, 1967, or R. Schatten, A Theory of Cross
Spaces, Princeton University Press, Princeton, N.J., 1950.

The definition and use of the spaces we have called Fock spaces goes back to the original
paper by V. Fock: *Konfigurationsraum und Zweite Quantelung,” Z. Phys. 75 (1932),
622-647. In Chapter X a Fock space is used in the construction of the free field, a field
theory satisfying the Wightman axioms.
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Section I1.5 For a discussion of thermodynamics from a nonstatistical point of view,
that is, as a basically empirical subject, see A. B. Pippard, The Elements of Classical Thermo-
dynamics, Cambridge Univ. Press, London and New York, 1957.

For a discussion of points of view regarding the zeroth law of thermodynamics which do
not embrace the ergodic theorem, see L. P. Landau and E. M. Lifshitz, Sratistical Physics,
Chapter 1, Pergamon, Oxford, 1958, or F. Strocchi: ¢ Microscopic and Macroscopic Quanti-
ties in Statistical Mechanics,” 1/ Nuovo Cimento, 65B (1970), 239-265.

For a proof of Liouville's theorem, see M. Goldstein, Classical Mechanics, pp. 266-268,
Addison-Wesley, Reading, Massachusetts, 1950, or R. Abraham, Foundations of Mechanics,
p. 108, Benjamin, New York, 1967.

The idea of using Hilbert space methods to study classical mechanical systems first ap-
peared in B. O. Koopman, ** Hamiltonian Systems and Transformations in Hilbert Spaces,”
Proc. Nat. Acad. Sci. (U.S.A4.) 17 (1931), 315-318.

The von Neumann ergodic theorem was first proven in J. von Neumann, ** Proof of the
Quasiergodic Hypothesis,” Proc. Nat. Acad. Sci. (U.S.A.) 18 (1932) 70-82. Our proof is
due to F. Riesz, *“Sur la théorie ergodique,” Comm. Math. Helv. 17 (1945), 221-239.

The Birkhoff ergodic theorem was proven by G. D. Birkhoff, * Proof of the Ergodic
Theorem,” Proc. Nat. Acad. Sci. (U.S.4.) 17 (1931), 656-660. F. Riesz (op. cit.) provided an
alternate and simple proof based on the * maximal ergodic theorem* of N. Wiener, “ The
Ergodic Theorem,”” Duke Math. J. 5 (1939), 1-18, and of K. Yoshida and S. Kakutani,
** Birkhoff’s Ergodic Theorem and the Maximal Ergodic Theorem,” Proc. Imp. Acad. Tokyo
15 (1939), 165-168. A further simplification in the proof of the maximal ergodic theorem
may be found in A. M. Garsia, “*A Simple Proof of E. Hopf’s Maximal Ergodic Theorem,”
J. Math. Mech. 14 (1965), 381-382.

For a delightful discussion of the mathematics of ergodic theory, see P. R. Haimos,
Lectures in Ergodic Theory, Chelsea, Bronx, New York, 1956, and for a historical summary
of the subject see P. R. Halmos, * Measurable Transformations,' Bull. Amer. Math. Soc.
55, (1948), 1015-1034,

For a discussion of the mean ergodic theorem in a Banach space setting (which includes
L*-mean ergodic theorems for 1 < p < ), see E. Lorch, Spectral Theory, pp. 54-56, Oxford
Univ. Press, London and New York, 1962.

There are deep connections between notions from information theory and ergodic theory:
for a pleasant, readable treatment, see P. Billingsley, Ergodic Theory and Information,
Wiley, New York, 1965.

Sinat’s result on the ergodicity of a hard sphere gas was announced in Ya. Sinai, “ On the
Foundations of the Ergodic Hypothesis for a Dynamical System of Statistical Mechanics,”
Dokl. Akad. Nauk. 153 (1963) [Sov. Math. Dokl. 4, (1963), 1818~1822]. A sketch of the
proof appearsin Ya. Sinai, * Ergodicity of Boltzmann's Gas Model" in Statistical Mechanics,
Foundations and Applications (T. Bak, ed.), Benjamin, New York, 1967. His proof uses
important ideas of Krylov, Kolmogorov, and Anosov.

An alternative property to ergodicity which has some of its consequences is proposed in
R. Prosser, ** Spectral Analysis of Classical Central Force Motion,” J. Math. Phys. 10 (1969),
2233-2239. Ideal gases with no collisions are shown to have this property.

For many purposes, one wants thermodynamical systems to possess a stronger property
than ergodicity known as mixing; this stronger notion expresses the * irreversibility™ of
thermodynamic systems and it is this stronger notion that Sinai proves. We return to mixing
briefly in Chapter VII. For a discussion of the hierarchy of notions related to crgodicity, see
V. 1. Armnold and A. Avez, Ergodic Problems of Classical Mechanics, Benjamin, New York,
1968 and A. S. Wightman, * Statistical Mechanics and Ergodic Theory: An Expository



Problems a3

Lecture,” in Statistical Mechanics at the Turn of the Decade, (E. Cohen, ed.), Ungar, New
York, 1970.
We have been slightly cavalier in our statement that the question of how big 7 must be for

T
T sy ar
0

to be close to its limit is a detailed dynamical question. In a general ergodic system the time
necessary for the limit to be reached should be a typical ** recurrence time,” that is, the typical
time needed for the system to return close to its initial state, Usually, in macroscopic sys-
tems this time is astronomically ong. Thus, an important question to ask is what properties
mechanical systems have that make the *“relaxation time”; that is, the time to approach
equilibrium, so much smaller than the recurrence time. While this is certainly a detailed
dynamical question, it suggests there is an additional mechanism at work which one would
like to understand.

PROBLEMS

t1. (a) Let V be an inner product space. Prove that the inner product can be extended to
V as follows: First, show that if x, y€ P, x,, ya€ V and x,— x, y.—y, then
(x4, yn) converges. Define (x, y) = lim,_ »(x,, ¥.) and show that it is independent
of which convergent sequences are chosen. Finally, show that (-, *) has the right
properties.
(b) Prove the statement in (2) by applying the B.L.T. theorem twice.

*2. (a) A simple function is a finite linear combination of the characteristic functions of
disjoint measurable sets. Show that the simple functions are dense in L?[q, b].
(b) Show that any simple function on {a, b} can be approximated arbitrarily closely
(in the L? sense) by a step function,
(c) Show that any step function can be approximated arbitrarily closely (in the L?
sense) by a continuous function and thus conclude that Cla, b} is dense in L3{a, b)
in the L2 norm.

3. Prove that if u, and u, are mutually singular Borel measures on R and p = i, + pa,
then LR, du) is naturally isomorphic to L*(R, du;) ® L3R, du.). (Hint: let 4 be a
set with p,(4) = 0 and u2(R\A) = 0 and map fto (1 ~ x) /) x>

4. (a) Prove that the inner product can be recovered from the norm by the polarization
identity

(x, ) = H(llx + pII* — llx — ylI?) — i(lix + iyl}* — llx ~ iyii®)

*(b) Prove that a normed linear space is an inner product space if and only if the norm
satisfies the parallelogram law.

5. Let ¥V be an inner product space and let {x,}¥., be an orthonormal set. Prove that

N
X =3 cpxa

n=1

is minimized by choosing ¢, = (x,, x).
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6.

17.
18.

10.

11,
t12.

13,

*14,
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Let .# be any linear subset of a Hilbert space . Prove that .#* is a closed linear sub-
space and that & = (ML)

Prove the uniqueness statements in Theorem 11.3 and the preceding lemma.

Complete the proof of the coroliary to the Riesz Lemma.

. Let .4 be a subspace of a Hilbert space . Let f: .4 — C be a linear functional on

4 with bound C. Prove that there is a unique extension of f to a continuous linear
functional on # with the same bound. (We note that the existence part of this state-
ment is just the Hahn-Banach theorem for Hilbert spaces, see Section I11.3.)

Apply the Gram-Schmidt process to the functions 1, x, x?, x* on the interval {—1, 1]
with the L? inner product and obtain the first four Legendre polynomials (up to con-
stant muitiples).

Prove that L*(R) is separable. (Hint: see Problem 2.)

(Example 6, Section I1.1) We say that a vector-valued function ffrom a measure space

{X. u> to a separable Hilbert space, 5#”, is measurable if (y, f(x)) - is measurable for

eachye ¥#'.

(a) Show that if f(x) and g(x) are measurable vector-valued functions, then ||f(x)Ii3,
and (f(x), g(x))»- are measurable.

{(b) Let {@u}i%, be a basis for 5. Prove that if g € L*( X, du; #”), then

N
k; @k, g pu—>g

and if fe LA(X,du; #)

k=1

=3 f (S0, @)t (Prr 9Nt dysl)
X

(c) Assume that L2(X, du) is separable and prove that L*(X, du; #”) is separable.

Using direct sums, construct an inseparable Hilbert space and an uncountable ortho-
normal basis.

The goal of this exercise is to prove that the Fourier series of a continuous function is
pointwise Césaro summable to f. View [0, 2] as a group with addition mod 27

and write [3" as §. Let f(6) € L*(0, 27] and ¢, = ("**// 2, f).

(a) LetSu(f) =Ny cae'™/V/2m. Prove that

Sin(N + 1/2)x
sin(x/2)

®) Let CCANNO) = [N + DI Si(F)) (Césaro sum). Prove that

_ 1 . sin2((N + 1)/2]x
(%‘f )) O = v+ D §f 0 —en)

(SuXO = 5= § 50+ 0

dx

(¢) Let
sin?[(N + 1)/2)x

K = v+ Dsin'2)
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17.

18.

19.

20.

21.
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Prove that for any 8 > 0, Xy(x) >0 uniformly in {8, 27w — 8}

(d) Prove that (T nx(/))Ba) = f(8o) if £ is bounded and continuous at .

(¢) Prove that if f is continuous and periodic, then (3 n(/))(6) — f(8) uniformly in .
(Hint: Recall that f continuous on [0, 27] implies that f'is uniformly continuous.)

(f) Show that IIf — Sw(/)lz < {|f — T.(/)}l2 and conclude that Sx(/)=2» f if f is con-
tinuous.

Suppose f€ CL[0, 2] and let ¢, = ('"*/V/ 27, f), b, = (™*/V/ 2m, f(x).

(a) Prove} |b.|? < ® and conclude that 3" n?lc,|? < .

{b) Prove thatY"|c.| < .

(c) Prove that Y%, c, eV 2m is uniformly convergent as M — .

(d) Use 14(f) to conclude that3°M,, ¢, e""/\/ 27 is uniformly convergent to f.

Show that the unit ball in an infinite dimensional Hilbert space contains infinitely

many disjoint translates of a ball of radius V/2/4. Conclude that one cannot have a
nontrivial translation invariant measure on an infinite dimensional Hilbert space.

Prove the Poincaré recurrence theorem: Given a measure preserving map, 7, on a set
Q with u(Q) < o, then for any measurable set E < (2, T"x € E infinitely often for
almost all x € E. This result says that almost every state returns arbitrarily close to its
initial position infinitely often (thus assuring that fluctuations continue to take place).
Hint: Let F = {xeE|[T"x¢E for any n > 0}. Show {T~™F} are disjoint and prove
thereby that F has measure zero.

Let T, be a one-parameter group of measure-preserving transformations of a measure
space <2, u>. Apply the discrete mean ergodic theorem to {3 f(7T, w) dt to prove the
mean ergodic theorem for limr. (1/T) [% f(T, w) dt.

Let V be an operator in a Hilbert space satisfying |V}l < C for all n. Prove that
(l/N)Z:': § V°f — Pf for all f € & where P is a (not necessarily orthogonal) projec-
tion onto {f| Vf=f}.

Consider the unit circle, {ze C||z| = 1} with Lebesgue measure. Let 7'(z) = e3**2.
Show that T is ergodic if and only if 8 is irrational.

Suppose Q2 is a compact metric space with metric p and some measure p. Let Tbe a
measure-preserving ergodic transformation with the additional property that p(Tx, Ty)
= p(x, y). (For example, the map T in Problem 20 when @ is irrational.) Show that if fis
a continuous function on Q, then (1/N)Y.¥zd f(T"w) converges uniformly to {q fdu.
(Hint: Prove that the family

MufYW) = — T f(T"w)

] N=2
N =0
is uniformly equicontinuous and then use the mean ergodic and Ascoli theorems.)
Let {n.}2- - » be a set of vectors in a Hilbert space, #, 30 that @um = |(3x, 7m)| is the
matrix (in the natural basis) of an operator A4 on /,(- ¢, ). Prove that

iw 1(f, 7)1 2 < 1AL IS

nw -

for any fe .



66

23.

*24

*25.

26.
27.
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Let S, be the operator defined in Example 2 of Section 4.

(a) Prove that S, is independent of the basis {¢gx}.

(b) Prove that $2 = S, and S, = S* (Hint: show that ¢* = o~ %).
(¢) Do parts (a) and (b) for A4,.

Let <M, &, u> be a o-finite measure space. Let &, ={Xe R|u(X)< «}. Call

X, Y€ R; equivalent if and only if (X AY)=0 where X AY=(X\Y)U (Y\X).

Let %#; be the family of equivalence classes of %, under this relation.

(a) Prove that u(X A Y) only depends on the equivalence classes of X and Y in Re.

(b) Prove that 2, with the function p(X, Y)= (X AY)is a metric space.

(c) Prove that L*(M, dy) is separable if and only if #¢ with the metric p is a separable
metric space.

Find a finite measure space (that is, (M, &, u)> with u(M) < ) with L2(M, du) non-
separable. (Hint: Take an uncountable Cartesian product of sets of the form [0, 1].)

Prove that part (c) of Theorem I1.10 follows from parts (a) and (b).

Prove the projection theorem using the existence of orthonormal bases.
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Reductio ad absurdum is one of a mathematician's finest weapons. It is a far finer gambit than
any chess gambit: a chess player may offer the sacrifice of a pawn or even a piece, but a

mathematician offers the game.
G. H. Hardy

HL1 Definition and examples t

We defined normed linear spaces in Section I.2. Since normed linear
spaces are metric spaces, they may have the property of being complete.

Definition A complete normed linear space is called a Banach space.

Banach spaces have many of the properties of R": they are vector spaces,
they have a notion of distance provided by the norm, and every Cauchy
sequence has a limit. In general the norm does not arise from an inner product
(see Problem 4 of Chapter II), so Banach spaces are not necessarily Hilbert
spaces and will not have all of the same nice geometrical properties. In order
to acquaint the reader with the types of Banach spaces he is likely to en-
counter, we discuss several examples in detail,

Example 1 (L*(R) and its subspaces) Let L®(R) be the set of (equivalence
classes of) complex-valued measurable functions on R such that | f(x)| <M
a.e. with respect to Lebesgue measure for some M < o (f~ g means f(x) =
g(x)a.e.). Let || ], be the smallest such M. It is aneasy exercise (Problem 1) to

+ A supplement to this section begins on p. 348.
67
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show that L*(R) is a Banach space with norm |||, . The bounded continuous
functions C(R) is a subspace of L*(R) and restricted to C(R) the ||'|| ,-norm is
Jjust the usual supremum norm under which C(R) is complete (since the uniform
limit of continuous functions is continuous). Thus, C(R) is a closed subspace
of L*(R).

Consider the set x(R) of continuous functions with compact support,
that is, the continuous functions that vanish outside of some closed interval.
k(R) is a normed linear space under |||, but is not complete. The completion
of k(R) is not all of C(R); for example, if f'is the function which is identically
equal to one, then f cannot be approximated by a function in x(R) since
If—gll, =1 for all g€ k(R). The completion of x(R) is just C(R), the
continuous functions which approach zero at 4 oo (Problem 5). Some of the
most powerful theorems in functional analysis (Riesz—Markov, Stone-
Weierstrass) are generalizations of properties of C(R) (see Sections IV.3 and
Iv.4).

Example 2 (I spaces) Let (X, u) be a measure space and p > 1. We
denote by I°(X, du) the set of equivalence classes of measurable functions
which satisfy:

= (] 17wl o) <

Two functions are equivalent if they differ only on a set of measure zero.
The following theorem collects many of the standard facts about L? spaces.

Theorem 111 Let | < p < o, then
(a) (the Minkowski inequality) If £, g € I’(X, du), then

Wf+gl, < U1, + lall,
(b) (Riesz-Fisher) ILP(X, du) is complete.
(c) (the Holder inequality) Let p, ¢, and r be positive numbers satisfying
pg,r=>1and p7t 4q ' =r~', Suppose fe I?(X, du), g € L*(X, du). Then
fg e L(X, du) and

/gl < 171, lgll,
Proofs of many of the basic facts about L? spaces, including these in-

equalities, can be found in the second supplemental section. The Minkowski
inequality shows that LP(X, du) is a vector space and that ||-||, satisfies the
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triangle inequality. Combined with (b) this shows that LP(X, du) is a Banach
space. We have given the proof of (b) for the case where p = 1, X = R and
p = Lebesgue measure; the proof for the general case is similar.

Example 3 (sequence spaces) There is a nice class of spaces which is
easy to describe and which we will often use to illustrate various concepts.
In the following definitions,

a= {an}:o =1

always denotes a sequence of complex numbers.

o = {a flalle = supla,| < oo}

Co= {a lima, = 0}

n—w
@© 1/p
(,={a Ial,s(Zla,]’) <oo}
n=1

5= {a lim n?a, =0 for all positive integers p}

n-x

f= {a a,=0 for all but a finite number of n}

It is clear that as sets fe s/, c o=/,

The spaces /,, and ¢, are Banach spaces with the |||, norm; #,is a Banach
space with the ||}, norm (note that this follows from Example 2 since
¢, = IP(R, du) where u is the measure with mass one at each positive integer
and zero everywhere else). It will turn out that s is a Fréchet space (Section
V.2). One of the reasons that these spaces are easy to handle is that f'is dense
inf,(in{-l,; p < ) and is dense in ¢, (in the ||, norm). Actually, the set
of elements of f with only rational entries is also dense in , and ¢, . Since this
set is countable, Z, and ¢, are separable. Z, is not separable (Problem 2).

Example 4 (thebounded operators) In Section 1.3 we defined the concept
of a bounded linear transformation or bounded operator from one normed
linear space, X, to another Y; we will denote the set of all bounded linear
operators from X to Y by #(X, Y). We can introduce a norm on £(X, Y) by
defining

Il Ax|ly
Af= sup ——ro
“ xeX, xpako "X“x

This norm is often called the operator norm.
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Theorem HI.2 If Y is complete, £(X, Y) is a Banach space.

Proof Since any finite linear combination of bounded operators is again a
bounded operator, Z(X, Y) is a vector space. It is easy to see that ||'fl is a
norm; for example, the triangle inequality is proven by the computation

A Ax| Bx||
¢4+ Byxll __ J4x] + Bx]

A+ B|| = su <
ST o x|
Il Ax]) | Bx|
< su + su
S0 Xl T swe Tl
= Al + B

To show that £(X, Y) is complete, we must prove that if {4}, is a
Cauchy sequence in the operator norm, then there is a bounded linear
operator 4 so that |4, — A =+ 0. Let {4,}:>, be Cauchy in the operator
norm; we construct A as follows. For each xe X, {4,x}2, is a Cauchy
sequence in Y. Since Y is complete, 4,x converges to an element ye Y.
Define Ax = y. It is easy to check that 4 is a linear operator. From the
triangle inequality it follows that

Al = 14all] < 14, — A4nl

so {4,135, is a Cauchy sequence of real numbers converging to some real
number C. Thus,
lAxlly = lim |4, x]ly < im [|4,}} x]lx

n— oo n-*oo

= Clixilx

so A is a bounded linear operator. We must still show that 4, = A4 in the
operator norm. Since (4 — 4,)x|| = lim,,. o, (4, — 4,)x], we have

A—-A
A=A o
xil nw
which implies
A—-A .
14 — 4, = sup "AZ AN iy, 4
x#0 IIX" m- oo

which is arbitrarily small for n large enough. The triangle inequality shows
that the norm of A4 is actually equal to C. }

It is important to have criteria to determine whether normed linear spaces
are complete. Such a criterion is given by the following theorem (whose
proof is left to Problem 3). A sequence of elements {x,}>> ; in a normed linear
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space X is called absolutely summable if Y 2., ||x,]l < co. It is called summable
if YN, x, converges as N - oo to an x € X.

Theorem HL3 A normed linear space is complete if and only if every
absolutely summable sequence is summable.

For a typical application of this theorem, see the construction of quotient
spaces in Section I11.4. We conclude this introductory section with some
definitions.

Definition A bounded linear operator from a normed linear space X to
a normed linear space Y is called an isomorphism if it is a bijection which is
continuous and which has a continuous inverse. If it is norm preserving, it is
called an isometric isomorphism (any norm preserving map is called an
isometry). :

For example, we proved in Section I1.3 that all separable, infinite-di-
mensional Hilbert spaces are isometric to ¢,. Two Banach spaces which are
isometric can be regarded as the same as far as their Banach space properties
are concerned.

We will often encounter a situation in which we have two different norms
on a normed linear space.

Definition Two norms, |||, and ||, on a normed linear space X are
called equivalent if there are positive constants C and C’ such that, for all
xe X,

Clixli, < lixll; < C'lixl;

For example, the following three norms on R? are all equivalent:

1<x, 012 =/ %12 + [p]?
1<x, ol = |x] + |y
1<%, Yol = max{| x|, | y|}

In fact, all norms on R? are equivalent; see Problem 4. The usual situation we
will encounter is an incomplete normed linear space with two norms. The
completions of the space in the two norms will be isomorphic if and only if the
norms are equivalent. An example is provided by the sequence spaces of
Example 3. The completion of fin the ||-| , norm is ¢, while the completion in
the ||, norm is Z,. Two norms, ||'||; and |'|l;, on a normed linear space X
are equivalent if and only if the identity map is an isomorphism from

<X, 111D to KX, {112
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111.2 Duals and double duals

In the last section we proved that the set of bounded linear transformations
from one Banach space X to another Y was itself a Banach space. In the
case where Y is the complex numbers, this space £ (X, C) is denoted by X*
and called the dual space of X. The elements of X* are called bounded linear
functionals on X. In this chapter when we talk about convergence in X* we
always mean convergence in the norm given in Theorem II1.2. If 1 € X*, then

A= sup JA(x)|
xeX, llxlls1
In Section IV.5, we discuss another notion of convergence for X*,

Dual spaces play an important role in mathematical physics. In many
models of physical systems, whether in quantum mechanics, statistical mech-
anics, or quantum field theory, the possible states of the system in question
can be associated with linear functionals on appropriate Banach spaces.
Furthermore, linear functionals are important in the modern theory of partial
differential equations. For these reasons, and because they are interesting in
their own right, dual spaces have been studied extensively. There are two
directions in which such study can proceed: either determining the dual spaces
of particular Banach spaces or proving general theorems relating properties
of Banach spaces to properties of their duals. In this section we study several
examples of special interest and prove one general theorem. For an example of
another general theorem see Theorem II1.7.

Example 1 (I” spaces) Supposethatl<p< oo and p™l4+¢g~1=1.1If
fe IP(R) and g e L%(R) then, according to the Holder inequality (Theorem
IIL1), fg is in L}(R). Thus,

[ o B
[ 96/t ax

-w®

makes sense. Let g € LYR) be fixed and define

G = gfax
-
for each fe IP(R). The Holder inequality shows that G(°) is a bounded linear
functional on I’(R) with norm less than or equal to |igll,; actually the norm
is equal to {gll,. The converse of this statement is also true. That is, every
bounded linear functional on L? is of the form G() for some g € L%, Further-
more, different functions in L7 give rise to different functionals on I”. Thus,
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the mapping that assigns to each g € L7 the corresponding linear functional,
G(), on I’(R) is a (conjugate linear) isometric isomorphism of L' onto
(IP)*. In this sense, L is the dual of I”. Since the roles of p and ¢ in the
expression p~! + g~ ! = 1 are symmetric, it is clear that I = (L)* = ((IX)*)*.
That is, the dual of the dual of I? is again I?.

The case where p = 1 is different. The dual of I[}(R) is [°(R) with the
elements of L°(R) acting on functions in L!(R) in the natural way given by
the above integral. However, the dual of L*(R) is not I}(R) but a much larger
space (see Problems 7 and 8). As a matter of fact, we will prove later (Chapter
XVI) that I}(R) is not the dual of any Banach space. The duality statements
in this example hold for IP(X, du) where (X, u) is a general measure space
except that I!(X) may be the dual of L*(X) if {X, u) is trivially small.

Example 2 (Hilbert spaces) If we let p=2 in Example I, then ¢ =2
and we obtain the result that I*(R) = I?(R)*, that is, I*(R) is its own dual
space. In fact, we have already shown (the Riesz lemma) in Section I1.2
that this is true for all Hilbert spaces. The reader is cautioned again that the
map which identifies J# with its dual J#* is conjugate linear. If g € 5%, then
the linear functional G corresponding to g is G(f) = (g, f).

Example 3 (¢, =¢1.¢/, =c§)  Suppose that {4}, €/, . Then for each
{adi=1€co
Adai=) = RZ‘)% a4

converges and A(") is a continuous linear functional on ¢, with norm equal
to Y %4 |A]. To see that all continuous linear functionals on c, arise in this
way, we proceed as follows. Suppose 4 € c§ and let e* be the sequence in ¢,
which has all its terms equal to zero except for a one in the kth place. Define
A = A and let £ = Y4_ (| 4|/ 4)e" If some 4, is zero, we simply omit that
term from the sum. Then for each 7, f“ € ¢, and || f*||., = 1. Since,

Z
A(f’)=k§1|lul and A/ < 1ol Alcoe

we have
'
Y 1] < 1Al
k=1

Since this is true for all £, 2 [4,] < o and

M@l = 3 by
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is a well-defined linear functional on ¢,. However, A(") and A(") agree on
finite linear combinations of the e,. Because such finite linear combinations
are dense in ¢,, we conclude that 1 = A. Thus every functional in ¢} arises
from a sequence in ¢,, and the reader can check for himself that the norms in
¢, and ¢} coincide. Thus Z, = ¢§. A similar proof shows that £/, =¢7.

Since the dual X* of a Banach space is itself a Banach space (Theorem
I111.2), it aiso has a dual space, denoted by X**. X** is called the second dual,
the bidual, or the double dual of the space X. In Example 3, ¢, is the first dual
of ¢, and /, is the second dual. It is not a priori evident that X* is always
nonzero and if X* = {0} then X** = {0} too. However, this situation does not
occur; dual spaces always have plenty of linear functionals in them. We prove
this fact in the next section. Using a corollary also proven there we will
prove that X can be regarded in a natural way as a subset of X**.

Theorem 111.4 Let X be a Banach space. For each x € X, let %(*) be the
linear functional on X* which assigns to each 4 € X* the number A(x). Then
the map J: x — X is an isometric isomorphism of X onto a (possibly proper)
subspace of X**.

Proof Since
[ XD} = |Ax)] < 1Al lixlx

X is a bounded linear functional on X* with norm | %[ y.. < {ix]x. It follows
from Theorems II1.5 and I11.6 that, given x, we can find a A € X* so that

lAllxs =1 and  A(x) = lxlx
This shows that

IXlixee = sup |XD] = lixllx
rexe il st

which implies that
N %l xee = Nl %l x

Thus, J is an isometry of X into X**. |

Definition If the map J, defined in Theorem 111.4, is surjective, then X
is said to be reflexive.

The IP(R) spaces are reflexive for 1 < p < oo since (IP)** = (L9)* = I, but
L}(R) is not reflexive. All Hilbert spaces are reflexive. ¢, is not reflexive, since
its double dual is-Z,,. The theory of reflexive spaces is developed further in
Problems 22 and 26 of this chapter and Problem 15 of Chapter V.
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1.3 The Hatn—-Banach theorem

In dealing with Banach spaces, one often needs to construct linear func-
tionals with certain properties. This is usually done in two steps: first one
defines the linear functional on a subspace of the Banach space where it is
easy to verify the desired properties; second, one appeals to (or proves) a
general theorem which says that any such functional can be extended to the
whole space while retaining the desired properties. One of the basic tools of
the second step is the following theorem, whose variants will reappear in
Section V.1 and Chapter XIV.

Theorem [I1.5 (Hahn-Banach theorem) Let X be areal vectorspace,pa
real-valued function defined on X satisfying p(ax + (1 — a)y) < ap(x) +
(1 — a)p(y) for all x and y in X and all « € [0, 1]. Suppose that A is a linear
functional defined on a subspace Y of X which satisfies A(x) < p(x) for all
x € Y. Then, there is a linear functional A, defined on X, satisfying A(x) <
p(x) for all x € X, such that A(x) = A(x) for all xe Y.

Proof The idea of the proof is the following. First we will show that if
ze X but z ¢ Y, then we can extend 2 to a functional having the right proper-
ties on the space spanned by z and Y. We then use a Zorn’s lemma argument
to show that this process can be continued to extend A to the whole space X.

Let ¥ denote the subspace spanned by Y and z. The extension of 1 to ¥,
call it 7, is specified as soon as we define 1(z) since

Naz + y) = al(z) + A(y)
Suppose that y,, ¥, € ¥, a, § > 0. Then

BI0) + €10 = 2By, + o) = o+ DA 1 + =)
<@+ Pp(E 01 = 02 + =5 0, + )
< Bp(y, — az) + ap(y; + B2)

Thus, foralla, >0 and yp,,y, €7,
1

; [p(y; + B2) — Aly,)]

1
p [-p(y; —02) + Ay)] <
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We can therefore find a real number a such that

sup [+ (-pty ~ o) + 00| s a < it [; 0ty + ) - 109

yeY
>0

We now define A(z) = a. It may be easily verified that the resulting extension
satisfies A(x) < p(x) for all x e ¥. This shows that A can be extended one
dimension at a time.

We now proceed with the Zorn’s lemma argument. Let & be the collection
of extensions e of A which satisfy e(x) < p(x) on the subspace where they are
defined. We partially order & by setting e, < e, if e, is defined on a larger set
than e, and e,(x) = e,(x) where they are both defined. Let {¢,}, . , be a linearly
ordered subset of &; let X, be the subspace on which e, is defined. Define ¢
on | J, ¢4 X, by setting e(x) = e(x) if x € X,. Clearly e, < e so each linearly
ordered subset of & has an upper bound. By Zorn’s lemma, & has a maximal
element A, defined on some set X, satisfying A(x) < p(x) for x e X'. But, X’
must be all of X, since otherwise we could extend A to a A on a larger space
by adding one dimension as above. Since this contradicts the maximality
of A, we must have X = X'. Thus, the extension A is everywhere defined. §

In the theorem we have just proven, X is a real vector space. We now extend
the theorem to the case where X is complex.

Theorem 1.6 (complex Hahn-Banach theorem) Let X be a complex
vector space, p a real-valued function defined on X satisfying p(ax + By) <
lalp(x) + |Blp(y) for all x, ye X, and «, B C with |a| + |B] = 1. Let 4
be a complex linear functional defined on a subspace Y of X satisfying
1A(x)] < p(x) for all x € Y. Then, there exists a complex linear functional A,
defined on X, satisfying |A(x)| < p(x) for all x € X and A(x) = A(x) for all
xeY.

Proof Let £(x) = Re{A(x)}. ¢ is a real linear functional on Y and since
£(ix) = Re{A(ix)} = Re{il(x)} = —Im{A(x)}

we see that A(x) = £(x) — iZ(ix). Since £ is real linear and p(ax + (1 — a)y) <
ap(x) + (1 — a)p(y) for a € [0, 1},£ has a real linear extension L to all of X
obeying L(x) < p(x) (by Theorem IIL.5). Define A(x)= L(x) —iL(ix). A
clearly extends A and is real linear. Moreover, A(ix) = L(ix) — iL(—x) =
iA(x), so A is also complex linear. To complete the proof, we need only show
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that |A(x)| < p(x). First, note that p(ax)=p(x) if |a] =1. If we let
6 = Arg{A(x)} and use the fact that Re A = L, we see that
[A(X)] = e”A(x) = Ale~%x) = L(e""%x)
<ple™x) = p(x) 1

Corollary 1 Let X be a normed linear space, Y a subspace of X, and 4
an element of Y*. Then there exists a A € X* extending A and satisfying
[Allxe = HAltys.

Proof Choose p(x) = ||Ally.lix|| and apply the above theorems. §

Corollary 2 Let y be an element of a normed linear space X. Then there
is a nonzero A € X* such that A(y) = ||All x|l y¥l-

Proof Let Y be the subspace consisting of all scalar multiples of y and define
AMay) = allyll. By using Corollary 1, we can construct A with [[A}} = 4| ex-
tending 1 to all of X. But, since A(y) = iy, ]A]l =1 and therefore

A() = Alxlyi B

Corollary 3 Let Z be a subspace of a normed linear space X and
suppose that y is an element of X whose distance from Z is d. Then there
existsaAe X*sothat |A| < 1,A(y) =d,and A(z) =0forall zin Z.

The proof of the third corollary is left to the reader (Problem 10). To show
how useful these corollaries are we prove the following general theorem.

Theorem 1.7 Let X be a Banach space. If X* is separable, then X is
separable.

Proof Let {4,} be a dense set in X*. Choose x, € X, ||x,]| =1, so that
[Alx] 2 114,01/2

Let 9 be the set of all finite linear combinations of the {x,} with rational
coefficients. Since 2 is countable, it is sufficient to show that 2 is dense in X.
If 2 is not dense in X, then there is a y € X\2 and a linear functional 4 € X*
so that A(y) # 0, but A(x) = 0 for all x € 2 (Corollary 3). Let {4, } be a sub-
sequence of {4,} which converges to 1. Then

|H' - A’nk "X‘ = l()' - A’m,)(xnk)!
= | A (xn )| 2 1450112
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which implies [|4, || =0 as k = co. Thus 4 =0 which is a contradiction.
Therefore 2 is dense and X is separable. |

The example of 7, and 7, shows that the converse of this theorem does not
hold. Incidently, Theorem II1.7 provides a proof that ¢, is not the dual of
¢ ., since £, is separable and /Z is not.

111.4 Operations on Banach spaces

We have already seen several ways in which new Banach spaces can arise
from old ones. The successive duals of a Banach space are Banach spaces and
the bounded operators from one Banach space to another form a Banach
space. Also, any closed linear subspace of a Banach space is a Banach space.
There are two other ways of constructing new Banach spaces which we wil
need: direct sums and quotient spaces.

Let 4 be an index set (not necessarily countable), and suppose that for
each a € A, X, is a Banach space. Let

X = {{xcx}aeAlxaEXa9 Z "xa”X, < OO}

acd
Then X with the norm

"{xa}" = ZA"xa"X.

is a Banach space. It is called the direct sum of the spaces X, and is often
written X =@, X,. We remark that the Hilbert space direct sum and
the Banach space direct sum are not necessarily the same. For example, if we
take a countable number of copies of C, the Banach space direct sum is ¢;,
while the Hilbert space direct sum is £, . However, if one has a finite number
of Hilbert spaces, their Hilbert space direct sum and their Banach space
direct sum are isomorphic in the sense of Section III.1.

Let M be a closed linear subspace of a Banach space X. If X were a Hilbert
space, we could write X = M @ M. The Banach space that we now define
can sometimes take the place of M* in the Banach space case where there
is no orthogonality. If x and y are elements of X, we will write x ~ y if
x — y € M. The relation ~ is an equivalence relation; we denote the set of
equivalence classes by X/M. As usual we denote the equivalence class contain-
ing x by [x]. We define addition and scalar muitiplication of equivalence
classes by

a[x] + Bly] = [ax + By]
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which makes sense since the equivalence class on the right only depends on
the equivalence classes from which x and y are chosen, not on the elements
themselves. With these operations X/M, becomes a complex vector space
(the class M is the zero element). Now define

Iixlly = inf jix — mllx
meM
It is not hard to show that ||'|l; is a norm on X/M. ||{x]}| = 0 implies [x] =0
because M is closed. We will show that X/M with this norm is complete by
using Theorem I11.3. Let {[x,]};%,, be an absolutely summable sequence in
X /M. That is,

4]
Y inf |x, — mj <o
n=1meM

For each n, choose m, € M so that

"xn - mn" <2 inf "xn - m"
meM

Then {x, — m,} is absolutely summable in X. Since X is complete, {x, — m,} is
summable. Let

N
y= lim Z(xn— mn)
N~w n=1

Then

N N
YX,—y— ymjl >0 as N—» o

n=1 n=1

This proves that {{x,]} is summable. Using Theorem III.3 again we conclude
that X/M is complete. X/M is called the quotient space of X by M. The reader
should work out the easy details of the following example.

N
"; [x.] - [¥]

<
1

Example  Let X = C[0, 1] and let M = {f] £(0) = 0}. Then X/M = C.

I11.5 The Baire category theorem and
its consequences

Many questions in Banach space theory involve proving that sets have
nonempty interiors. For example:
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Proposition Let X and Y be normed linear spaces. Then a linear map
T: X - Y is bounded if and only if

T {yliylly < 13
has a nonempty interior.

Proof Suppose that T is given and the set in question contains the ball

{x|llx — xollx < €}
Then || x| < ¢ implies

ITx] < HT(x + x)ll + 1 Txoll <1+ [ T(xo)
since X + x, is in the ball of radius ¢ about x,. Thus for all x € X,
ITxIl < e '(ITxoll + Dllx|

so T is bounded. The converse is easy. |

It is thus of great interest to know when sets must have nonempty interiors.
There is an extraordinary theorem about complete metric spaces. Before
stating it, we make the following definition.

Definition A set S in a metric space M is called nowhere dense if S has an
empty interior,

Theorem 111.8 (Baire category theorem) A complete metric space is
never the union of a countable number of nowhere dense sets.

Proof The idea of the proof is simple. Suppose that M is the complete metric
space and M = | J.| A4, with each A, nowhere dense. We will construct a
Cauchy sequence {x,,} which stays away from each A, so that its limit point x
(which is in M by completeness) is in no A4,, thereby contradicting the state-
ment M = 2, 4,.

Since A4, is nowhere dense, we can find x, ¢ 4,. Pick an open ball B, about
x; so that B, n A, = & and so that the radius of B, is smaller than one.
Since A4, is nowhere dense, we can find x, € B;\4,. Let B, be an open ball
about x, so that B, c B,, B, n A, = &, and with radius smaller than 1.
Proceeding inductively, we pick x, € B,.;\4, and choose an open ball B,
about x, satisfying B, = B,_;, B, n A, = ¢, and having a radius smaller
than 2! ", Now {x,}2. , is a Cauchy sequence since n, m > N implies that x,,
X, € By so

P(Xps X) < 217N 42178 =22"N 50
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as N - oo. Let x =lim,, , x,. Since x, € By for n > N, we have
xeBy< By_,

Thus x ¢ Ay, for any N which contradicts M = {2, 4,. |

The Baire category theorem tells us that if M = { ). 4,, then some of the
sets A, must have nonempty interior. In practice, one rarely uses the Baire
category theorem directly but rather one of the following consequences. The
first is known as the Banach-Steinhaus theorem or the principle of uniform
boundedness.

Theorem 1.8 (principle of uniform boundedness) Let X be a Banach
space. Let & be a family of bounded linear transformations from X to some
normed linear space Y. Suppose that for each xe X, {||Tx|, [ TeZ} is
bounded. Then {|T| | T € #} is bounded.

Proof Let B, ={x|||Tx] <n for all T € #}. By the hypothesis each x is
in some B,, thatis, X = | )., B,. Moreover each B, is closed (since each T is
continuous). By the Baire category theorem, some B, has a nonempty
interior. By mimicking the argument in the proposition at the beginning of
this section, we conclude that the || T||’s are uniformly bounded. }}

As a typical application of this theorem we have (see also Problem 13):

Corollary Let X and Y be Banach spaces and let B(-, ) be a separately
continuous bilinear mapping from X x Y to C, that is, for each fixed x, B(x, *)
is a bounded linear transformation, and for each fixed y, B(:, y) is a bounded
linear transformation. Then B(, ') is jointly continuous, that is, if x, — 0 and
¥, =0 then B(x,, y,) — 0.

Proof Let T, (y) = B(x,, ). Since B(x,, *) is continuous, each T, is bounded.
Since x, — 0 and B(-,y) is bounded, {|| T,{(y)|} is bounded for each fixed y.
Therefore, there exists C so that

I TN < Cliyll
for all n. Thus

1BGens vl = I Tu(y)ll < Cllyall =0

asn— 0.
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We remark that even on R?, for nonlinear functions separate continuity
does not imply joint continuity. The standard example is

feN=grss I @ #<0,0

f(0a0)=0

The second application of the Baire category theorem is to the following
series of results.

Theorem 111.10 (open mapping theorem) Let T: X - Y be a bounded
linear transformation of one Banach space onto another Banach space Y.
Then if M is an open set in X, T[{M] is open in Y.

Proof We make a series of remarks which will simplify the proof. We need
only show that, for every neighborhood N of x, T{N] is a neighborhood of
T(x). Since T[x + N]= T(x) + T{N] we need only show this for x =0.
Since neighborhoods contain balls it is sufficient to show that T[BX] = BY for
some r’ where

B¥={xeX||x| <r}

However, since T[BX] = rT[BX], we need only show that T[B}] is a neighbor-
hood of zero for some r. Finally, by the “translation argument” of the
proposition, it is sufficient to show that T[B}] has a nonempty interior for
some 7,

Since T is onto,

Y= ..Ql T(B,]

so some T(B,) has a nonempty interior. Now the hard work begins, since we
want T(B,) to have a nonempty interior. By scaling and translating we can

suppose that B, is contained in T[B,]; we will show that T[B,] < T[B,]
which will complete the proof.

Lety e T[B,). Pick x, € B, soy — Tx, € B,;, = T[B,,,]. Now pick x, € B,
so that

y - Txl - sz € B¢/4

By induction, we choose x, € B;:-. so that

y - Z; Tx;€ Bi-n
J=
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Then x =) 2, x; exists and is in B, and

]
y=3 Tx;=Tx
j=1
Thus y € T[B,]. §

Theorem 1.1 (inverse mapping theorem) A continuous bijection of
one Banach space onto another has a continuous inverse.

Proof T is open so T™!is continuous. §

For an application of this result see Problem 19.

Definition Let T be a mapping of a normed linear space X into a normed
linear space Y. The graph of T, denoted by I'(T), is defined as

N(T) ={{x, »)|{x,y>e X x Y, y=Tx}

Theorem 11.12 (closed graph theorem) Let X and Y be Banach spaces
and T a linear map of X into Y. Then T is bounded if and only if the graph of
T is closed.

Proof Suppose that I'(T) is closed. Then, since T is linear, I'(T) is a subspace
of the Banach space X @ Y. By assumption I'(T) is closed and thus is a
Banach space in the norm

I<x, Tx>| = x|} + | Tx]|
Consider the continuous maps I,, I1,,
,:{x, Tx) > x, II,: {x, Tx) > Tx

I1, is a bijection so by the inverse mapping theorem II]! is continuous. But
T = I, - I}, so T is continuous. The converse is trivial. J

To avoid future confusion, we emphasize that the T in this theorem is
implicitly assumed to be defined on all of X. We will later deal with trans-
formations defined on algebraic subspaces of X (not all of X) with closed
graphs which are not continuous. To appreciate what the closed graph
theorem really does, consider the three statements:

(a) x, converges to some element x.
(b) Tx, converges to some element y.
(c) Tx=y.



lli: BANACH SPACES

In metric spaces, one sometimes says something is * true almost everywhere *’ if it is true
on a residual; thereby, first category sets play the role of ““sets of measure zero™. There are
some amusing results on this notion of a.e. in G. Choquet’s book, Lectures in Analysis,
Vol. I, pp. 120-126, Benjamin, New York, 1969. Warning: There exist sets X < [0, 1} which
are first category with measure 1! Thus the two notions of a.e., Lebesgue and Baire, are
quite different.

Other topological spaces besides complete metric spaces have the property that residuals
are dense; such spaces are called Baire spaces. For example, every locally compact space is
Baire. For additional discussion, see Choquet’s book, pp. 105-120.
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PROBLEMS
Prove that L*(R) is a Banach space.

(a) Prove that £, and ¢, are separable but 7, is not.
(b) Prove that s <7, for all p.

Prove that a normed linear space is complete if and only if every absolutely summable
sequence is summable. (Hint for the **if "’ part: To show that a Cauchy sequence con-
verges it is only necessary to show that a subsequence converges.)

Prove that all norms on R" are equivalent. (Hint: Use the fact that the unit sphere is
compact in the Euclidean topology.)

Prove that C, (R) is the completion of «(R).

. Prove that if {AJZ., € £, then the linear functional on ¢, given by

Afaean) =X Aax
has normY &%, | Al

. Prove that Z,, =¢?¥ but that £* #/¢, by using the Hahn-Banach theorem.

. (a) Prove that there is a nonzero bounded linear functional on L*(R) which vanishes

on C(R).
(b) Prove that there is a bounded linear functional A on L*(R) such that A(f) =£(0)
for each fe C(R).

. Suppose that # is a Hilbert space and that A is a bounded linear functional on #, a

not necessarily closed subspace. Describe the continuous extensions of A.
Prove the third corollary to the Hahn-Banach theorem.

Prove that there is a linear functional A on Z,(R) so that

lim a, < A({a,}.) < lim a,

n-ew®

(e(R)={alaet,, a,e€R foralin}.
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Problems 87

Prove the statement in the example at the end of Section 4.

Use the uniform boundedness principle to provide an alternative proof of the Hellinger-
Toeplitz theorem.

Let X be a Banach space. Give an example of an everywhere-defined but discontinuous
linear functional A. Show directly that A is not closed.

Let 5 be a separable Hilbert space with an orthonormal basis {x,}5%.. Let {y,} be a
sequence of elements of J# and prove that the following two statements are equivalent.

(a) (x,)’.) nd 0, Vx e i,

®) (Xm,ys) = O,foreachm=1,2,...,and {lIly,I}%, is bounded.
L]

A subset § of a Banach space is called weakly bounded if and only if for all Ae X*,
SUPses |A(X)] < 0. § is called strongly bounded if and only if sup,.s lix[l < oo.
Prove that a set is strongly bounded if and only if it is weakly bounded (see Section V.7).

Prove that a separately continuous multilinear functional on a Banach space is jointly
continuous.

Extend the Hellinger-Toeplitz theorem to include pairs of operators A4, B satisfying:
(4x, y) = (x, By).

Let X be a Banach space in either of the norms |I:||, or ||l . Suppose that |-}, < Cl|'ll2
for some C. Prove that there is a D with {|-ll; < DIIll;.

. Why doesn’t a one-point space violate the Baire theorem?

Prove that any countable intersection of dense open sets in a complete metric space is
dense.

(a) Prove that a Banach space X is reflexive if and only if X* is reflexive. (Hint: If
X # X** find a bounded linear functional on X** which vanishes on X).

(b) Prove that whenever X is a nonreflexive Banach space, (- -(X*)*---)* is not re-
flexive.

Let X be a Hilbert space and let .4 be a closed subspace. Show that the restriction of
the natural map 7 : X — X/A is an isomorphism of #* and X/ .#.

Let Zbe a linear functional on a real Banach space X. Prove that X/ker 7 is isomorphic
to R with the usual norm and that the natural projection w: X—> X/ker£=R is
related to £ by £ = 4 ||£|lm.

A Banach space is called uniformly convex if for cach ¢ > 0, there is 2 8 > 0, so that
Ixll=1tiyll=1 and W4(x+»|>1—8 imply lix— yll <e; thus the unit ball is
uniformly round. We will see in Problem 15 of Chapter V, that every uniformly
convex space is reflexive.
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A priori, to prove that T is continuous one must show that (a) implies (b)
and (¢). What the closed graph theorem says is that it is sufficient to prove
that (a) and (b) imply (c).

The following corollary of the closed graph theorem has important conse-
quences in mathematical physics.

Corollary (the Hellinger-Toeplitz theorem) Let 4 be an everywhere-
defined linear operator on a Hilbert space # with (x, Ay) = (4x, y) for all
x and y in . Then A is bounded.

Proof We will prove that T'(4) is closed. Suppose that {x,, 4x,> = {x, .
We need only prove that (x, y> € I'(4), that is, that y = Ax. But, for any
ze N,

(z, y) = lim (2, Ax,) = lim (4z, x,)

n—x n—ao

= (dz, x) = (z, Ax)
Thus y = Ax and'T(4) is closed. ||

As we shall see, this theorem is the cause of much technical pain because
in quantum mechanics there are operators (like the energy) which are un-
bounded but which we want to obey

(x, Ay) = (Ax,y)

in some sense. The Hellinger-Toeplitz theorem tells us that such operators
cannot be everywhere defined. Thus such operators are defined on subspaces
D(A) of 5 and defining what one means by 4 + B or AB may be difficult,
For example, A + B is a priori only defined on D(4) n D(B) which may
equal {0} even in the case where both D(4) and D(B) are dense. We return
to these questions in Chapters VIIT and X.

NOTES

Section 111.1 The name Banach space honors the important work of S. Banach on
normed linear spaces during the 1920’s culminating in his book, Théorie des Opérations
Linéaires, Monografie Math., I, Warsaw, 1932. A good elementary reference for the material
in this chapter is the book Foundations of Modern Analysis by A. Friedman, Holt, New York,
1970. In the second supplement we prove Holder's inequality only in the case r = 1. To prove
the general case where p™! + ¢~ = r™ ! observe that

I fol" = If1"Igl"
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and use the Holder inequality for the special case where

L
(plr)  (aIn

[l < ( fi fl,,,,)"' ( [ 1g|~~)"'
(ﬁfgl')”' < (ﬁ”’)m(ﬁgﬂ)m

Suppose X is a Banach space. One of the ways of studying the Banach space of operators
from X to itself, £L(X, X), is to use the fact that it is also an algebra. Thus, one can use alge-,
braic notions like ideals and commutators to investigate the structure of £(X, X).In Section
V1.6 certain important ideals of £(5#, ), where 5 is a separable Hilbert space, are studied.
The general theory of operator algebras is studied in later volumes.

obtaining

or

SectionIIl.2  The proof that (LP)* = L? may be found in Royden’s book (see the
Notes for Chapter I) or may be proven using the notion of uniformly convex space (see
Problems 25 and 26 of Chapter III and Problem 15 of Chapter V). In Section V1.6 we
discuss the duals of several subalgebras of Z(J#, ),

Section I11.3 The Hahn-Banach theorem dates back to the work of Helly in * Uber
Lineare Funktional Operationen,” Sitzgsber, Akad. Wiss. Wien Math-Nat. Ki. 121 la,
(1912), 265-297, and * Uber Systeme linearer Gleichungen mit Unendlich Vielen Unbekann-
ten,” Monatsh. Math. Phys. 31, (1921), 60-91. The modern version is due to H. Hahn, * Uber
lineare Gleichungssystem in linearen Riumen,” J. Reine Angew. Math. 157, (1926), 214-229,
and S. Banach, *“Sur les fonctionelles linéaires, I, I1,” Studia Math. 1 (1929), 211-216,
223-239. A nice example of the concrete applications of the Hahn~Banach theorem may be
found in the book by Friedman mentioned above. There it is shown how to use the Hahn~
Banach theorem to prove the existence of a Green’s function for the Dirichlet problem in
two dimensions.

Section 111.5  The Baire theorem was proven in R. Baire, “Sur les fonctions de variables
réelles,” Annali di Mat. Ser. 3 3 (1899), 1-123. The general case is in C. Kuratowski, ** La propriété
de Baire dans les espaces métriques,” Fund. Math. 16 (1930), 390-394, and S. Banach.* Théorémes
sur les ensembles de premiéres catégorie,” Fund. Math. 16, (1930), 395-398, The Banach-Stein-
haus theorem was proven by S. Banach and H. Steinhaus in ** Sur le principe de la condensation
de singularités.” Fund. Math. 9, (1927), 50-61. There is a discussion of the Baire theorem and its
consequences in Lorch’s book (see the Notes for Section 11.5). The term category comes from the
following: A countable union of ndwhere dense sets is called a first category set. All other sets
are called second category. The Baire theorem says that any complete metric space is second
category.

Complements of first category sets are often called residuals. A residual set is thus a set
containing a countable intersection of dense open sets. The Baire theorem implies that any
residual in a complete metric space is dense (Problem 21).
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(a) Prove directly that LY(R) and L™(R) are not uniformly convex.
(b) Prove that any Hilbert space is uniformly convex.
*(c) Prove that L°(X, dy) is uniformly convex for p > 2. Hint: Prove that for «, ﬁ eC,
one has |a + Bi? + fa — B]® < 2*-'(|a|? + | B|?) by first proving

(la+ B+ |a— BI?® S\/E(Ialzi- 1|22

Nores: 1. L? is actually uniformly convex for all | < p < oo, but the proof for 1 <
p < 2 isharder; c.f. G. Kothe: Topological Vector Spaces, 1, Springer (1969), 358-359.
2. Uniformly convex spaces were introduced by J. Clarkson,*** Uniformly convex
spaces,” Trans. A.M.S. 40 (1936), 396-414.
3. M. Day has given examples of reflexive Banach spaces which are not uniformly
convex in ‘‘Reflexive Banach spaces not isomorphic to uniformly convex spaces,”
Bull. A.M.S. 47 (1941), 313-317; see also Kothe, pp. 360-363.

(a) A pair of Banach spaces, X and Y, are said to be in strict duality if there is a map
[ X - Y* which is isometric, so that the induced map f*: Y > X* is also iso-
metric. Prove that if X and Y are in strict duality and X is reflexive, then Y= X*
and X = Y*. (Hint: Use the Hahn-Banach theorem.)

(b) Prove that L°(X, du) and L%(X, du) are in strict duality if p~! 4+ ¢~! = 1.

(c) Prove that LP(X, du)* = LY X, dp) if l <p< © and p~! + g~ = 1. (Hint: Use
Problem 25 and Problem 15 of Chapter V).

Prove the Banach-Schauder theorem: Let T be a continuous linear map, T: £E—F,
where E and F are Banach spaces. Then either T[A4) is open in T[E]foreachopen 4 < E,
or T[E] is of first category in T[E] (see the notes to Section 5 for the definition of first
category).

(a) Prove that every quotient of /; by a closed subspace is isometrically isomorphic to
either 7, or C¥ for some MN.
(b) Prove that ¢, is not topologically isomorphic to any quotient space of ;.

Let X be a separable Banach space. Let {x;, ..., X,, ...} be a dense subset of the unit
ballin X. Map 7, - X by

Ed
P ERC TR T o - A
n=1

(a) Prove that A is well defined and continuous.

(b) ProvethatKer Aisclosed andthat 4 * lifts ’ to a continuous map A: /,/Ker 4 — X,

(c) Prove Ran 4 =Ran A4 is all of X. Hint: Given x with {x|| =1, choose Xut)
recursively by requiring

“X - 12:112-H l«\’nm“ <2k

(d) Conclude that any separable Banach space is topologically isomorphic to some
quotient space of 7.
(e) By using (c) with 2 replaced by 3,4, ..., show that A is actually an isometry.
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30. Let X be a Banach space and iet Y be a closed subspace of X, Let Y°in X* be defined by
Ye={{eX*|tlY=0)

Given a bounded linear functional fon X/ Y, define #*(f) € X* by [7*(N}x) = f({x)).
Prove that 7r* is an isometric isomorphism of (X/Y)* onto Y°.

31. (a) Let E be a Banach space with separable dual and (M, 1) a measure space with
L>(M, dy) separable for all 1 < p < . Develop the theory of L*(M, du; E) anal-
ogous to the theory of L*(M, d; #°) discussed in Sections I1.1 and I1.4.

(b) Prove L*(M X N, du. @ dv) and L*(M, du; L*(N, dv)) are naturally isomorphic.
*(c) Let E** be a separable Banach space and let I < p < . Prove that L*(M, dp, E)*
is naturally isometrically isomorphic to LM, du, E*) (Hint: First show that it is
enough to prove that every bounded linear transformation 7" of E into LYM, du)
is of the form [T(x)}(m) = [f(m)](x) for some f€ L%M, du; E*). Prove this in the
special case where E = £,. Finally use Problems 29 and 30 to treat the general
separable Banach space, E.)

*32. Let S be a closed linear subspace of L'[0, 1]. Suppose that f & S implies that fe L?[0, 1]
for some p > 1. Prove that S < L?[0, 1] for some p>1.
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Everyone knows what a curve is, until he has studied enough mathematics to become confused
through the countless number of possible exceptions. F. Kiein

V.1 General notions

The abstract notions of limit and convergence are the bread and butter of
functional analysis. The purely metric space formulations that we have used
thus far are sadly lacking in some cases, so it is necessary to introduce more
general concepts. It is possible to describe what is known as a topological
space purely in terms of convergence, but it is very awkward. Instead, one
usually defines a topological space by abstracting the notion of open sets in
metric spaces. Convergence then becomes a derived concept. We discuss
convergence in Section IV.2.

This section consists primarily of definitions as we introduce an extensive
language needed to describe topological notions. We urge the reader to learn
the language by returning to this section when necessary rather than by
brute memorization.

Definition A topological space is a set S with a distinguished family of
subsets J called open sets with the properties:

(i) 7 is closed under finite intersections, that is, if 4, Be J, then
AnBed.
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(ii) 7 is closed under arbitrary unions, that is, if 4.€ J for all & in some
index set I, then | J,e; 4,€ 7.
(ii) geJ andSe .

T is called a topology for S. We will occasionally write (S, ") for a topologi-
cal space.

In contradistinction to Borel structure, topological structures are not
symmetric between intersection and union and involve not merely countable
operations but arbitrary operations,

The prime example of a topological space is a metric space. The open
sets, J, are those sets, M < §, with the property (Yxe M)3r>0)
{ylp(x, y) < r} = M. After discussing continuous functions, we will describe
another family of examples. We first mention, however, two trivial examples:
Given a set S, the family of all subsets of S is a topology; it is called the dis-
crete topology. I = {(&, S} is also a topology; it is called the indiscrete
topology.

The family of all topologies on a set S is ordered in a natural way 7, < 7,
if 77, € J, in the sense of set-theoretic inclusion. If 7, < 7 ,, we say J,
is a weaker topology than J,. (The term weaker comes from the fact that
more sequences converge in J, than in J ,; so 7, convergence is a weaker
notion than 7, convergence.)

Definition A family @ < 7 is called a base if and only if any Te J is
of the form T = | J, B, for some family {B,} c .

For example, the balls in a metric space are always a base. We now take a
whole family of definitions directly from metric spaces:

Definition A set N is called a neighborhood of a point x € S, a topological
space, if there exists an open set U with xe Uc N,

A family A" of subsets of S, a topological space, is called a neighborhood
base at x if each N € . is a neighborhood of x and if given any neighborhood
M of x, there is an N € & with N ¢ M. Equivalently, 4" is a neighborhood
base at x if and only if {M|N < M for some N e A} is the family of all
neighborhoods of x. For example, if # is a base for 7, {Ne #|xe N}isa
neighborhood base at x. We emphasize that neighborhoods need not be
open. In a metric space, the closed balls of radius greater than zero are a
neighborhood base.
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Definition A set C < S, a topological space, is called closed if and only
if it is the complement of an open set.

The properties of the family of all closed sets can be read off from the
properties of 7.

Definition Let 4 < S, a topological space. The closure of A4, 4, is the
smallest closed set containing 4. The interior of A, A°, is the largest open set

contained in A. The boundary of A4 is the set AA4° =4 N [S\4].

That a smallest closed set containing A4 exists follows from the fact that 7~
is closed under arbitrary unions.
As examples, we consider several topologies on R?:

Example 1 The ordinary metric topology.

Example 2 Consider the family of sets of the form {{x, y)|x € O} where
yis fixed and O is an open set of R in the usual topology. This family of sets is
the base for a topology whose open sets are the sets C such that for each
ye R, {x|<x,y) e C}is open in R in the usual topology. In an intuitive sense,
which we shall shortly make precise, this topology is the * product” of the
usual topology in one factor and the discrete topology in the other factor.

Example 3 Let 9 consist of the empty set and all sets containing
<0, 0)>. A neighborhood base for {x, y) in this topology is the single (!) set
{€0, 0, {x, y>}.

Our experience with metric spaces suggests that continuous functions will
play a major role.

Definition Let (S, 7 ) and {T, %) be two topological spaces. A function
f: ST is called continuous if f~'[4] e J for every A € %; that is, if the
inverse image of any open set is open. fis called open if f[B] is open for each
B e 7. If fis open and continuous, it is called bicontinuous. A bicontinuous
bijection is called a homeomorphism.

Homeomorphisms are the *‘isomorphisms™ of topological spaces. A
topological notion is some notion (or object) invariant under homeomor-
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phism. As an example, the intervals (— o0, o) and (-1, 1) are homeomor-
phic under the homeomorphism x+— x/(1 + x%). They are not isometric in the
usual metric; in fact, only one of them is complete. This demonstrates that
completeness is not a topological notion. However, most metric space
notions that are useful in analysis are topological notions.

Continuity is often used to define topologies:

Definition Let o be a family of functions from a set S to a topological
space {T, %}. The A -weak (or simply weak) topology on S is the weakest
topology for which all the functions /'€ )¢ are continuous.

To construct the ) -weak topology, take the family of all finite intersections
of sets of the form f ~'[U ] where fe & and U € %. These sets form a base for
the X "-weak topology. If X" is a family of functions on a set S but with values
in different topological spaces, we define the o -weak topology in the obvious
way.

Example 4 Consider Cla, b], the continuous functions on [a, b]. The
topology of pointwise convergence on C{a, b] is the weak topology given by
the family of functions f+— f(x). That is, for each x € [g, b], let E.(f) =f(x)
so the E,( - ) are maps of Cla, b] to R. As we will see, the topology of point-
wise convergence is the topology on Cla, b] for which f, - f if and only if
J(x) - f(x) for each x.

Example § Let s be a Hilbert space. The ** weak topology™ is the
weakest topology making ¢ (Y, @), continuous for each ¢ in . A neigh-
borhood base for 0 is given explicitly by the sets

NWis s ¥ns 81 - &) = {0l Wi, o)l <&, i=1,...,n}

wheree; > 0, ¥,, ..., {, are arbitrary, and n = 1, 2, .,. . Thus, the neighbor-
hoods in the weak topology are cylinders in all but finitely many dimensions.
That is, there is a subspace M (the orthogonal complement of ¥, ..., ¥,)
whose complement, M4, is finite dimensional and so that ¢ € N,ne M implies
@+neN.

Example 6 On R? consider the maps n;, n, given by n,(x, y) = x;
n,(x, ¥) = y. The weak topology defined by =, and =, and the usual topology
on R has rectangles (@, b) x (c, d) as a base for its open sets and thus the weak
topology is the “usual ” topology on R?,
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Example 7 The weak topology can be used to topologize Cartesian
products. Recall if {S,},c; is a family of sets, S= X 1 S, is the family
of all {x,},.; with x, € S,. For each &, we have a map n,: S — S, given by
no({Xs}pc1) = X,. If each S, has a topology Z,, we define the product
topology, X,.; 7, as the weak topology generated by the projections =, .

We now return to our listing of definitions by classifying spaces by how
well open sets separate points and closed sets:

Definition

(a) A topological space is called a T, space if and only if for all x and y,
x # y, there is an open set O with y € O, x ¢ O. Equivalently, a space is
T, if and only if {x} is closed for each x.

(b) A topological space is called Hausdorff (or T,) if and only if for all x
and y, x # y, there are open sets 0y, O, such that xe O, ye O,, and
0,n0,=¢.

(c) A topological space is called regular (or T;) if and only if it is 7; and
for all x and C, closed, with x ¢ C, there are open sets O,, O, such that
x,€0,,Cc<0,, and O, n 0, = . Equivalently, a space is T, if the
closed neighborhoods of any point are a neighborhood base.

(d) A topological space is called normal (or 7,) if and only if it is 7} and
for all C,, C,, closed, with C; n C, = &, there are open sets O,, O,
with C, «c 0,,C, = 0,,and O; n 0, = .

Obviously:

Proposition T,=T,=T,=>T,

We remark that the two most important notions are Hausdorff and normal.
At this time, we avoid discussing another way of separating sets, namely
with continuous functions. Urysohn’s lemma (Theorem 1V.7) deals with this
question.

We next consider various countability criteria:

Definition
(i) A topological space S is called separable if and only if it has a countable
dense set.
(ii) A topological space S is called first countable if and only if each point
x € S has a countable neighborhood base.
(ii1) A topological space S is called second countable if and only if S has a
countable base.
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The relation between these topological notions and metric spaces is set
forward in the elementary:

Proposition (a) Every metric space is first countable.
(b) A metric space is second countable if and only if it is separable.
(c) Any second countable topological space is separable.

Warning There are separable spaces that are not second countable (see
Problem 7). To add to the confusion, some authors use ‘* separable " to mean
second countable. By separable we always mean that there exists a countable
dense set.

The geometric idea of being connected has a topological formulation:

Definition A topological space S is called disconnected if and only if it
contains a nonempty proper subset, C, which is both open and closed ; equiv-
alently, S is disconnected if and only if it can be written as the union of two
disjoint nonempty closed sets. If S is not disconnected, it is called connected.

We examine connectivity in Problems 3 and 6. As a final topological
notion, we consider restricting topologies to subsets.

Definition Let (S, ) be a topological space and let 4 = S. The
relative topology on A is the family of sets 7, ={0 N 4|0 € F}. A subset
B < A is called relatively open if B € 7 , and relatively closed if A\Be 7 ,.

IV.2 Nets and convergence

In this section we introduce new objects, called nets, in order to handle
limit operations in general topological spaces. Although nets seem on first
acquaintance to be bizarre, the propositions in this section show how
natural they are.

Definition A directed system is an index set I together with an ordering
< which satisfies:

(i) If a, B e, then there exists y e I so that y >« and y > §.
(ii) < is a partial ordering.
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Definition A net in a topological space S is a mapping from a directed
system I to S; we denote it by {x,},;.

If we choose the positive integers with the usual order as a directed system,
the nets on that directed system are just sequences in S, so nets are a generaliza-
tion of the notion of sequence. If P(x) is a proposition depending on an
index o in a directed set  we say P(a) is eventually true if there is a f§ in I with
P(a) true if o > B. We say P(a) is frequently true if it is not eventually false,
that is, if for any f there is an a > § with P(«) true.

Definition A net {x,}, . ;in a topological space S is said to converge to a
point x € S (written x, — x) if for any neighborhood N of x, there is a
pelsothat x,e Nifa>p.

Thus x, — x if and only if x, is eventually in any neighborhood of x. If x,
is frequently in any neighborhood of x, we say that x is a cluster point of
{x,}. Notice that the notions of limit and cluster point generalize the same
notions for sequences in a metric space.

Theorem IV.1 Let A be a set in a topological space S. Then, a point x is
in the closure of A if and only if there is a net {x,},.; with x, € 4, so that
Xy = X.

Proof We first observe that A is just the set of points x such that any
neighborhood of x contains a point of A. This set certainly contains 4 and
its complement is the largest open set not containing any points of A.
Now suppose x, — x where each x, € 4. Then any neighborhood of x contains
some x, and hence some points of 4, that is, x is a limit point of 4, so x € 4.

Conversely, suppose x € A. Let I be the collection of neighborhoods of x
with the ordering N, < N, if N, « N,. For each N e, let xy be a point in
A N~ N. Then {xy}yeris a net and xy — x. |

In spaces that are first countable, we can construct the closures of sets by
using only sequences. Such is the case in metric spaces. The following example
is a case where sequences are not enough:

Example Let S = [0, 1]; the nonempty open sets will be the subsets of
[0, 1] whose complements contain at most a countable infinity of points. Let
A = 1[0, 1). Then 4 = S since {1} is not open. But, let {x,}=, be any sequence
of points of [0, 1). {x,}:2, cannot converge to | since the complement of the
points {x,}=., is an open set containing 1.
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Although the above example seems artificial, spaces that are not first
countable play a large role in functional analysis. Usually, they arise when
dual spaces of Banach spaces are considered with topologies weaker than the
norm topology (Section IV.5).

We state two facts about nets whose proofs are not difficult and are left
as problems:

Theorem IV.2  (a) A functionffroma topological space S to a topolo-
gical space T is continuous if and only if for every convergent net {x,},.; in
S, with x, — x, the net {f(x,)}. . converges in T to f(x).

(b) Let S be a Hausdorff space. Then a net {x,},.; in S can have at most
one limit; that is, if x, » x and x, — y, then x = y.

Analogous to the concept of a subsequence we have the following definition:

Definition A net {x,},. is a subnet of a net {y,}; ., if and only if there is
a function F: I - J such that

() X, = ypq foreachael

(iiy Forall ' €J, there is an o’ € I such that « > o’ implies F(a) > p’ (that is,
F(a) is eventually larger than any fixed g€ J).

- We then have the following proposition which shows that the above
definition is the right one.

Proposition A point x in a topological space S is a cluster point of a net
{x,} if and only if some subnet of {x,} converges to x.

Of course, subsequences are subnets of sequences. But it is also possible for
a sequence in a topological space to have no convergent subsequences but to
have convergent subnets (see Problem 12).

IV.3 Compactness t

The reader no doubt remembers the special role that closed bounded subsets
of R" played in elementary analysis. In this section we will study the topologi-
cal abstraction of this concept:

1 A supplement to this section begins on p. 351.
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Definition We say a topological space (S, J ) is compact if any open
cover of S has a finite subcover, that is, if for any family % <« J with
S=Juea U, there is a finite subset {U,, ..., U} = % with S={Ji., U,.
A subset of a topological space is called a compact set if it is a compact space
in the relative topology.

Henceforth in our discussion we will always suppose that all compact
spaces are Hausdorff, although occasionally we will repeat this condition for
emphasis.

Since we have a considerable amount of material to discuss, it is perhaps
useful to describe briefly the contents of the next two sections. After studying
some equivalent formulations of compactness and some elementary proper-
ties of compact spaces, we turn to some of the pillars of functional analysis.
We first state and discuss Tychonoff’s theorem. We then turn to the study
of continuous functions on compact sets. After showing that a compact
Hausdorff space X has lots of continuous functions (Urysohn’s lemma), we
discuss the Banach space C(X) of continuous functions. We state the
Stone-Weierstrass theorem but defer its instructive proof to an appendix. In
the next section, we determine the dual of C(X). Using the Riesz-Markov
theorem, we will prove that C(X)* is identical with #(X), the family of
signed measures on X.

We first reformulate the notion of compactness by taking complements of
open sets:

Definition A topological space S is said to have the finite intersection
property (f.i.p.) if and only if any family of closed sets & with ()i, F; # &
for any finite subfamily {F;}{_, c & satisfies (\re s F # .

Proposition (f.i.p. criterion) S is compact if and only if S has the f.i.p.

Proof Let & be given and let % = {S\F|Fe #}. Then & has the property
that (/. F, # & if and only if % has no finite subcover and the property
that (\r.s F # & if and only if % is not a cover. The reader is invited to
wend his way through the double negatives to complete the proof. |

A somewhat deeper reformulation is:

Theorem IV.3 (The Bolzano-Weierstrass theorem) A space S is com-
pact if and only if every net in S has a convergent subnet.

Proof Suppose that every net has a convergent subnet and let % be an open
cover. Let us suppose that % has no finite subcover and derive a contradiction.
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Order the finite subfamilies S of % by inclusion; S is thereby a directed set.
For each # ={F,, ..., F,} € &, pick x¢ ¢ | Jiv, F;. By assumption, the net
xg has a cluster point x. Since % is a cover, we can find Ue % with xe U.
Since xg is frequently in U we can find a finite subfamily ¥ € © so that
{U} <9 and xg€U. Since {U} <%, Uc (Jges G, and 50 xg €| Jg9 G,
which is a contradiction.

Suppose that S is compact and let {y,},; be a net. If {y,} has no cluster
points, then for any x € S, there is an open set U, containing x and an &, € /
with y, ¢ U, if « > «, . The family {U, | x € S} is an open cover of S, so we can
find x,, ..., x, so that  J{., U,, = S. Since I is directed, we can find ay > a,,
fori=1, ..., n. But y, ¢U,, i=1, ..., n, which is impossible since
(Jl=: U,, = S. This contradiction establishes that {,}, . has a cluster point
and thus a convergent subnet. ||

Second countable spaces are compact if and only if every sequence has a
convergent subsequence (this can be shown by mimicking the above proof).

Example 1 The unit ball in £, is not compact in the metric topology. No
subset of a sequence of orthonormal elements can converge.

Example 2  Let S={{g}e’;||a,} <1/n}. It is easy to see that a
sequence of elements of S converges if and only if each component converges.
Using the diagonalization trick, we conclude that every sequence has a con-
vergent subsequence. Therefore, by the Bolzano-Weierstrass theorem, § is
compact,

Warning Compact is not the same as closed and bounded in a general
Banach space. In fact the unit ball in a Banach space is compact (in the norm
topology) if and only if the space is finite dimensional (see Problem 4 of
Chapter V).

We now mention two simple “ hereditary ™ properties of compact spaces
(see Problem 38):

Proposition (a) A closed subset of a compact space is compact in the
relative topology.
(b) A continuous image of acompact space is compact.

Corollary  Any continuous function on a compact space takes on its
maximum and minimum values. That is, there are x, so that

f(x,)=sup f(x) and f(x-)=in£f(x)

xeC
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The following theorem is often useful:

Theorem V.4 Let S and T be compact Hausdorff spaces; let f: S—T
be a continuous bijection. Then fis a homeomorphism.

We need the following lemma:

Lemma  If Tis Hausdorff and S = T is compact, then S is closed.

Proof. Let xe S. We can find a net {x,},, in S with x, — x. Since limits are
unique in Hausdorff spaces, x is the only cluster point of the net. But since S
is compact, the net has a cluster point in S, that is, x € S. Thus S = 3. |

Proof of Theorem 1V.4 We need only prove fis open or equivalently, since
[fis a bijection, that f{C] is closed if C is closed. But if C < S'is closed, then C
is compact. By the last proposition, f[C] is compact. The result now follows
from the lemma. §

Proposition  If {4}, is a family of compact sets, then X[, 4; with
the product topology is compact.

Proof Let{x},e;beanetind =X, 4,, x, =<x}, x2,..., x2>. Since 4,
is compact, we can find a subnet {x,;};cp, SO that {x};} converges to an
x, € A;. By a finite induction, we can find a subnet {x,;};.p, so that xi;,
converges to an x;€ 4; for each j. Then {x,,} converges in 4 to x =
(X4, ..., Xy, 50 A Is compact by the Bolzano—Weierstrass criterion. [J

This last proposition is not deep; what is deep is that it remains true for an
arbitrary product of compact spaces:

Theorem V.5 (Tychonoff’s theorem) Let {4,},.; be a collection of
compact spaces. Then X,.; A4, is compact in the product (that is weak)
topology. :

Since this theorem has a mildly complicated proof well-treated in the text-
book literature, we refer the reader to the references given in the Notes. Let us,
however, make several comments. We first remark that it is this theorem that
supports the feeling that the weak topology is the ““natural” topology for
X, 4, . Another a priori candidate, the “ box topology,” which is generated
by sets of the form X, U,, where each U, is open in 4, is not a topology for
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which Tychonoff’s theorem holds. Secondly, we note that this theorem depends
crucially on the axiom of choice (Zorn’s lemma). In fact it is known that, set
theoretically speaking, Tychonoff’s theorem implies Zorn’s lemma. Finally,
we note that in the special case of countably many metric spaces, Theorem IV.5
can be proven by the method of the proposition and the diagonal trick of
Section 1.5, :

Next, we would like to discuss functions on compact Hausdorff spaces. We
first show that compact Hausdorff spaces have strong separation properties in
the sense of separating closed sets with open sets. We then use these separation
properties to construct continuous functions:

Theorem V.6 Any compact Hausdorff space X is normal (7).

Proof We first prove X is regular (73). Let pe X and let C < X be closed
with p ¢ C. Since X is Hausdorff, we can find, for any y € C, open and disjoint
sets, U, and V,, so that ye U,, and pe V,. The {U,},.¢ cover C, which is
compact. Thus U,,,..., U, cover C. Let U={J1., U,; V=<1 Vyi-
Then U and V are open and disjoint with C = U and p € V. This shows that Xis
regular. Now let C, D be closed and disjoint. By repeating the above argument
with D replacing p and ““ since X is regular ” replacing * since X is Hausdorff,”

we prove that X is normal. ||

Normal spaces always have lots of continuous functions for:

Theorem IV.7 (Urysohn’s lemma) Let C and D be closed disjoint sets
in a normal space, X. Then, there is a continuous function from X to R with
0<f(x) <1forall xsuchthatf(x) =0if xeCand f(x)=1if xe D,

Sketch of proof Using the normality of X, one constructs by induction for
each dyadic rational (that is, r = k/2", k, n integers, 0 < k < 2") open sets,
U,withCc U,cU,cU,c U, X\Dif r <s. One uses the U, to define a
function with f(x) < 7 if and only if x € U, . f can be shown to be continuous.
For details, see the references discussed in the notes. ||

We will see below that one can prove even stronger function theoretic
results (Theorem IV.11).

As a final resuit about the general properties of functions on X we will
prove that certain families are dense in Cg(X), the family of all real-valued
continuous functions on X. We first note that our proof in Section L.5 for
Cla, b] holds on any compact set:
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Proof We show that if fe B, then | f| € B. The result then follows from the
formulas: fvg=3|f-g| +3¥f+9), fAg=~-[(-f)v(-g)) Without
loss suppose that |||, < 1. By the classical Weierstrass theorem, we can find
a sequence of polynomials P,(x) converging uniformly to | x| on [—1, 1], for
example | P,(x) — |x|| < 1/n for all x in [0, 1]. Since [if |, < 1, it follows
that ||P (f) — | f| llo < V/n, ie. |f| =lim,., P,(f). Since B is an algebra
with 1 € B, P,(f) e B. Since B is closed, | f| € B. 1

Finally, the full Stone-Weierstrass theorem is a consequence of Lemma 2
and the following theorem which is of some interest in itself:

Theorem 1V.12 (Kakutani-Krein theorem) Let X be a compact
Hausdorff space. Any lattice ¥ < Cg(X) which is a closed subspace contain-
ing 1 and which separates points is all of Cg(X).

Proof Let he Cg(X) and let ¢ be given. We seek fe & with [h—f|l < e,
Suppose we can show for any x € X, there is f, € & with f,(x) = A(x) and
h<f.+ ¢ Then for each x, find U,, an open neighborhood of x with
h(y) = f.(y) — e for all y € U, (by the continuity of & — f,). The U, cover X so
let Uy, ..., U, be a subcover. Then f'=f, A~ Af, obeys f()) +e=
min,{f,(y) + €} = h(y). Moreover, since any ye U,, for some i, f(y)—¢
<f:(y) = e <h(y). Thus |if — hil, <e.

It remains to find some f, with the desired properties. Since & separates
points and 1€ &, for any x and y in X, we can find f,, € & with f, (x) =
h(x) and £, (y) = A(y). For each y, we can find V,, an open set about y with
fi2) + ez h(2)forze V,. .V, ,..., V, willcover X for suitable y,, ..., y,. If
we take f, = f,,, v '+ V £y, then fi(x) = h(x), and for any ze X

fd2) + e = max {f,,(2) + & = I(z)
i=1,..,n

This completes the proof. |

IV.4 Measure theory on compact spaces ¥

In this section, we wish to discuss several aspects of measure theory which
are special for compact spaces. In particular, we will see that the dual of
C(X) can be interpreted as a space of measures (the Riesz-Markov theorem).
Since many of the measure-theoretic proofs are not enlightening, we will not
prove all of the theorems.

t A supplement to this section begins on p. 353.
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The first question that arises is what to pick as the o-field of measurable
sets. Let us begin with a minimal family. We clearly want to integrate con-
tinuous functions /€ C(X). This might lead one to suspect that we want to
allow all closed (and open) sets to be measurable but this is not necessary:

Definition A G, set is a set which is a countable intersection of open
sets.

Proposition Let X be a compact Hausdorff space and let fe Cg(X).
Then f ~¥({a, o)) is a compact G set.

Proof f~!([a, )) is closed and thus compact. Since
£, o) = () '@~ Un, o))
itisa G;. |}

Thus, to integrate continuous functions, we need only have compact
G,’s in our o-field.

Definition The o-field generated by the compact G,’s in a compact space
X is called the family of Baire sets. The functions /: X - R (or C) measur-
able relative to this o-field are called Baire functions. A measure on the Baire
sets is called a Baire measure if in addition it is finite, that is u(X) < 0.

As in the case of the finite intervals of the real line and Lebesgue measure:

Theorem IV.13  If uis a Baire measure, then C(X) <= LP(X, du) for all p
and C(X) is dense in L*(X, du) or any L? space for p < oo (but not L™ except
in pathological cases where C(X) is already all of L®!).

Despite the fact that Baire sets are all that are needed, the reader no doubt
wants to repress G,'s and consider all Borel sets, i.e. the o-field generated by
all open sets. The question of extending Baire measures to Borel measures,
that is, measures on all Borel sets, is answered by the following remarks:

(1) Every Baire measure is automatically regular, that is,

w(Y) = inf{u(0) | Y = O, O open and Baire}
= sup{u(C) | C = ¥, C compact and Baire}
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Theorem IV.8 Let C(X) be the family of all continuous complex-valued
functions on a compact Hausdorff space, X, endowed with the norm
If o = SUPxex | f(x)]. Let Cr(X)={fe C(X)|f is real-valued}. Then
C(X) is a complex Banach space and Cg(X) is a real Banach space.

The density theorem we state generalizes a classical theorem of Weierstrass
which says that any real-valued continuous function on [0, 1] is a2 uniform
limit (on [0, 1]) of polynomials (see Problems 19 and 20). Note that Cr(X)
has a natural maultiplication given by (fg)}(x) =/f(x)g9(x). A subalgebra of
Cr(X) is a subspace closed under muitiplication:

Theorem 1V.8 (Stone-Weierstrass theorem) Let B be a subalgebra of
Cr(X) which is closed in || - ||, . We say that B separates points if, given any
x,y € X, we can find f € B with f(x) # f(»). If B separates points, then either
B = Cx(X) or for some xp€ X, B={fe Co(X)|f(x0)=0}. If 1€ B, and
B separates points, B = Cg(X).

We defer the instructive lattice-theoretic proof to an appendix.

The fact that we deal with Cp(X) and not C(X) is crucial (see Problem 15),
but, by adding an extra hypothesis we can easily extend Theorem IV.9 to the
complex case.

Theorem IV.10 (complex Stone~Weierstrass theorem) Let B be a sub-
algebra of C(X) with the property that if fis in B, then the complex conjugate,
f, is in B also. If B is closed and separates points, then B = C(X) or B =
{f|f(x) = 0} for some fixed x.

The complex conjugate condition is crucial. For example, let D be the
unit disc in the complex plane. The functions analytic in the interior of D,
continuous on all of D, are a closed subalgebra of D containing ! and separa-
ting points which is not C(D). It is, however, not closed under complex
conjugation.

As an example of how to use the Stone-Weierstrass theorem as well as an
example of how several functional analytic theorems can combine in a very
powerful way, we prove an extension theorem for functions in C(Y) for
Y « X when Xis compact and Y is closed. Actually, this theorem is true if X is
merely normal (Problem 18):

Theorem IV.11 (Tietze extension theorem) Let X be a compact space
and let Y « X be closed. Let f be any continuous real-valued function on Y.
Then there is an f'e Cg(X) so that f () = f(y) forall ye Y.
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Proof Consider the map p: Cgp(X)— Cg(Y) given by p(f)=f7Y. The
theorem is equivalent to the statement that p is onto. Clearly, Ran p is a sub-
algebra of Cg(Y) and 1€ Ran p. Moreover, by Urysohn’s lemma, Ran p
separates points. If we can show that Ran p is closed in || - {ic(y, We can com-
plete the proof by using the Stone-Weierstrass theorem.

Let = Ker p. Then I is clearly closed in Cg(X), so we can form the
quotient Banach space Cr(X)/I. By elementary algebra, p *“lifts” to a bijec-
tion, §:Cp(X)/I—Ranp. If we can prove [F([/Dlcgery = IS egexyrs
Ran p will be a Banach space and thus closed.

Clearly, llo(/)llcacn < I llcagy» 50 WB(L Dlicgery < N Mlonerys - Thus, it is
enough to show that given g € Ran p, we can find /'€ Cg(X) with g = p(f) and
g llogcry = If llcmexy (remember the definition of quotient norm!). Since
g € Ran p, we know that g = p(h,) for some h, € Cg(X). Let

hy = min{"ﬂ"cn(n » b}

so that p(h;) = g and h,(x) < ||gllca(r, for all x. Let by = max{— ligllcpcx)» #2}-
Then, 143 llcpixy = 19 1lcpeyy and p(h;) = g. This completes the proof. §

Appendix to IV.3 The Stone-Weierstrass theorem

In this appendix we prove Theorem IV.9 in the case 1 € B. The general proof
is left as an exercise. Interestingly enough, the first step in the proof is the
proof of the classical Weierstrass theorem (which is a special case of the
general theorem!)

Lemmat The polynomials are dense in Cgla, b] for any finite real num-
bers a, b.

Proof See Problems 19 and 20.

This can now be used to prove that B is a lattice, where:

Definition A subset S < Cg(X) is called a lattice if for all f,ge S,
f A g =min{f, g} and fv g = max{f, g} are in S.

Lemma2 Any closed subalgebra B of Cp(X) with 1 € B is a lattice.
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Theorem IV. 15 (monotone convergence theorem for nets) Letubea
regular Borel measure on a compact Hausdorff space X. Let {f.},; be an
increasing net of continuous functions. Then f = lim, f, € L*(X, du) if and only
if sup, lif,ll; < oo and in that case lim, [If — f,}l; = 0.

Before leaving measure theory on compact spaces, we should identify the
dual space of C(X). Of course, not every continuous linear functional on
C(X) is a positive linear functional, but the major result we are heading
toward is that any £ € Cgr(X)* is the difference of two positive linear func-
tionals. This depends on a simple ““ lattice-theoretic ™ result about Cg(X):

Lemma Letf,ge Cr(X)withf,g = 0. Suppose he Ca(X)and0<h<f+g.
Then, we can write h = hy + h, with 0 < h; <f, 0< h, < g, hy, hy € Ca(X).

Proof Let hy = min{f, h}. Then 0 < h; < fand if h, = h — hy, then h; 2 0.
Moreover, if h;(x) = A(x), then hy(x) =0 < g(x) and if h(x)=f(x), then
hay(x) = h(x) — f(x) < f(x) + 9(x) — f(x) = g(x),s0 h; < g. ]

Theorem IV.16 Let £ € Cr(X)*. Then £ can be written £ =¢, — £
with /, and /_ positive linear functionals. Moreover, Z,.(1) +¢_(1) =
li£ it and this uniquely determines £, and £_ .

Proof Forfe C(X), ={fe C(X)|f=0},define? (f) = sup{Z(h)| he C(X);
0<h<f} Since [£(A)] < Wl 1l < 11 IIf lle» this supremum is finite.
Clearly ¢,(tf) = t£.(f) for any scalar ¢ >0 and Z,.(f) = £(0) =0 for all
feC(X),.Letf, ge C(X), . Then, by the lemma:

(of+g)=supl¢(h) | O<h<f+g}
=) +7.(9)

For any fe C(X), define f, = max{f,0}and f_ = —min{f,0},s0f=f, —f_.
Define £.(f)=¢.(fy)—£,(f_). It is then easy to show /, is linear on
C(X). By definition £.(f)=¢(f) if f=20 so £_(f)=¢.(f)—¢() is a
positive linear functional. We have thus written £ =/, — £ as the difference
of positive linear functionals.

To prove £,(1) + £_(1) = |I£]}, we note first ||l < £ 11+ lIZ-1 = £, (1)
+ £ _(1). For the inequality in the other direction, we first rewrite 7 in a way
symmetric to £, . For f= 0

£_(f)=sup{t(h) - 4(N|0<h<f}
=sup{¢(k) | —f<k <0}
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where k = h — f. Thus:
() +¢_() =sup{(h) |0 < h < 1} + sup{t(k) | — 1 < k < 0}
=sup{/(9)| ~1<g<1}
< IZlsup{ligle | ~1<g< 1}
= |IZ]]
The proof of uniqueness is left to the reader (Problem 31). ||

Definition A complex Baire measure is a finite linear complex combin-
ation of Baire measures,

An easy consequence of Theorem IV.14 and Theorem IV.16 is:

Theorem 1V.17 Let X be a compact space. Then the dual C(X)* of
C(X) is the space of all complex Baire measures.

Definition We write H(X)=C(X)*; M, (X)={{e HMX)]| ¢ is a
positive linear functional} and A, (X)={fe A .| I/l =1}.

In some cases, it is important to think of measures not merely as individual
objects but instead as elements of .#(X), so that we can employ geometric
ideas. To give the reader a feel for this sort of reasoning we conclude our
discussion of #(X) by a simple convexity theorem.

Definition A set 4 in a vector space Y is called convex if xand ye 4
and 0 <t < limplies 2x + (1 — t)y € A, Thus A4 is convex if the line segment
between x and y is in A whenever x and y are in 4 (Figure IV.1). A is called a
cone if x € 4 implies tx € A for all £ > 0, If A is convex and a cone, it is called
a convex cone.

FiGgurg IV.1 A convex set.
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(2) In general, a Baire measure has many extensions to all Borel sets but
there is exactly one regular extension to a Borel measure. A Borel measure is
called regular if

w(Y) = inf{u(0) | Y = 0, O open}
= sup{u(C) | C = 0, C compact and Borel}

Thus there is a one-one correspondence between Baire measures and regular
Borel measures.

(3) If uis a Borel measure, then C(X) is dense in L*(X, du) if and only if
is regular. If u is regular, every Borel set is almost everywhere a Baire set in
the sense that given a Borel set Y, there is a a Baire set ¥ with

Sy =7l du=w(N\¥)+ w(H\Y)=0

In addition, every Borel function is equal, after a change on a Borel set of
measure zero, to a Baire function.

(4) In certain cases, every compact set is a G;, so the Baire and Borel sets
are identical. This is the case if X is a compact metric space (see Problem 30).

Henceforth, we will use the word measure in the context of a compact set,
X, to mean Baire (or equivalently regular Borel) measure unless we specifi-
cally indicate otherwise.

Now, let X be compact and let u be a measure on X. Consider the map
C(X) - C given by f—£,(f) =] fdu. £, is clearly linear and

124NV < [ 11 dit < 1S Ny w(X)

s0 £, is a continuous linear functional on C(X). In fact, [I£,lic(xy = u(X), for
take f = 1. Moreover, £, is positive in the sense:

Definition A positive linear functional on C(X) is a (not necessarily a
priori continuous) linear functional Z with £(f) > 0 for all f with f > 0 point-
wise.

In the more general context of C*-algebras, positive linear functionals will
again arise; see Chapter XVII. They have the following nice property (for
other properties of positivity, see Problem 37):

Proposition Let £ be a positive linear functional. Then ¢ is continuous
and [I£ liccxys = £(1).
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Proof Suppose first that f is real. Since —|fllo <f < |fllo, We have

—I(DIif e S () < (DS s that is, [£(f)] < Ifllo (D). If £ is arbitrary,
¢(f) = €**r with r real and positive, so

140N = ¢(Rele™f]) < IIRe(e™ Nl (1) < (D 1f Il |

We have seen that any Baire measure provides an example of a positive linear
functional on C(X); that these are the only examples is the content of’

Theorem IV. 14 (the Riesz~-Markov theorem) Let X be a compact
Hausdorff space, For any positive linear functional /£ on C(X) there is a
unique Baire measure y on X with

2f) = | fan

While we will not give a detailed proof, let us show how u may be recovered
from /,. A similar process allows one to construct a measure from any
positive linear functional, even if one does not know a priori that it is of the
form ¢,. Since p is inner regular (that is, u(Y) = sup{u(C)| C = ¥, C com-
pact}), we need only find u(C) for C compact to “recover” u, We claim
wC) =inf{£ ()| fe C(X),f= xc}. Since p is positive, it is clear that
w(C) <¢,(f) if f= xc; thus, we need only show that, given ¢, we can find
e C(X) with xc < fand £,(f) < u(C) + & Since u is outer regular, given ¢
we can find O open with u(O\C) < ¢ and C < 0. By Urysohn’s lemma, we can
find feCX)with0<f<1,f(x)=1if xeCand f(x) =0 if xe X\O. Thus
4(f) < w(0) < p(C) + e. This shows u can be recovered from 7, , and so it is
not too surprising that a measure can be constructed from an arbitrary 7.

The Riesz-Markov theorem is the usual way that measures arise in func-
tional analysis. For example, we have already intimated that measures on R
are associated with quantum mechanical Hamiltonians and they, in turn, arise
from certain positive linear functions and the use of the Riesz-Markov
theorem (or rather its extension to locally compact spaces which we will
discuss shortly).

In general, a pointwise limit of a net of Baire functions is not a Baire
or even a Borel function (Problem 13). However, if {f.},. is a net of func-
tions with each f, continuous and {f.} is increasing in the sense that f, 2 f;
if « > B, then f = lim, f, = sup, f, is a Borel function because

7@, )] = f7 ' la, )]

is open. The monotone convergence theorem has the following net generaliza-
tion:
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Proposition Let X be a compact Hausdorff space. Then 4, (X)
is convex and  .(X) is a convex cone.

Proof A convex combination of positive linear functionals is clearly a posi-
tive linear functional. Moreover, |||l = ¢(1) if £ is a positive linear functional
SO Ht{l + (1 - t)fz“ = 1, if’l, t’z E./fl+.1. I

At first sight, this geometric fact may appear a little strange since the
reader is used to thinking of the unit sphere, {x ] lix]l =1} as “round” and
here we are saying a piece of it is absolutely flat! The moral is that every norm
is not the Euclidean norm (the parallelogram law implies that in a Hilbert
space, if |Ix|| = |yli=1, and x # y, then |tx + (1 — ¢)yli < 1). In fact, R"
with the norm {|{x, ..., x>l =Y.7; |x;| has a unit sphere with flat faces,
see Figure I'V.2. This is not a coincidence; {1, ..., n} is a compact set when
given the discrete topology, and R" with the norm considered is precisely
/{CO T 1))

FiGUre 1V.2 The unit sphere in R?
when [IKx, yii= x| + {»l.

Now, we want to extend * topological measure theory” to a larger class of
spaces:

Definition A topological space, X is called locally compact if and only
if every point p € X, has a compact neighborhood.

By thinking of Lebesgue measure on R, we realize that we want to relax the
condition u(X) < oo which we required when X was compact. We first define
the Baire sets in X, a locally compact space, to be the o-ring 2 generated by
compact G, sets. Note that, in general, X may not be a set of &. However, if
X is o-compact, that is, a countable union of compact sets, X is in £.

Definition A Baire measure on X, a locally compact space, is a measure
on the Baire sets for which u(C) < oo for any compact Baire set C.
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Given any Baire measure ¢ on X, and given a compact G; set C c X, there
is induced by restriction a Baire measure uc on C, Conversely, it is easy to see
that a family of measures {y}, one for each compact G, set, with the property
that uc(Y) = pup(Y) if Y = C n D, defines a Baire measure. This association
allows us to prove theorems in the locally compact case from their compact
case analogues.

Definition Let X be a locally compact space. x(X), the algebra of con-
tinuous functions of compact support, is the set of functions that vanish
outside some compact set. C(X), the algebra of continuous functions vanish-
ing at 00, is the set of f € C(X) with the property that for any ¢ > 0, thereis a
compact set D, — X such that | f(x)| <eif x ¢ D,. Thus

K(X) ¢ C(X) = C(X)
With this definition, Theorem IV.14 implies

Theorem 1V. 18 (Riesz-Markov) Let X be a locally compact space.
A positive linear functional on x(X) is of the form £(f) = j' f du for some Baire
measure, y. A positive linear functional on C(X) comes from a measure
4 with total finite mass, that is, sup,, g #(4) < co.

In the next chapter, we will find a topology on x(X) for which the dual is
just the complex Baire measures. Notice that this topology is not given by
Il Il . ¥(X) is not complete in the norm || - ||, ; its completion is C(X) and
its dual in || - || is the finite measures.

IV.5 Weak topologies on Banach spaces

Definition Let X be a Banach space with dual space X*, The weak
topology on X is the weakest topology on X in which each functional £ in X* is
continuous.

Thus a neighborhood base at zero for the weak topology is given by the sets
of the form

Ny, ...ty ={x]|¢dx)| <e; i=1,...,n}

+ A supplement to this section begins on p. 354.
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that is, neighborhoods of zero contain cylinders with finite-dimensional open

bases. A net {x,} converges weakly to x, written x, — x, if and only if £(x,) =
£(x) for all £ € X*.

For infinite dimensional Banach spaces, the weak topology does not arise
from a metric. This is one of the main reasons we have introduced topological
spaces. Before considering examples, let us note three elementary properties of
the weak topology:

Proposition (a) The weak topology is weaker than the norm topology,
that is, every weakly open set is norm open.

(b) Every weakly convergent sequence is norm bounded.

(c) The weak topology is a Hausdorff topology.

Proof (a)follows from |Z(x)] < 2]l IIx)l; (b)is a consequence of the uniform
boundedness principle; and (¢) follows from the Hahn-Banach theorem. We
leave the details to the reader. |

We emphasize that (b) is only true for sequences. In Problem 39, the reader
is asked to construct a counterexample to the analogous net statement.

Let us consider two examples; in both of them, we will describe what it
means for sequences to converge. This does nor completely describe the
topology, but it will give the reader an impressionistic view of the underlying
topology.

Example 1 Let o be a Hilbert space. Let {¢,},¢; be an orthonormal
basis for #. Given a sequence Y, € #, let Y\ = {@,, ¥, be the coordinates
of y,. We claim ¥, — ¥ in the weak topology if and only if (a) ¢‘® — ¢ for
each « and (b) [¥,!| is bounded. For suppose ¥, — ¥; then (a) follows by
definition and (b) comes from (ii) of the proposition. On the other hand,
let (a) and (b) hold and let F = 5 be the subspace of finite linear combinations
of the ¢,. By (a), <o, ¥,,>) = o, ¥ if ¢ € F. Using the fact that X is dense,
(b), and an ¢/3 argument, the weak convergence follows.

Example 2 Let X be a compact Hausdorff space and consider the weak
topology on C(X). Let {f,} be a sequence in C(X). We claim f, — f'in the weak
topology if and only if (a) f,(x) — f(x) for each x € X, and (b) || £, || is bounded.
For if f, 5 f, then (a) holds since f+ f(x) is an element of C(X)* and (b)
comes from (ii) of the proposition. On the other hand, if (a) and (b) hold,
then | f,(x)| < sup, If,!l, which is L' with respect to any Baire measure p.
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Thus, by the dominated convergence theorem, for any u € A4 ,(X), _[ fodp—
{fdu. Since any ¢/ € #(X) is a finite linear combination of measures in
M . , we conclude that f, — f weakly.

We have seen that the weak topology is weaker than the norm topology;
actually, it is very weak indeed! To see this, we note that having few open sets
is the same as having few closed sets and this is the same as big closures. In
Problem 40, the reader will prove that the weak closure of the unit sphere,
{xeX l IIxll = 1}, in X is the unit ball, {x l ilx]| < 1},in any infinite dimensional
Banach space.

We will shortly study general ““dual™ topologies. As a special case of
Theorem 1V.20, we state;

Theorem 1V.19 A linear functional £ on a Banach space is weakly con-
tinuous if and only if it is norm continuous.

While this theorem follows from Theorem IV.20, it has a simple direct
proof (Problem 42).

Finally, we should like to discuss the weak-* topology and prove a com-
pactness theorem which will often be of use to us. Suppose Y = X* is the
dual of some Banach space X. Y*=X** of course, induces the weak topology
on Y, but we may instead consider the topology induced by X acting on X*;
explicitly:

Definition Let X* be the dual of a Banach space, The weak-* topology
is the weakest topology on X* in which all the functions £ £(x), x € X, are
continuous.

Notice that the weak-* topology is even weaker than the weak topology. As
one might expect, X is reflexive if and only if the weak and weak-* topologies
coincide, and many characterizations of reflexivity depend on relations
involving the weak and weak-* topologies.

To avoid confusion and to be able to state our next theorem in its natural
setting, let us introduce a new notion:

Definition Let X be a vector space and let Y be a family of linear func-
tionals on X which separates points of X. Then the Y-weak topology on X,
written (X, Y), is the weakest topology on X for which all the functionals in
Y are continuous.
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Because Y is assumed to separate points, o(X, Y) is a Hausdorff topology
on X. For example, the weak topology on X is the a(X, X *) topology while
the o(X'*, X) topology is the weak-* topology en X *. The o(X, Y) topology
depends only on the vector space generated by ¥, so we henceforth suppose
that Y is a vector space.

Example The weak-x topology on .#(X), X a compact Hausdorff
space, is often called the vague topology. To get an idea of how weak it is,
let us show the linear combinations of point masses are weak-» dense in
A(X). In Problem 41, the reader is asked to show they are actually norm
closed. Suppose that u is a given measure. We must show that every weak
neighborhood of u contains a sum of point measures, or equivalently, given
fis--.,f, and g, that we can find a,, ..., a, and x, ..., x,, so that

Vu(f) — Zl o fix)l <e for i=1,...,n

i=
For then Zajéxj will be in the vague neighborhood N(fi,....f,,€) + pn.
Without loss, suppose that f;, ..., f, are linearly independent. For each x,
consider the vector f, = {(fi(x), ..., f,(x)> ¢ R". If the {f.} do not span R"
there is an a=<(qa,...,a,> #0eR" with a-f, =0 for all x, that is,
Yi.ia; fi=0 contradicting linear independence. Thus, the f, span R".
So, wecan find x,, ..., x, and a4, ..., a, with

G, - WD) = ik,

So, u(f) = ¥.5-1 a,f(x;), which proves our claim.

The o(X*, X) topology is of course weaker than the norm topology on X*
so all the o(X*, X)-continuous linear functionals are in X**. In general,
however, not all of X** is weak-*+ continuous on X*; in fact:

Theorem 1V.20 The (X, Y) continuous linear functionals on X are
precisely Y; in particular the only weak-* continuous functionals on X* are
the elements of X.

Proof Suppose that £ is a o(X, Y) continuous functional on X. Then
{x|12x)) < 3o {x|lydx)| <e;i=1,..., n} for some ¢ and some y,, ...,
¥. € Y. Now suppose that y(x) =0 fori=1, ..., n. Then |£(¢"'x)| < 1 for
all £ > 0, which implies that £(x) = 0. As a result, £ lifts to a functional 7
on X/K where K = {x|y(x)=0,i=1,...,n}. Elementary abstract algebra
shows J,, ..., J, span the dual space of X/K. Thus 2 =37, o,;, so that

DY REBD Y |
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Finally, we conclude this section with its most important result, a result
which is perhaps the most important consequence of Tychonoff’s theorem:

Theorem V. 21 (the Banach-Alaoglu theorem) Let X* be the dual
of some Banach space, X. Then the unit ball in X* is compact in the weak-#
topology.

Proof Foreachxe X,let B,={AeC | |A] < lxI}. Each B, is compact, so,
by Tychonoff’s theorem, B = X, ¢x B, is compact in the product topology.
Now what is B? An element of B is just an assignment of a number b(x) € B,
for each x in X, that is, b is a function from X to C with |b(x)] < |Ix|.. In
particular, the unit ball (X*), is a subset of B, namely those b € B which are
linear. What is the relative topology induced on (X*), by the product topology
on B? It is precisely the weakest topology making £ £(x) continuous for
each x, that is, the weak-* topology.

Thus, we must only show that (X*), is closed in the product topology.
Suppose that £, is a net in (X*), with £, = /. Since |#(x)| < lix]|, we need only
show ¢/ is linear. But this is easy; if x,y € X and A,u € C, then

L(Ax + py)y = lim £,(Ax + py) = lim A2, (x) + pul(y)

= () + w ) |

Appendix to IV.5 Weak and strong measurability

In Section I1.1, we briefly discussed vector-valued measurable functions
with values in an infinite dimensional Hilbert space 5. f was called measur-
able (in Problem 12 of Chapter II) if (y, f(*)) was a complex-valued measur-
able function for each y € 5. This notion might be called weak measurability.
Another natural candidate for measurability is the a priori stronger notion of
measurability which requires that £ ~![C] be measurable for each open set
C < . Throughout this book, by a vector-valued measurable function, we will
mean a function measurable in the weak sense. However, to satisfy the reader’s
natural curiosity, a brief comparison of the various notions of measurability
of vector-valued functions seems in order.

Definition Let f be a function on a measure space {M, u, #) taking
values in a Banach space E.
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(i) fis called strongly measurable if and only if there is a sequence of
functions f, so that f,(x) > f(x) in norm for a.e. xe M and each f,
takes only finitely many values, each value being taken on a set in &.

(i) fis called Borel measurable if / ~'[C]e 2 for each open set C in E (in
the metric space topology on E).

(iii) fis called weakly measurable if and only if (f(x)) is a complex-valued
measurable function for each £ € E*.

Proposition (a) A pointwise limit of a sequence of Borel measurable
functions is a Borel measurable function.

(b) Let f be a function from M to E. If f is strongly measurable, then [ is
Borel measurable.

(c) Let fbe a function from M to E. If fis Borel measurable, it is weakly
measurable.

Proof (a) Let f, — f pointwise in norm. Let C be an open set in E. Let
C, = {x|B;., = C} where B} is the ball of radius ¢ about x. Then,

rer=U U Nsoed
k=1n=1t m>n
so fis Borel measurable.
(b) This is a direct consequence of (a) and the definitions.
(c) The composition of Borel functions is Borel. |

Theorem IV.22  Let ) be a separable Hilbert space. Let f be a function
from a measure space (M, u, Z) to 5#. Then the following three statements are
equivalent:

(a) fis strongly measurable.
(b) fis Borel measurabie.
(c) fis weakly measurable.

Proof By the last proposition, we need only show that (¢) implies (a). Let
{Y,}=>, be an orthonormal basis for #. Let a, = (¥, ,f(x)). Each a, is a
complex-valued measurable function. It is easy to construct g, ,(x) finite
valued, |a, .(x)| < |a(x)| for all x and lim,,_. ,, 4, .(x) = a,(x) for all x € X.
Define fy =Y _, a, M(XW,. fy is finite valued and fy —f in norm so f is
strongly measurable. ]

Example Let C, be a copy of the complex numbers C and let
H = @,.r C,, thatis, o consists of functions ¢ on R, nonzero at only count-



Notes 117

ably many ¢ with ¥, g |9(f)|2 < 0. Let ¢, be given by

1 ift=ys
o:lt) = {0 otherwise

Then {@.},.r is an orthonormal basis for 5. Let f: R — o be defined by
f(s) = ¢,. For any y € 22, (, f(s)) = 0 except for a countable set so (i, f(5))
is measurable. Thus f(s) is weakly measurable. But f'is not strongly measur-

able; for if f = lim f, pointwise in norm, then Ranfe () Ran/,. If each f,
were finite valued, Ran f would be separable, which it is not.

NOTES

Section 1V.1 For the reader who wishes to delve further into the realm of general
point set topology, we recommend J. Kelley’s General Topology, Van Nostrand-Reinhold,
Princeton, New Jersey, 1955, most enthusiastically. The best way to read the book is to do
all the problems; it is time consuming but well worth the effort if the reader can afford the
time. Other good references on elementary (and sophisticated) topological notions include:
K. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1966, W. Pervin, Foundations
of General Topology, Academic Press, New York, 1964, and W. Thron, Topological Struc-
tures, Holt, New York, 1966.

The notion of topological spaces grew out of work of Fréchet and Hausdorff, The 7,-T,
classification is due to P. Alexandroff and H. Hopf, in Topologie 1, Berlin, 1935.

The concept of ** Cauchy sequence’ does not extend to an arbitrary topological space.
However, one can add a *‘ uniform structure” to the topological structure and thereby have
spaces in which Cauchy sequence and completeness make sense. One thinks of neighbor-
hoods of x as describing closeness to x. To have a notion of ** closeness to x”” uniform in x,
we need a family # of subsets of X X X each containing the set A = {{x, x>|x € X}. We
need enough conditions on # so that %, = {U,|Ue #} with U,={y[<x,y>eUlis a
neighborhood system for a topology. The canonical example is to let # be the family of all
sets in X X X containing a set of the form {{x, y>|p(x, y) < €} with p a metric. If Gis a
topological group (in particular, if G is a topological vector space), there is also a natural
uniform structure given by % = {Uy|N € n} where 7 the family of neighborhoods of the
identity and Uy = {{x, ¥>|xy~* € N}. Given a uniform structure %, a net {x,| o € D} is called
a Cauchy net if and only if for each U € %, there is an & € D so that «, 8 > «o implies
(g x5> € UL

The notion of uniform space was first formalized in A. Weil, *“ Sur les espaces a structure
uniforme et sur la topologie générale,”” Actualités Sci, Ind. 551, Paris (1937). For a modern
treatment of uniform spaces, see Kelley, Chapter 6, or G. Choquet, Lectures on Analysis,
Benjamin, New York, §5.

Section 1V.2 Nets were first introduced in E. H. Moore and H.L.Smith, ‘A General
Theory of Limits,” Amer.J. Math. 44 (1922), 102, and the theory is sometimes called Moore-
Smith convergence in the older literature. See Kelley, Chapter 2, for additional discussion.
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There is an alternate approach to convergence in topological spaces popularized by
Bourbaki. For a discussion of this theory of filters see Choquet, §4, or Bourbaki, Topologie
générale, Chapter 1. We find the filter theory of convergence very unintuitive and prefer the
use of nets in all cases.

Section 1V.3 It was Tychonoff who realized the utility of the product topology (and
proved the Tychonoff theorem) in two fundamental papers: * Uber die topologische
Erweiterung von Riumen,” Marh. Ann. 102 (1929), 544-556, and ** Uber einen Funktionen-
raum,”’ Math. Ann. 111 (1935), 762-766. The usual proof of Tychonoff’s theorem (c.f.
Kelley), depends on the f.i.p. criterion and is a little complicated. The machinery of filters,
especially ultrafilters is ideal for a simpler looking proof of the theorem (c¢f. Choquet). This
filter theoretic proof has a net theory translation which we should like to sketch. (1) A net
{x.}in a space X is called universal if for any A < X, x, € A eventually or x, € X\A4 eventually,
Note: A4 is arbitrary and the definition of universal net makes no mention of topology. (2) If
x is a cluster point of a universal net, one has x, — x, for it cannot happen that x, € 4
frequently without x, € 4 eventually. (3) Any net has a universal subnet. This is the technical
heart of the proof and requires the axiom of choice. (4) X is compact if and only if every
universal net converges. Given (3), this is just the Bolzano-Weierstrass theorem. (5) To prove
Tychonoff’s theorem, let {x,}: ¢ » be a universal net in X, .; 4, with each 4, compact. Write
xe = {x¥}; s with x¥’ € 4. Since {x,} is universal, {x'0’} is universal for each i. Since A, is
compact, x¢& - x for some x*’ € 4,. Let x be the element {x*},; in X, A,. Then
X, — X, SO every universal net converges. We first learned this proof from Q. E. Lanford, III,
Les Houches lectures, 1970.

When does a topological space have a topology given by a metric? In general, there is not
a simple answer, but for compact Hausdorff spaces, X is metrizable (has a topology given by
a metric) if and only if it is second countable. In Section V.2, we see that a similar result
holds for topological vector spaces. Both the compact and the vector space results are best
understood in the context of uniform spaces; see Kelley, Chapter 6.

K. Weierstrass’ original proof of the polynomial approximation theorem can be found
on page S of Vol. 3 of his Mathematische Werke, Mayer and Miiller, Berlin, 1903. Stone’s
generalization first appeared in M. H. Stone, ‘‘Applications of the Theory of Boolean Rings
to General Topology,” Trans. Amer. Math. Soc. 41 (1937), 325-481, and a simplified proof
was given in his classic article ‘* The Generalized Weierstrass Approximation Theorem,”
Math. Mag. 21 (1947/48), 167~184, 237-254.

Section 1V.4 For a brief readable discussion of measure theory on compact spaces
we especially recommend the first chapter of L. Nachbin, The Haar Integral, Van Nostrand-
Reinhold, Princeton, New Jersey, 1965. For a more comprehensive discussion see N. Bour-
baki, Integration, Chapters 1-4.

Much of our discussion on positive linear functionals goes through for vector spaces with
an order allowing finite inf’s and sup’s, that is for vector lattices. For the deep relations be-
tween order notions and topology, see L. Nachbin, Topology and Order, Van Nostrand-
Reinhold, Princeton, New Jersey, 1965.

For additional discussion of measure theory on locally compact spaces, see the quoted
references of Nachbin and Bourbaki, or, for a discussion more similar to our approach,
Choquet’s book (see notes to Section IV.1).

Section IV.5 We will eventually prove a stronger result than our claim that the linear
combinations of Dirac measures are vaguely dense in #(X). We will actually show that the
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linear combinations in # . ;(X) are vaguely dense in 4, ,(X). Thus any positive measure
p with u(X) =1 can be vaguely approximated by measures Y /%, f, S, with0<rn <1,
> ty=1. This will follow from the Krein-Milman theorem which we discuss in Section
XIV.1. The Banach-Alaoglu theorem was proven in L. Alaoglu: *“ Weak Topologies of
Normed Linear Spaces,” Ann. Math. 41 (1940), 252-267.

Theorem IV.22 can be extended to an arbitrary separable Banach space. More generally,
one has Pettis’ theorem: A vector-valued function is strongly measurable if and only if it is
weakly measurable and almost separably valued (in the sense that after changing fon a set
of measure zero, Ran f is separable)., This theorem was first proven in B. J. Pettis, *‘On
Integration in Vector Spaces,” Trans. Amer. Math. Soc. 44 (1938), 277-304.

One can define the integral of a strongly measurable function by methods analogous to
the methods used for real-valued functions, This Bochner integral is discussed in K., Yosida,
Functional Analysis, Springer, New York, 1965 and in many other texts. It was invented by
S. Bochner in ** Integration von Funktionen, deren Werte die Elemente eines Vektoraumes
sind,” Fund. Math. 20 (1933), 262-276. The Bochner integral obeys a norm dominated
convergence theorem. Throughout this book, we use the weak integral defined by £( j' f(x)dp)
= | £(f(x)) du. The Bochner integral has nicer properties than this weak integral but we
will not need these extra properties so we settle for the simpler weak integral.

PROBLEMS

1. Prove that the family of all topologies on a space is a complete lattice, that is, that any
family of topologies has a least upper bound and a greatest lower bound.

2. (Kuratowski closure axioms) Show that the operation 4+ A4 in a topological space has
the properties:

M) @=4
(i) AUB=4UB
(i) A<A
) F=g
Conversely, suppose that™: 2¥ - 2% is given (2¥ = all subsets of X) obeying (i)~(iv).
Show the family of sets B with )—(ﬁ = X\B forms a topology for which the closure

operation is~.
Reference: Kelley, pp. 42-43.

3. (a) Let 2 be the topological space {0, 1} with the discrete topology. Prove that a topo-
logical space X is connected if and only if any continuous function f: X -2 is
constant.

(b) Prove that any product of connected spaces is connected.
(c) Let S be a topological space. Suppose that 4, B < § are connected in the relative
topology and A N B# ; AU B=S. Show that S is connected.
(d) Let S be a topological space. Suppose that S = D and D is connected. Prove that
~ §'is connected.
(e) Prove that a continuous image of a connected space is connected.
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10.

t11.
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(f) Prove the intermediate value theorem of freshman calculus, that is, if fis a con-
tinuous function on {a, b}, then for any f(a) < x < f(b), there is a c € {a, b} with
fe)=x.
Hint: Use (a) to prove (b)-(e).

. (a) A topological space X is called Lindelof if every open cover has a countable sub-

cover. Prove that any second countable space is Lindelof.
(b) Prove that a second countable, regular (that is 73) space is normal (that is 7).
Reference: Kelley, pp. 49, 113.

. (a) Prove that R and R" are not homeomorphic for any n> 1,

(b) Prove that R # X x X for any topological space X.
Hint: What happens to R if a single point is removed?

. A topological space X is called arcwise connected if given x, y € X, there is a continu-

ous function (an arc?) £: {0, 11 > X with f(0) = x, f(1) = y.

(a) Show that if X is arcwise connected, it is connected.

(b) Let X, be the graph of the function y = sin 1/x on R — {0}, given the relative topo-
logy as a subset of the plane. Let X = X, L {{x, y>|x =0}, Show that Y is con-
nected but not arcwise connected.

. Let X =R with the topology 9 generated by all sets of the form {{a, b)|a, b€ R}

which is actually a base for 7. Prove that
(@) <X, is separable.

(b) <X, I is first countable.

(¢) <X, I> is not second countable.

. Prove that a subspace of a separable metric space is separable.

. Let Y be R? with the product topology given by taking the topology 4 of Problem 7

on each factor. Prove that:
(a) Y is separable.
(b) The line x + y = | is not separable in the relative topology.

Let X be any uncountable set and let 7 be the topology consisting of &J and comple-
ments of finite sets. Prove that

(a) X is separable,

(b) X is compact,

(c) Xis T, but not T.

(d) X is neither first nor second countable,

Prove Theorem IV.2.
Let X be the Banach space /., and consider the sequence 8;, 8., ... in X* given by

sn({ck}:o = l) =Ca

Prove that {8,}, ... has no weak-x convergent subsequence but that it has a weak-* con-
vergent subnet.
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Problems 11

Give an example to show that a pointwise limit of a net of Borel functions on R may
not be Borel. -

Show that the space of the example in Section IV.2 is not compact but is Lindelsf
(see Problem 4).

Let o be the family of continuous functions on [0, 27] with the property [3"e™*f(x) = 0
if k is a negative integer. Prove & is an algebra which is closed and separates points
with 1 € & but for which & # C[0, 27).

Prove the conclusion of the Stone-Weierstrass theorem in the case where we do not
suppose | € 4.

Let @ be an ideal of Cg(X) which is closed. Let Y = {x € X|f(x) =0 for all fe &).
Prove that Y is closed and that # = {fe Ca(X)|f=00n Y}.

Prove the Tietze theorem in the case when X is merely assumed normal. (See the hints
given in Kelley, Chapter 7, Problem O.)

Let £ be a continuous function on [—§, $] with f(}) = f(—$)=0. Let si(x) be a
sequence of functions with 1 ; si(x) dx = 1, each s; > 0 so that for any § > 0,

lim Imxlzo s.(x) =0
k-

Prove that
Jim §22 280 — Q) dy = f(x)

for any x € [—1}, ] and that the convergence is uniform.

Let 5i(x) = (L)™' (1 — x2)* where ;= {1, (1 — x})* dx. Using Problem 19, prove that
any continuous function on [—1, }] is a limit of polynomials uniformly on [—1#, 1].

Use the Stone-Weierstrass theorem to prove that:
(a) {e**}P - - are a complete orthogonal set for L2[0, 27}.
(b) The Legendre polynomials are a complete orthogonal set for L3 [—1, 1].
*(c) The spherical harmonics are a complete orthonormal set for L? of the sphere.
(Hint: Use your knowledge of Clebsch~Gordon coefficients!)

Prove Dini’s theorem: Let X be a compact Hausdorff space. Suppose f, is a monotone
decreasing family of functions; let £,(x) — f(x) pointwise. Then f, converges uniformly
if and only if fis continuous.

Let X be a locally compact Hausdorff space. Consider ¥ =X U {0} where o is a
“point* not in X. Call O = X open if either c ¢ O and O is open in .X or © € O and
X\O is compact. Prove that X is a compact Hausdorff space; it is called the one-point
compactification of X.

Prove the Stone-Weierstrass theorem for a locally compact space X: If & is a closed
subalgebra of C.(X), the continuous real-valued functions vanishing at oo, and if &
separates points and for each x € X, there is f€ & with f(x) # 0, then o = C,(X).
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26.

27.
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32.

33,
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Let X be a locally compact Hausdorff space. Prove that for C, D < X, D closed, C
compact, there is a continuous function f, 0 < f< I, on X with f[C}=0, f[D]=1.
Remark. Use the space X of Problem 23 to solve 24 and 25.

(a) Prove that any locally compact Hausdorff space is 75 .

(b) Prove that any second countable, locally compact HausdorfT space is normal.

(¢) Prove that any g-compact, locally compact Hausdorff space is normal.

Remark. There exist locally compact spaces which are Hausdorff but not normal, see
Kelley, Chapter 4, Problem E.

A group G with a topology is called a topological group if the map <{x, y>+— xy~! of
G x G = G is jointly continuous. A function fon a topological group G is called uni-
formly continuous if, for any &, we can find a neighborhood N, of e € G (the identity)
with | f(x) — f(»)| < €if xy~ ! € N,. Prove that any continuous function on a compact
topological group is uniformly continuous.

(a) Let &/ be an algebra of real-valued bounded continuous functions on R which
separates points and is closed in |'lo. Form Xg = X fq {x € R} |x| <) fllo}
with the product topology. Map R - X4 by letting x go into the point whose co-
ordinates are { f(x)}¢«. Prove that the image of R in X is homeomorphic to R
if and only if .o contains the functions of compact support.

(b) A topological space X with a map f: R — X is called a compactification of R if f'is

a homeomorphism of R and its image, if the image is dense in X and if X is a

compact Hausdorff space. Two compactifications /: R > X andg: R — Yare con-

sidered identical if there is a homeomorphism #: X - Y with h o f=g. Prove that
there is a one-one correspondence between compactifications of R and algebras

& © Cg obeying the conditions of (a).

If we take o = C(R), the compactification we obtain via the construction in (a) is

called the Stone-Cech compactification, R. Prove that R is a universal compacti-

fication of R in the following sense: Given any compactiﬁcati'o’n f:R— X and
given the Stone-Cech compactificationg: R — R we can find #: R — X continuous

and surjective with ho g = f.

~—’

(c

Let <X, d> be a metric space with no isolated points. Suppose that every continuous
function on X is uniformly continuous. Show that X is compact.

(a) Prove that every metric space is normal.
(b) Prove that every closed set in a metric space is a G;.

Prove the uniqueness statement of Theorem 1V.16.

Let {a,} be a sequence of numbers with the following property: If 3¥.o o, x* >0 for
allxef0, 1] then2f=o otad, = 0. Prove that there is a unique, (positive) measure p on
[0, 1] with a, = f§ x" d.

Let X be a vector space with Y a family of functionals separating points. Prove that if
the o(X, Y)topology comes from a metric, then Y has a countable algebraic dimension.
An algebraic basis for Y is a subset whose finite linear combinations span Y. The
algebraic dimension is the number of elements in a minimal algebraic basis.



.

35.

36.

37.

138.
139.

140.

t41.

142,

*43.

"4,

Problems 123

Let X be a real Banach space and let C be the unit ball of X* with the weak-* topology.
Prove that a continuous function on C can be uniformly approximated by polynomials
in the elements of X acting as linear functionals on X*.

Let X be a Banach space, X*itsdual. LetL,, n > | beelementsof X* withL, > L € X*
in the weak-* sense. Let x, — x in norm. Is it necessarily true that L,(x,) = L(x)?

Prove that X is dense in X** in the o(X**, X*) topology.

Let T: C(X) — C(Y) be linear. We say T is positivity preserving (or positive) if Tf >0

whenever f > 0. If T is positive, we write 72> 0. If S — T > 0 we write 7< S.

(a) Prove that any T > 0 is automatically continuous and that | T ={T1 |l».

(b) Let S, be an increasing family of maps. Prove that S, converges in operator norm
if and only if S,1 converges in function norm.

Prove the first proposition in Section 1V.2.
Find a Banach space and a weakly convergent net which is not norm bounded.

Let X be an infinite-dimensional Banach space with the weak topology. Prove that the
closure of the unit sphere is the unit ball.

Let X be a compact Hausdorff space. Prove that the set of convergent infinite linear
combinations of point measures is norm closed in #(X).

Prove Theorem 1V.19 directly.

(a) Let X be a compact set with a countable basis. Let . be a Baire measure on X.
Prove that L?(X, du) is separable for all p < co. (Hint: Let 4, be a countable basis
of sets. For all n, m with 4, " 4, = &, find f,, » € C(X) with f=0 on A4, f=1
on A,. Use the f,, » to construct a countable dense set in C(X). Then use the fact
that C(X) is dense in L?(X, du)).

(b) Extend the result of (a) to the case where X is only locally compact (Hint: Prove
that X is o-compact).

Do any fifty problems in Kelley’s book.
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Mathematicians are like Frenchmen: whatever you say 1o them they translate into their own
language and forthwith it is something entirely different. J. W. Goethe

V.1 General properties

We have already discussed several nonnormed topologies on vector spaces
in the investigation of weak topologies in Section 1V.5. We have also
alluded to the fact that if X is a locally compact topological space, the Baire
measures on X are the dual space of the continuous functions of compact
support, k(X), when it is given a suitable nonnormed topology. Our goal in
this chapter is to discuss a general class of topologized vector spaces which
includes these examples and also the spaces of distributions which arise in a
wide variety of functional situations and physical problems.

The idea behind the topologies we discuss is quite simple. Suppose that,
instead of one norm, we have a family of norms {p,},, 4 Where 4 is some
index set. We should like a topology in which a net {x,} converges to x
if and only if ps(xs — x) = 0 for each fixed « € 4. However, it is useful to
weaken one condition on the norm. Recall that |lx|| = 0 implies x = 0 and
that this condition is needed for limits to be unique, that is, for the induced
topology to be Hausdorff. Suppose that {p,},. . is a family of objects obey-
ing all the norm conditions except x =0 when p,(x) =0 for some a. But
suppose instead that x = 0 whenever p,(x) = 0 for all «; then it is easy to see

124
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limits are unique in a topology where convergence means p,(x; — x) — 0 for
each fixed a. We thus define:

Definition A seminorm on a vector space ¥ is a map p: V - [0, )
obeying:

@ plx +y) < p(x) + p(y)
(i) p(ax) = |a|p(x) for a € C (or R).

A family of seminorms {p,}.. 4 is said to separate points if

(iii) pu(x) = O for all « € 4 implies x = 0.

Definition A locally convex space is a vector space X (over R or C) with
a family {p,}, 4 Of seminorms separating points. The natural topology on a
locally convex space is the weakest topology in which all the p, are con-
tinuous and in which the operation of addition is continuous.

We temporarily defer giving examples or the explanation of the term
“locally convex.” We also note that many authors do not require the semi-
norms to separate points but add it as an extra condition. The significance of
the separation condition is that it implies (Problem 6a):

Proposition  The natural topology of a locally convex space (with our
definition!) is Hausdorff,

A neighborhood base at 0 for the natural topology is given by the sets
{Ney, ... ¢ el ... 0, € A; 6> 0} where

Nay.oovvapse={xlpa(x) <e,i=1,...,n}

Thus, a net x; = x if and only if p,(x; — x) — 0 for all « € 4. The notion of
completeness extends naturally:

Definition A net {x;} in a locally convex space X is called Cauchy if
and only if, for all ¢> 0, and for each seminorm p, there is a f, so that
Pu(xp—x)<e if B,y>PBo. X is called complete if every Cauchy net
converges.

The important structure on a locally convex space is the natural topology
rather than the particular seminorms used to generate the topology. We call
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two families of seminorms {p,}, , and {dg}; . p On a vector space X equivalent
if they generate the same natural topology. It is often useful to know
(Problem 6b):

Proposition Let {pa}a e 4 and {dg}s ¢ p be two families of seminorms. The
following statements are equivalent:

(a) The families are equivalent families of seminorms.
(b) Each p, is continuous in the d-natural topology and each 4, is con-
tinuous in the p-natural topology.

(c) For each a € A4, there are B, ..., f,€ B and C > 0 so that for all
xeX

Pa(x) < C(dp (x) + - + dp (X))
and foreach € B, thereare «;, ..., 0, € 4 and D > 0sothatforallxe X
dg(x)  D(pe,(X) + *** + pg, (X))
The appearance of expressions like C(dp (x) + -+ + dj (x)) is quite common

in the theory of locally convex spaces. It is thus useful to consider families
of seminorms with a special property:

Definition A family {p,}, 4 Of seminorms on a vector space V is called
directed if and only if for all «, f € 4 there is a y € 4 and a C so that

pa(x) + ps(x) < Cp,(x)

for all x € V. Equivalently, by induction, for all «,,...,2,€ A4 there is a y
and D so that

Pa,(X) + *** + pa (%) < Dp,(x)
forallxe V.

For example, if {p,}, ¢ 4 is a directed family, then {{x| p,(x) < e}|a € 4, & > 0}
is a neighborhood base at 0. One can always find directed sets of seminorms:

Proposition Every locally convex space has a directed family of semi-
norms equivalent to the family defining the space.

Proof If {p,}. 4 defines the space, let B be the set of finite subsets of 4. If
FeB, let dg=Y,.rpa- Then {dg}p,p is directed and equivalent to the
initial set. |
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We consider briefly two examples. In Sections V.3 and V.4 we will discuss
several other examples; in particular, the technical appendix of Section V.3
is useful to the reader desiring experience with equivalent semi-norms and
directed sets of seminorms.

Example 1 Let X be a vector space and suppose that Y is a set of linear
functionals on X separating points. In Section 1V.5, we introduced the
o(X,Y)-topology. It is precisely the locally convex topology generated by the
seminorms {p,|£ € Y} where p,(x) = |£(x)|. While this topology is given by
seminorms, it is never given by norms if Y has infinite algebraic dimension
(Problem 2).

Example 2 Let D be a region of the complex plane, that is, D is con-
nected and open. Let @), be the vector space of all (single-valued) analytic
functions in D. For any compact C < D, let p(f) = sup,c | f(@)|. Op,
topologized by the seminorms p, is a locally convex space which is complete.
For suppose f, is a pc-Cauchy net for all C. Then, f,(z) — f(z) uniformly
on compacts sets. By a classical theorem of Weierstrass, f is analytic (essentially
because fis analytic if and only if it obeys the Cauchy integral formula which
is preserved by uniform limits). Let

p&(f) = H |/ Gx + iy)|* dx dy
x+iyeC
The families {p$’} and {pc} are equivalent families (Problem 7).

We are now prepared to discuss the reason for the name locally convex and
the associated geometrical ideas and construction. The neighborhoods
Na, a,. .. .0, ave special geometric properties:

Definition A set C < V, a vector space, is called convex if x and ye V,
0<t<1,implies tx + (1 — )y € C. C is called balanced (or circled) if xe C
and |1| =1 implies Ax € C. Finally, C is called absorbing (or absorbent) if
Ur>o tC =V, that is, if for every x e V, sx € C for some s > 0.

If C is convex and V is a vector space over the reals, balanced means only
that —x € C whenever x € C; if ¥ is a vector space over the complex numbers,
balanced means e“x € C whenever 8 € [0, 2n) and x € C (so circled is a more
suitable name).

It is an elementary application of the definitions to see that the N,, ...
are convex; in fact:
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Proposition If pg,, ..., ps, are seminorms on a vector space ¥ then
{x1pe,®)] <& ..., |pa(¥)| < ¢} is a balanced, convex, absorbing set.

This proposition is a one-half of the basic theorem:

Theorem V.1 Let V be a vector space with a Hausdorff topology in
which addition and scalar multiplication are separately continuous. Then V
is a locally convex space (that is, has a topology given by a family of semi-
norms) if and only if 0 has a neighborhood base of balanced, convex,
absorbing sets.

The proof of the other half of the theorem, that is, that ¥ has a topology
generated by seminorms if 0 has a neighborhood base of balanced, convex,
absorbing sets relies on the following technical device:

Definition Let C be an absorbing subset of a vector space V with the
additional property that if xe C and 0 <t < 1, then tx € C. The Minkowski
functional or gauge of C is the map p: V' — [0, co0) given by

p(x) = inf{A|x € AC}
= [sup{u|puxe C™!

Lemma
(a) If 120, then p(tx) = tp(x) for the gauge of any set C.
(b) p obeys p(x + y) < p(x) + p(p) if C is convex.
(c) p obeys p(Ax) = |A|p(x) if C is circled.
@ {xlp(x) <} e C e fxlpk) < 1},

The proof of this beautiful lemma is left to the problems.

Proof of Theorem V.1 Let % be a neighborhood base at 0 containing only
convex, balanced, absorbing sets; for each U e %, let py be the gauge of U.
By (b) and (c) of the lemma, p is a seminorm and by (d) the neighborhoods
of 0 in the original topology are the same as those in the locally convex
topology given by the seminorms {p,| U e #}. Since addition is separately
continuous in both topologies, the neighborhoods about any point are
identical in the two topologies. ||
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In normed linear spaces, a linear map from X to Y is continuous if and
only if it is bounded. A similar result holds in locally convex spaces
(Problem 9):

Theorem V.2 Let X and Y be locally convex spaces with families of
$emi-noTms {p,}q ¢ 4 and {dj}; 5. Then a linear map T: X — Y, is continuous
if and only if for all § e B, there are ay, ..., ¢, € 4 and C > 0 with

dy(Tx) < C(pg,(¥) + *** + pa (X))
If the {p,}. 4 are directed, then T is continuous if and only if for all e B
dy(Tx) < Dpy()

for some ae 4, and D> 0.

Finally, we conclude this introduction by discussing two applications of
the Hahn-Banach theorem (Theorem 1I1.5) to locally convex spaces. First:

Theorem V.3  Let X be a locally convex space and let Y < X be a sub-
space. Let £: Y —» R (or C if X is a complex space) be linear and continuous.
Then, there is a continuous linear map L: X >R (or C) with LY =/.

Proof The relative topology on Y is given by the restrictions of the con-
tinuous seminorms to Y. Thus, |£(x)| < Cp(x) for some continuous semi-
norm. Applying Theorem II1.5 or I11.6, we obtain our result. |}

Thus, locally convex spaces possess many continuous linear functionals; in
fact, enough to separate points. We denote by X* the family of continuous
linear functionals on X and call it the topelogical dual.

The second application of the theorem is more geometric in nature and is
related to the idea of slipping a closed hyperplane between disjoint convex
sets; see Figure V.1. A hyperplane is the set of points where £(x) = a for some
real-valued linear functional (even in the complex case).

Definition We say that two sets A and B in a locally convex space are
separated by a hyperplane if there is a continuous real-valued functional ¢
and an ae R with £(x) < a for xe A and £(x) = a for x e B. If £(x) < a for
x € A and £(x) > afor x € B, we say that A and B are strictly separated.
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La—L{(X) =00

x<ca Lix)>a

FIGURE V.1

Theorem V.4 (Separating hyperplane theorem) Let A and B be dis-
joint convex sets in a locally convex space X. Then:

(a) If A is open, they can be separated by a hyperplane.

(b) If A and B are both open, they can be strictly separated by a hyper-
plane.

(¢) If A is compact and B is closed, they can be strictly separated by a

hyperplane.

Proof (a) Pick ~xeA—B={y—z|yecA,zeB} Let C=4 - B+ {x}.
Then C is open and thus absorbing, convex, 0 € C and x ¢ C since A and B
are disjoint. Let p. be the Minkowski functional for C. Then p(z + y) <
pc(2) + pc(y) and pelaz) = ap(z) if a>0. Define ¢ on {Ax|ieR} by
£(Ax) = A. Since x ¢ C, p(x) = 1 so that £(x) < p(x). Thus, by Theorem I11.5,
£ has an extension to all of X with £(y) < pc(y). Since Cn(-C)c
¢~ '[—1, 1], £ is continuous. By the inequality, £(y) < 1 if y € C. Thus for any
aeAand be B, £(a) <£(b) + (1 — £(x)). Since £(x) =1,

sup £(a) < inf £(b)
ced beB
so £ separates 4 and B.

(b) Itis easy to see that if £ is a nonzero linear functional and A4 is open,
then £{A] is open. Since £{A] and £[B] are open and intersect in at most one
point, they are automatically disjoint.

(c) Since A and B are disjoint, 0¢ B — A = §. Since 4 is compact, it is
easy to see that § is closed. Thus there is an open convex set U disjoint from
SwithOe U.Let A’ = 4 + U and B' = B — U. Then A’ and B’ are disjoint,
open, convex sets that may be strictly separated by a hyperplane by (b).
Since A = A’ and B < B', this hyperplane also separates 4 and B. |
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In Chapter XIV we will discuss an *‘ algebraic Hahn-Banach theorem,” i.e.
a form of the separation theorem which makes no mention of open sets or
continuous functions.

V.2 Frechet spaces

In Section I11.5, we saw that complete metric spaces have special properties
which imply strong results for Banach spaces. It is thus of interest to single
out those locally convex spaces that are also complete metric spaces. First, we
must ask which locally convex spaces are metrizable, that is, have a topology
generated by a metric. These are not only the spaces whose topology is given
by a norm, for if p is a metric, p(x, 0) need not be a norm since p(4x, 0) need
not equal Ap(x, 0).

Theorem V.5 Let X be a locally convex space. The following are
equivalent:

(a) X is metrizable.

(b) 0 has a countable neighborhood base.

(c) The topology on X is generated by some countable family of semi-
norms.

Proof We show (a)= (b)=(c)=(a).

(a) = (b) is a property of any metric space.

(b) = (c) follows from the fact that if % is any neighborhood base of convex,
balanced sets, the gauges of U e % generate the topology and the fact that if
0 has a countable neighborhood base, we can find a countable neighborhood
base of convex, balanced sets.

(©)=(a). Let {p,}n=1.2,... be afamily of seminorms generating the topology.
Define p on X x X by

 Rpa| Px=y)
plx, y) = ,.=Zx2 [l + pa(x = y)] V-1

Since af(1 + a) < 1 for any a > 0, p(x, y) < . It is easy to see that p is a
metric and that it generates the same topology as the {p,}>. ; (Problem 10a). |

In addition, the two notions of complete are the same (Problem 10b):
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Proposition A net {x,} is Cauchy in the metric p of (V.1) if and only if it
is Cauchy in each p,. Thus a metrizable locally convex space X is complete
as a metric space if and only if it is complete as a locally convex space.

Definition A complete metrizable locally convex space is called a
Fréchet space.

As complete metric spaces, Fréchet spaces obey the Baire category theorem,
and thus one can prove theorems analogous to those found in Section [IL.5:

Theorem V.6 If X and Y are Fréchet spaces and f: X —» Y is a con-
tinuous linear surjection, then fis open,

Theorem V.7 Let X and Y be Fréchet spaces; let & be a family of
continuous linear maps from X to Y so that for continuous seminorm p on Y
and every x € X, {p(F(x))| F € #} is bounded, Then, for each p there is a con-
tinuous seminorm d on X and a C > 0 so that

p(Fx) < Cd(x)
forallxe X and Fe &.

For an application of Theorem V.6, see Problem 12, As an application of
Theorem V.7, we first notice that the corollary of Theorem I11.9 goes through
without change:

Corollary If X is a Fréchet space, a separately continuous bilinear
functional, B, is jointly continuous, that is, |B(f, g)| < Cp,(f)p.(g) for
some continuous seminorms p,, g, .

We can also prove the following corollary of Theorem V.7 whose proof
can be viewed as Theorem 1.27 in disguise:

Theorem V.8 Let X be a Fréchet space and let f, € X* be a sequence
converging to fe X* in the o(X*, X)-topology. Then f, - f uniformly on
compact subsets of X.

Proof Since f,(x) is convergent, it is bounded, so we can find a continuous

seminorm p on X so that | f,(x)| < Cp(x). Given a compact subset D of X,
and an ¢, pick a finite cover of D by sets Uy, ..., U, so that x, y € U, implies
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p(x — y) < ¢/3C. Now pick x, € U, and N son > Nimplies | £,(x;)) — f(x))] <
e/3fori=1,...,m. Then an ¢/3 argument proves

sup | fi(x)~—f(x)l <e if n>N]
xeD

V.3 Functions of rapid decrease and the
tempered distributions

We want to discuss a very convenient space of functions, the functions of
rapid decrease & and its dual, the tempered distributions. To make the
definitions flow more smoothly, we first introduce some notation. We will
write functions on R" merely as f(x), x = (x,, ..., x,». I", will always denote
the set of all n-tuples of nonnegative integers o= (a;,...,a,> and

Ja| =Yy ;I3 =1, . Further,
olal
D® will denote TR T
ax:I e ax:n

and x” denotes x7' - +- x3.

Definition The functions of rapid decrease S#(R") is the set of infinitely
differentiable complex-valued functions ¢(x) on R”" for which

ol p = sup [x*DPp(x)| < 0
foralla, pel” .

Thus, the functions in & are those functions which together with their
derivatives fall off more quickly than the inverse of any polynomial.

Theorem V.9 The vector space (R") with the natural topology given
by the seminorms |||l 5 is a Fréchet space.

Proof The reader can easily check that |||, 5 is a seminorm. Since there are
countably many of them, S(R") is metrizable (Theorem V.5). Thus we need
only show that (R") is complete. Suppose that f,, is Cauchy in each ||*|l,, 5.
Then x*D%f,, - g, 4 uniformly as m — oo since C(R") is complete. If we can
show g =g, 0 is C® and g, , = x*DPg, then g will be in & and lim,,.. , /,,
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will be g in the topology of . Let us prove that g is C' and dg/dx = g, ,
in the case of #(R'). The general case is proven by similar means. We know
that

1) = 10+ [ £ dt

Since f, > go,; uniformly,

90) =90 + [ go.n() dt
Thus gis C' and ¢’ = g, ;. I

For technical reasons, we often want a directed family of seminorms, so
we define for k, me I, and fe ¥(R"),

W e, m = 1;‘5:‘ W e, g

1Blsm

Definition The (topological) dual space of #(R"), denoted by &'(R"),
is called the space of tempered distributions.

For a linear functional T on &#(R") to be in &¥’(R"), it must be continuous.
By Theorem V.2, this is equivalent to the existence of a seminorm ||+ [} ,, with
| T(p)| < Cliglk, . for all ¢ € #(R™). We discuss several examples in the
case n = |; the reader can easily extend them to the case of general n.

Example1 (&) Let g € #(R') and define a functional g(-) on & by

9(@) = f: 9(x)e(x) dx (vV.2)
g(*) is clearly linear and

l9(e)| < lglumliel

and |l¢|l, is a continuous seminorm. Mofeover, if g, # g, as functions in &,
9:(") # g5(') as elements in &’. For & is dense in I? so that g, #¢, in &
implies g, # g, in L? implies g, # g, in (I?)* implies g, # g, in &".

We thus see that & is embedded naturally in &’. This imbedding is con-
tinuous when &’ is given the (%', &) topology since we will see that
ll*li 1wy is @ continuous seminorm on <. Moreover, & is dense in &’ in the
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o(¥’, &) topology (see Problems 16 and 19 or Corollary 1 to Theorem V.14
in the appendix to this section). This suggests extending continuous maps
T: & — & to S asfollows: Since the natural map 1 of ¥ - &’ is continuous
10T & - & is continuous from & to &’. Since & is dense in &', there is
at most one continuous extension of 1 o T: &’ — &’. To find this continuous
extension we need some way of constructing continuous maps of &' - &',
There is one simple method. Suppose S: & — & is continuous. Define the
adjoint S': ¥’ —» &', £ S’(¢), by requiring that [S'(£)l(g) = £(Sg) for all g
in &. It is evident that if £, = £ in the a(&', &) topology, then S'(¢,) = S'(¢)
in the 6(&’, &) topology. Thus, to extend 7, we seek a map S: & — & so
that ' [ & = T and then extend T by using S’. When no confusion arises, we
will denote this extension also by 7. Adjoints are further discussed in
Section VI.2.

This idea will become clearer as we discuss examples below. We will discuss
another topology on &’ in Section V.7 (the f(¥’, &) = «(¥’, &) topology)
and we will see that the adjoints S’ are continuous when this topology is put
on both the domain and range (see Problem 17).

Example 2 (1) & is a subset of each I’(R) and the identity mapping of
& into L is continuous. For p = 1, we note that

W= [ A+ + 2] f|1dx S 7Sl + 16 1)

-
and for general p, we notice that

WA, < BLAER AL Yo, < NPl P
fgelf,qg ' +p ! =1and g e & we have

< llgligliell,

[oe)0(x) dx

Thus ¢ — [ g(x)e(x) dx is a continuous map of & into C. This defines a
continuous imbedding of Lf into &’.

Thus &’ contains the images of many spaces of functions under natural
injections. We usually ignore the injections and refer to the function g(x) € &".

Example 3 (the delta function) Let b e R. Define 8, to be the linear
functional §,(¢) = @(b). Since |5,(0)] < ll@llo.o, 6:() € L(R). There is no
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Sunction g(x) with 3,(¢) = § g(x)e(x) dx for all ¢ € &, although there is a
measure y, (the pure point measure) with

849) = [ @) dinx)

but the symbolism of (V.2) is so suggestive that one often writes

5(9) = [ @()8(x - b) dx (vV.3)

o(x — b) is not a function; (V.3) should be treated merely as a symbolic
expression. 6(x — b) is called the delta function at b.

Example 4 (polynomially bounded measures) Suppose v is any finite
measure. Then fi—[2_, f(x)dv is a linear functional on & and since
]j f dv| < v(R)|If ll, this functional is in &’. In general, if v is a measure on
R so that vw([— D, D)) < C(D" + 1) for some C and n, and all De R, , then
2 fdvisin &,

Example 5 (derivative of 6(x)) To see that not every ge &’ comes
from a linear combination of measures, consider &'(f) = —f'(0). This is a
continuous linear functional, but it does not comes from a measure (Pro-
blem 21).

Example 6 (2(1/x)) The Cauchy principle part integral is given by
1 1
?(-):leim - f(x)dx
X e 0Y|x|2e X

To see that this is finite for any fe £(R') and is in fact a distribution, we
note that

1 @ f(x) = f(—x)
J'l —f(x)dx=£ ————dx

x|z X

Since [f(x) — f(—x)}/x = 2f'(0) as x —» 0, we can write
1 *f(x) = f(—%)
()= [0
which proves it is finite. Since

SU@ = sl [ 1ronas s,
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we have

1 L ® dx
|2 Jon| <2 f1re ax+ | [Ceren G
<2fls0+ Wflo.s

Thus #(1/x) is a distribution. The famous formula

1 1
li = — ind(x — V.4

_ .lf})x—xo+is ?(x—xo) nd(x — xo) V4
holds if all the objects are viewed as distributions and lim, | ¢ is interpreted in
the (&', &) topology (Problem 22).

Example 7 (0O}) Let O3 denote the set of infinitely differentiable
functions on R" which together with their derivatives are polynomially
bounded, that is, f € O, means that f is C® and for each x € I, , there is an
N(«) and a C(x) with

(D)) < €t + =}

where x> =37, x2. Oy <= &

The set O, is useful for another reason. If Fe O0,,, it is not hard to see
that Ffe & if fe & and the map f+— Ff is a continuous map of & —» &
(Problem 23a). In fact, 2 measurable function F defines a continuous map
S Ffof & — & if and only if F e O, (Problem 23b).

Let Fe Oy . Then multiplication by F takes & into & continuously. This
provides the first test of the philosophy expounded following Example 1. Can
we find a map S: & — & so that for any f, g € &, (Ff)(g) = (S'/)(g) = f(S9),
that is, so that | F(x)f(x)g(x) dx = [ f(x)(Sg(x)) dx. The answer is obvious:

take (Sg)(x) = F(x)g(x).

Operation 1 Let Fe 0}, and let Te &'(R"). We define FT € &'(R”) by
(FT)(p) = T(Fo)

& was chosen partially to ensure that f— D*f would be continuous.
Notice that [[D*fll, ;= lifll,s+c Where d +a=(d, +a,,...,8,+a,). To
extend D* to &' we seek T: & — & so that for f, ge &, (D*f)g) = f(Sg),
that is, [ (D% )(x)g(x) dx = [ f(x)(Sg)(x) dx. At first sight this appears
difficult but integration by parts implies that | (D%)g = (—=1)"! | f(D%g) so
we take S = (—1) 14 D=,
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Operation 2 Let Te ¥ (R"), ael}. The weak derivative, D*T, or the
derivative in the sense of distributions is defined by
(D*TXSf) = (= DT(D?)
In symbolic notation:
alel

JO T dx = (-1 [T 7)) d

We have thus defined a notion of derivative which coincides with the
ordinary derivative on Oy and for which integration by parts without
boundary terms at co holds by fiat.

Example 8 Let

X, x=0

g(x)={0 x<o *<R

Then g is continuous but is not everywhere differentiable in the classical sense.
Since {2, g(x)o(x) dx < lIx@liL1, g € &' so it has a derivative in &’. By defini-
tion

d do @
e = - — = e 4 d
( T g)(qo) g( dx) fo x¢'(x) dx
= [ o(x) dx
0
Thus dg(x)/dx = H(x) where H is the Heaviside function

I, x=0
H(x)={0 x<0

H is not even continuous, but it too has a derivative in %’ given by

2 B)@) = -H(28) = - ["¢x) dx = 9(0)
dx dx 0

so dH/dx = §. 8, too has a derivative; it is described in Example 5.

This last example shows that even a nonfunction like é is the second
derivative of a continuous function. This is typical of tempered distributions,
for
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Theorem V. 10 (regularity theorem for distributions) Let Te&%'(R").
Then T = D%g for some polynomially bounded continuous function g and
some f e I, , that is,

T(@) = [(~1)*gx) D o)(x) d"x
forall pe &.

The proof is given in the appendix to this section (or see Problems 24

and 25).
Another operation is induced by translation. Let U,: & — &% by (U, f)(x) =

JS(x — a). Then [ (U, f}x)g(x) dx = | f(x}U_-,g)x) dx if f, g€ &. Thus

Operation 3 (translation) U,T is defined for Te &' by (U,TX¢) =
T(U-,9)

Similarly, if 4 is an invertible linear map of R” —» R”, we define V(4): &¥ - &
by (V(A)f)x) = f(A™'x). Then, one has:

Operation 4 (linear coordinates changes) If Te¥, V(A)T is given by
V(A)TXe) = |det A| T(V (4™ "))
This extends V(A4) from & to &’ (see Problem 28a).

In Chapter IX we discuss two other operations on &', convolution, and
Fourier transform.

It is meaningless to say that a distribution vanishes at a point x, but vanish-
ing in a neighborhood of x makes sense:

Definition Let Q be an open set of R". We say that T € ¥'(R") vanishes
in Q if T(p) = 0 whenever ¢ has support in Q (that is, whenever ¢ vanishes
outside Q). The support of T, supp T, is the complement of the largest open
set on which T vanishes. If T — S vanishes on Q, we say T = S on Q.

These notions extend those of ordinary functions ¢ € & (Problem 28b).
Moreover, one has the following simple and intuitive result (Problem 29):

Theorem V.11 Let Te &#'(R") and suppose that supp 7 = {0}. Then
T= Y c(D%)

falsm
for suitable ¢, and m.
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Example 9 ((1/x), renormalized) Consider the function (1/x), =
H(x)x~'. Since § (1/x)dx = o, (1/x), does not define a distribution. Let
FR\0) = {fe &|supp fe R\0}. If fe F(R\0), | (1/x), f(x) dx makes sense.
Thus (1/x), does define a linear functional on ¥(R\0) which is continous as
we shall see. By the Hahn-Banach theorem, this functional on £(R\0) has
extensions to all of ¥(R) which we call “renormalizations of (1/x),.” As
explicit examples, consider

(). o= (25 e 20

X/ 4 X

Since these maps are continuous on &, (1/x). is continuous on #(R\0). How
much arbitrariness is there in the renormalization? If T and § are two
renormalizations of (1/x),, then T — S vanishes on $(R\0) and so has
support {0}; thus T — S = Y 5, < €. D* 5% For example,

(. G (o

With this definition of renormalization, there are an infinity of free constants
in the renormalization of (I1/x), . However, one could argue that as long as
fe& and f(0) =0, [§ [f(x)/x]dx < o0; so we really want to extend (1/x).
from {f e &|f(0) = 0} to &. If we adopt this requirement, the only real re-
normalizations of (1/x), are the (1/x); ;_md there is only one free constant
in the renormalization (see Problem 32 for a link between these definitions).

Bogoliubov and Hepp have treated the renormalization of x space Feynman
graphs in the spirit of Example 9; the renormalization constants, for example,
the renormalized mass and charge, enter as the free constants analogous to
the In(M/N) in Example 9. For more details, see the references in the Notes,

There is one final theorem about & and &’ which is often useful. To
appreciate its significance, let us first consider the case of L? where the analogous
theorem fails. Suppose p™! +47 ' =1, p < ®, g < 0, and let Fe LY(R?) =
[LP(R x R))*. Let f, g € L*(R); then f(x)g(¥) € L"(R?) so

F(f, 9) = [ Fx, y)f()a(y) dx dy < w0

Moreover

|F(f, D < IF ey 1S 1,ilg 1),

so F defines a continuous bilinear form on L?. Not every bilinear form is of
this type. For example, if p =2, the bilinear form (f, g) = [ f(x)g(x) dx
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cannot be expressed as (f, g) = [ F(x, y)f(x)g(y) dx dy for some F e I}(R?).
The situation for Z(R) and (R x R)* = &'(R?) is very different:

Theorem V.12 (kernel or nuclear theorem) Let B(f, g) be a separately
continuous bilinear functional on #(R") x ¥(R™). Then there is a unique
tempered distribution T € &'(R**™) with B(f, g) = T(f® g) where

(f®g)(xl’ cres xn+m) =f(x1» LERE xn)g(xn+l! e n+m)

That separate continuity implies joint continuity is a consequence of the
fact that & is Fréchet (Theorem V.9) and the corollary of Theorem V.7. We
prove that jointly continuous functionals have the requisite form in the
appendix to this section (Corollary 4 to Theorem V.14). Theorem V.12 can
be extended to multilinear functionals (Problems 34 and 35).

Appendix to V.3 The N-representation
for ¥ and &’

In this appendix, we will prove some of theorems about & and &'
These proofs rely on the realization of & and therefore &’ as sequence spaces
(in fact as the space s of Section II1.1). This realization depends in turn on
two elements. The first element is topologizing & by an equivalent family of
I? norms. To forcefuily distinguish these norms from the |-l p norms we
write

IS lla, 8, 0 = 1I¥*DPf |l
rather than merely | ‘|l,,5 and define
I ”a. g2= "x’Dpf”u(R")
Then:

Lemmai The families of seminorms {|| - ll,, 5, o} and {li-ll.. 5,2} on ([R")
are equivalent.

Proof We provide the proof in the case n =1 for simplicity of notation.
Since (1 +x*) 7' e 2, [Ifll, < II(1 + x*) 7 I I + x*)f Il sO

1 lla,p.2 < CCIf la,p, 00 + 11/ Tlat 2,5, )
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On the other hand, f(x) = [*_, f'(x) dx, so
I llo < W < QA+ 22000 + %370,
Since (x*D*f)' = ax*~' D*f + x*D?** f we have
1flle.0 S C@llf lamt,p.2 + WS Nlaspsr,2 + @lf Nana.p2 + W lles2,41.2) B

The second element involves some special properties of Hermite functions
(the eigenfunctions of the harmonic oscillator). Consider the maps
A: R) - Z(R) and 4': Z(R) - L(R) given by

A=_1_:_(x+i) Ar=_1_(x_i)
\/2 dx \/5 dx;
and N = A'4. Let |Ifll, = (N + D1, which is a seminorm on &.

Lemma 2 The seminorms {||-||,} are a directed family equivalent to the
{ll*lls, 5, 2} family of seminorms on &.

Proof One need only use the inequality {|4A¥ -+ 4¥ £, < (N + m)™*f|,
where A* stands for either 4 or A'. The details are left to the reader (Prob-
lem 36).

Now consider the function ¢, defined by A¢, = 0 and [, (¢o)* dx = 1,
that is, @o(x) = n %~ 4" and let

¢n = (1) "HAN P = (2'n)TH(— 1)"1t'*e’f*lr"’(g);)”e"‘z

The {¢,}2., are called the Hermite functions or the harmonic oscillator wave
functions since

d2
— 2 =
( 7 +x )d),, @n + D¢,
One has:
Lemma3  The set {¢,}>, is an orthonormal basis for [*(R).

Proof See Problems 6 and 7 of Chapter IX or Problems 30 and 31 of
Chapter X.

Notice that N¢, = n¢,. Suppose fe & and consider the [*-convergent
expansion f=3204a,¢$, where a,=(d,,f)=[2, ¢ (x)f(x)dx. Since



Appendix to V.3 The N-representation for ¥ and ¥’ 118

N ¥+, Nfe¥ and thus in I’. But N"f=)2,a,n"¢,, so
®. o |a,|*n*™ < oo, In particular sup, |a,|n™ < c0. We have thus proven the
first part of:

Theorem V.13 (the N-representation theorem for &) Let s, be the set
of multisequences {a,},.,,x with the property
sup |4, |«|" <

} L

el s

for each m. Topologize s, with the seminorms

a7 = X (@ + D*|a,|?
where Bel% and (x+ D =TIk, (a; + D?*. Let fe (R*). Then the
sequence {a,}, @, = (Pa, f) with ¢ (x) =[]t~ @ (x), is in s, and the
map f+{a,} is a topological isomorphism. The Hermite expansion
= Y2 @, converges in &. The {a,} are called Hermite coefficients.

Proof We give the details in the case kK = 1. By our previous discussion, if
fe ¥ and a, = (¢,,f), then {a,} € s. Moreover, |{a,}|l.. = ||f il in the notation
of Lemma 2. Since the || }},, are norms on &, the map fi— {a,} is injective. Now
let {@,}p0 € s and let fy = Yo a,¢,. A simple computation shows that

M
0w — full =”=2 la,|%(n +1)>" =0

N+1

as N, M - co. Thus fy is Cauchy in each of ]} ||, and thus in & (by Lemmas 1
and 2). Since & is complete, fy — f for some fe &. But then fy = fin I? so
(¢,,f) = a,. Thus the image of our map of & — sis all of 5. The equivalence
of the topologies follows from the equality of the norms ||*||,, on &% and s. |}

We can now identify &’ with a sequence space also:

Theorem V.14 (the N-representation theorem for #)  Let Te &'(RY).
Let b, = T(¢,) for each a € I* . Then for some B e I%, |b,| < Clx + 1)* for
all «. Conversely, if |b,| < C(x + 1)* for all a, there is a unique T € &’ with
T(¢)=b,. If Te S and b, = T(P,) are its Hermite coeflicients, then
Y« ba b, converges in the o(¥’, &) topology to T.

Proof Again, we consider only k = 1. Let T e &’. Then |T(¢)| < Cll@|Im
for some m and C since {|||l.} is a directed set. |i¢,ll, = (n + 1)", so
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|8,| < C(n+ 1)™. Conversely, suppose |b,| < C(n + 1)™. For {a,} € s define
B({a.}) = Y 2o b,a,. Then

IBG@)) < 3 Ib,l1a) S C 3 (n+ Dla,]
o 1/2/ 1/2
< c( Y (n+ 1)2m+2|a”|2) ( S (n+ 1)-2)

2
s%amwm,

Thus B defines a continuous linear functional on s. Under the association of
& and s, thereis a T € & with T(Z;?=0 a,$,) = D 20 a,b,; in particular,
T(¢,) = b,. The weak convergence of Y , b, ¢, to Tis easy. |

We can now easily prove many interésting theorems about & with this
machinery which has two important simplifications: (1) Sequences are
easier to deal with than functions. (2) The two conditions in &, fall-off at o
and the C® condition, are replaced by a single fall-off condition in s.

Corollary 1 & is dense in &' in the o(¥’, &) topology.

Proof ZlalsN b,¢,€ S and converges weakly to Te% as N- oo if
by = T(¢a)- |

Corollary 2 & is separable in the Fréchet topology. &’ is separable in
the o(¥’, &) topology (and also in the 1(¥’, &) topology we introduce in
Section V.7).

Corollary 3 The regularity theorem for distributions—Theorem V.10.

Proof Again we only consider the case k = 1. Since ||f]l, < Cll(1 + x3)f"|I,
we conclude that ||¢,ll, < C'(n + 1)*2, using 4 and A' and the estimate in
the proof of Lemma 2. (More detailed studies of the ¢, show {l¢,ll, ~
D(n+ 1)"V'%), Let Te % and let {b,} be its Hermite coefficients. Then
|b,] < E(n + 1)" for some m. Leta, = (n+ 1)"""%b,. Then ¥ |a,| li¢,llo <
EY (n+1)"** <o, so Y a,¢, converges uniformly to some continuous
function F on R. F has Hermite coefficients (as an element of &'), {a,}.
Extend 4%, 4 and N = §(—d?/dx* + x* -~ 1) to &’. Then

1 d2 m+3
T=(N+1)m+3F=im—+3(—Ez'+x2+l) F
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Thus T can be written as a sum of polynomials times weak derivatives of
polynomially bounded continuous functions. Simple manipulations (Problem
37) now complete the proof. |

Corollary 4 (nuclear theorem) Every jointly continuous bilinear func-
tional B(-, ) on F(R") x L(R™) is of the form B(f, g) = T(f® g) for some
Te LR

Proof Since B is jointly continuous, | B(f, g)| < Clif |l llgll; for some re 1%,
sel™ . Then |B(¢s, ¢5)| < Clax+ 1)°(B + 1)* = C[<a, B) + 11" where

a, B =&yy ooy Oy Bisovvs Py €10

As a result b, 5, = B(¢,, ¢p) are the Hermite coefficients of a distribution
TeZ'(R™™) with T($ca,py) = T(@u® bp) = bea,py- Lot f=3 a,¢e, g=
Y cs$,. Since these expansions converge in &,

T(f®g)= zﬂ . Cy T(¢.® ¢p) = Zpag Cp b(a,ﬂ) =B(f,9) 1

V.4 Inductive limits: generalized functions
and weak solutions of partial differential
equations

In an intuitive sense, the distributions of the last section had the restriction
of being polynomially bounded at infinity. We saw this in Theorem V.10
which told us any T € &’ is the derivative of a polynomially bounded function.
The growth of a tempered distribution T € &’ is in some sense dual to the
decrease restrictions imposed on functions fe &. This suggests we construct
“distributions > without any growth restriction at o as the dual of a space
with the severest possible decrease conditions at oo, that of vanishing outside
of a compact set. That is, we want to topologize the C® functions of compact
support, Cg5(R"), so that it is a complete locally convex space. If K is a com-
pact set in R", the functions C3(K) which are C* and have support in K
have a natural topology given by ||f ll,, » = supgn | D% |. CF(R") is not com-
plete when given the {||*|le, »}acs,» family of norms (see Problem 38), even
though C§(K) is for each compact set K. In some sense, we want to think of
CP(R" as {J.CF(K,) for some family of compact sets {K,}Z., with
{Um Kn=R", and topologize it with a *limit” topology. To do this we
describe a general construction.
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Theorem V.15 Let X be a complex (or real) vector space. Let X, be a
family of subspaces with X, < X,,,, X = U;',‘Ll X,. Suppose that each X,
has a locally convex topology so that the restriction of the topology of X, .,
to X, is the given topology on X,. Let % be the collection of balanced,
absorbing, convex sets @ in X for which 0.~ X, is open in X, for each n.
Then:

(a) % is a neighborhood base at O for a locally convex topology.

(b) The topobogy generated by % is the strongest locally convex topology
on X so that the injections X, — X are continuous.

(c) The restriction of the topology on « to each X, is the given topology
on X,.

(d) If each X, is complete, so is X.

We require a technical lemma for the proof of Theorem V.15:

Lemma  Let X be a locally convex space and let X, be a subspace with
the relative topology (which is automatically locaily convex). Let ¥ be an
open, convex, balanced subset of X,. Then there is an open, convex, balanced
setZc XsothatZn X, = V.

Proof Since X, has the relative topology we can find an open set & < X so
0 n X, =V. Since 0 is a neighborhood of 0 € X and X is locally compact,
we can find 0; c @ which is balanced, convex, and open in X. Let

Z={ox+Bylxe0, yeV, |a| +|Bl =1

= v By + |a|0))
yeV.|al+[B]=1,a#0

As a union of open sets, Z is open. Since V< Z, V <(Zn X,), but if
ax + PfyeX,nZ, then xe X;n 0, <X, nO=Vsoax + fyeV; that is,
Z n X, < V. This proves the lemma. }

Proof of Theorem V.15 4 is closed under finite intersections and dilatations,
so we need only prove that the generated appology is Hausdorff to conclude
(a). But if we can prove (c), it will follow that X is Hausdorff. Forif xe X, is
given, we can find an X,-open set @ abov]0 e X, with x ¢ 0 and then, once
(c) is proven, we can find U open in X with U n X, = 0. Thus (c) implies (a).
Given a neighborhood @, of 0 € X, find a balanced, convex open set N, < 0.
Now, using the lemma, find N,,, c X,,,, convex, balanced, and open in
N,:1,50that N, ., n X, = N,and by induction, N, (k > n) so that N, isconvex,
balanced, and open in X, and N, N X;_, = Ny_y. Let Ny = iz Ny It is
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casy to see N e and N, n X, = 0,. Thus @, is a neighborhood in the
relative topology. That the relative topology is finer than the given topology
follows from the definition of #. This proves (c) and thus (a). (b) is easy. A
reference for (d) is given in the notes. |

Definition The locally convex space X constructed in Theorem V.15
is called the strict inductive limit of the spaces X,,.

We remark that if each X, is a proper closed subspace of X,,,, then X is
not metrizable (Problem 45). One of the nice properties of strict inductive
limits is:

Theorem V.16 Let X be the strict inductive limit of the locally convex
spaces {X,}a- ;- Then a linear map T from X to a locally convex space Y is
continuous if and only if each of the restrictions T | X, is continuous.

Proof If T'is continuous, each restriction is continuous. Conversely, suppose
each restriction is continuous. Let N be a balanced, convex, open set in Y.
Then TN}~ X,=(T | X,)"'[N]isopenin X, since T | X, is continuous.
Since T~ !{N] is balanced and convex, it is open, so Tis continuous. ||

Example 1 Let x(R) be the continuous functions on R which have
compact support. Let x, be those functions in x(R) with support in [—n, n),
normed with ||-||,,. Topologize x with the inductive limit topology. By the
last theorem, the dual of k with this topology is precisely the complex Baire
measures on R. This construction works for x(X) when X is any g-compact
locally compact space.

Now let Q be an open connected set in R", CF(£2) the infinitely differentiable
functions with compact support in Q. Let K, be an increasing family of
compact sets with | JK; = Q. Put the Fréchet topology on CJ(K,) generated
by the ||D°fll, norms. The set CF(Q) with the inductive limit topology
obtained by C5(Q) = | JCF(K,) is denoted 2, . This topology is independent
of the choice of the K, (Problem 46). Sequential convergence in 9, is fairly
simple.

Theorem V.17 Suppose that X = ()X, has a strict inductive limit
topology and that each X, is a closed proper subspace of X,,,. Then a
sequence f, € X converges to fe X if and only if all the f,, are in some X,
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and f,, —f in the topology of that X,. In particular, a sequence fe€ Dgn
converges to f if and only if all the f,, anmy/ f have support inside some fixed
compact K and D%, converges uniformly to D% for each multiindex «.

Proof Letf, — fand suppose for all n, that there is an f,, with f,, ¢ X,. Then
it is easy to construct subsequences of the f,,, say g; = f,;, and the X, say
Y; = X, with g, € Y4 ,\Y;. Since Y, is closed, we can use the Hahn-Banach
theorem to find #; € X* so that/, = 0 on Y;and £,(g,) = n — Y32} £,(g,). Let
¢ =37 ¢, Onany X,, this sum is effectively finite, so ¢ is continuous on
each X,. and hence, by Theorem V.16, on X. Since g,, —~ f, and £ € X*, £(g,.)

converges. But £(g,) = m; this contradiction proves that all the f,, are in
some X,. |

We are now ready to define the distributions on Q:

Definition A generalized function (or distribution) is a continuous linear
functional on 2. The space of all continuous linear functionals on 24 is
denoted by 95. 2 and 2’ will denote Q. and Dy respectively.

Theorem V.16 translates directly into:

Corollary A linear functional T on 2. is continuous if and only if for
each compact K < R", there is a constant C and an integer j so that

T <C IZ 1D%0le

al<j

for all ¢ € CF(K).

Example 2 Let f be an arbitrary continuous function on R”, and define
D*fe @' by:
(D)) = (=D [ f(x)(D)(x) dx

Then for each compact set K and ¢ € C7 K)
(DY )@)| < CliD*0li, sup | ()]

xek

so D'fe Dg.. Thus Dg. contains the weak derivatives of all continuous
functions.

Example 3  Consider 2. Let 8"(x — a): 2 — C by §"(x — a)(f) = D'f(a).
Then Y &4 6%x — n)=Tis in 2'. For let ¢ € C¥[—m, m]. Then

[ T(e)| =

¥ @0

< 31Dl
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This last example shows that P, contains distributions T which are not
the ath derivative of any continuous function. Thus, there is no direct
analogue of Theorem V.10 for 2’ but there is a local regularity theorem
(Problem 26). There is also a nuclear theorem for 2 (see Problems 59, 60).

One can also carry operations from 2 to 2’ by the method used in
Section V.3. Thus, for example, if p(x,,..., x,) is a polynomial of total
degree k in n variables, p(x,, ..., x,) = ZMS,‘ a,x*, the partial differential
operator p(D) = Zlalsk a, D* extends to 2’ by the formula

(HD)T)o) = T[' > (-0, q:)] (V.5)

Formula (V.5) may also be used if the g, are x-dependent C* functions.

The extension of partial differential operators to 2’ is particularly useful
in the theory of partial differential equations. Let f be a continuous function.
A k-times continuously differentiable function u (we write u € C¥) for which
p(Dyu=fis called a strict solution. If T e 2’ and p(D)T = f with p(D)T
defined by (V.5), then T is called a weak solution of the partial differential
equation. The difference between strict and weak solutions is only smoothness,
for:

Proposition Ifue C* then p(D)u defined by (V.5) is equal to the classical
value of p(D)u. In particular, if u € C* and fis continuous, u is a weak solution
of p(D)u = f if and only if it is a strict solution.

Proof An elementary integration by parts. |

The following example shows that not every weak solution is a strict
solution:

Example Let f(x) be the characteristic function of [0, 1}. We will show
that u(x, t) = f(x — ct) is a weak solution of u,, — c*u,, = 0. Rather than use
the definition (V.5) directly (which is a useful exercise), we make use of the
fact that the operator p(D) in (V.5) is continuous on 2'. Since fe L'(R), we
can find a sequence f, in Dy with £, = fin L'(R). It is then easy to see that
Ux, ) =f{x —ct) »u(x, 1) in 6(2', 2). But p(D)u, can be computed
classically, that is,

9? 2 0* .

P u,(x, ) = c*f)(x — ¢t) v u(x, 1) =f'(x — ct)

Thus
o , 02 0* , &
é-t—zu,,—c é;z-u,,=0 S0 —u-—c —x—u=0
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In Problem 47, we discuss the notion of a distribution being only a function
of x — ct and prove that any such distribution T satisfies

a? ?

Frel T -c* Fpe T=0

The concept of weak solution is particularly useful because it is often easy

to prove weak solutions exist (see Section I1X.5 for the constant coefficient
case). In the case of elliptic equations (see Section 1X.6), one can prove a
regularity theorem which assures that under certain conditions, every weak
solution is a strict solution. Combining these two techniques one concludes
the existence of strong solutions for elliptic partial differential equations.
Because of the phenomenon of the last example, the case of hyperbolic
equations is not so easy.

V.5 Fixed point theoremst

We wish to consider the solution of equations of the form x=Tx in a
variety of types of applications. For example, an inhomogeneous jntegral
equation f(x) =g(x) + [ K(x,y)f(y)dy is of the form f=Tf with
Tf =g + Kf, an affine linear map. The famous ‘‘bootstrap™ equations
proposed in particle physics are of the forms S = T(S) where S is the
S matrix and Tis a very complicated operator. A Lorentz invariance condition
on vacuum expectation values takesthe form

Wo(xy, ..., Xa) = Wi (Axy, ..., Ax,)

where A is a fixed Lorentz transformation.

We want to discuss a variety of existence theorems for such equations
—so-called fixed point theorems—and in Section V.6 we discuss some
applications. We study them here because several of them are stated quite
naturally in the language of locally convex spaces. We first consider *‘ non-
linear”’ theorems, that is, theorems that make no assumptions on the linearity
of the map T involved, and then one simple theorem which employs
linearity.

Definition Let T: X —» X be a map on a set X. A point x € X for which
Tx = x is called a fixed point of T.

The first nonlinear theorem is very simple and is probably familiar to the
reader:

t A supplement to this section begins on p. 363.
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Definition Let ¢S, p> be a metric space. A map T:S — S for which
p(Tx, Ty) < p(x, y) is called a contraction. If there is a K <1 for which
p(Tx, Ty) < Kp{x, y), Tis called a strict contraction.

Theorem V.18 (contraction mapping principle) A strict contraction on
a complete metric space has a unique fixed point.

Proof First, let us prove uniqueness. If Tx = x, Ty =y, then p(x, y) =
p(Tx, Ty) < Kp(x, y). Since K < 1 and p(x, y) = 0, we conclude p(x, y) =0,
i.e. x = y. To prove existence, we first note that T is automatically continuous
since p(x, y) < K~ 'e implies p(Tx, Ty) < ¢. Now, let x, be arbitrary and
let T"x, = x,. We will show that {x,} is Cauchy.

p(xn’ xn+1) = p(Txn~l’ Txn—z) < Kp(xn—l’ x—Z)
S K?p(xy-2 Xn-3)

< < K" 1p(xy, Xo)
Thus if n > m,

Pxns Xm) < Y plxj, %;-)) < K™(1 — K) " 'p(x0, %) >0 as m— o0
j=m+1
Thus {x,} is Cauchy, so x,— x for some x. Since T is continuous, Tx =
lim Tx, = lim x,,, = x which proves the theorem. |

The second theorem is much more difficult to prove and we have no inten-
tion of proving it here (see the notes); it generalizes the Brouwer fixed-point
theorem which says that a continuous map of the closed unit ball in R” into
itself has at least one fixed point, a theorem which is already quite deep.

Theorem V.19 (Leray-Schauder-Tychonoff theorem) Let C be a non-
empty compact convex subset of a locally convex space X.Let T: C— Cbea
continuous map. Then T has a fixed point.

As preparation for our last general fixed point theorem, we will prove
Theorem V.19 in one special case (see the lemma below).

Definition Let X and Y be vector spaces, C a convex subset of X. A
map T: C— Yis called an affine linear map on C if

Tix+ (A —=-0)y)=1tTx+ (1 — Ty
forallx,yeCandallO<t< 1.
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Unlike the case of linear functionals on subspaces, continuous affine
functionals on convex sets may not have continuous extensions to all of X
(Problem 49).

Lemma  Let T be a continuous affine map of C into itself where C is a
compact convex subset of a locally convex space X. Then T has a fixed point.

Proof Let
| A
Xy = — Z T‘Xo
ni=o

where x, is picked in C. Since C is convex, each x, € C. Since C is compact,
some subnet x,,, converges to a limit x. We wish to show Tx = x. By the
Hahn~Banach theorem, it is enough to show £(Tx) = £(x) for any £ € X*.
Since C is compact, sup,.¢ |£(x)| = M, < o for any fixed £. Thus

/(l T"xy — —l— xo)
n n

2
[&(Tx, — x)| = s;M,—»o as n-»

As a result £(Tx — x) = limg (T X0y = Xnay) = 0. |

The last fixed-point theorem that we consider deals with a whole family of
maps:

Definition A family of maps & from a set X to itself is said to possess
a common fixed point if there is an x & X so that Tx = x for all Te &#.

Theorem V.20 (Markov-Kakutani theorem) Let & be a family of
commuting continuous affine maps of C into itself where C is a compact
convex subset of a locally convex space; that is, 7Sx = STx forall S, Te &
and x € C. Then & has a common fixed point.

Proof For each finite subset F< &, let fr={xe C|Tx=x for all T € F}.
Since the T are all continuous, each fr is closed and clearly fr, N fp, =
fr, o r,- Thus, if we can show each f; is nonempty, ()¢ /r # & by the f.iip.
criterion, so there is an x with Tx=x for all Te #. Since the Te &
are affine linear each fr is convex. x € fr implies Sxe€fr for each Se F
because T e F implies T(Sx)= S(Tx)= Sx when Tx=x. Since f; is
convex, compact, and S: fr— f5, there is an x € fy with Sx = x, that is,
frows # D if fr# &. By induction, each f is nonempty so (\f fr # .
As remarked above, this implies & has a common fixed point. |
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In Chapter XIV, we return to the special properties of compact, convex
subsets of locally convex spaces; in particular, in Section X1V.6, we extend
Theorem V.20 to a variety of noncommutative cases (see also Problem 50).

V.6 Applications of fixed point theorems

A. Ordinary differential equations

Let F be a continuous function from R x R* to R". We are interested in
solvirig the differential equation y = dy/dt = F(t, y) with initial conditions;
i.e. given yoe R", we want to find a continuously differentiable function,
y(©), on R for which y(0) = yy and y(t) = F(t, y(1)) for all te R. We will
discuss how the fixed point theorems of Section V.5 can be applied to prove
the existence of local solutions, that is, given y,, we will find é and a function,
y(t) on (=46, &) obeying y(0) =0 and y(t) = F(t, y(t)) for all [t| <& We
remiark that a pth order equation y® = F(t,y, y,..., 7% ") on R* can be
translated into a first-order equation on R*? by letting Y be the column
vector

y )1 yVa

y yf and solving Y = y:3

*
i
1]

y(p..l) Yy F(‘, yl,---,)’p)

Differentiation makes functions less smooth—it cannot usually be defined
as a map from a space to itself unless the space contains only C* functions.
Integration is a much smoother operation—it takes continuous functionson an
interval into themselves. Therefore, it is useful to rewrite the differential
equation in integral form:

YO = yo + [ FG.y6) ds (V.6

1t is easy to see that a continuous function y(t) on (-39, 8) obeys (V.6) if and
only if it is a local solution of y(1) = F(t, y(t)) with the initial condition
y(©) = y,.

Thus given y, and 8, we consider the map G: C[- 4, 8] - C[—9, 8], on the
continuous functions from [—4, J] to R", given by

(G = yo+ [ Fls,9(0) ds
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Solving (V.6) is equivalent to finding a fixed point of G!

Consider, first the case where F is Lipschitz continuous; that is, given y,,
thereisa K, 8, and e so that {ly — yoll <, |t| < dimplies |IF(y, £} — F(z, )li<
Klly =zl if |lz — yoll <& |-|| denotes the Euclidean norm on R". By
shrinking & we can be sure that

d max |IF(t, pli<e and 0K <%
<

tf <8
iy—yoli<e

Now, let
S={geC[-4,8]|llg(t) — yoll < %&, V1€ (-4, 6)}.

S is a complete metric space under ||-||, and é max||F(t, y)|| <¢ implies that
G(g)e S if ge S. The conditions K < { and ||[F(y, 1) — F(z, ]| < Klly — z||
imply [G(g,) — G(92)llw < $ll91 = 92llw> If 91,92€S. Thus G is a strict
contraction on S, so there is a unique g € S which satisfies (V.6) by Theorem
V.18. It is not hard to see that any solution of (V.6) must obey {|g(t) — yoll <
4¢ for ¢ small and so must agree with the unique solution in S when ¢ is
small. In this case, we thus prove local existence and uniqueness.

Now suppose F is merely continuous. Given y,, pick é so that

max |F(t,y)] <é7!
1y piss
Let
Co={g€C[-6,6]| llg(t) — yoll < 1, Ve (-4, 8)}

Then G(g) € C,, if g € Cy. Actually, more can be said; let
Ci={geCol lg®) —g®N < [t—s| max  |F(Q, y)|, Vt,s€ (-6, 6)}

rj<s
ly—yoll <1
Then g e C, implies G(g) e C,. Thus G:; C; = C,. G is continuous and C,
is convex and compact by equicontinuity arguments. Thus G has a fixed point
by Theorem V.19.

Notice that the second method gives existence of local solutions, but not
uniqueness also. In fact, when F is continuous but not Lipschitz, uniqueness
may not hold: for example, if F(t, y) = 2\/— , the equation y = 2f ,
y(0) = 0, has the two solutions, y(f) =0 and y(t) = 1, which differ in any
neighborhood of ¢ = 0. The compactness of C; depends on the finite dimen-
sionality of R" where the unit ball is compact. However, the contraction in
the Lipschitz case does not use compactness and thus goes through imme-
diately for ordinary differential equations for functions with values in a
Banach space.

The question of when local solutions can be continued to global solutions
is much touchier.
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B. Haar measure on commutative compact groups

One can use the Markov-Kakutani theorem for an easy construction of an
invariant measure on a compact abelian group. Let G be a compact topo-
logical space which is also an abelian group and suppose that all the group
operations are continuous. We wish to construct a measure u € 4, ,(G) so
that § fdp ={f, du for any g € G and fe C(G) where f, is the translate of
f:fh)=f(h—g). Forany ue 4, (G),let T, pubedefined by T, u(f) = u(f).
Then T,: #, (G)— #.,, ,(G) and is continuous in the vague (weak-*)
topology. .# ; , is convex and is compact by the Banach-Alaoglu theorem.
The various T, commute since G is abelian. They are affine, so Theorem V.20
implies the existence of a common fixed point py,,, with the desired invariance
property. In this case the fixed point theorem implies existence; uniqueness
must be proven by a distinct argument.

C. Bootstrap equations

Without going into details, either technical or physical, we will describe an
application of the Leray-Schauder-Tychonoff theorem to proving the con-
sistency of certain bootstrap schemes.

In order to describe the bootstrap idea, let us fall back on potential scatter-
ing where there are fewer complications. Consider the scattering of two equal
mass particles. Since the total momentum P is conserved and we will suppose
that all forces depend only on the relative position of the particles, we can
describe the scattering in a coordinate frame where P = 0 (see Figure V.2).

pnre————
A Py=-P, FIGURE V.2 Scattering when P =0.
F=-P,

For simplicity, we take m =4 where m is the mass of the particles. The
natural variables in the nonrelativistic case are the energy E = P} = P? and
the scattering angle 8, but for the proper relativistic correspondence, we take
instead s = 4F and the momentum transfer t = —(P; — P,)*> = 2E(cos 8 — 1).

In quantum mechanics, scattering is basically a wave phenomenon and is
thus described by the magnitude of the scattered wave and its phase relative
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to the incident wave; that is, by a complex number A, (s, 1), the scattering
amplitude discussed in Section XI1.6. It is defined in the region E >0,
—1<cosf <1, or equivalently 0 < s < 00, —5s <t <0. As we shall see in
Section X1.7, for a large variety of potentials the amplitude A,,(s, 0) is the
boundary value of a function analytic in the cut s plane (Figure V.3). In

¢
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FiGURE V.3 The curve C in the cut s
plane.

general there may be poles along the negative axis which we ignore for
simplicity. Thus, Agy,s(s.0) =1lim,,, A(s + ig, 0) = A(s +i0,0) for some
analytic function in {s|arg s # 0}. Moreover, A(s, 0) is real for s <0, so the
Schwarz reflection principle implies that the physical amplitude obeys

1
Im A(s +i0,0) = % [A(s + i0, 0) — A(s — i0, 0)]
i
Suppose, again for simplicity, that A(s, 0) — 0 at infinity. In general, this
is false and one must modify the argument below by what is known as making

subtractions (see Section XI.7). Then, by the Cauchy integral theorem,

ds

1 A(s, 0)
A(sy, 0) = —
(%0, 0) 2ni §c 5— 5

where C is the contour in Figure V.3. If we now make the large circle bigger
and bigger, it will make no contribution since we assumed A(s,0)— 0 as
s — oo. By shrinking the straight sections to the real axis, we find

I ¢ D(s, g =0
A, to=0)== | Dito=0) o

, p— (V.7a)

where D(s, tq = 0) = (1/2i)[A(s + i0, 0) — A(s — i0, 0)] = Im A(s + i0,0) is
the ‘* discontinuity ™ of 4.

This *“ dispersion relation” (V.7a) can be proven to hold with ¢ = ¢, for
all real positive t, for a small class of potentials. This class includes sums of
Yukawa potentials which are thought to be the nonrelativistic analogues of
nuclear forces. Moreover, in that case, for s, fixed, D(s,, ) is the boundary
value of an analytic function in a plane cut from t = a(s) to 0. o(s) is a
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function depending on the potential which is explicitly known and is called
the Mandelstam boundary. We can write a dispersion relation for D

D(s, to) =—1- ? Mdt
LELTOR B It
where p(s, £) = 2i)"'[D(s, t + i0) — D(s, t — i0)] is called the ‘“double
spectral function.”

Putting our two dispersion relations together, we obtain the ‘“ Mandelstam

representation’” for 4

o ® ! ¢

A, )= — [as [~ ar _A.1)
nJe asy (=)' —1)
This linear relation is essentially a statement of the analyticity properties of A.
The second element of the bootstrap scheme is the ‘‘unitarity of the
S matrix.”’ Let us temporarily revert to the (E, 8) variables and write A(E, 0)
for the amplitude at s = 4E; t = —2E(l — cos §). Unitarity is an expression
of the fact that as many particles should leave the scattering region as enter it.
Put differently, the number of particles scattered out of a beam must be the
number lost from the beam (for a deeper discussion, see Section X1.4).
Quantum mechanically, the decrease in the number of particles in the beam
is due to interference between the scattered wave and the unscattered wave.
This interference is proportional to Im A(E, 0) while the amount scattered
out of the beam is proportional to | 4]%. Thus, one finds the nonlinear relation

(V.7b)

Im A(E, 0) = chA(E, 9)|2 dQ

where ¢(E) is a function of E dependent on normalization of 4 and dQ is the
angular measure on the sphere. One can extend this relation to nonzero 0 and
thus obtain a nonlinear integral relation between D(s, t) and A(s’, t') (quadratic
in A4). By taking the discontinuity of D and using the Mandelstam representa-
tion for A one finds the relation

p=T(p)

where Tis an explicit but complicated function of p. If p obeys p = T(p) and
has the proper decrease to make certain integrals converge, then one can
show that A defined by (V.7b) obeys unitarity. Thus, the existence of A(s, 1)
with the right analyticity and unitarity properties is equivalent to the existence
of fixed points of T. Of course, in the nonrelativistic case, one knows that such
p exist since one can show that the scattering amplitude for a superposition
of Yukawa potentials has the right analyticity and unitarity properties.

In the relativistic case, for example, n°n° scattering, there are two addi-
tional complications:
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(i) Crossing symmetry Replace the momenta p,, p, in Figure V.1 by

the energy-momentum four-vectors p; =<{/u® + p2, p;> where u is the mass
of the pion. Given a four-vector a = (a,, a), we define a® = a3 — a?; for
example, p? =p?, an expression of the relativistic energy-momentum
relation. Now one defines the Mandelstam variables, s= (p, + p;)* =
4(p* +u®) if p is the center of mass momentum, t=(p, —p;)’ =
s —4p*)cos@—1) and u=(p, —py)* = i(s — 4pu*)(—cos0—1). Of
course, s, t, and u are not independent for s + ¢ + u = 4u%. Crossing symmetry
expresses a deep fact of relativistic quantum theory, namely that the analy-
tically continued amplitude for say n°z° —» 2°n° is a symmetric function of
s and ¢, and a symmetric function of s and ¥ when the change of variables
(s, t) = (s, u) is made by using u = 4u*> — s — t. This automatically implies
additional branch cuts in the domain of the function A(s, t). For example,
analogous to the cut in the domain of the nonrelativistic amplitude, running
from E=0 to E = o0, is a cut in A(s, 0) running from s = 4u® to 5 = co.
Crossing symmetry implies that there must also be a cut running from
u =4y’ to u = oo, or equivalently, since t =0, from s =0 to s = — c0. The
analogue of nonrclativistic Mandelstam analyticity is then expressed by the
relativistic Mandelstam relation

@©

1 =]
Also, 10) = > L ds | diotsn
i o(s

1 1
X +
[(s — Solt — 1) (s — o)t + S¢ + to — 4u?)

1
* (s + So + to — 4>t — to)]

In this formula

) = in{ 4s 16s }
sy=m s—16p%" s — 4p?
and p must obey p(s, t) = p(t, 5). The last two terms are just
p(s, u) p(t, u)
— and —_—
(s — so)u — uy) (£ — to)(u — up)

after change of variable. This Mandelstam relation is just the expression of
crossing symmetry plus certain analyticity properties.

(it) Inelastic processes It is characteristic of relativistic systems that if
there is sufficient energy available, large numbers of particles can be produced.
For example if s> 16u?, the reaction n° + 7% -7+ 7% + 2% +n° is
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possible. Unitarity comes from a connection between the interference of the
scattered and unscattered waves and the total amount scattered in all pro-
cesses. It thus gives a relation between an A(s, 0) and a sum of terms, one of
which comes from n° + n° —» #° + n° Even when 4u? <« < 1642, an in-
elastic process n° 4+ n° - n* + n~ is possible. A complete treatment would
require consideration of all the = + n — n + = amplitudes. For simplicity we
consider a model when there are no n* and =n~. Unitarity is thus a nonlinear
equality on 4 only when 4p? < 5 < 164>,

The “ bootstrap hypothesis’’ of Chew and Mandelstam is the philosophical
idea that there is only one set of amplitudes for all processes with the *‘ usual”
analyticity properties and which obey all the unitarity equations (coupling
various processes). In practice, one approximates the equations, for example
by replacing the coupled unitarity equations with inequalities when s > 16u®
as we have done above. Whether one accepts the bootstrap philosophy or
not, the various bootstrap equations are of interest since they can be viewed
as an expression of the constraints placed by unitarity, crossing symmetry, and
analyticity on the amplitude. Even if these do not determine the amplitude
(and we do not subscribe to the bootstrap philosophy), they do put scvere
restrictions on the amplitude. In fact, it is not clear, a priori, that any functions
A(s, t) exist which obey the requisite analyticity and crossing symmetry,
elastic unitarity if 4u < 5 < 1642, and the unitarity inequalities for 16u® < s.

The existence of such functions has been established by Atkinson in a
beautiful application of the Leray-Schauder-Tychonoff theorem. The basic
idea of the proof is the following. One seeks a function p(s, t) to put into the
Mandelstam representation. If 4 obeyed elastic unitarity everywhere, one
would have

p(s, 1) = (T=p)(s, 1)

where T is a complicated nonlinear map. Since elastic unitarity is only
obeyed in certain regions, one has this equality only in certain regions of the
s-t plane. In general p(s, ) = (Tp)(s, t) + v(s, t) where setting v =0 in
certain regions is equivalent to elastic unitarity. If v obeys certain other
conditions, any solution of p = T + v obeying certain integrability condi-
tions yields an A obeying elastic unitarity in 4u®> < s < 16u? and the inelastic
unitarity inequalities in s> 16u%. Thus, the existence of solutions of these
approximate bootstrap equations would follow if p = Tp had a solution with
Tp = T*p + v. What Atkinson does is to construct a convex set S, , depending
on v, of uniformly bounded, equicontinuous functions which is compact in the
II*llo topology and so that T: S — S and is continuous. The Leray-Schauder—
Tychonoff theorem then provides the existence of solutions of of the approxi-
mate bootstrap equations.
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D. Determining the phase of the scattering amplitude

According to quantum scattering theory (see Chapter XII), the *“differ-
ential ” scattering cross section at fixed energy is given by a function

D) = |F(6))?

where F(9) is a complex-valued function of the scattering angle 8. At energies
where there is only elastic scattering, F must obey the nonlinear “ unitarity
relation”

Im F(6) = [F(8,)F (6,) sin 6, b, do,

where 68, is the function of 6, 8, and ¢, determined by the spherical geometry
in Figure V.4. z, = cos 8, is given in terms of z =cos 8, z, = cos 8,, and
¢, by

2y =2z, + (1 = 2)V2(1 - 252 cos @,

FIGURE V.4 The angle 8,.

In experiments, one measures D(6) while F(6) is of great theoretical interest.
There are two questions one immediately wants to ask: (1) Does the unitarity
relation place any restrictions on the possible functions D(6) which come from
functions F obeying the unitarity relation. (2) Given D(8), is F determined by
the condition |F(6)] = | D(6)]"/? and the unitarity condition. The reader
should realize by now that these questions are really the existence and
uniqueness aspects of a single question.

Introduce the variables z; = cos 6;. Let K(z,, z,; z) be the Jacobian of the
transformation from <z, ¢,) to (z;,2;). Let B(z) = | D(6)|"/* be given
and write the putative F(0) = B(z)e™*®. Then

B(z,)B(z,)

1
sin @(z) = f_l J.—xK(z“ 235 Z)—_BG)_—

e~ Ho(z)~o(z2)) dZ, dzz
or (V.8)

B(z,)B(z,)

o(2) = sin"[f K(z,, z3; 2) e

coslp(z,) ~ 9(z2)] dz, dzz]



V.6 Applications of fixed point theorems 161

Let
B(z,)B(z5)
B(z)

Suppose M < 1. Then for any continuous function ¢(z) on [—1, 1] the
function & ¢ given by

M = [[1KGy, 22 ) =5 ="2dz, dz,

B(z,)B(z5)
B(z)

is well defined. Question (1) has a positive answer if and only if # has a
fixed point. (2) is related to uniqueness as follows: Let u = sin~'(M). First
note that if the branch of sin™! with —n/2 < sin™! x < /2 is chosen, & takes
the functions ¢ on [—1, 1] with [l¢ i, < u into themselves. Also, if ¢ satisfies
(V.8), is continuous, and |@(0)| < #/2, then llpll, < u. Finally, we remark
that ¢(z) satisfies (V.8) if and only if $(z) = n — ¢(2) satisfies (V.8). Thus
& @ = ¢ has exactly two solutions if and only if there is only one solution with
lo(2)| < uforall z.
If M < 0.79, Martin has shown that & is a contraction on

F o) =sin™!|[[ Kt 2232 coslo(z,) - 9(z0) dz, dza

{o| l¢ll, < u; ¢ continuous}

with a suitable metric. This implies uniqueness and existence. For the general
M < 1, existence (but not uniqueness) has been shown by an application of
the Leray-Schauder-Tychonoff theorem.

E. Existence of correlation functions at low density

Finally we will briefly discuss the application of a very simple fixed-point
theorem to statistical mechanics. The theorem is (Problem 51):

Theorem V.21 Let K be a linear map of a Banach space onto itself with
K|l < 1. Then, for any g, f=g + Kf has a unique solution f= Y =, K"
Let K,, be a sequence of such maps so that ||K,, — K||- 0 and |iK,|| < I. If

g,..—w,f,.. = Gm + Knfnand f=g + Kf, then f,, = /.

In equilibrium statistical mechanics, one introduces ‘‘ correlation functions,”
P(x1), p2(xy, X2), - - oy Pu{X4y + - o5 Xp), - . .. In the infinite volume limit, where the
boundary effects stop playing a role, p,(x, ..., X,) is the probability density
for finding particles at x,, ..., x,. Thus, for example, p,(x) should be a
constant equal to the density.

In a box A of finite size, elementary statistical mechanics gives an explicit
formula for the correlation functions pi*(x,, ..., x,; B, z) where B = (kT)"™!}
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spaces also has the Mackey topology (Problem 52a,d). In particular, the
spaces £(R" and Z(R") have the Mackey topology.

We return to the question of finding all dual (X, Y) topologies. A locally
convex topology J on X is called a dual-{X ,Y ) topology if the topological
dualof (X, I > is Y.

The basic duality theorem which identifies all dual topologies says:

Theorem V.22 (Mackey-Arens theorem) Let (X, Y) be a dual pair. A
locally convex topology  on X is a dual-(X, Y) topology if and only if

oX, V) e T X, Y)
Proof For the geometric proof, see the appendix to this section.

Thus the dual topologies are precisely those between the weak topology
and the Mackey topology (inclusive).

We have seen how to recover the norm topology on a Banach space X
in terms of the dual pair (X, X*>. How about the norm topology on X*? It
is not the 7(X*, X) topology unless X is reflexive, for the 1(X*, X) dual is X.
Clearly, the norm topology on X* is the topology of uniform convergence on
the unit ball in X and so we need a locally convex notion that singles out sets
contained inside balls. This need is met by the notion of bounded set. Before
defining this notion, we note:

Theorem V.23  Let E be a locally convex space with dual F. The following
are equivalent for a set A < E:

(a) Forany neighborhood, U, of 0 € E, 4 < nU = {nx|x € U} for some n.

(b) The polar of 4, A° (which we define in the appendix to this section),
is absorbing.

(¢c) For any continuous seminorm p on E, sup, . 4 p(x) < co.

(d) ForanyZeF, sup, 4 |£(X)] < 0.

Proof The equivalence of (a) and (c¢) and of (b) and (d) are essentially
matters of definition. Theorem V.4 says that (c) implies (d). So suppose (d)
holds and a continuous seminorm p is given. Let K, = {x € E|p(x) = 0} and
let E, be the vector space E/K,. Then p “lifts” to a norm on E,. Let = be
the canonical map of E—~E, and let A, = n[4]. It is easy to see that
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SUP, e 4 P(X) < o0 if and only if sup,. 4, p(x) < 0. Let E, be the completion
of E,. E, is a Banach space. Let £ € (E,)*. Then £ o n e E* so

sup |4()] = sup |(£ o m)(w)] <

xeA x

Thus by the Banach-Steinhaus principle, sup, ,, p(x) < co. |

Definition A set A < E, a locally convex space, is called bounded if and
only if one, and hence all, of the conditions (a)-(d) of Theorem V.23 hold.

Condition (d) makes it clear that the notion of boundedness is the same in
all {E, F)-dual topologies and is thus a notion associated most naturally with
a duality on E rather than a single topology on E.

Example 3 If X is a Banach space, 4 = X is bounded if and only if
SUp ,.4 lIxll < oo, which holds if and only if 4 is contained in some multiple
of the unit ball. Thus for any bounded linear map on X,

sup [[Tx|l < C,lTIl

xeA

Example 4 Let X be a strict inductive limit of spaces X, with X, a
proper closed subspace of X, .. If x, is a sequence with x, ¢ X, by using the
construction in the proof of Theorem V.17, we can find a linear functional,
¢ € X* with sup, £(x,) = c0. Thus any bounded set 4 = X must actually be a
bounded subset of some X,. Thus, for example, 4 = 2 is bounded if and
only if: (i) there is a compact K <= Q so that suppf< K when fe 4;
(i) sup e 4 1Dl < 0 foranyael}.

The first example tells us how to generalize the norm topology on X*:

Definition Let E be a locally convex space. Let F be its dual. The
strong topology, B(F, E) on F is the topology of uniform convergence on
bounded subsets of E; that is, the topology generated by the seminorms
{p.]|4 < E is bounded} where p ,(f) = sup,.. | f(*)].

Any o(E, F)-compact set C of E is bounded because the fe F are con-
tinuous functions on C. Thus the strong topology B(F, E) is stronger than the
Mackey topology.

We have found a topology B(F, E) only dependent on the dual pair {F, E)
so that the norm topology on X* is the B(X™*, X) topology when X is a
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is the inverse temperature, z = ¢#* is the fugacity, and yu is the chemical
potential. z is small when the density is low, i.e. when the system is a gas. One
goal of classical statistical mechanics is to prove the existence of

lim pM™(xy, ..., x,, B, 2)

A=
at least for small z and/or B, i.e., for high temperature and/or low density
where the system should be a gas, so there are no problems associated with
the presence of several phases. This can be accomplished by the use of
Theorem V.21. In a finite box, one shows that {p{*}=, obeys a system of
coupled integral equations (the Kirkwood-Salzburg equations):

®

PN =g (x) + X [dyy o dy K i oo 3 A0 90)
n=1

Px1 ey ) = G0, s KPS (X2 s X)

+ 3 [y dya K 6w v )

X P i (X1 ooy X3 Yin oo es V)
Introducing a vector p = (p,, ..., p,, .. .), these can be written schematically
pid) = g(A) | KA

It turns out that one can introduce a norm on the set of p so that K" is a
bounded operator. For small z and/or B, one has g4’ - g and K» =K in
the infinite volume limit, and all K™, K have norm less than one. By
Theorem V.21, p‘* converges in the limit of infinite volume to the unique
solution of the infinite volume Kirkwood-Salzburg equations.

With regard to these last three examples, we caution the reader against
thinking he has any real understanding of the technical details. We have tried
to explain in a vague sense how fixed-point theorems arise-——but all the hard
work is in the choice of ‘“ suitable ™ norms or spaces and the proofs of bounds
or continuity of maps. We have not considered these details at all.

V.7 Topologies on locally convex spaces:
duality theory and the strong dual topology

In this section, we want to consider relations among various locally convex
topologies on a vector space X. These topologies will not be used until
Chapter XIV but their study develops useful intuition and illuminates the
choice of topology on & and 2.
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Let X be a vector space and Y a space of linear functionals on X which
separates points; such a pair (X, Y) is called a dual pair. We already know
that X has a locally convex topology, o(X, Y), in which the topological dual
is precisely Y (Theorem 1V.20). We first want to ask what other locally convex
topologies on X produce Y as the topological dual.

Definition Let (X, Y) be a dual pair. The Mackey topology on X,
(X, Y), is the topology of uniform convergence on o(Y, X)-compact convex

sets of Y; that is, x,—i(ﬁﬁvx if and only if y(x,) —» y(x) uniformly as y runs
through any fixed o(Y, X)-compact convex subset of Y.

Alternatively, for each o(Y, X)-compact convex subset C of Y, define the
seminorm pc- on X by

pc(x) = sup |y(x)|
yel

The family of seminorms {p¢| C is o(¥, X)-compact convex subset of Y} on
X generates the ©(X, Y) topology. If C is compact, then

C=yllil<l,yeC}

is also compact (because {i| |A] < 1} is compact) and p¢c = ps. Thus, we

need only consider balanced, convex, (Y, X)-compact sets, C.
. . o . . (X.Y)
Since single points in Y are compact in the weak topology, if x¢~t—~»x,

then x,i'n-rx, that is, the weak topology is weaker than the Mackey

topology.

Example 1 Let X be a Banach space. Let X* be its dual space. We
claim that the 7(X, X*) topology is just the norm topology on X. For the
Banach-Alaoglu theorem (Theorem 1V.21) tells us that the unit ball, X%,
in X* is o(X*, X) compact, so
pxi(x)= sup |y(x)|
ye X,
is a Mackey seminorm. And, the Hahn-Banach theorem implies py:(:) = || llx.
On the other hand, if C <« X* is o(X*, X)-compact, then for any x€ X,
y+= y(x) is bounded on C so C < {y| |ly}l < m} for some m by the Banach~
Steinhaus principle. Thus pc(x) < m|lxlly. This shows that the Mackey
topology is generated by |*|lx.

Example 2 We will see in Problem 52 that any Fréchet space, X, has
the Mackey topology, ©(X, X*). And, any strict inductive limit of Fréchet
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Banach space. Given E, a locally convex space, we can form its dual E* and
put the S(E*, E) topology on it. The dual of E* in this topology is called the
double dual of E and is denoted by E** when it is given the B(E**, E*) topo-
logy. One can map E into E** by the standard duality map, p: E — E** by
p(x)(£) = £(x). This map is not always continuous (Problem 54). If it is a
topological isomorphism, we say E is reflexive, that is, E is reflexive if:

(i) The B(E*, E) dual of E* is E.
(ii) The B(E, E*) topology on E is the given topology.

The following criterion for reflexivity is often useful:

Lemma Let E be a locally convex space. Then E is reflexive if and only
if all of the following hold:

(a) Every o(E, E*)-closed, bounded set of E is o(E, E*) compact.
(b) Every o(E*, E)-closed, bounded set of E* is o(E*, E) compact.
(c) E has the Mackey (that is, 7(E, E*)) topology.

Proof 1t is not hard to see (Problem 55) that (a) holds if and only if the
B(E*, E) and t(E*, E) topologies are identical and (b) says the S(E, E*) and
1(E, E*) topologies are the same. Now, let E be reflexive. Since E = E*¥, the
B(E*, E) topology is a dual topology, so B(E*, E) < t(E*, E) by the Mackey—
Arens theorem. Since, t < B, B(E*, E) = ©(E*, E). Similarly, since the dual
of E is E* and E has the S(E, E*) topology, B(E, E*) = 1(E, E*) and E has the
Mackey topology. Conversely, let (a)-(c) hold. By (a), E = E** as vector
spaces since B(E*, E) = ©(E*, E) in that case, and the Mackey topology is a
dual topology by Theorem V.22, By (b) and (c), E has the B(E, E*) topology.
Thus E is reflexive. |}

Using this lemma, one can prove (Problems 56, 57) that:
Theorem V.24 The spaces #(R"), Dq, and 0, are reflexive.

In general, the Mackey topology on a space is much stronger than the weak
topology, so it is much harder for a set to be Mackey compact than weakly
compact. For example, the unit ball in an infinite-dimensional Banach space
is never norm compact (Problem 4) but it is weakly compact if X is reflexive.
Thus general theorems on compactness in the Mackey topology are parti-
cularly strong statements. A most useful one is:

Theorem V.25 In ¥(R"), 24, and 0p, any closed bounded set is com-
pact (in the usual Fréchet topology).
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Proof Let C « #(R) be closed and bounded. Since sup ;¢ lIf llo = E < o0,
|f(x) —f(»)]| <E|x—y| whenever feC. As a result, C is a uniformly
equicontinuous family of uniformly bounded functions. Similarly,

{x*D'f|fe C}

are uniformly equicontinuous and uniformly bounded. By the Ascoli theorem
and a diagonalization trick, any sequence in C has a convergent subsequence.
Since C is closed and the topology is metric, this proves that C is compact.
The proofs for #(R") and 0, are similar. For C < 2, we note that since C
is bounded, C =« C*(K) for some K and then use the above argument. |

A particularly useful consequence of this last theorem and Theorem V.8 is:

Theorem V.26 A sequence in &', @' or 0p converges in the weak
topology if and only if it converges in the strong topology.

Proof For &' and 0}, this follows directly from Theorems V.8 and Theorem
V.25. In the case of 9’, we notice that any bounded set C < 2 lies in Cg(K),
which is a Fréchet space and then apply Theorem V.8 and Theorem V.25, |

Even though Theorem V.26 is essentially a corollary to Theorem V.25, we
single it out as a theorem because it is very useful in applications, We caution
the reader to heed the word sequence. The theorem does not hold if *“ net™
replaces ‘ sequence.”

Appendix toV.7 Polars and the Mackey-Arens theorem

In this technical appendix, we prove the Mackey-Arens theorem by
introducing the machinery of polar sets:

Definition Let (E, F) be a dual pair. Let 4 = E. The polar of 4, A°, is
{feF| |f(e)] <1 Vee A}. If we want F to be explicit, we write (4)5.

Examples (1) Let 5 be a Hilbert space in duality with itself. If 4 is a
subspace, 4° = 4%,
(2) If Eis a Banach space and F its dual,

{x| Ixlle <k} ={p| Iyl < k™)

It is easy to prove the following simple properties of polar sets:
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Lemma1 Let <E, F) be a dual pair. Then

(a) A°is convex, balanced, and o(F, E) closed.
(b) If A<= B, then B° < 4°.

(€) A0, (24)° = |4 14"

@ (Us 4" = Na 42

Polar sets are simply related to duals:

Theorem V.27 Let E be a locally convex space and % a neighborhood
base at 0. Consider the dual pair, <E, E;",g), where E;",g , the algebraic dual, is
the set of all linear maps of E into C. Then the topological dual of E is
(Uvea U° where the polars are taken relative to E},.

Proof ¢ € E} is continuous if and only if |£(x)| < 1 for all x in some U € %,
i.e. if and only if £ € U° for some Ue %. §

Theorem V.28 (the bipolar theorem) Let E and F be a dual pair. Then
using the o(E, F)-topology on E, we have

E°° =a.c.h. (E)

where a.c.h.(E), the absolutely convex hull of E, is the smallest balanced
convex set containing E, that is,

a.c.h.(E) = {‘Z: Ay X,
n=1

N
Xp,oo X, € E, Y ol =1, N=12,...
n=1

and the closure is in the o(E, F) topology.

Proof Let E.=a.c.h(E). Clearly E < E°® and since (E°)° is convex,
balanced, and o(E, F)-closed, E; = (E°)°. On the other hand, if x ¢ E., we
can find £ € F with Re£(e) < 1 for ee E; and Re £(x) > 1 (Theorem V.4).
Since E. is balanced, sup,.g. |£(e)] <1 so £€E° But then |£(x)| > 1
implies x ¢ E°°. |

Lemma 2 The Mackey topology is a dual topology.

Proof We use Theorem V.27 to compute the t(E, F)-dual of E. The {ps} as C
runs through all ¢(F, E)-compact, absolutely convex sets of F generate the
©(E, F)-topology. Consider C < Fc E}j,. Since the restriction of the
o(E},, E) topology to F is o(F, E), C is o(E},;, E)-compact and so o(E},;, E)-
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closed in Ej,. Thus, by Theorem V.28, (C)g,,=C. But C°= {x| lpc(*)|
< 1}.The sets

{C°|C is a convex, balanced o(F, E)-compact subset of F}
thus form a neighborhood base at 0 € E for t(E, F). Therefore,

* ) = =
E; LC)(C)E.,, QC F

Lemma 3 (the Bourbaki-Alaoglu theorem) Let U c E be a balanced,
convex neighborhood of 0 in some (E, F) dual topology. Then Uy is a
o(F, E)-compact set in F.

Proof This is essentially a restatement of the Banach-Alaoglu theorem
(Theorem 1V.21); see Problem 58.

Lemma 4  Every dual topology is weaker than the Mackey topology.

Proof Let p be a seminorm on E in some given dual topology. We will show
that p =p. for some o(F, E)-compact, convex subset, C, in F. Let
U ={x||p(x)| < 1}. Then U is balanced, convex and o(E, F)-closed by an
application of Theorem V.4 (see Problem 20c). Thus, (U°)° = U by the double
polar theorem. Let C = U°® c F. By Lemma 3, C is o(F, E)-compact and it is
convex. By definition (U%)° = {x| |pc(x)| < 1} = U, so pc =p. |

We are now ready for:

Proof of Theorem V.22 Since the a(E, F) and t(E, F) topologies are dual
topologies (Lemma 2 and Theorem 1V.20) any 4 in between is aiso a dual
topology. By definition, o(E, F) is the weakest possible dual topology and
by Lemma 4, ©(E, F) is the strongest possible dual topology. |

NOTES

Section V.1 For general references on locally convex spaces, see: Chogquet's book
(ref. to Section IV.1); J. Kelley and 1. Namioka, Linear Topological Spaces, Van Nostrand-
Reinhold, Princeton, New Jersey, 1963; G. Kéthe, Topological Vector Spaces, Springer—
Verlag, Berlin and New York, 1969; A. and W. Robertson, Topological Vector Spaces,
Cambridge Univ. Press, London and New York, 1964; H. Schaeffer, Topological Vector
Spaces, Macmillan, New York, 1966.
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The Robertsons’ book is a delightful 154 page monograph, and of the remaining books
we find the translation of K&the's German classic the most readable. For those who like
problems, the Kelley-Namioka book has many, but it is not as superb as Kelley’s topology
book.

The first formulation of the Hahn-Banach theorem in terms of separating convex sets
is in S. Mazur, * Uber konvexe Mengen in linearen normierten Riumen,” Studia Math. 4
(1933), 70-84. The more modern form (Theorem V.4) is due to M. Eidelheit, ** Zur Theorie
der konvexen Mengen in linearen normierten Riumen,” Studia Math. 6 (1936), 104-111,
and S. Kakutani, * Ein Beweis der Satzes von M. Eidelheit itber konvexe Mengen,”’ Proc.
Imp. Acad. Tokyo 13 (1937), 93-94.

Locally convex spaces are topological vector spaces in which the Hahn-Banach theorem
holds and thus are spaces with large topological duals. The L? spaces, 0 < p < 1, serve as
examples of spaces without any continuous linear functionals; see Kéthe, pp. 156-158.

Section V.2  The term ‘‘ Fréchet space’ was coined by Banach in his classic book.
Theorem V.5 is a special case of a general theorem on the metrizability of uniform spaces;
see Kelley’s General Topology, pp. 184-190.

Sections V.3 and V 4. The theory of general and tempered distributions was first
formalized by L. Schwartz and is very well described in his classic: Théorie des distributions,
Vols. 1-1I, Hermann, Paris, 1957, 1959. The five volumes by Gel’fand and co-workers,
Generalized Functions, Academic Press, New York, 1964-1967, are also quite readable.
Informally, many of the notions were already discussed by Bochner, Friedrichs, and Sobolev
in the 1930s.

The treatment of renormalization of Feynman amplitudes mentioned in Section V.3 is
discussed in N. N. Bogoliubov and O. S. Parasiuk, ‘* Uber die Multiplikation der Kausalfunk-
tionen in der Quantentheorie der Felder,”” Acta. Math 97 (1957), 227-266; K.. Hepp, ** Proof
of the Bogoliubov-Parasiuk Theorem on Renormalization,” Commun. Math. Phys. 2 (1966),
301-326; and E. Speer, Generalized Feynman Amplitudes, Ann. Math, Study #62.

The nuclear theorem (Theorem V.12) is the starting point of a general discussion of spaces
in which such theorems hold. The theory of such nuclear spaces was first developed in A.
Grothendieck : ** Produits tensoriels topologiques et espaces nucléaires,” Mem. Amer. Math.
Soc. No. 16 (1955). See also Schaeffer (ref. to Section V.1), pp. 92-107, Gel'fand, Vol. 4,
and F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New
York, 1967.

The discussion in Appendix V.3 follows that in B. Simon, ** Distributions and Their
Hermite Expansions,” J. Marh. Phys. 12 (1971), 140-148. A representation of & by entire
functions which also allows a proof of the nuclear theorem is discussed in the paper of
V. Bargmann: ““On a Hilbert Space of Analytic Functions and an Associated Integral
Transform; I1: A Family of Related Function Spaces. Application to Distribution Theory,”
Comm. Pure App. Math. 20 (1967), 1-102.

The notion of inductive limit was first discussed systematically by the French school of
L. Schwartz, J. Dieudonné, and A. Grothendieck. There is a generalization of the notion of
strict inductive limit which only requires that the injection X, - X, ,, be continuous (rather
than continuous and open). In addition, in defining this ‘* inductive limit,” the indexing set
may be any directed set. For additional discussion, see Kthe, pp. 215-233, and Robertson
and Robertson, pp. 76-100, 127-130. In particular, (d) of Theorem V.15 is proven in the
Robertsons’ book, p. 128.
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For additional discussion of weak solutions of partial differential equations the reader
may consult the following (listed in order of increasing sophistication required): 1. Stakgold,
Boundary Value Problems of Mathematical Physics, Vol. 1 and 2, Macmillan, New York,
1968; A. Friedman, Partial Differential Equations, Holt, New York, 1969; S. Agmon,
Lectures on Elliptic Boundary Value Problems, Van Nostrand-Reinhold, Princeton, New
Jersey, 1965; L. Hormander, Linear Partial Differential Operators, Springer-Verlag, Berlin,
1963,

Section V.5 For a general discussion of fixed point theorems in nonlinear contexts,
see T. L. Saaty and J. Bram, Nonlinear Mathematics, McGraw-Hill, New York, 1964, or
M. A. Kransnosel'ski, Topological Methods in the Theory of Nonlinear Integral Equations,
Pergamon, New York, 1964. Of particular interest are attempts to apply notions from alge-
braic topology to infinite dimensional spaces; see A. Granas, Introduction to Topology of
Function Spaces, Univ. of Chicago Math. Notes, 1961, or J, Cronin, Fixed Points and Topo-
logical Degree in Nonlinear Analysis, Amer. Math. Soc., Providence, Rhode Island, 1964.
The proof of Theorem V.19 may be found in N. Dunford and J. Schwartz, Linear Operators,
Vol. 1, pp. 453-457, Wiley (Interscience), 1957. The deepest part of the theorem relies on
Brouwer's theorem on the closed unit ball—an ** analytic proof” of the theorem can be
found on pp. 468-470 of Dunford-Schwartz. For a more ‘‘ natural®’ algebraic topological
proof, see any text on homology theory, e.g. P. Hilton and S. Wylie, Homology Theory,
Cambridge Univ. Press, London and New York.

That the Brouwer theorem extends to some infinite dimensional spaces was first noted by
G. D. Birkoff and O. D. Kellogg, ‘‘ Invariant Points in Function Space,”” Trans. Amer. Math.
Soc. 23 (1922), 96115, In two papers, J. Schauder, ** Zur Theorie Stetiger Abbildungen in
Funktionalriumen,” Math. Z. 26 (1927), 47-65, 417-431 ; ** Der Fixpunktsatz in Funktional-
rdumen,” Studia Math. 2 (1930), 171-180, the case where X is a Banach space was proven.
The general theorem was proved by A. Tychonoff, * Ein Fixpunktsatz,” Math. Ann. 111
(1935), 767-776.

The Markov-Kakutani theorem was first proven in A. Markov, ** Quelques théorémes
sur les ensembles abéliens,”” Dokl. Akad. Nauk. SSSR 10(1936), 311-314, using Tychonoff’s
theorem on products of compact sets. The proof we give is that given by S. Kakutani, ** Two
Fixed-Point Theorems Concerning Bicompact Convex Sets,” Proc. Imp. Akad. Tokyo 14
(1938), 242-245.

There is a rather large literature on additional fixed point theorems. For example E. Begle
“A Fixed Point Theorem,” Amn. Marh. 51 (1950), 544-550; H. Bohenhwst and S. Karlin,
*On a Theorem of Ville,”” in Contributions to the Theory of Games (H, W. Kuhn and A. W.
Tucker, eds.), Princeton Univ. Press, Princeton, New Jersey, 1950; F. Browder, ‘“‘Asymp-
totic Fixed Point Theorems,” Marh. Ann.185 (1970), 38-6i; S. Eilenberg and D. Montgomery,
*“ Fixed Point Theorems for Multi-valued Transformations,” Amer. J. Math. 68, (1946), 214~
222; K. Fan,““A Generalization of Tychonoff’s Fixed Point Theorem,” Marh. Ann. 142
(1961), 305-310; 1. Glicksberg, “‘A Further Generalization of the Kakutani Fixed Point
theorem with Applications to Nash Equilibrium Points,” Proc. Amer. Math. Soc. 3, (1952),
170-174; W. Horn, *‘ Some Fixed Point Theorems for Compact Maps and Flows in Banach
Spaces,” Trans. Amer. Math, Soc. 149 (1970), 391-404; S. Kakutani, ‘A Generalization of
Brouwer’s Fixed Point Theorem,” Duke Math.J. 8 (1941), 457-459; J. Leray, ** Théorie des
points fixés, indice total et nombre de Lefschetz,”” Bull. Soc. Marh. France 87 (1959), 221-
233; R. Nussbaum, ‘“Some Fixed Point Theorems,”” Bull. Amer. Math, Soc. 17 (1971),
360-365.
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Section V.6 For a discussion of the application of fixed point theorems to the theory
of ordinary differential equations, see L. Loomis and S. Sternberg, Advanced Calculus,
pp. 266-304, Addison-Wesley, Reading, Massachusetts, 1968, who also discuss an applica-
tion of the contraction mapping theorem to differential calculus (pp. 166-167; 230-234),
or C. Goffiman, " Preliminaries to Functional Analysis,” in Srudies in Modern Analysis,
(R. C. Buck, ed.), pp. 149-150, 153-154, Prentice Hall, Englewood Cliffs, New Jersey,
1962. Goffman gives a proof of our exisience theorem employing equicontinuity and the
Stone-Weierstrass theorem but avoiding the Leray-Schaudei-Tychonoff theorem.

We discuss the Haar integral in more detail in Chapter X1V. For its history, see the
notes to that chapter.

For a general discussion of the bootstrap philosophy, see G. Chew, The Analytic S-Matrix,
Benjamin, New York, 1966,

The Mandelstam representation was first proposed by S. Mandelstam in ** Determination
of the Pion-Nuclear Scattering Amplitude from Dispersion Relations and Unitarity, General
Theory,” Phys. Rev. 112 (1958), 1344-1360. In potential scattering, it was first proven by
R. Blankenbecker, M. L. Goldberger, N. N. Khuri, and S. A. Treiman, ‘ Mandelstam
Representation for Potential Scattering,” Ann. Phys. 10 (1960), 62-93. For additional dis-
cussion of the potential scattering case, see V. de Alfaro and T. Regge, Potential Scattering,
North-Holland Publ., Amsterdam, 1965.

The work of Atkinson which we discuss in Section V.6¢ can be found in D. Atkinson:
**A Proof of the Existence of Functions that Satisfy Exactly Both Crossing and Unitarity,”
I, 11, U1, 1V, Nucl. Phys. BT (1968), 375-408; B8 (1968), 377-390; B13 (1969), 415-436;
B23 (1970), 397412, For additional discussion of fixed point theorems applied to integral
equations in high energy physics, see C. Lovelace, ** Uniqueness and Symmetry Breaking in
S-Matrix Theory,” Commun. Math. Phys. 4 (1967), 261-302; J. Kupsch, ** Scattering Ampli-
tudes that Satisfy a Mandelstam Representation with One Subtraction and Unitarity,”
Nucl. Phys. B11 (1969), 573-587, or R. L. Warnock, ‘‘ Nonlinear Analysis Applied to S-
Matrix Theory,” Boulder Lectures in Theoretical Physics, 1968. pp. 72-86, Benjamin, New
York, 1969.

The work of Martin on determining the phase of the scattering amplitude from its magni-
tude and unitarity may be found in A. Martin, ** Construction of the Scattering Amplitude
from Differential Cross Sections,” Nuovo Cimento 59A (1969), 131-151. A discussion of the
Martin results and some of the Atkinson bootstrap results using only the contraction map-
ping theorem may be found in D. Atkinson, ‘‘Introduction to the Use of Non-Linear
Techniques in S-Matrix Theory,” Acta Phys. Austriaca Suppl. T (1970), 32-70. The first
person to use fixed point theorems to study the problem seems to be R. G. Newton in
“Determination of the Amplitude from the Differential Cross Section by Unitarity,”
J. Math. Phys. 9 (1968), 2050-2055. Examples of differential cross sections with non-unique
associated amplitudes (and M > 1 in the notation we use in Example (d)) are constructed in
J. Crichton, *‘ Phase-Shift Ambiguities for Spin-Independent Scattering,” Nuovo Cimento
45A (1966), 256-258.

Discussion of fixed-point theorems in statistical mechanics can be found in: D. Ruelle,
Statistical Mechanics, pp. 72-86, Benjamin, New York, 1969; J. Groenveld, * Two Theorems
or Classical Many-Particle Systems,” Phys. Lett. 3(1962), 50-51; O. Penrose, ** Convergence
of Fugacity Expansions for Fluids and Lattice Gases,” J. Math. Phys. 4 (1963), 1312-1320;
D. Ruelle, ¢ Correlation Functions of Classical Gases,”” Ann. Phys. 25 (1963), 109-1230; and
G. Gallavotti and S. Miracle-Sole, ‘* Correlation Functions of a Lattice System,” Commun.
Math. Phys. T (1968), 274-288.
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Section V.7 The notion of dual pair is due to J. Dieudonné and G. Mackey. The
Mackey-Arens theorem was first proven by G. Mackey, ‘* On Convex Topological Linear
Spaces,” Trans. Amer. Math. Soc. 60 (1946), 519-537, and by R. F. Arens, ** Duality in
Linear Spaces,”” Duke Math. J. 14 (1947), 787-794.

A space in which every closed convex, balanced, absorbing set is a neighborhood of zero
is called barrelled. By the Baire theorem, every Fréchet space is barrelled and, by an ele-
mentary argument, any strict inductive limit of Fréchet spaces is barrelled. A barrelled space
in which any closed bounded set is compact is called a Montel space. Thus Theorem V.25
says certain spaces are Montel spaces. Montel spaces are automatically reflexive (so Theo-
rem V.24 follows from Theorem V.25) and their duals are also Montel spaces when given
the Mackey (strong) topology. See Kéthe, pp. 369-372 for details. In particular, &’ and
2’ are also Montel spaces.

Often, the polar, 4°, is defined to be A°={fe Fl|Ref(e)= —1forallec 4}. f 4 is
convex and balanced, this agrees with the definition we gave. When A is a cone, this new
definition is much more useful. For example, with the definition in the text, the polar of
{fe C(X)|f= 0} is {0} while for the new definition, the polar is all positive measures.

PROBLEMS

1. (a) Prove that a locally convex space has a topology given by a single norm if the
topology is generated by finitely many seminorms.
(b) Prove that a locally convex space has a topology generated by a single norm if
and only if 0 has a bounded neighborhood.

2. Let X be an infinite dimensional locally convex space and X* its dual. Prove that no
o(X, X*)-continuous semi-norm is actually a norm; so seminorms are essential.

3. (@) Let {palae 4 be a family of seminorms so that some finite sum pq, + *** =+ p, is

actually a norm. Prove that {p,}, 4 is equivalent to a family of norms.

(b) Prove that any locally convex topology on R" is the usual topology. [Hint: Use
the equivalence of all norms on R” and the following construction: Pick a seminorm
P #0and let V) = {x|p,(x)=0}; dim V, <n— 1. If V; # {0}, pick x, € V; and
p250 p2(x1) # 0. Let V3 = {x{(p, + p2)}(x) = 0}; dim V3 < n—2; etc.}

(c) Let X be a locally convex space. Show that any linear functional on a finite di-
mensional subspace of X has a continuous extension to all of X.

(d) Prove that any finite dimensional subspace of a locally convex space is closed.

4. The purpose of this exercise is to prove that every locally compact, locally convex space
is finite dimensional.
(a) Let U be a compact neighborhood of 0. Show that one can find x,, ..., x, so that
U < [J7a:0x + $U) and thus a finite dimensional space, M, with U < M + }U.
(b) Prove that U< M + (3)™U for any m.
(c) Prove that U< M.
(d) Conclude that M= X = M.

5. Let X be a Banach space, X* and X** its dual and double dual. Let X, be the unit ball
of X and X#* the unit ball in X**, Prove that



174

t6.
7.

8.

i1,

12,

13.

14.

5.

V: LOCALLY CONVEX SPACES

@) X, is o(X**, X*) dense in X?¥*. (Hint: Use theorem V.6(c) on X* with the
o(X**, X*)topology.)
(b) X is reflective if and only if its unit ball is o(X, X*)-compact.

Prove the three propositions at the beginning of Section V.1.

Prove that the families {p{>’} and {pc} on Op are equivalent. (Hint: Use the Cauchy
integral formula integrated over an annular region.)

Let C be an absorbing subset of ¥ with txe Cif xe Cand 0 <7< 1. Let p be the
Minkowski functional for C. Prove that

(a) ptx) = tp(x) if t 2 0.

1) px +y) <p(x) + p(y)ifand only if forall v,ve Cand 0 <1 < 1, 1Qu+ ) e C.
©) p(Ax)= |A|p(x) if and only if for all u € C and A with |A] <1, Aue C.

@ {xlpx)< 1} € C < {x|px) < 1}.

. Prove Theorem V.2.
t10.

(a) Complete the proof of Theorem V.5.
(b) Prove the proposition following Theorem V.5.

Let A and B be absorbing sets with the property: If x € 4 (respectively B)and0 <1 <1,
then 7x € A (respectively B). Let p,, ps be their Minkowski functionals. Prove that
(@) ps<paifandonlyif t4 < Bforall 0 <t <1.
(b) pa~s=max(p., pa).
(€) paus=min(p,, ps).
In the theory of functions of several complex variables, one can have open sets 0, @'
in C* with @ <¢”, properly contained, but with the property that every function
analytic in @ has a continuation to @’. In that case, let K <@ be compact and let
K={ze€®||f(z)| <supwex|f(w)| for all f analyticin @’}. It is a useful theorem in
the theory that

U k=e

Kce
compact
(a) Show that Ul? ={" is implied by the equality of the topologies of uniform con-
vergence on compact subsets of & and compacts of €.

(b) Use Theorem V.6 to prove the equality of topologies mentioned in (a).

Let Z be a metric space. Let X* be the dual of a Fréchet space. Suppose that f: Z — X*
is continuous when X'* is given the o{ X'*, X)topology. Prove that it is continuous when
X* is given the (X*, X) topology. (Hint: Use Theorem V.8.)

If Z in Problem 13 is replaced with an arbitrary topological space, what happens to
the conclusion?

The purpose of this problem is to prove that every uniformiy convex Banach space (see

Problem 25 of Chapter 11! for the definition of uniformly convex) is reflexive.

(a) Let X be uniformly convex and let x, y € X, £ € X* Prove that, if {ixli= llyll = ¥}l
=1, Ref(x) > 1 — 8(¢) and Re 7/(3) > 1 — &(¢), then lix — y|l < &.

(b) Let X be uniformly convex, and suppose that {x,} is a net in X so that x, > x € X**
in the o(X**, X*) topology. Suppose that x = 1, "x,'| <1 for all a. Using (a),
prove that x, is -j-Cauchy.

(c) Prove that X = X** (Use Problem 5a.)



16.

17.

18.

19.

20.
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Remark : The theorem proven in Problem 15 is due to D. P. Milman, ** On some criteria
for the regularity of spaces of type (B)”, Dokl. Akad. Nauk SSSR 20 (1938), 243-246,
and B. J. Pettis, ‘A proof that every uniformly convex space is reflexive,” Duke Math,
J. 5(1939), 249-253.

(a) Let o € & and let ¢, be the function in & defined by ¢,(x) =@(x — y). Prove that
the map y —»g, is a C* function from R" to S (R") with D(p,) = (—1)*(D%),.
To say y =g, has derivative dg,/dy; as a function with values in & means

N &

lim |y — po| ™ [‘Py"‘Pro -2 I (@) (.V")’o))] =0

y-ye j=10y;
in the topology of <.

(b) Let Te &', Let p € &. Define T to be the function, T°(y) = T(gp,). Prove that
T*eC™,

(©) Let p,€ & with @,— 3 in the weak topology on &’. Prove that T°" — T for all
Te & in the weak topology on &".

(d) Prove that & is dense in &".

Let X and Y be locally convex spaces and let X*, Y* be their topological duals. Sup-
pose that 7: X — Y is linear and continuous. Define the adjoint 7’: Y* - X* by
[T'O*))(x) = y*(Tx). Prove that

(a) If X*and Y* are given the o(X*, X)and o(Y*, Y)topology, then T” is continuous.
(b) If X and Y are given the o(X, X*) and o(Y, Y*) topology, then T is continuous.
(c) If X* and Y* are given the ~(X*, X)and (Y*, Y) topology, then T"is continuous.

(Hint: use (b).)
(d) T takes bounded subsets of X into bounded subsets of Y.
(e) If X*and Y* are given the B(X*, X)and B(Y*, Y)topology, then T is continuous.

Let T: X— Y, locally convex spaces, with T linear and continuous. Put the weak

topology on both X* and Y* so that (X*)* = X;(Y*)*=Y.

(a) Prove that (T") = T in this case.

(b) Conclude that T is continuous from X to Y when they are given the +(X, X*) and
(Y, Y*) topologies.

(c) Conclude that T'is continuous from X to Y when they are given the (X, X*) and
B(Y, Y*) topologies.

Let T: X — Y locally convex spaces with T linear and continuous. Let T’ be the adjoint

map from Y™* — X*. Prove that

(a) T’ is injective if and only if Ran T= Y.

(b) Ran T’ = X* in the o(X*, X) or 7(X*, X) topology if and only if T is injective.

(©) Let ¢t & — & be the natural map of & into &, then ¢ is continuous when % is
given the (&, &) topology and &’ is given the o(¥”, &) topology.

(d) Prove v =:!

(e) Conclude «(¥) is dense in &’ in the 7(&’, &) and the o(¥”, &) topology.

Let X be a locally convex space, with dual X*.

(a) Prove that any closed subspace in X is o(X, X*) closed.

(b) Prove that all dual-(X, Y> topologies have the same closed subspaces.

(c) Let C be a closed convex subset of X. Prove that C is o(.X, X*) closed. (Hint: Use
the separation theorem.)
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t22.

t23.

24,

25.

26.

27,
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(d) Prove that all dual-<{X, Y topologies have the same closed convex sets.
(e) Do all dual-(X, Y) topologies have the same compact convex sets ?

Prove directly that 8’ (Example S of Section V.3) is in &’. Prove that §’ does not come
from a measure.

(a) Prove that

. X — Xo i
lim =P
e10 (X — xo)* + &2 (x—Xo)
in the weak topology on &,
(b) Let ¢, be a sequence of bounded functions on R 5o that fj,_ ., @a(x)dx — 0 as
n — oo for each ¢ > 0, ¢, (x) > 0, and j(p,,(x) dx = ¢ independent of n. Prove that

@, = cd(x — Xx,) in the topology of &".
(¢} Prove that

€
m——————— =md(x —
zl-?g (X d .\’(;)z “+ 82 " (X XO)

(d) Prove formula (V.4).

(a) Let Fe Oy . Prove that f— Ff is a bounded map of & into <.
(b) Let F be a measurable function so that Ffe & for all fe &. Prove that Fis C™,
(c) If f— Ffis continuous, prove that Fe€ Oy, .

Let Te & (R) with | T()| < C3 % pa0 Ixd/dx) M. Map & — CARID - @ CAR)
(n+1 times) by f— {f,f', ..., [ where C(R) is the Banach space of continuous
functions, f, with sup lIx*f 1l < oo for a =1, ..., n with norm fif["® =3 5.0 Xl .
Use the Hahn-Banach and Riesz-Markov theorems to prove that T can be written

=3 fbﬂ d
! ,Zo f s
where o, ..., tta are complex measures of polynomial growth.

(a) Let p be a polynomially bounded measure and let F(x) = [§ du; G(x) = j'; F(x) dx.
Prove that . = G” in the sense of distributions.
(b) Prove the regularity theorem for &’(R) using Problems 24 and 25(a).

By mimicking Problems 24 and 25, prove the local regularity theorem for 2’: Given
T e 2'(R™) and a compact set C < R*, there is a continuous function Fon Cand an
s0 that Tf = (—1)* | FOXD*f)(x) for all fe D(R") with supp f< C.

Let U, be translation by a as an operator on &'(R). Let d/dx be the derivative operation
on &’. Prove that (U, — 1)a~! converges pointwise in the o(%’, &) topology to d/dx.

(a) Prove that ¥(A) defined by Operation 4 in Section V.3 agrees with (V(A)p)(x) =
@(A~'x) if p € & is regarded as an element of .
(b) Show that the support of a function p€ & as a distribution is identical to

(x| p(x) # 0}.
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t29. (a) Let @ € #(R") with p(0) = 0. Prove that there exist {p,} € & with 0 ¢ supp ¢\ for

30.

31,

*32.

*33.

all k so that j[x*(gpx — @)l >0 for all x € /7 .
(b) Let p € F(R") with (D?@)(0) = O for all B € I with | 8] < m. Prove that there are
{gr} © & with O ¢ supp ¢ for all & so that {lx*D*(p, — @)llc =0 for all « € I and
B with |B| <m.
(¢c) Let Te #(R") with
TN sC mz;,m lix* Dff lloo

fal<n

Suppose that supp T = {0} and let p € & with D*@(0) = 0 for | 8] < m. Prove that
T(g) = 0.
(d) Let Te & (R") obey
Ire)| £C ‘f: Ix*D? - |l
1Blsm

latsn

Let supp T'= {0}. Find constants {Cp}(s <m SO that
T@) = \ 'Zs: (— 1Y Co(DPY)0)
’ "
for all € &. Hint: Pick 5 € &, identically 1 near 0 and let

xd
p=¢-—7 MZ B (D*Y)0)

1<m

{e) Prove Theorem V.11,

Let Fe 0,(R), Te ¥ (R). Let * denote the derivative on &’. By manipulating the
definitions of multiplication and ’, prove (FT) = F'T+ FT".

A map S: & — & is called local if supp Sp < Q whenever supp ¢ < . A map
S: & — & is cailed local if supp ST < §2 whenever supp 7 < 2.

(a) Let S: & — & be local. Prove that S’: & — & is local.

(b) Which of the operations 1-4 are local?

A distribution T € & is said to be of order at most » if
T <C I;s:nllx"b’cpll
18l sn
for some C and k. It is said to be of order at most n~ if for some fixed ;j and for any
D >0, there are k and C so that
IT(p) <D ¥ Ix*Dpli + C lZ lix*Dél|
ILIEY lalsk
18 =n Bisa~-1

We say T is of order n, if it is of order at most n, but not of order at most »~. We say
T is of order »~, if it is of order at most n~ but not of order at most n — 1.

(a) Prove that the renormalizations (1/x), . of Example 9 are of order 1 ~.

(b) Prove that any other renormalization of (1/x). has order not less than 1.

Prove that not every bilinear form on L*(R) (I <p < ) is of the form F(/, g) =
§ F(x, )f(x)g(y) dx dy for some F(x, y) € LY(R?).
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[Hint: If p>2, let F(f,g)=fG(x)f(x)g(x) dx for some GelL; 1/r+2p=1; if
1<p<2let F(f,g9) =f G(x — ) f(x)g(y)dx dy with Ge L", 1/r=2(1 — 1/p).}

Remarks. 1) The 1 < p <2 example suggested in the hint requires Young’s inequality
which we prove in Section IX.4.

2) The nuclear theorem is true for L'(R), that is, every bilinear form on L*(R) is of the
form F(f, g) = | F(x, ) f(x)g(y) dy for some F e L*(R?). It is an interesting exercise to
prove this from the Dunford-Pettis theorem which says: Let E be a separable Banach
space, T: E - L*(R). Then there is a measurable function g on R with values in £* so
that sup: g llg(x)l = IT] and [T(e)}(x) = [g(x))(e), a.e. x. For a proof of the
Dunford-Pettis theorem, see Tréves, (ref. to Section V.3) pp. 469—473.

Prove that a separately continuous multilinear form on F, X -++ X F,, is jointly con-
tinuous if all the F; are Fréchet spaces.

Extend the proof of the nuclear theorem in the appendix of V.3 to multilinear func-
tionals; explicitly, if B(f1, ..., fi) is a separately continuous k-linear functional on
FRM) x ++- x F(R™), thereis a Te F(R" ™) with

B(j‘lv'”)fk):T(fl@.“@fk)'

Provide the details of the proof of Lemma 2 in the appendix to Section V.3.
Complete the proof of Corollary 3 in the appendix to Section V.3.

Define 2, ,(R") = {f| fis a C* function on R" with all its derivatives in L*(R")}. Put
the seminorms {!{ ‘{le,o} On 2, (R"), where |Iflle,0 = 1D Il -
(a) Prove that 2, is complete.

t(b) Prove that C(R") is not closed in 2, ,, and find its closure.

Let &(R") = {f|fa C* function on R"}. For any integer mand « € 17, let
”f”(m).a = . slup I(Daf)(x)‘
Xism

Norm &(R") with {||"lim)..la €I}, mel,}.

(a) Prove that & is complete.

(b) Prove that the natural injection, «: 2 < & is continuous, so ¢’: & < 2’ in a natural
way.

(c) Prove that Te 2’ is in &’ if and only if T has compact support.

Prove that the natural map 2 < & is continuous and conclude that &’ < 2’ in a
natural way. Prove that &' < &,

Prove part (b) of Theorem V.15,

Extend Lemma 1 of the appendix to Section V.3 to prove that {||-lls, s, »} and {ll*lle, s, »}
are equivalent families for any fixed 1 <p < © if |flla. . » = IX*D*Fllepigny -

*(a) Prove that s, and s, are isomorphic, that is, there is a continuous linear bijection
with continuous inverse 77 s, —> 5, .
(b) Prove that (R") and S(R™) are topologically isomorphic.
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Prove that the norms {||-|ls} and {l|-lls; »} On s. are equivalent families if [la|f;, =

Z«(“ + 1] a.*.

Let X be a strict inductive limit of X, with each X, a proper closed subspace of X.
Suppose that {U,} is a countable decreasing family of neighborhoods of 0. Pick
xa € U\X,.

(a) Prove that {x,} is not bounded.

(b) Show that {x,} would be bounded if U, were a neighborhood base.

(¢) Conclude X is not metrizable.

(a) Suppose X is the strict inductive limit of spaces X,. Suppose {¥,} is an increasing
family of subspaces of X so that for any n, there is an N with X, < Yy. Prove that
X is the strict inductive limit of the ¥,.

(b) Let K < Q < R" with X compact and Q open. Prove that if 2 has a topology given
by some family {K,}, then the restriction of this topology to C§(K) is the one given
by the D%l norms.

{c) Prove that the topology on 2, is independent of the choice of the increasing
family K, of compact sets.

Let vy, ..., ¥, be coordinates on R". We say a distribution 7€ 2'(R") is independent of
Yi+1> .-+, Yo OF is & function of y,, ..., y« if and only if for any translation

77 TNPR] § 2V 75 g § 2T T PR o R A

UAk+ 1, ----anT‘_‘ T
(a) Let F be a measurable function on R* which is locally L!. Let 7 be the distribution
associated with the function F(y,, ..., ) on R" Prove that T is independent of
Yrsts ooy V-

(b) Let T be independent of yiyy, ..., Vu. Provethat(87/8y) =0if i=k +1,..., n.
[Hint: Look at Problem 27.})

() Let T be a distribution in 2(R?) which is only a function of x-cf = y,. Prove this
notion is independent of what independent coordinate is taken for y, .

(d) Let T be as in (c). Prove that (87/21) = — ¢(8T/8x) and that 8778t is also a distri-
bution which is only a function of x-ct.

(e) Conclude that

22 »?

E;T—Cza;T=o

Let T and S be commuting maps of a metric space into itself. Let fr = {x|Tx = x}.
(a) Prove that Sxefrif x€ fr.

(b) Suppose that T is a strict contraction. Prove that S has a fixed point.

(c) Let T" be a strict contraction for some n. Prove that T has a unique fixed point.

Let X = {{x.} € /2] |x,] <1/3%.

(a) Prove that X is a compact convex subset of I .

(b) Let f: X C be given by f(x) =3 =, 2"x,. Prove that f is a continuous affine
linear map on X.

(c) Prove that f has no continuous extension to all of £, .
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50. Suppose that G is a group with an abelian subgroup N so that G/N is abelian (for

S1.

example the family of rotations and translations of R?). Let C be a compact, convex

subset of a locally convex space X. For each g € G, let T,, an affine linear map of C

into C, be given so that T, T, = T,,.

(a) Let Cy = {x€ C|Tyx = x for all ne N}. Prove that Cy is compact, convex, and
nonempty.

(b) Suppose g1, g; are in the same coset in G/N. Prove that T, [Cy = T, [Cx.

(c) Prove that thereis xe Cwith T,x=xforalige G.

Prove Theorem V.21 directly.

52. A locally convex space X is calied a Mackey space or a bornological space if for any

33.

locally convex space Y, any linear map T: X — Y which takes bounded sets into

bounded sets is continuous.

(a) Let X be a Mackey space. Prove that it has the Mackey topology, 7(X, X*). (Hint:
Consider id: X - (X, 5.)

(b) Let x,—0 in a metrizable locally convex space. Prove that there exists {p.} € R
with p,— 0 so p,x,—0. [Hint: Let U, be a countable neighborhood basis,
Uns1 € U,. Pick 1, 50 n = n, implies x, € (1/k)Uy. Pick pa=k if my <n < ngyy.]

(¢) Prove that every metrizable locally convex space is a Mackey space. (Hint: Use (b)
and the fact that a convergent sequence is bounded.]

(d) Prove that a strict inductive limit X = UX,. with X, a proper closed subspace of
X1 is Mackey if each X, is Mackey.

(e) Prove that a strict inductive limit of Fréchet spaces is a Mackey space.

(f) Conclude that the natural topologies on &% and 2 are the Mackey topologies.

Let E be a locally convex space. Define the natural topology n(E**, E) on E** as

follows. Let % be the family of all balanced convex neighborhoods of 0 € E. For U e #,

let U be the E** polar of U° < E*. The U generate the natural topology. Prove:

(a) The natural topology is weaker than the B(E**, E*) topology. (Hint: Every U°
is bounded.) .

(b) The restriction of the natural topology on E** to E is the original topology on E,
that is, p: E—> (E**, %) is continuous and open.

(c) The inverse of the natural injection p: E—~ (E**, B> from Ran p to E is always
continuous.

54. Let E be a Banach space with the weak topology. Prove that the injection p: E—

135.

*56.

CE**, B> is never continuous if E is infinite dimensional.

Let ¢E, F) be a dual pair. Prove that every a(E, F)-closed bounded set of E is o(E, F)-
compact if and only if the 7(F, E) and B(F, E) topologies on F are identical.

(a) Let E be a Fréchet space. Prove that any o(E*, E)-closed bounded subset of E* is
o(E*, E)-compact. (Hint: Mimic the Banach-Alaoglu theorem, invoking the prin-
ciple of uniform boundedness at the crucial place.)

(b) Prove the conclusion of (a) when E is a strict inductive limit of Fréchet spaces.

+57. Combine Probiems 52 and 56 with Theorem V.25 to prove Theorem V.24.

158. Prove Lemma 3 in the appendix to Section V.7.
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59. Let {—a,al<R. Let @.x)=(2a)~V?exp(winx/a); n=0, +1, +2,.... Given

61,

fel*—a,a) let a,= (g, f). Prove that fe L*[—a, a}is in C§[—aq, a] if and only if
n*a, — 0 for all k(as n — ). Develop norm inequalities to prove that s and C§[—a, a]
are isomorphic. Prove that the closure of C§{—a, a} is in 2.

. (a) Let B(-, -) be a bilinear functional on C§[—a, a] which is separately continuous.

Prove that there is a Te C§([—a, a] x [—a, a])* with B(f, g) = T(f ® g) by mimick-
ing the appendix to Section V.3 and using Problem 59, )

(b) Let B(-, *) be a bilinear functional on 2, which is separately continuous. Prove
that there is a T€ @, with B(f, ) =T(f® g).

Prove that CP(R) is nonempty, that is, construct an explicit function of compact
support which is infinitely differentiable. Hint: First show that the function
£(x) = X0, »{x)e™ ¥ is C* where o, o) is the characteristic function of (0, ).
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I was at the mathematical school, where the master taught his pupils after a method scarce
imaginable to us in Europe. The proposition and demonstration were fairly written on a thin
wafer, with ink composed of a cephalic tincture. This the student was to swallow upon a
fasting stomach, and for three days following eat nothing but bread and water. As the wafer
digested the tincture mounted to the brain, bearing the proposition along with it,

Jonathan Swift in Gulliver's Travels

Vi1 Topologies on bounded operators

We have already introduced £(X, Y), the Banach space of operators from
one Banach space to another. In this chapter we will study £(X, Y) more
closely. We emphasize the case which will arise most frequently later, namely,
Z(H, H) = L(HK) where 5 is a separable Hilbert space. Theorem 111.2
shows that £(X, Y) is a Banach space with the norm

IT} = sup ITxIly
x#0 ”x”X
The induced topology on £(X, Y) is called the uniform operator topology (or
norm topology). In this topology the map <4, B)—BA of Z(X,Y)
x (Y, Z) - L(X, Z) is jointly continuous.

We now introduce two new topologies on (X, Y), the weak and strong
operator topologies. There are other interesting and useful topologies on
Z(X, Y), but we delay their introduction until we need them in a later volume
(see however the discussion at the end of Section 6 and the Notes).

The strong operator topology is the weakest topology on Z(X, Y) such
that the maps

E.: %X, V)= Y

182
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given by E,(T) = Tx are continuous for all x € X. A neighborhood basis at the
origin is given by sets of the form

{Slseg(Xa Y)’ ”sxi”Y<8’ i=1,~-'!n}

where {x;}7_, is a finite collection of elements of X and ¢ is positive. In this
topology a net {T,} of operators converges to an operator T (written T, > T)
if and only if ||T,x — Tx||— 0 for all x € X. The map {4, B) —» AB is sepa-
rately but not jointly continuous if X, Y, and Z are infinite dimensional (see
Problem 6a, b). We sometimes denote strong limits by the symbol s-lim,

The weak operator topology on Z(X, Y) is the weakest topology such that
the maps

E, ;. %X, Y)>C

given by E, ,(T) = ¢/(Tx) are all continuous for all x € X, Z € Y*. A basis at the
origin is given by sets of the form

{S|Se X, Y), |t(Tx)| <e, i=1,...,n j=1,...,m}

where {x;}}., and {/;}]., are finite families of elements of X and Y* respec-
tively. A net of operators {T,} converges to an operator Tin the weak operator
topology (written T, T) if and only if |£(T,x) —¢(Tx)] -0 for each
¢ € Y* and x € X. Notice that in the case £(o#), T, = T weakly just means
that the * matrix elements (y, T, x) converge to (y, Tx). In the weak topology
the map {4, B) — AB is separately, but not jointly continuous if X, ¥, and
Z are infinite dimensional (see Problem 6c).

Remark The reader should not confuse the weak operator topology on
(X, Y) with the weak (Banach space) topology on £(X, Y). The former is
the weakest topology such that the bounded linear functionals on Z(X, Y) of
the form /(-x) are continuous for all xe X and /e Y*. The latter is the
weakest topology such that al/ bounded linear functionals on #(X, Y) are
continuous (see Section VI.6).

Notice that the weak operator topology is weaker than the strong operator
topology which is weaker than the uniform operator topology. In general,
the weak and strong operator topologies on Z(X, Y)will not be first countable
so that questions of compactness, net convergence, and sequential conver-
gence are complicated. The following simple example illustrates the different
topologies on Z(£,).
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Example Consider the bounded operators on Z,.
(i) Let T, be defined by

1 i
Tn(él’éZ"")=(;cn;i;,”.)

Then T, - 0 uniformly.
(i) Let S, be defined by

Sn({héZ’ "')=(090,-"303 én+19€n+2’ “')
e s’

n places

Then S, — 0 strongly but not uniformly.
(iii) Let W, be defined by

wn(cla 529 -") =(090’ ~~'90a ély 62: "')
n places

Then W,— 0 in the weak operator topology but not in the strong
or uniform topologies.

The following result in the Hilbert space case issometimes useful and provides
a nice application of the uniform boundedness theorem,

Theorem VL1 Let #(0) denote the bounded operators on a Hilbert
space ). Let T, be a sequence of bounded operators and suppose that
(T, x, y) converges as n — co for each x, y € #. Then there exists Te Z(¢)
such that T, 3 T.

Proof We begin by showing that for each x, sup, ||T, x|l < 0. Since for any
x € . (x, T,y) converges we have

sup [(T,x, »)| <

For each n, T,x € £(#, C), and since sup, |[(T,x)(})| ¢ < o0, the uniform
boundedness theorem implies that the operator norms of the T, x in £(o#, C)
are uniformly bounded. But the norm of T, x as an operator in £ (s, C) is the
same as its norm in J¢; thus |T, x|/, is uniformly bounded.
Now, we use the uniform boundedness theorem again. Since
sup |IT, x|l < o,

n

we conclude

sup [T, llgue) < 00
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Define B(x, y) = lim, (T, x, y). Then it is easily verified that B(x, y) is sesqui-
linear and
| B(x, )| < fim [(T,x, »)| < lixlliyiGsuplIT,1)

Thus B(x, y) is a bounded sesquilinear form on 4 and so, by the corollary to
the Riesz lemma, there is a bounded operator Te £ () such that B(x, y) =
(Tx,3). Clearly T, 5 T. |}

If a sequence of operators T, on a Hilbert space has the property that T,x
converges for each x € o, then there exists Te (o) such that T, T. The
reader is asked to prove this theorem and various generalizations in Problem 3.

Let Te £(X, Y). The set of vectors x € X so that Tx = 0 is called the kernel
of T, written Ker T. The set of vectors y € Y so that y = Tx for some x e X is
called the range of T, written Ran T. Notice that both Ker Tand Ran T are
subspaces. Ker T is necessarily closed, but Ran T may not be closed (Prob-
lem 7).

Vi.2 Adjoints

In this section we define adjoints of bounded operators on Banach and
Hilbert spaces. The reader should be cautioned at the outset that the Hilbert
space adjoint of an operator T € £ (#) is not equal to the Banach space
adjoint although it is closely related to it.

Definition Let X and Y be Banach spaces, T a bounded linear operator
from X to Y. The Banach space adjoint of T, denoted by T, is the bounded
linear operator from Y* to X* defined by

(T'¢)(x) = £(Tx)
forall /e Y*, xe X.

Example Let X =¢, = Y and let T be the right shift operator

T 82500 =100,4,82,..)
Then T': £, — £, is the operator

TI(C1’€2?"')=(€2363"--)

In this example, ||T]| = 1 = ||T’||. In fact the norms of T and T'are always
equal:
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Theorem V1.2 Let X and Y be Banach spaces. The map T T’ is an
isometric isomorphism of Z(X, Y)into L(Y*, X*).

Proof The map T— T'islinear. The fact that T’ is bounded and that the map
is an isometry follows from the computation

IThex, = sup I Txily
lIxll<1

= sup (sup It’(Tx)l) leY*

fIxl st \ilzll <1

sup ( sup 1(T'0)C01)

Iellst\Mixlist

= sup [T¢|

izlist
= | T gcys, xv)

The second equality uses a corollary of the Hahn-Banach theorem. |

We are mostly interested in the case where T'is a bounded linear transforma-
tion of a Hilbert space # to itself. The Banach space adjoint of T'is then a
mapping of s#* to H#*. Let C: 5 — 3* be the map which assigns to each
y € 3, the bounded linear functional (y, -) in J#*, C is a conjugate linear
isometry which is surjective by the Riesz lemma. Now define a map T*:
H — # by

T*=C'T'C
Then T#* satisfies
(x, Ty) = (Cx)(Ty) = (T'Cx)(y) = (C "' T'Cx, y) = (T*x, y)

T* is called the Hilbert space adjoint of T, but usually we will just call it the
adjoint and let the * distinguish it from 7'. Notice that the map T— T* is
conjugate linear, that is, aT— &T*. This is because C is conjugate linear. We
summarize the properties of the map T— T*:

Theorem V1.3  (a) T-— T*is a conjugate linear isometric isomorphism
of (o) onto L(H#).

(b) (TS)* =S*T*.

() (TH*=T.

(d) If Thas a bounded inverse, T~!, then T* has a bounded inverse and
(T =(T™H~
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(¢) Themap T— T* is always continuous in the weak and uniform opera-
tor topologies but is only continuous in the strong operator topology if # is

finite dimensional.
® IT*T) =TI

Proof (a) follows from Theorem V1.2 and the fact that C is an isometry.
(b) and (c) are easily checked. Since T~ !T= I = TT"! we have from (b)

THT W =I*=I=I*=(T")*T*

which proves (d).

Continuity of T— T*in the weak and uniform operator topologies is trivial.
In the case ) = £, , here is a counter example which shows that T— T* is not
continuous in the strong operator topology. The general infinite dimensional
case is similar. Let W, be right shift on £, by n places. Then W, converges
weakly but not strongly to zero. However, W} =¥, converges strongly to

zero, Thus V,,—’o 0, but V¥ = W, does not converge strongly to zero.
(f) Note that |[T*T|| < T} [T*| = |T||? and

IT*T| > sup (x, T*Tx) = sup |Tx|* = IT|* §

lxl=1 fIx)) =1

Definition A bounded operator T on a Hilbert space is called self-
adjoint if T= T*.

Self-adjoint operators play a major role in functional analysis and mathe-
matical physics and much of our time is devoted to studying them. Chapter
VII is devoted to proving a structure theorem for bounded self-adjoint
operators. In Chapter VIII we introduce unbounded self-adjoint operators
and continue their study in Chapter X. We remind the reader that on C", a
linear transformation is self-adjoint if and only if its matrix in any ortho-
normal basis is invariant under the operation of reflection across the diagonal
followed by complex conjugation.

An important class of operators on Hilbert spaces is that of the projections.

Definition If Pe #(s#) and P? = P, then P is called a projection. If in
addition P = P*, then P is called an orthogonal projection.

Notice that the range of a projection is always a closed subspace on which P
acts like the identity. If in addition P is orthogonal, then P acts like the zero
operator on (Ran P). If x = y + z, with y € Ran P and z e (Ran P)*, is the
decomposition guaranteed by the projection theorem, then Px = y. P is called
the orthogonal projection onto Ran P. Thus, the projection theorem sets up a
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one to one correspondence between orthogonal projections and closed
subspaces. Since orthogonal projections arise more frequently than non-
orthogonal ones, we normally use the word projection to mean orthogonal
projection.

V1.3 The spectrum

If Tis a linear transformation on C”, then the eigenvalues of T are the
complex numbers 2 such that the determinant of A7 — Tis equal to zero. The
set of such / is called the spectrum of T. It can consist of at most n points
since det(// — T) is a polynomial of degree n. If 2 is not an eigenvalue, then
/I — T has an inverse since det(A/ — T)# 0.

The spectral theory of operators on infinite-dimensional spaces is more
complicated, more interesting, and very important for an understanding of the
operators themselves.

Definition Let Te £(X). A complex number A is said to be in the
resolvent set p(T) of T if A/ — T is a bijection with a bounded inverse.
RT) = (A1~ T)™!is called the resolvent of Tat A. If A ¢ p(T), then A is said
to be in the spectrum o(7T) of T.

We note that by the inverse mapping theorem, A7/ — T automatically has
a bounded inverse if it is bijective. We distinguish two subsets of the spectrum.

Definition Let Te Z(X).

(a) An x# 0 which satisfies Tx = Ax for some A € C is called an eigenvector
of T 2 is called the corresponding eigenvalue. If 1 is an eigenvalue, then
M — Tis not injective so A is in the spectrum of T. The set of all eigen-
values is called the point spectrum of T.

(b) If Zis notan eigenvalue and if Ran(A/ — T)is not dense, then 1 is said to
be in the residual spectrum.

At the end of this section we present an example which illustrates these
kinds of spectra. The reason that we single out the residual spectrum is that
it does not occur for a large class of operators, for example, for self-adjoint
operators (see Theorem VL.8).
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The spectral analysis of operators is very important for mathematical
physics. For example, in quantum mechanics the Hamiltonian is an unbounded
self-adjoint operator on a Hilbert space. The point spectrum of the Hamil-
tonian corresponds to the energy levels of bound states of the system. The
rest of the spectrum plays an important role in the scattering theory of the
system (see Chapter XII).

We will shortly prove that the resolvent set p(T)is open and that R,(T)is an
analytic operator-valued function on p(T). This fact allows one to use complex
analysis to study R,(T) and thus to obtain information about T. We begin
with a brief aside about vector-valued analytic functions.

Let X be a Banach space and let D be a region in the complex plane, i.e., a
connected open subset of C. A function, x(-), defined on D with values in X,
is said to be strongly amalytic at z, € D if the limit of (x(zy + h) — x(zo))/h
exists in X as & goes to zero in C. Starting from this point one can develop a
theory of vector-valued analytic functions which is almost exactly parallel to
the usual theory; in particular, a strongly analytic function has a norm-
convergent Taylor series. We do not repeat this development here; see the
notes for references. We do want to discuss one important point. There is
another natural way to define Banach-valued analytic functions. Namely: a
function x(+) on D with values in X is said to be weakly analytic if £ (x(*))is a
complex valued analytic function on D for each £ € X*. Although this second
definition of analytic is a priori weaker than the first, the two definitions are
equivalent, a fact we will prove in a moment. This is very important, since
weak analyticity is often much easier to check.

Lemma Let X be a Banach space. Then a sequence {x,} is Cauchy if and
only if {£(x,)} is Cauchy, uniformly for ¢ € X*, ||£] < 1.

Proof If {x,} is Cauchy, then |/(x,) — £(x,)| < lix, — x,,]| for all / with
12l < 1, so {£(x,)} is Cauchy uniformly. Conversely,

“xn - xm” = sup |((xn - xm)I
izl <1

Thus, if {£(x,)} is Cauchy, uniformly for ||£]| < 1, then {x,} is norm-Cauchy. §

Theorem V1.4 Every weakly analytic function is strongly analytic,

Proof Let x(-) be a weakly analytic function on D with values in X, Let
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2o € D and suppose that T is a circle in D containing z, whose interior is
contained in D. If £ € X* then £(x(z)) is analytic and

x(zg + h) ~ x(20) d
{( 2 A 0)—:1;50(20))

1 1 1 1 1
- %i‘ [;l- (Z o+ h) z- zo) T (z- 20)2] Hx(2)) dz

Since /(x(2)) is continuous on I" and T is compact, |£(x(z)})| < C, for all
z e . Regarding x(z) as a family of mappings x(z): X* — € we see that x(z)
is pointwise bounded at each ¢ so by the uniform boundedness theorem
sup,.r Ix(2)l| € C < c0. Thus

x(zg + h) — x(z4) d
(PRt - e

1 1 dz
(z— (2o + W)z —20) (z—20)°
This estimate shows that [x(z, + A) — x(z,))/h is uniformly Cauchy for

II£]l < 1. By the lemma, [x(zy + h) — x(z,))/h converges in X, proving that
x(+) is strongly analytic. ||

<@m)~ Y2l (ﬁ‘e’? I|x(z)|l) j;r

We now prove the theorem we promised about the resolvent.

Theorem V1.5 Let X be a Banach space and suppose Te £(X). Then
p(T)is an open subset of C and R,(T)is an analytic (X )-valued function on
each component (maximal connected subset) of D. For any two points A,
pe€ p(T), Ry(T)and R,(T) commute and

R{T) — Ry(T) = (u = HR(TIRL(T) (VL1)

Proof We begin with the following formal computation, temporarily ignor-
ing questions of convergence. Let i, € p(T).

1 1 {1 ) 1
A—T_Z—A°+(/10—T)—(/10~T 1_(10—1)
=T

1 2 [Ag— A\"
(=) [+ £ 2=
This suggests that we define

R(T) = Ru(D|1 + 3, (o = IRTIYY
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Since
IR (DY Il < IR (DI
the series on the right converges in the uniform operator topology if
|2 = Ao] < IRy (T}
For such 1, R,(T) is well defined, and it is easily checked that
(M = T)R(T) = I = R(T)AI - T)

This proves that A e p(T)if [A — do| < IR,(T)II™! and that Ry(T) = Ry(T).
Thus p(T) is open. Since R,;(T) has a power series expansion, it is analytic.
The expression

R(T) = R,(T) = R(T)(ul — TIR,(T) — R(TYA — TIR,(T)
proves (VI.1). Interchanging p and A shows that R,(T) and R (T) commute. [I

Equation (VL1) is called the first resolvent formula. A nice example of the
use of complex analytic methods is given by the proof of the following
corollary.

Corollary Let X be a Banach space, Te £(X). Then the spectrum of T
is not empty.

"Proof Formally,

1 1 1 1 o (T\"
A-T (I) 1 -T/,l“I(l +,.; (I) )
which suggests that for large values of |1],

R(T) = 1 {I + ¥ (Z) } (VL.2)
A n=1 A

If |A| > ||T||, then the series on the right converges in norm and it is easily

checked that for such A, its limit is indeed the inverse of (A — T). Thus, as

|A] = 00, [IR(T)| - 0. If o(T) were empty, R,(T)would be an entire bounded

analytic function. By Liouville’s theorem, R,(T) would be zero which is a

contradiction. Thus, o(T) is not empty. |}

The series (V1.2) is called the Neumann series for R,(T). The proof of the
corollary shows that o(T) is contained in the closed disc of radius ||T].
Actually, we can say more about o(7T).
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Definition Let r(T) = sup |4]

Aeo(T)

r(T) is called the spectral radius of T.

Theorem VI.6 Let X be a Banachspace, Te £(X).Then lim,_ ,, [[T"||'/"

exists and is equal to r(T). If X is a Hilbert space and A4 is self-adjoint, then
rA) = |4l

Proof The reader can check that lim,_ . || T"||'/" exists by following the
clever subadditivity argument outlined in Problem 11. The crux of the proof
of the theorem is to establish that the radius of convergence of the Laurent
series of R,(T) about oo is just #(T)~'. First notice that the radius of con-
vergence cannot be smaller than r(T)! since we have proven that R,(T) is
analytic on p(T)and {4 | | 2| > r(T)} = p(T). On the other hand, (V1.2) is just
the Laurent series about co and we have seen that where it converges abso-
lutely, R,(T) exists. Since a Laurent series converges absolutely inside the
circle of convergence, we conclude that the radius of convergence cannot be
larger than r(T)~*. That r(T) = lim,_ ,, ||T"|i'’" follows from the vector-valued
version of Hadamard's theorem which says that the radius of convergence of
(V1.2) is just the inverse of

lim 77| = lim T/
Finally, if X is a Hilbert space and 4 is self-adjoint, then |4 = [|4?|| by
part (f) of Theorem VI1.3. This implies that |4"|| = [|[4|*" so

r(4) = lim 44" = tim |4%"]7"" = 1|41 |

k— o n-o0
The following theorem is sometimes useful in determining spectra.
Theorem V1.7 (Phillips) Let X be a Banach space, Te Z(X). Then

6(T) = o(T") and R,(T)= R(T). If o is a Hilbert space, then o(T*) =
{#|2 e o(T)} and Ry (T*) = R(T)*.

We note that the Hilbert space case follows from (d) of Theorem VI.3.

We now work out in some detail an example which illustrates the various
kinds of spectra.

Example Let T be the operator on ¢; which acts by
T(éb €2a ”-)=(€2’ 63, "')
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The adjoint of T, T, acts on £, by

Tl(cl’ 52: '“) = (0$ 61’ 629 "')

We first observe that ||Tlj = [|T’|| = 1, so that all A with |1} > 1 arein p(T)and
p(T’). Suppose |A| < 1. Then the vector x; = (1, 4, 4%, .. ) isin ¢, and satisfies
(Al - T)x, = 0. Thus all such A are in the point spectrum of T. Since the
spectrum is closed, o(T) = {1] |1| < 1}. By Theorem V1.7 this set is also the
spectrum of T".

We want to show that T’ has no point spectrum. Suppose that {{,}2., €7,
and (Al = T'}{¢,} = 0. Then

Ao =0
My =& =0

These equations together imply that {{,}>, = 0 so 4/ — T’is one to one and
T’ has no point spectrum. Next, suppose |A] < 1. Then forall Le/

[(AF = T)L)(x,) = L((A — T)x;) = 0.

where x, €/, is the eigenvector with -eigenvaiue A. By the Hahn-Banach
theorem we know that there is a linear functional in £, which does not vanish
on x;, so the range of A/ — T is not dense. Thus {4; | 1| < 1} is in the residual
spectrum of T'.

It remains to consider the boundary |A| = 1. Suppose that |A] =1 and
(Al — T){¢&,} =0 for some {£,} in £,. Then

51 = Aéo
éz = '151

$0 {£2, = &o(1, 4, A%, ...) which is not in ;. Thus A is not point spectrum.
If the range of A/ — T were not dense there would be a nonzero L € £, such
that L[(A] — T)x] = 0 for all x € ¢,. But then [(A] — T')L](x) = 0 which would
imply that A is in the point spectrum of T’ which we have proven cannot
occur. Thus, {4 |1] = 1} is neither in the point spectrum of T nor in the
residual spectrum of T.

Finally, we prove that {1 | {A]| =1} is in the residual spectrum of T’ by
explicitly finding an open ball disjoint from Ran(1 — 7). If a ={a,} and
b ={b,} are in £, and obey a = (Al — T')b, then

a0=).bo

ay = A-bn - bn—l
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$0 b, = ()"*' 3" _o A™a,,. Let ¢ = {c,} with ¢, = 1" and suppose that d€ /,
and ||d — cli, < 4. Then

Re{1"d,} > Re{i"c,} — IIld — cll, = %
Thus, if (A — T")e = d for some ee Z,,, then since

&= Y imd,

|e,| = n/2 which is impossible. Therefore, Ran(A — T") does not intersect the
ball of radius 4 about ¢ so A is in the residual spectrum.

Operator Spectrum Point spectrum Residual spectrum

T 1Al <1t Al <1 1%
T Al <t %] Al <1

As in the above example, one can prove in general

Proposition Let X be a Banach space and T € & (X). Then,

(a) If Zisin the residual spectrum of 7, then 4 is in the point spectrum of
T

(b) If Aisin the point spectrum of T, then 4 is in either the point or the
residual spectrum of T

Finally, we note:

Theorem V1.8 Let T be a self-adjoint operator on a Hilbert space 5.
Then,

(a) T has no residual spectrum.
(b) o(T)is a subset of R,
(c) Eigenvectors corresponding to distinct eigenvalues of T are orthogonal.

Proof 1If A and p are real, we compute
ILT — A+ iwdx)® = (T — Ax||* + p?ix)?

Thus |[T - (A + iw))x)|® = w?|x)|?%,soif u # 0,then T — (A + iu)is oneto
one and has a bounded inverse on its range, which is closed. If Ran (T —
(A + iu))# A, then, by the above proposition, 4 — iz would be in the point
spectrum of T, which is impossible by the inequality. Thusif g # 0,4 + iuis
in p(T). This proves (b). If a real 4 were in the residual spectrum of T, then
A = A would be in the point spectrum of T* = T, which is impossible since
the point and residual spectrum are disjoint by definition. This proves (a).
The easy proof of (c) is left as an exercise (Problem 8). |}
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VIi.4 Positive operators and the polar
decomposition

We want to prove the existence of a special decomposition for operators on
a Hilbert space which is analogous to the decomposition z = |z|e'*'$* for
complex numbers. First we must describe a suitable analogue of the positive
numbers.

Definition Let 5# be a Hilbert space. An operator Be £ () is called
positive if (Bx,x) >0 for all xe s#. We write B> 0 if B is positive and
B<AifA—B>0.

Every (bounded) positive operator on a complex Hilbert space is self-
adjoint. To see this, notice that (x, 4x) = (x, Ax) = (Ax, x) if (Ax, x) takes
only real values. By the polarization identity (Chapter II, Problem 4),
(Ax, y) = (x, Ay) if (Ax, x) = (x, Ax) for all x. Thus, if 4 is positive, it is self-
adjoint. This is false on real Hilbert spaces because it is not possible to recover
(x, Ay) by knowing (x, Ax) for all x.

For any A € £(o#), notice that A*4 > 0 since (4*A4x, x) = ||Ax|*> = 0. Just
as |z] = \/Ez we would like to define |A| = /A4*A4. To do this we must
show that we can take square roots of positive operators. We begin with a
lemma.

Lemma The power series for /1 — z about zero converges absolutely for
all complex numbers z satisfying |z| < 1.

Proof Let \/l —z=1+4c¢z+¢yz* ++ be the power series of \/1 -z
about the origin. Since \/ 1 — z is analytic for |z| < 1, the series converges

absolutely there. The derivatives of \/ 1 — z at the origin are all negative, so
the c; are negative if i > 1. Thus

N N
Z|C,,‘=2—ZC,,
n=0 a=0

N
=2~ lim ) c,x"
x=i—- n=0

<2~ lim /1-x

x=1-

=2
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where lim, _,, . means the limit as x approaches one from below. Since this is
true for all N, Y &4 |¢,| <2, which implies that the series converges abso-
lutely for |z] = 1. §}

Theorem V1.9 (square root lemma) Let Ae&L(H#) and A > 0. Then
there is a unique B e £(#) with B>0 and B? = 4. Furthermore, B
commutes with every bounded operator which commutes with 4.

Proof 1t is sufficient to consider the case where ||4]| < 1. Since
i7 = All= sup |(({ - A, 9)| <1

leli=1
the above lemma implies that the series 1 + ¢,(/ — A) + c,(I — A)* + -+ con-
verges in norm to an operator B. Since the convergence is absolute we can
square the series and rearrange terms which proves that B = A. Further-
more, since 0 < 7 — 4 < I we have 0 < (¢, (I — A)"p) < | for all ¢ € # with
iloll = 1. Thus

0, B0) =1+ 3 <o, U~ 4Y0)

8

>14+ Y ¢,=0

n=1

where we have used the fact that ¢, < 0 and the estimate in the lemma. Thus,
B > 0. Since the series for B converges absolutely, it commutes with any
operator that commutes with 4.

Suppose there is a B, with B’ > 0 and (B’)? = 4. Then since

B'A=(B) =AB
B’ commutes with 4 and thus with B. Therefore
(B—B)B(B-B)+(B—-B)B(B—B)=(B*-B*»B~B)=0 (VL3

Since both terms in (V1.3) are positive, they must both be zero, so their differ-
ence (B — B')® = 0. Since B — B'is self-adjoint, ||B — B'|* = ||(B — B)*[| =0,
soB-B8=01

We are now ready to define |A4|.

Definition  Let A € (). Then |4| = /4*A.

The reader should be wary of the emotional connotations of the symbol
|-]. While it is true that |A4| =|i] | 4] for A€ C, it is in general false that
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|AB| = | A| |B| or that |A| = |A*|. Furthermore it is not true in general
that {4 + B| < |A| + | B| (Problem 16). In fact, while it is known that | - | is
norm continuous (see Problem 15), it is not known whether it is Lipschitz,
that is, whether || | 4| — | B| || < ¢ |4 — B|| for some constant ¢ (however, see
Problem 17).

The analogue of the complex numbers of modulus one is a little more
complicated. At first one might expect that the unitary operators would be
sufficient, but the following example shows that this is not the case.

Example Let A be the right shift operator on £, . Then |4} = \/A*A =]
so if we write 4 = U| 4| we must have U = 4. However, 4 is not unitary
since (1,0, 0, ...) is not in its range.

Definition An operator U e Z(F) is called an isometry if ||Ux|| = |ix||
for all x € . U is called a partial isometry if U is an isometry when restricted
to the closed subspace (Ker U)*.

Thus, if Uis a partial isometry, 5# can be written as # = Ker U@ (Ker U)*
and # = Ran U@ (Ran U)* and U is a unitary operator between (Ker U)*,
the initial subspace of U, and Ran U, the final subspace of U. It is not hard to
see that U* is a partial isometry from Ran U to (Ker U)* which acts as
the inverse of the map U: (Ker U)* —» Ran U.

Proposition Let U be a partial isometry. Then P, = U*Uand P, = UU*
are respectively the projections onto the initial and final subspaces of U.
Conversely, if Ue £(#) with U*U and UU* projections, then U is a partial
isometry.

The proof of the proposition is left to Problem 18. We are now ready to
prove the analogue of the decomposition z = |z| e#8%,

Theorem VI1.10 (Polar decomposition) Let A be a bounded linear
operator on a Hilbert space 5. Then there is a partial isometry U such that
A = U|A]|. Uis uniquely determined by the condition that Ker U = Ker 4.

Moreover, Ran U = Ran A4.

Proof Define U: Ran |A4]| » Ran 4 by U({4] y) = Ay. Since
AR = @, [A4]2 ) = (¢, 4*4Y) = |4y 1P
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U is well-defined, that is, if | 4|¢ = | 4] ¢ then AY = Ad. U is isometric and
so extends to an isometry of Ran | 4| to Ran A. Extend U to all of & by
defining it to be zero on (Ran | A|)*. Since | 4| is self-adjoint, (Ran |4|)* =
Ker | A|. Furthermore, |A|¢ = 0 if and only if 4y = 0 so that Ker |4]| =
Ker 4. Thus Ker U = Ker A. Uniqueness is left to the reader. §

In Problem 20 of Chapter VII, the reader will prove that U is a strong limit
of polynomials in 4 and A* so that U is in the “von Neumann algebra™
generated by A.

V1.5 Compact operators ¥

Many problems in classical mathematical physics can be handled by refor-
mulating them in terms of integral equations. A famous example is the
Dirichlet problem discussed at the end of this section. Consider the simple
operator K, defined in C[0, 1] by

(ko) = [ Kex, o0 dy (VLo

where the function K(x, y) is continuous on the square 0 < x, y < 1. K(x, y) is
called the kernel of the integral operator K. Since

(K)ol < ( sup 1K G, y)l)(osup‘nqo(y)u)

0<x,y<1 <ys
we see that

1Kol s( sup | K(x, y)l) o1l
O0<x,y<1

so K is a bounded operator on C [0, 1]. K has another property which is very
important. Let B,, denote the functions ¢ in C[0, 1] such that llp|, < M.
Since K(x. y) is continuous on the square 0 < x, y < | and since the square is
compact, K(x, y) is uniformly continuous. Thus, given an & > 0, we can find
8 > Osuchthat |x — x'| < § implies | K(x, y) — K(x', y)| <eforallye [0, 1].
Thus, if ¢ € By,

(K)o — (Ko)ox)| s( sup |1<<x,y>—1<(x',y>|)u<pnw

y {0, 1]
<sM

t A supplement to this section begins on p. 368.
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Therefore the functions K[B,] are equicontinuous. Since they are also
uniformly bounded by ||K||M, we can use the Ascoli theorem (Theorem 1.28)
to conclude that for every sequence ¢, € B, the sequence Ko, has a con-
vergent subsequence (the limit may not be in K[B,]). Another way of saying
this is that the set K[B,,] is precompact; that is, its closure is compact in
CJ0, 1]. It is clear that the choice of M was not important so what we have
shown is that K takes bounded sets into precompact sets. It is this property
which makes the so called * Fredholm alternative” hold for nice integral
equations like (VI.4). This section is devoted to studying such operators.

Definition Let X and Y be Banach spaces. An operator Te Z(X, Y)is
called compact (or completely continuous) if T takes bounded sets in X into
precompact sets in Y. Equivalently, T is compact if and only if for every
bounded sequence {x,} < X, {Tx,} has a subsequence convergent in Y.

The integral operator (VI.4) is one example of a compact operator. Another
class of examples is:

Example (finite rank operators) Suppose that the range of T is finite
dimensional. That is, every vector in the range of T can be written Tx =
S a;y;, for some fixed family {y }\-. , in Y. If x, is any bounded sequence in
X, the corresponding o] are bounded since T is bounded. The usual sub-
sequence trick allows one to extract a convergent subsequence from {Tx,}
which proves that T is compact.

An important property of compact operators is given by (compare Prob-
lem 34):

Theorem VI.11 A compact operator maps weakly convergent sequences
into norm convergent sequences.

Proof Suppose X, — X. By the uniform boundedness theorem, the | x, || are
bounded. Let y, = Tx,. Then £(»,) — £(y) =(T'{)(x, — x) for any £ € Y*,
Thus, y, converges weakly to y = Tx in Y. Suppose that y, does not converge
to y in norm. Then, there is an ¢ > 0 and a subsequence {y, } of {y,} so that
{lym — ¥ll = &. Since the sequence {x,,} is bounded and T is compact {y,,} has a
subsequence which converges to a § # y. This subsequence must then also
converge weakly to 7, but this is impossible since y, converges weakly to y.
Thus y, converges to y in norm. J
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We note that if X is reflexive then the converse of Theorem VI.11 holds
(Problem 20). The following theorem is important since one can use it to
prove that an operator is compact by exhibiting it as a norm limit of compact
operators or as an adjoint of a compact operator.

Theorem VI1.12 Let X and Y be Banach spaces, Te Z(X, Y).

(a) If {T,} are compact and T,— T in the norm topology, then T is
compact.

(b) Tis compact if and only if T’ is compact.

(c) If Se £(Y,Z) with Z a Banach space and if T or S is compact, then
STis compact.

Proof (a) Let {x,} be a sequence in the unit ball of X. Since T, is compact
for each n, we can use the diagonalization trick of 1.5 to find a subsequence of
{xa}, call it {x,,}, so that T, x,, — y, for each n as k — co. Since |ix,, Il <1 and
T, — T} — 0, an ¢/3-argument shows that the sequence {y,} is Cauchy, so
¥ = y. It is not difficult to show using an ¢/3 argument that Tx,, — y. Thus T
is compact.

(b) See the Notes and Problem 36.

(c) The proof is elementary (Problem 37). ]

We are mostly interested in the case where Tis a compact operator from a
separable Hilbert space to itself, so we will not pursue the general case any
further (however, see the discussion in the Notes). We denote the Banach
space of compact operators on a separable Hilbert space by Com(s#). By the
first example and Theorem VI.12 the norm limit of a sequence of finite rank
operators is compact. The converse is also true in the Hilbert space case.

Theorem VI1.13 Let 57 be a separable Hilbert space. Then every compact
operator on 3 is the norm limit of a sequence of operators of finite rank.

Proof Let{¢;};=, be an orthonormal set in 5. Define

o= sup | TY|
veloi, ..., oalt
lvli=1

Clearly, {4,} is monotone decreasing so it converges to a limit A > 0. We first
show that i=0. Choose a sequence ¥, € [¢,,..., 9,)5, IW.ll=1, with
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T, ll = A/2. Since ,~>0, Ty, = 0 by Theorem VI.11. Thus, 1=0. As a
result

zl(q)j) )T(P_, -T
i=

in norm since A, is just the norm of the difference. }

We have discussed a wide variety of properties of compact operators but
we have not yet described any property which explains our special interest in
them. The basic principle which makes compact operators important is the
Fredholm alternative: If A is compact, then either Ay =y has a solution
or (I— A)™! exists. This is not a property shared by all bounded linear
transformations. For example, if A is the operator (4¢)(x) = x¢(x) on L*[0, 2],
then 4@ = ¢ has no solutions but (I — 4)™! does not exist (as a bounded
operator). In terms of ‘“solving equations” the Fredholm alternative is
especially nice: It tells us that if for any ¢ there is at most one ¥ with y =
@ + Ay, then there is always exactly one. That is, compactness and uniqueness
together imply existence; for an example, see the discussion of the Dirichlet
problem at the end of the section.

As one might expect, since the Fredholm alternative holds for finite-
dimensional matrices, it is possible to prove the Fredholm aliternative for
compact operators (in the Hilbert space case) by using the fact that any
compact operator A can be written as 4 = F + R where F has finite rank and
R has small norm. Compactness combines very nicely with analyticity so we
first prove an elegant result which is of great use in itself (see Sections X1.6,
X1.7, XII1.4, and X1ILS).

Theorem V1.14 (analytic Fredholm theorem) Let D be an open con-
nected subset of C. Let f: D — Z(5#) be an analytic operator-valued function
such that f(z) is compact for each z € D. Then, either

(@) (I —f(z2))"" exists for no ze D.
or

(b) (I —f(2))"! exists for all ze D\S where S is a discrete subset of D
(i.e. a set which has no limit points in D). In this case, (I — f(z))"} is mero-
morphic in D, analytic in D\S, the residues at the poles are finite rank opera-
tors, and if z € S then f(z){ = Y has a nonzero solution in .

Proof We will prove that near any z, either (a) or (b) holds. 4 simple con-
nectedness argument allows one to convert this into a statement about all of D
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(Problem 21). Given zy,e D, choose an r so that |z —zy| <r implies
1f(z) = f(zo)ll < % and pick F, an operator with finite rank so that

If(zo) — Fll< %

Then, for z € D,, the disc of radius r about z4, ||f(z) — Fl| < 1. By expanding
in a geometric series we see that (I — f(z) + F)™! exists and is analytic.

Since F has finite rank, there are independent vectors ¥, ..., ¥y so that
F(o) = YN, a;(pW;. The a-) are bounded linear functionals on # so by
the Riesz lemma there are vectors ¢, ..., @y so that F(¢) =S¥, (¢:, oW,
for all p € #. Let ¢,(z) = (I — f(2) + F)")*¢, and

90 = FU /@) + P)™ = ¥ (8,0 W
By writing
(I = f@) = (I~ g0 ~ 1)+ F)

we see that I — f(z) is invertible for z € D, if and only if 7 — g(z) is invertible
and that ¢ = f(2){ has a nonzero solution if and only if ¢ =g(z)p has a
solution,

If g(z)¢ = ¢, then @ =Y _; B, ¥, and the B, satisfy
N
By = 21(05..(2), Ym)Bm (VL.5a)

Conversely, if (VI.5a) has a solution (B, ..., By, then o =Y ., By, is a

solution of g(z)¢ = ¢. Thus g(z)¢ = ¢ has a solution if and only if the
determinant

d(z) = det{5,, — ($.(2), ¥,)} =0

Since (¢,(2), ¥,,) is analytic in D, so is d(z) which means that either S, =
{z|ze D,, d(z) = 0} is a discrete set in D, or S, = D,. Now, suppose d(z) # 0.
Then, given ¢, we can solve (I — g(z))p = y by setting o = ¢ + Y N_, By, if
we can find §, satisfying '

Bu= B2+ 3, (02 Wb (VL5b)

But, since d(z) # 0, this equation has a solution. Thus (I — g(z)) ! exists if and
only if z ¢ S,.

The meromorphic nature of (I — f(z))~* and the finite rank residues follow
from the fact that there is an explicit formula for the §, in (VI.5b) in terms of
cofactor matrices. §

This theorem has four important consequences:
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Corollary (the Fredholm alternative) If A is a compact operator on i,
then either (/ — A)~! exists or Ay = y has a solution.

Proof Take f(2) = zA and apply the last theorematz=1. |

Theorem V1.15 (Riesz-Schauder theorem)  Let A be acompact operator
on J#, then o(A4) is a discrete set having no limit points except perhaps
A = 0. Further, any nonzero 1 € o(4) is an eigenvalue of finite multiplicity
(i.e. the corresponding space of eigenvectors is finite dimensional).

Proof Let f(z) =zA. Then f(z) is an analytic compact operator-valued
function on the entire plane. Thus {z|z4y = ¢ has a solution y #0} is a
discrete set (it is not the entire plane since it does not contain z =0) and if
1/4 is not in this discrete set then

ot (1-14)”

exists. The fact that the nonzero eigenvalues have finite multiplicity follows
immediately from the compactness of 4. §

Theorem VI1.16 (the Hilbert-Schmidt theorem) Let A be a self-adjoint
compact operator on . Then, there is a complete orthonormal basis,
{¢,}, for # so that A¢, = 4,¢,and 4,0 as n— 0.

Proof For each eigenvalue of 4 choose an orthonormal basis for the set of
eigenvectors corresponding to the eigenvalue. The collection of all these
vectors, {¢,}, is an orthonormal set since eigenvectors corresponding to
distinct eigenvalues are orthogonal. Let . be the closure of the span of {¢,}.
Since A is self-adjointand A: & — A, A: M+ — #*. Let 4 be the restriction
of A to .#*. Then A is self-adjoint and compact since A is. By the Riesz—
Schauder theorem, if any A # 0 is in o(4), it is an eigenvalue of 4 and thus of
A. Therefore the spectral radius of 4 is zero since the eigenvectors of 4 are in
. Because 4 is self-adjoint, it is the zero operator on .#* by Theorem VIL.6.
Thus, #* = {0} since if ¢ € .#*, then Ap =0 which implies that ¢ e 4.
Therefore, A = H#.

The fact that 4, — 0 is a consequence of the first part of the Riesz-Schauder
theorem which says that each nonzero eigenvalue has finite multiplicity and
the only possible limit point of the 4, is zero. |

Theorem VI.17 (canonical form for compact operators) Let 4 be
a compact operator on . Then there exist (not necessarily complete)



204 Vi: BOUNDED OPERATORS

orthonormal sets {¢,}Y_, and {¢,}Y_, and positive real numbers {1,} ., with
A, — 0 so that

N
A= ;ﬂ-n(t//n, )¢ (VL.6)

The sum in (VL.6), which may be finite or infinite, converges in norm. The
numbers, {4}, are called the singular values of A.

Proof Since A is compact, so is A*A4 (Theorem VI.12). Thus 4*4 is compact
and self-adjoint. By the Hilbert-Schmidt theorem, there is an orthonormal set
{1V, sothat A*AyY, = p, ¥, with u, # 0 and so that A* A4 is the zero operator
on the subspace orthogonal to {,}Y_ ,. Since A*4 is positive, each u, > 0. Let
/., be the positive square root of u, and set ¢, = 4y¥,/A,. A short calculation
shows that the ¢, are orthonormal and that

N
Y= 3 1,0, )60 1

The proof shows that the singular values of A are precisely the eigenvalues
of |A4].
We conclude with a classical example.

Example (Dirichlet problem) The main impetus for the study of
compact operators arose from the use of integral equations in attempting to
solve the classical boundary value problems of mathematical physics. We
briefly describe this method. Let D be an open bounded region in R® with a
smooth boundary surface 0 D. The Dirichlet problem for Laplace’s equation
is: given a continuous function fon éD, find a function u, twice differentiable
in D and continuous on D, which satisfies

Au(x)=0 xeD
u(x) = f(x) xedD

Let K(x,y) = (x — y, n)[2n|x — y|® where n, is the outer normal to 4D at
the point y € 0D. Then, as a function of x, K(x, y) satisfies A, K(x, y) =0 in
the interior which suggests that we try to write u as a superposition

ux) = [ Kox, 2)o() dS0) (VL6a)

where ¢(y) is some continuous function on dD and dS is the usual surface
measure. Indeed, for x € D, the integral makes perfectly good sense and
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Au(x) =0 in D. Furthermore, if x, is any point in D and x — x, from
inside D, it can be proven that

u(x) = — @(xo) + LD K(xq, Y)o() dS() (VL6b)

If x — x, from outside D, the minus is replaced by a plus. Also,

[ Kxo, )00 dSG)
oD

exists and is a continuous function on 8D if ¢ is a continuous function on
0D. The proof depends on the fact that the boundary of D is smooth which
implies that for x, y€ 0D, (x — y,n) m c|x — y|* as x = y.

Since we wish u(x) = f(x) on 8D, the whole question reduces to whether we
can find @ so that

S =0+ [ Kx»o()dS), xedD

Let T: C(3D) — C(3D) be defined by

Tp=[ Kz »00)dsk)

Not only is T bounded but (as we will shortly see) Tis also compact. Thus, by
the Fredholm alternative, either 2 = | is in the point spectrum of Tin which
case there is a Y € C(dD) such that (I - TW =0, or —f=(/ — T)¢p has a
unique solution for each f e C(0D). If u is defined by (VI.6a) with y replacing
¢, then # =0 in D by the maximum principle. Further, du/dn is continuous
across d.D and therefore equals zero on é.D. By an integration by parts this
implies that ¥ =0 outside dD. Therefore, by (V1.6b), 2y(x) =0 on 8D, so
the first alternative does not hold.
The idea of the compactness proof is the following. Let

(x -2, nz)

Ky(x,2) = m

If 6 > 0, the kernel K; is continuous, so, by the discussion at the beginning of
this section, the corresponding integral operators Ty, are compact. To prove
that T is compact, we need only show that [T~ T;| -0 as § » 0. By the
estimate

HTN0G) = (T < 1/ 1l f 1K 2) = K, 2)] dS(2)
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we must only show that the integral converges to zero uniformly in x as
d — 0. To prove this, divide the integration region into the set where |x—z| >¢
and its complement. For fixed ¢, the kernels converge uniformly on the first
region. By using the fact that K is integrable, the contribution from the
second region can be made arbitrarily small for ¢ sufficiently small.

V1.6 The trace class and Hilbert-Schmidt ideals

In the last section we saw that compact operators have many nice properties
and are useful for applications. It is therefore important to have effective
criteria for determining when a given operator is compact or, better yet,
general statements about whole classes of operators. In this section we will
prove that the integral operator

(TN = [ Kx )NS0) duly)

on L*(M,dy) is compact if K(-,-)eL*(M x M,du® dp). First we will
develop the trace, a tool which is of great interest in itself. Theorem VI.12
shows that Com(sf), the compact operators on a separable Hilbert space 5#,
form a Banach space. At the conclusion of the section, we will compute the
dual and double dual of Com(s#). These calculations illustrate the difference
between the weak Banach space topology on £ (#) and the weak operator
topology and give a foretaste of the structure of abstract von Neumann
algebras which we will study later.

The trace is a generalization of the usual notion of the sum of the diagonal
elements of a matrix, but because infinite sums are involved, not all operators
will have a trace. The construction of the trace is analogous to the construction
of the Lebesgue integral where one first defines | fdu for f> 0; it has values
in [0, o0}, including co. Then £! is defined as those f so that { | f] du < co.
&' is a vector space and [ | f du a linear functional. Similarly we first define
the trace, tr(-), on the positive operators; 4 — tr 4 has values in [0, c0]. We
then define the trace class, #,, to be all 4 € (5¢) such that tr |4| < c0. We
will then show that tr(-) is a linear functional on .#, with the right properties.

Theorem VI1.18 Let & be a separable Hilbert space, {¢,}-; an ortho-
normal basis. Then for any positive operator 4 € £ () we define tr 4 =
Y %1 (¢n, A@,). The number tr 4 is called the trace of 4 and is independent
of the orthonormal basis chosen. The trace has the following properties:
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(@ tr(d+B)=trd+1trB

(b) tr(ld)=Atr Aforall 1 >0.

() tr(UAU ') = tr 4 for any unitary operator U,
(d) If0O<A<B, thentrd<trB

Proof Given an orthonormal basis {¢,};% , define tr(4) = ) =, (9,, 49,).

n=1

If {¢,.}%.. | is another orthonormal basis then

tro(d) = 3 (0, Apn) = 3, 14' 70,1

i

f (2,10, 4017)

m=

i
s

(E 1 00r?)

m

i
7‘[\/]8

1A 2l
1

= 5 (s dvi)
= tr,(A)

Since all the terms are positive, interchanging the sums is allowed.
Properties (), (b), and (d) are obvious. To prove (c) we note that if {¢,}
is an orthonormal basis, then so is {U¢,}. Thus,

tr(UAU ™1 = tr g, (UAU ™) = tr (A) = tr(4) . |

Definition An operator A e £(s) is called trace class if and only if
tr | 4| < co. The family of all trace class operators is denoted by .#,.

The basic properties of #, are given in the following:

Theorem VI.19 F, is a s-ideal in L(5#), that is,

(a) £, is a vector space.
(b) If Ae #, and Be L(s#), then ABe #, and BAe #,.
(c) If Ae #,, then A*e F,.

Proof (a) Since |[14] =|A| |4} for AeC, S, is closed under scalar
multiplication. Now, suppose that 4 and B are in .#,, we wish to prove that
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A+ Be S, Let U, V, and W be the partial isometries arising from the polar
decompositions
A+ B="U|A+ B|
A=V|A4|

B=Ww|B|
Then

N N
;(«»n, |A + Blg,) = ;(wn, U*(4 + B)p,)

N N
< le(co.,, U*ViAle)l + le(¢.., U*W|Blg,)|

However,

N N
;I(w,., UV{Ale)l < X I LAYV Ul | 1A g,

n=1

1/2

< (1 1arveuet) (L1141
Thus, if we can show
iln |A]'2V*Ug, | <tr | A] (VLT
we can conclude that
il«pm |A+ Blo,) <tr|4| +tr |B| <

and thus A4 + Be .#,. To show (VL.7), we need only prove that
tr(U*V|A|V* U) <tr|A4|

Picking an orthonormal basis, {¢,} with each ¢, in Ker U or (Ker U)* we see
that tr(U*(V|A|V*U) < tr(V| 4| V*). Similarly, picking an orthonormal
basis, {{/,,}, with each ¥, in Ker V* or (Ker V*)* we find tr(V|4|V*) <
tr JA].

(b) By the lemma proven below, each B € £ () can be written as a linear
combination of four unitary operators so by (a) we need only show that
Ae #, implies UA € #, and AU € £, if U is unitary. But |U4| = | 4] and
|AU| = U~'|A4|U, so by part (c) of Theorem VL.18, 4U and UA are in .#,.

{c) LetA = U|A| and A* = V| 4*| be the polar decompositions of 4 and
A*. Then |A*| = V*|A|U*. If A€ #,, then |A| € #y, so by part (b) |4*| e
SFrand A*=VI|4*| e s, |}
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To complete the proof of part (b) above we need the following lemma
which we will use in other contexts later.

Lemma Every B e £ (o) can be written as a linear combination of four
unitary operators,

Proof Since B = (B + B*)— ;(i(B— B*)], B can be written as a linear
combination of two self-adjoint operators. So, suppose 4 is self-adjoint and

without loss of generality assume ||4{ < 1. Then 4 + i\/ I — A? are unitary

and A = YA + i,/T— AD) + 3(4 — iy/T— 4%). }

The proof of the following theorem is left to the reader (Problem 23).

Theorem V1.20  Let |||, be defined in £, by || All, = tr | A|. Then
#, is a Banach space with norm || - ||, and || 4] < || 4]};.

We note that 4, is not closed under the operator norm || - ||. The connection
between the trace class operators and the compact operators is simple:

Theorem VI1.21 Every 4 € #, is compact. A compact operator A is in
S, if and only if Y ., 4, < oo where {4,}%, are the singular values of 4.

Proof Since Ae Sy, |A]*e Sy, so u(|4|}) =12, ll4e,|* < o for any
orthonormal basis {¢,}&,. Suppose ¥ € [@;, ..., @y]* and || || = 1, then we
have

N
A < tr(]4]2) = ;nmpnnz

since {@y, @3, ..., @y, ¥} can always be completed to an orthonormal basis.
Thus

Sup{”Alf/“IlﬁE[¢1,..,,¢N]J', ”‘l/”=1}“’0 as N—)w

Therefore Y a., (¢, )A@, is norm convergent to 4. Thus 4 is compact.
The second part of the theorem follows easily from the canonical form
derived in Theorem V1.17 (Problem 24). |

Corollary The finite rank operators are || - |l;-dense in #,.

The second class of operators which we will discuss are the Hilbert-
Schmidt operators, the analogue of £2.
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Definition An operator Te L() is called Hilbert-Schmidt if and only
if tr T*T < co. The family of all Hilbert-Schmidt operators is denoted by
S,

By arguments analogous to those we used for #,, one can prove.

Theorem V1.22 (a) S, isa x-ideal.
(b) If A, Be #,, then for any orthonormal basis {¢,},

Zl(qo,, , A*Beo,)

is absolutely summabile, and its limit, denoted by (4, B),, is independent of
the orthonormal basis chosen.
(c) S, with inner product (-, -), is a Hilbert space.

(d) If 4, = /(4, A); = (tr(4*A)'/?, then
A4l < 141l < 141, and  [|A]l; = [|4*],

(e) Every 4 € J, is compact and a compact operator, A, is in £, if and
only if Y ®., A2 < oo where , are the singular values of A.

(f) The finite rank operators are | - ||,-dense in ;.

(g8) AeJ,if and only if {i| 4p,!]} € £, for some orthonormal basis {¢,}.

thy Ae s, ifand only if 4 = BC with B, Cin #,.

We note that #, is not || - ||-closed. The important fact about .#, is that
when # = L*(M, du), £, has a concrete realization.

Theorem V1.23  Let (M, u) be a measure space and o = L*(M, dp).
Then A € £(5#) is Hilbert~-Schmidt if and only if there is a function

Ke L3 (M x M, du ® du)
with
(ANG) = [ K, 9)70) duty)

Moreover,

141 = [ 1K, )12 duG) duy)

Proof Let Ke L*(M x M, du® dy) and let A, be the associated integral
operator. It is easy to see (Problem 25) that Ay is a well-defined operator on
H and that

Akl < WKl (VL3)
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Let {¢,}=, be an orthonormal basis for L*(M, dp). Then {@,(X)@u(Y)}Cm=1
is an orthonormal base for L3(M x M, du ® du) so

K= i U P X)Om(Y)

n 1

2

Ky = Z_ lan. m (pn(x)q)m(y)
Then each K}, is the integral kernel of a finite rank operator. In fact, Ag, =
Zrhu,,mﬂ %@ m» *)Pn. Since |[Ky — K|l . —0 we have ||Ax — Ag, -0 as
N - o by (V1.8). Thus Ay is compact and in fact

a©

AL 40 = T 1Aco,l’ = 3 3 lewml? = Kl
Thus Ac € £, and || Akl = [[K 2.
We have shown that the map K — Ay is an isometry of L2(M x M, du ® du)
into S, , so its range is closed. But the finite rank operators clearly come from
kernels and since they are dense in #, the range of K> A is all of #,. |

This theorem provides a simple sufficient condition for an operator to be
compact and is therefore very useful. Notice that the condition is not neces-
sary. Also, we have a sufficient condition for an operator on # = LX(M, du) to
be an integral operator. This condition is also not necessary. Now, we return
to defining the trace on 4.

Theorem VI.24 If Ae #; and {¢,}, is any orthonormal basis, then
Z,‘?,, (@., Ap,) converges absolutely and the limit is independent of the
choice of basis.

Proof We write A = U |A|'*| 4|2, Then
[(@n> d0)| < 11 A]"2U*0, 11| 4]' 20,
Thus

w© @ 1/2/ o 1/2
5 1(¢ns A@))] < (Z I |AI"2U“¢,.II2) (z n |A|”2«»,n’)
n=1 n=1 ns=t

so since | 4|'/2U* and | A|'/? are in £, the sum converges. The proof of the
independence of basis is identical to that for tr 4 when 4 > 0. §

Definition  The map tr: #, - C given by tr 4 = Y 2, (¢,, 49,) where
{©,} is any orthonormal basis is called the trace.
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We remark that it is not true that } 2, [(¢,, 4¢,)| < oo for some ortho-
normal basis implies 4 € #,. For 4 to be in #, the sum must be finite for all
orthonormal bases. The spectral theorem which we will prove in the next
chapter will tell us that any seif-adjoint 4 can be written 4 = A, — A_ where
both A, and A. are positive and 4, A_ = 0. Not surprisingly, 4 € 4, if
andonly if tr(4,) < o0, tr(4_)< o and in thiscase trA =trA, —tr A_.
We collect the properties of the trace.

Theorem VI1.25 (@) tr(-) is linear.
(b) trA*=1r 4.
(¢) trAB=1tr BAif A € £, and Be L(#).

Proof (a) and (b) are obvious. To prove (c) it is sufficient to consider the
case where Bis unitary since any bounded operator is the sum of four unitaries.
In that case

w0
tr AB=3 (¢,, ABop,)

n=t

= i](B*d’n ’ A‘/’n)

Y. W, BAY,)
= {r BA
where Y, = Bo, for all n. }

If A € #,, the map B—tr ABis a linear functional on Z(s#). These are
not all the continuous linear functionals on Z(5#) but such functionals do
yield the entire dual of Com(s#), the compact operators. We can also hold
B e £(,#) fixed and obtain a linear functional on #, given by the map
A tr BA. The set of these functionals is just the dual of .#, (with the operator
norm topology). We state this as a theorem; the interested reader can follow
the outline of the proof given in Problem 30.

Theorem V1.26 (a) 4, ={Com(s#)]*. That is, the map Atr(4-)is
an isometric isomorphism of #, onto [Com (b#)}*.

(D)L(#) =F7. That is, the map B tr(B-) is an isometric isomorphism
of L() onto F7T.
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We now return to the distinction between the weak operator topology on
L(H#) (see Section VI.1) and the weak Banach space topology, i.e. the
o(ZL(K#), L(H)*) topology. If Fis the family of finite rank operators, then
F < #, and each F € & can be realized as linear functional on £ () via the
dual action of 4, on Z(H#). The topology on L(#) generated by these
functionals, that is, a(ZL(3F), F) is just the weak operator topology. The set
& is not closed in the £ (s#)*-norm. As a matter of fact, the £ (s)* norm on
F is just ||+ ll; so the closure of & in this norm is just #,. The weak topology
on Z(sF) generated by the functionals in £, that is, o(L(H#), £,), is called
the ultraweak topology on £ (). Notice that it is stronger than the weak
operator topology, since more functionals are required to be continuous, but
weaker than the weak Banach space topology on £(5¢), since £, is not the
entire dual of Z(). In fact, since L(H#) = £3, the ultraweak topology on
ZL(3#) is just the weak-+ topology. This realization of £ () as the dual of
the Banach space of linear functionals continuous in the a(Z (), F) topology
is valid for a larger class of algebras than just £ (). Problem 31 gives another
example: the multiplication algebra L on L, . We will study such algebras in
detail in Chapter XVIII. We study the .#, spaces for p # 1, 2, c in Sections
1X.4 and XIIL.17.

NOTES

Section V1.1 The reader may be bewildered by the many topologies we have introduced
on Z(): the weak, strong, and uniform operator topologies, the weak Banach space
topology, the ultraweak topology (Section V1.6). Later on we will even encounter the ultra-
strong topology. Why is it necessary to introduce all these topologies? The answer is that
many of the operators we are interested in are given as some sort of limit of simpler oper-
ators. It is important to know exactly what one means by *‘some sort™ and to know what
properties of the limiting operator follow from properties in the sequence, for example, the
uniform limit of compact operators is compact. Furthermore, when one begins a problem
one doesn’t always know in what sense limits will exist, so it is useful to have a wide range of
topologies at hand, In general it is the weak, strong, and uniform operator topologies which
are important in Volumes I and 11. The ultraweak and ultrastrong topologies will play a role
when we deal with von Neumann algebras. The weak, strong, and ultrastrong operator
topologies were introduced in J, von Neumann, ** Zur Algebra der Functionaloperationen
und Theorie der Normalen Operatoren,” Math. Ann. 102 (1929-1930), 370-427.

Section VI.2 The spectral theorem for self-adjoint operators on finite dimensional
vector spaces is nicely described in P. R. Halmos, Finite Dimensional Vector Spaces, Van
Nostrand-Reinhold, Princeton, New Jersey, 1958.

Section VI.3 The definitions of various kinds of spectra will also be used for unbounded
operators. Theorem VL5 holds as long as we require that T be closed. If T is bounded it is,
of course, automatically closed.
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The theory of Banach space-valued analytic functions is described in great detail in
Functional Analysis and Semi-groups, Amer. Math, Soc., Providence, Rhode Island, 1957, by
E. Hille and R. S. Phillips. They also discuss the more difficult notion of analytic functions
from one Banach space to another. A proof of Theorem VL7 can be found in Functional
Analysis, Academic Press, New York, 1965, by K, Yosida.

Some authors (for example: Yosida or Hille, Phillips) use the term ‘‘ continuous spect-
rum” to denote any A € o(T) which is neither in the point spectrum, nor in the residual
spectrum. Other authors (such as Kato or Riesz, Nagy) use the definition that we give in
Section VII1.2. One important distinction is that with our definition the continuous spectrum
and the point spectrum need not be disjoint.

Section V14 The polar decomposition has a simple geometric meaning for linear
transformations on R". Any linear transformation 4 on R" can be written as 4 = OS where
O is orthogonal and S is self-adjoint. By the spectral theorem, S can be thought of as a
dilation, contraction, or annihilation in certain preferred orthogonal directions.

The notion of positivity has a natural generalization to operator algebras and will play
an important role in our investigations in Yolume I11.

The statement that the triangle inequality fails for |-{, that is, |4 + B| may not be less
than or equal to { 4] + | B} (see Problem 16) is a statement that f(x) = | x| is not a convex
operator-valued function, that is, for 0 <t <1, f(t4 + (1 — )B) < tf(A) + (1 — 1) f(B) can
be false for general operators 4 and B despite the fact that f(rx — (1 — )y) < 1f(x) +
(1 — 1) f(») is true for x and y real and 0 < ¢ < 1. Exactly which matrix and operator valued
functions are convex has been studied in: F. Krauss, “Uber konvexe Matrixfunktionen,”
Math. Z. 41 (1936) 1842, and J. Bendat and S. Sherman, * Monotone and Convex Operator
Functions,” Trans. Amer. Math. Soc. 79 (1955), 58-71.

Section VI.5 The proof of the second part of Theorem VI.12 can be found in Yosida's
book; it is a nice application of the Ascoli-Arzela and Alaoglu theorems (see also Problem
36).

In a very real sense, the theory of compact operators goes back to Fredholm’s great paper
on integral operators, " Sur une class d’équations fonctionnelles,” Acta Math. 27 (1903), 365-390.
Fredholm considered solving equations of the form

FO)=g(0) + A f KGe, ) () dy

where g and K are given continuous functions and — o < @ < b < ©. Fredholm showed
that there exists an explicit entire function d(), not identically zero, and an explicit func-
tion D,(x, ), entire in A and continuous in x and y, so that if dQA) # 0, then J(x) = g(x) +
d(A)=* [% Dy(x, y)g(y) dy solves the equation. Moreover, he showed that when d(d) = 0, then

b
f(x)=2 f K(x, ) f () dy

has a solution f # 0. Fredholm thus had Theorem VI.15 and the preceding corollary in this
special case. Readable expositions of the Fredholm theory may be found in W. Lovitt:
Linear Integral Equations, Dover, New York (reprinted 1950; original edition, McGraw-Hill,
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New York, 1926), and F. Smithies, lntegral Equations, Cambridge Univ. Press, London and
New York, 1958,

Fredholm’s work produced considerable interest among Hilbert and his schoo! and led to
the abstraction of many notions we now associate with Hilbert space theory, Hilbert first
defined completely continuous operators in a manner whose modern form would be the
criterion of Theorem V1.11: D, Hilbert, * Grundziige einer allgemeinen Theorie der linearen
Integralgleichungen, I-V1,”” Nachr. Akad. Wiss. Gittingen Math.-Phys. Kl. 49-91 (1904),
213-259, 307-388 (1905); 157-222, 439480 (1906); 355-417 (1910); esp. IV. The exten-
sion of the notion of compact operator to arbitrary Banach spaces by the precompactness
criteria is due to F. Riesz * Uber lineare Functionalgleichungen,” Acta. Math. 41 (1918),
71-98.

Theorem VI.12bis due to J. Schauder: ** Uber lineare, volistetige Functionaloperationen,”
Studia Math. 2 (1930), 183-196.

The idea of using Theorem 1V.13 to develop the general theory is due to E. Schmidt,
“Auflosung der allgemeinen linearen Integralgleichung,” Math. Ann. 64 (1907), 161-174.
While 1t is true that compact operators in most explicit Banach spaces are norm limits of finite
rank operators, there are Banach spaces where this is false. The earliest examples were constructed
by P. Enflo. For extensive discussion, see M. M. Day, Normed Linear Spaces. Springer. Berlin.
1973, and J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Springer Lecture Notes in
Math 388, Springer-Verlag, 1973.

Theorem VI.14, its corollary, and Theorem VI.15 hold in an arbitrary Banach space. For
their proof in that case, see N. Dunford and J. Schwartz, Linear Operators, Vol. 1. Wiley
(Interscience), 1958. Our technique of proof for Theorem VI.14 is taken from a technical
appendix in W. Hunziker, ‘‘On the Spectra of Schrodinger Multiparticie Hamiltonians,”
Helv. Phys. Acta. 39 (1966), 451-462. A similar approach can be found in an appendix of
G. Tiktopolous, *‘Analytic’ Continuation in Complex Angular Momentum and Integral
Equations,” Phys. Rev. 133B (1964), 12311238, One part of Theorem V1.14 is not proven
in the general case in Dunford-Schwartz; a discussion of this extra point can be found in
S. Steinberg, ‘“ Meromorphic Families of Compact Operators,” Arch. Rat. Mech. Anal. 31
(1968), 372-379. For extensions to locally convex spaces, see J. Leray, ** Valeurs propres et
vecteurs propres d’un endomorphisme conplétement continu d'un espace vectoriel a voisi-
nages convexes,” Acta Sci. Math. Szcg. 12, Part B, (1950), 177-186. Theorem VI.15 was
first proven by Riesz and Schauder in the above cited works (Schauder filled in some details
for the general case) and Theorem VI.16 is due to Hilbert and Schmidt in the aforementioned
papers.

For a discussion of the use of integral equations in the solution of Dirichlet problem, see
Boundary Value Problems of Mathematical Physics, Vol. 2, (especially sections 6.4 and 6.5),
Macmillan, New York, 1968, by Ivor Stakgold and Volume II of R, Courant and D. Hilbert,
Methods of Mathematical Physics, Wiley (Interscience).

Section V1.6 For a discussion on f;, #,, and the £, analogues, see R. Schatten,
Norm Ideals of Completely Continuous Operators, Springer-Verlag, Berlin and New York,
1960. #, is defined as those 4 with Tr(] 4]?) < <o and is equivalently those compact oper-
ators with Z 14,|? < co. For further discussion. see Sections 1X.4 and XII1.17.

These norm ideals have been extended to other situations with traces (von Neumann
algebras) and more general settings in a manner emphasizing the analogy with L” by I. Segal:
*A Non-Commutative Extension of Abstract Integration,” Ann. Math. 57 (1953), 401-457;
58 (1953), 595-596, and R. A. Kunze, ** L, Fourier Transforms on Locally Compact Uni-
modular Groups,’ Trans. Amer. Marth. Soc. 89 (1958), 519.
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Vi: BOUNDED OPERATORS

PROBLEMS

Prove that the weak operator topology is weaker than the strong operator topology
which is weaker than the uniform operator topology.

Prove the statements in the example in Section VLI,

3. (a) Let X and Y be Banach spaces. Prove that if T, € £(X, Y)and {T, x} is a Cauchy

4.

18.

sequence for each x € X, then there exists a T e Z(X, Y) so that T,,— T strongly.

*(b) Is the theorem in (a) true if T, is replaced by a net 7, ?

(a) Let X and Y be Banach spaces. Prove that a theorem for £(X, Y) analogous to
Theorem VI.1 holds if Y is weakly sequentially complete (which means that every
weakly Cauchy sequence has a weak limit.)

(b) Prove that if a Banach space is reflexive, then it is weakly sequentially complete.

. (a) Let T, be the operator T;: ¢(x)— @(x + 1) on L% R). What is the norm of 7;? To

what operator does T, converge as f— o and in what topology ?
(b) Answer the same question for T, if the Hilbert space is L*(R, e~** dx).

. (a) Let # be an infinite dimensional Hilbert space. Suppose ¢, ..., i, orthonormal

are given and that g,  are given. Show there are 4 and B with |4y [l < &, 1B, 1) = ¢;
i=1,...,n, but that i4Bil > 1.

(b) Prove that multiplication from £(#) x £(¢)— £() is not jointly continuous
when Z(5) is given the strong topology.

(¢} Suppose {4.}2e1and {B,), s are ners. Let A¥ = A*, B,>> B. Prove that 4,8, ~> AB.

(d) Let A, B, be sequences so that A,~> A, B,~> B. Prove that 4,B,~> AB.

(e) Let A,, B, be sequences so that A,~> A, B,~> B. Give an example where 4,8,-> AB
is false.

. Give an example to show that the range of a bounded operator need not be closed.

Prove that if T is bounded, everywhere defined, and an isometry, then Ran T is closed.

(a) Let A4 be a self-adjoint bounded operator on a Hilbert space. Prove that the eigen-
values of A are real and that the eigenvectors corresponding to distinct eigenvalues
are orthogonal.

(b) From the proof of Theorem VI.8 derive a universal (but A-dependent) bound for
the norm of the resolvent of a self-adjoint operator at a nonreal A € C.

9. (a) Let A4 be a self-adjoint operator on a Hilbert space, 5. Prove that

l4ll= sup [(4x, x)]|

xll=1
Hint: First note that

Re(y), A¢) = (Y + ¢, 4GS+ ) — (b — ¢, A — M)
Then using
{(n, AP} < Iy "2..3?.’5. [, A}

and the parallelogram law, prove that
[, Ad)] < sup. [(q, ADD|
=
if llpli= gl =1.
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(b) Find an example which shows that the conclusion of (a) need not be true if 4 is
not self-adjoint.

10. Show that the spectral radius of the Volterra integral operator

anw=[ ro)a

as a map on C[0, 1] is equal to zero. What is the norm of T'?

t11, Let T € £L(X). Prove that lim,. |IT"i*/* exists and is equal to inf,||I7"]|*/" as follows:
(a) Set a, = log i7"}l and prove that dm4n < am + ax.
(b) For a fixed positive integer m set n = mq + r where g and r are positive integers
and 0 <r < m — 1. Using (a) conclude that

— -
fim 2t < 2m
s n
(¢) Prove that lim,_, o, a,/n = inf, a,/n and thus the desired equality.

+12. Prove the proposition at the end of Section V1.3.

13. (a) Give an example which shows that a linear transformation on C" can be positive
without all the entries in a given matrix representation being positive.
*(b) Derive a necessary and sufficient condition for a n X n matrix to be positive.

14. (a) Prove that if A4, >0, A,— A in norm, then \/Z. - V4 norm.
(b) Suppose 4,—> A4 strongly for a sequence {A4,}. Prove that 4 A, -4 strongly.

15. (a) Let A,— A in norm, Prove that {4,| = | 4] in norm.
(b) Suppose A,— A and AF — A* strongly where A, is a sequence. Prove that | A,| —
| A| strongly.
(¢) Find an example which shows that || is not weakly continuous on £(#),

16. Let o3 =(§ _9), a: =({ )). Prove that it is false that
Hos + 1)+ (on = DI S {(o5 + DI + (o, — D]
Remark: This example is due to E. Nelson.
17. Show that it is not necessarily true that
1Al = |B] 1< 14~ Bl
(Hint: See Problem 16.)

+18. (a) Prove the proposition preceding Theorem VI.10.
(b) Prove the uniqueness in Theorem VI.10.

19. Write the matrix (T4 ~3) as the product of a rotation and a positive symmetric matrix.

*20. Suppose that X is a reflexive Banach space and that T: X— X a bounded linear oper-
ator. Prove that if T takes weakly convergent sequences into norm convergent se-
quences, then T is compact.

t21. Complete the proof of Theorem VL.14 by extending the result to all of D.
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22.

t23.

t24.

t25.

26.
27.

28.

+29.
*30.

Vi: BOUNDED OPERATORS

Using the Stone-Weierstrass theorem prove that every Fredholm integral operator on
Cla, b}

b
TN = j' KGN0 dy

where K is continuous, is a norm limit of operators of finite rank.

(a) Prove that [l4l| < ll41l;.

(b) Suppose {4,} is an }}-|l;-Cauchy sequence. Show that {4,} hasa ||-ll-limit 4 and that
tr| 4] < oo. Then conclude the proof of Theorem VI.20 by showing that A is the
Il 1l;-limit of {A4,}.

(a) Use the canonical form given by Theorem VI.17 to prove the second statement in
Theorem VI.21.
(b) Prove the corollary to Theorem VI.21.

Let K€ L*(M x M, du ® du) and let Ax be the integral operator
Aep)) = [ K3, 2)p0) duty)
M

Prove that Ax is well defined and 114x|l < §iKli,..

(@) Prove that if 3 o1 |(A@a, @) < o for all orthonormal bases, then 4 € 4,
(b) Find an A4 ¢ #, so that 3 »%, [{(4A@., @a)| < o for some fixed orthonormal basis.

Prove that tr(4B) = tr(BA) if A, Be £,.

Prove that (a) 114Bll, < ii41] 1Bl
(b) 14Bll> < II4]} 1Bl
© W48l < ll41;1iBl,

Prove that 4 € , if and only if A = BC with Band Cin /..

The goal of this problem is to prove Theorem VI.26.
(a) Let fbe a bounded linear functional on Com(#). Let (¢, )§ be the operator on
¥ which takes 7 into (i, 7)¢. Show that there is a unique bounded linear operator,

B, with
(b) Using the fact that

3. e 18140 =f[§j_‘ U, -)¢.]

prove that Be S, and |IBll; < liflicomcarye -

(¢) Prove that 4+ tr(BA) is a bounded linear functional on Com( ) which is in fact
equal to f().

(d) Prove that lIBll; = |ifllcomeary -

(e) Let g be a bounded linear functional on J,. Show that there is a unique bounded

linear operator, B, with
4, B) = gl(, )]

(f) Prove that A— tr(BA) is a bounded linear functional on #, which agrees with g
and that ligliy., = IIBIl.
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32

.

33.

*34.

35.

36.

137.
38.

*39.

*40.

41.
42.
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Let (M, ;2> be a measure space and let L*(M, du) act on ¥ = L*(M, du) by

(TrpXx) = f(x)p(x)

Prove that the topology on L*® induced by the weak operator topology on Z(#) is
identical to the weak-+ topology induced on L™ by L',

Let C10, 1] act on L*(0, 1) as in Problem 31. Find a sequence in Cf0, 1] convergent in
the weak operator topology on C[0, 1] to fe C[0, 1] which is not convergent in the
weak Banach space topology on Ci0, 1].

Consider ., as a Hilbert space with inner product (4, B); = tr(4A*B). Let A~ L, and
A R, be the maps of £(¥) into £(f;) given by

L(B)=AB, R, (B)=BA*

(a) Prove that A~ L, is a homomorphism of £(5¢) into ¥(5,).

(b) Prove that A R, is a conjugate linear homomorphism of £( ) into £(5,).

(c) Suppose that Ce Z£(~,) and obeys CL,= L, C for all 4 e £(#). Prove that
C = R, for some Be Z(X).

Show that in a Hilbert space, a map T: # — 5 is continuous if the domain is given
the weak topology and the range the norm topology (that is, x, * x implies Tx, "} Tx
for arbitrary nets) if and only if T has finite rank! (Compare with Theorem VI.11.)

(a) Suppose T is an operator in () so that x, "' x implies Tx, % Tx. Prove T is
bounded (so Tx,".! Tx). ,

(b) Identify the continuous linear maps of £ () into itself if both the domain and
range are given the weak topology.

Use (c) of Theorem VI1.12 and the polar decomposition to prove (b) of Theorem VI.12
when X' = Y is a Hilbert space.

Prove part (c) of Theorem VL12,

Let P and Q be orthogonal projections onto subspaces 4 and .4 in a Hilbert space

3. Suppose that PQ = QP.

(a) Prove 1 = P,1 - Q,PQ,P+ Q—PQ and P+ Q —2PQ are orthogonal pro-
jections.

(b) How are the ranges of the projections in (a) related to .4 and 4.

Let Pand Q be orthogonal projections onto subspaces .4 and ./ in a Hilbert space 5.
Prove that s-lim ... » (PQ)" exists and is the orthogonal projection onto A4 N A",

Let # be a norm closed ideal in £(#), .F # 0. Prove Com(5¥) < S by proving that
any finite rank operator is in £.

Remark : We will see (Chapter VII, Problem 31) that the only norm closed ideals when
M is separable are {0}, Com(¢), Z(F).

Find a projection on R? which is not an orthogonal projection.

Let A € £(X). Prove that the set of A such that A is in o(A4) but not an eigenvalue
and Ran(AI — A) is closed but not all of X is a open subset of C.
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43. Let M and N be subspaces of a Banach space Xsuchthat M+ N= Xand M N N=

{0}. Let P be the projection of X onto M. Prove that P is bounded if and only if both
M and N are closed.

44. (a) Define the numerical range, N(T'), of a bounded operator, T, on a Hilbert space,
#, by N(T) = {(h, T$) | € #, Ipll = 1}. Prove that o(T) < N(T). (Hint: First
show that if A is an eigenvalue of T or T*, then A € N(T); then show that if A ¢ o(T)
and A is not an eigenvalue of T or T*, we can find i), € & so that [(T — A)f,ll —0.)
(b) Find an example where N(T)is not closed and o(T) ¢ N(T).
(¢) Find an example where o(T) # N(T) = N(T).
Remark: There is a deep result of Hausdorff that N(T) is convex.

45. (a) Let {¢,}s, be an orthonormal basis for a Hilbert space »#. Let A be an operator
with

sup AYll—~0  as n—> oo,

Prove that 4 is compact.

(b) Let {¢,}2% 1 be any orthonormal basis for a Hilbert space # and let A be compact.
Prove that

sup lAgll>0 as n—>oo.
veey, ... onl+
46. (a) Let 4 >0 with A4 compact. Prove that 4'/2 is compact. (Hint: Use Problem 45.)
(b) Let 0 < 4 < B. Prove that A4 is compact if B is compact. (Hint: Prove that 4!/?
is compact using Problem 45 and part (a).)

47. Let o and 5 be two Hilbert spaces. If T is a bounded linear map from 5 to #”
we define T : #' — o by (T*, Pl = (b, TP). T is called Hilbert-Schmidt if and
only if T*T: # — S is trace class. Let T be Hilbert-Schmidt. Prove that there are
real numbers, A, > 0, and orthonormal sets {¢,}5=1 < I, {}h=1 € # so that

Th = §‘&(¢m nys

48. Let & and #’ be the two Hilbert spaces and let (o, #”) denote the Hilbert-
Schmidt operators from 5 to 5",
(a) Prove that J,(5¥, ) with the inner product

(S, T)=Tre(S*T)

is a Hilbert space.
(b) Given € o, P e H# define I, p) € F2(#*, H#") by I, $) = () for any

¢ € #*. Prove that the map J, taking ¢ ® ¢ into /(i ¢), is well defined and extends
to an isometry of # ® #’ and S, (>, #).

(c) Given ne # ® H#” show that there exist reals, A.>0, and orthonormal sets
(@a}i=1 < X, {}¥o, © #' with N finite or infinite, so that

N N
ZIIAN'Z = ”77"2 and Z_:An‘#n ® 'l’u= n.



VII: The Spectral Theorem

Mathematical proofs, like diamonds, are hard as well as clear, and will be touched with
nothing but strict reasoning. John Locke in Second Reply to the Bishop of Worcester

Vil.1 The continuous functional calculus

In this chapter, we will discuss the spectral theorem in its many guises.
This structure theorem is a concrete description of all self-adjoint operators.
There are several apparently distinct formulations of the spectral theorem.
In some sense they are all equivalent.

The form we prefer says that every bounded self-adjoint operator is a
multiplication operator. (We emphasize the word bounded since we will deal
extensively with unbounded self-adjoint operators in the next chapter; there
is a spectral theorem for unbounded operators which we discuss in Section
VIIL.3.) This means that given a bounded self-adjoint operator on a Hilbert
space #, we can always find a measure 4 on a measure space M and a
unitary operator U: & — I[*(M, dy) so that

(UAU™f)(x) = F(x) f (%)

for some bounded real-valued measurable function F on M.

This is clearly a generalization of the finite-dimensional theorem, which
says any self-adjoint n x n matrix can be diagonalized, or in an abstract
form: Given self-adjoint operator 4 on an n-dimensional complex space V,
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there is a unitary operator U: ¥ — C" and real numbers 4,, ..., 4, so that
(AU = i

for each f={f}, ..., f,» in C".

In practice, M will be a union of copies of R and F will be x, so the core
of the proof of the theorem will be the construction of certain measures.
This will be done in Section VII.2 by using the Riesz-Markov theorem. Our
goal in this section will be to make sense out of f(A4), for f a continuous
function. In the next section, we will consider the measures defined by the
functionals f 1+ {y, f(AW) for fixed Y € #.

Given a fixed operator A, for which f can we define f(4)? First, suppose
that A is an arbitrary bounded operator. If f(x) = Z,’,L‘ a,x" is a polynomial,
we want f(4) = Y., a,4". Suppose that f(x) = Y ., ¢, x" is a power series
with radius of convergence R. If |4|| <R, then )2, ¢, A" converges in
L(#) so it is natural to set f(4) =Y 2, ¢, A" In this last case, f was a
function analytic in a domain including all of 6(4). In general, one can make
a reasonable definition for f(A) if fis analytic in a neighborhood of a(A) (see
the Notes).

The functional calculus we have talked about thus far works for any
operator in any Banach space. The special property of self-adjoint operators
(or more generally normal operators; see Problems 3, 5) is that |[P(4)} = .
SUP; ¢ g(4) | P(A)| for any polynomial P, so that one can use the B.L.T.
theorem to extend the functional calculus to continuous functions. Our major
goal in this section is the proof of:

Theorem VII.1 (continuous functional calculus) Let A4 be a seif-adjoint
operator on a Hilbert space #. Then there is a unique map ¢: C(6(4)) -
L () with the following properties:

(a) ¢ is an algebraic s-homomorphism, that is,

o(fg) = ¢(N)dlg) () = A9(f)
e =1  ¢(f)=(N)*

(b) ¢ is continuous, that is, (N e < ClSf -

(c) Let fbe the function f(x) = x; then ¢(f) = 4.
Moreover, ¢ has the additional properties:

(d) If Ay = Ay, then ¢(f/ ) = ().

©) ale()] = {f()| A e a(A)} [spectral mapping theorem].

() Iff>0, then ¢(f) = 0.

(8 eI = 1SNl [this strengthens (b)].
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We sometimes write ¢ ,(f) or f(A4) for ¢(f) to emphasize the dependence
on A,

The idea of the proof which we give below is quite simple. (a) and (c)
uniquely determine ¢(P) for any polynomial P(x). By the Weierstrass theorem,
the set of polynomials is dense in C(a{A4)) so the heart of the proof is showing
that

IP(Dl ey = 1P cocay = Asug) | P(D)|

The existence and uniqueness of ¢ then follow from the B.L.T. theorem.
To prove the crucial equality, we first prove a special case of (e) (which
holds for arbitrary bounded operators):

Lemma1 Let P(x) = Y N_o a,x" Let P(4) = Y _ a, A" Then
a(P(A)) = {P(})| A € o(A)}

Proof Let A e o(A). Since x = A is a root of P(x) — P(4), we have P(x) — P(4)
= (x — D)QO(x), so P(4) — P(A) = (A - 2)Q(A). Since (4 — A) has no inverse
neither does P(A4) — P(2), that is, P(1) € a(P(4)).

Conversely, let ue a(P(4)) and let 4,,..., 4, be the roots of P(x) — u,
thatis, P(x) ~p=a(x — A,) - (x — 4,). If A, ..., A, ¢ 6(A), then

PA-p =alA~-2) e (A=-2)7!
so we conclude that some 4; € 6(A), that is, u = P(2) for some 1 e o(4). |

Lemma?2 Let 4 be a bounded self-adjoint operator. Then
1P = sup |P()]
A€a(A)

Proof IP(A? = | P(Ay*P()]|
= [(PPY(A4)|
= sup |4] (by Theorem VI.6)

Aeo(FP(A))

sup | PP(A)) (by Lemma 1)

Aea(A)

(sup 1Pe01)" 0

Aea(d)

Proof of Theorem VII.I Let ¢(P) = P(A). Then [ ¢(P)ll 2.y = IPliciaayy SO
¢ has a unique linear extension to the closure of the polynomials in C{a(4)).
Since the polynomials are an algebra containing 1, containing complex
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conjugates, and separating points, this closure is all of C(o(A4)). Properties (a),
(b), (¢), (g) are obvious and if ¢ obeys (a), (b), (c) it agrees with ¢ on poly-
nomials and thus by continuity on C{g(4)). To prove (d), note that ¢(P) =
P(A)y and apply continuity. To prove (f), notice that if f > 0, then f = g? with
g real and g € C(a(4)). Thus ¢(f) = ¢(g)* with ¢(g) self-adjoint, so ¢(f) = 0.
(e) is left for the reader (Problem 8). |}

Before turning to some examples, we make several remarks:

(1) ¢(f) =0 if and only if f> 0 (Problem 9).

(2) Since fg = gf for all f, g, {f(A)| fe C(6(A))} forms an abelian algebra
closed under adjoints. Since |f(4)] =|fll, and C(a(A4)) is complete,
{f(A4)] fe C(6(A))} is norm-closed. It is thus an abelian C* algebra of
operators.

(3) Ran ¢ is actually the C* algebra generated by A, that is, the smallest
C*-algebra containing A (Problem 10).

(4) This result, that C(o(A4)) and the C*-algebra generated by A are
isometrically isomorphic, is actually a special case of the *commutative
Gelfand-Naimark theorem > which we discuss in Chapter XV.

(5) (b) actually follows from (a) and abstract nonsense (Problem 11).
Thus (a) and (c) alone determine ¢ uniquely.

Finally, we consider two specific examples of ¢(f):

Example 1 As a corollary, we have a new proof of the existence half
of the square-root lemma (Theorem VI.9) for if 4 > 0, then g(4) < [0, o)
(Problem 12). If f(x) = x'/2, then f(4)* = A.

Example 2 From (g) of Theorem VII.1 we see that (4 — )7 =
[dist(A, 6(4)))" ! if A is bounded, self-adjoint, and A ¢ o(A4).

VIilL.2 The spectral measures

We are now ready to introduce the measures we have anticipated so often
before. Let us fix 4, a bounded self-adjoint operator. Let y € s, Then fi
(Y, f(AW) is a positive linear functional on C(g(A4)). Thus, by the Riesz-
Markov theorem (Theorem IV.14), there is a unique measure p, on the

compact set (A) with (, f(AW) = [,4) S(A) dny, .
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Definition  The measure g, is called the spectral measure associated with
the vector .

The first and simplest application of the yu, is to allow us to extend the
functional calculus to #(R), the bounded Borel functions on R. Let g € Z(R).
It is natural to define g(4) so that (y, g(A)W) = j,( 4 9(4) duy(2). The polariza-
tion identity lets us recover (Y, g(4)¢) from the proposed (¥, g(A)) and
then the Riesz lemma lets us construct g(A4). The properties-of this * measur-
able functional calculus™ are given in (Problem 13):

Theorem VIL.2 (spectral theorem—functional calculus form) Let Abea
bounded self-adjoint operator on . There isa unique map ¢: B(R) - L(¥)
so that

(@) ¢ is an algebraic *-homomorphism.

(b) @ is norm continuous: $(NM gy < I/l -

{c) Let f be the function f(x) = x; then ¢(f) = 4.

(d) Suppose f,(x) - f(x) for each x and || f||., is bounded. Then @(f,) -
&) strongly.

Moreover ¢ has the properties:

(€) If Ay = 2y, then $(f ) = f(AW.
(f) Iff>0, then ¢(f) = 0.
(g) If BA = AB, then §(f)B = BH(f).

Theorem VII1.2 can be proven directly by extending Theorem VIL1; part
(d) requires the dominated convergence theorem. Or, Theorem VIL2 can be
proven by an easy corollary of Theorem VIIL3 below. The proof of Theorem
VIL.3 uses only the continuous functional calculus. ¢ extends ¢ and as before
we write ¢(f) = f(A). As in the continuous functional calculus, one has
f(A)g(4) = g(A)f(A).

Since #(R) is the smallest family closed under limits of form (d) containing
all of C(R), we know that any ¢(f) is in the Smallest C*-algebra containing A
which is also strongly closed; such an algebra is called a von Neumann or
W*-algebra. When we study von Neumann algebras in Chapter XVIII we will
see that this follows from (g).

The norm equality of Theorem VII.1 carries over if we define || f||’, to be
the L*-norm with respect to a suitable notion of ‘“almost everywhere.”
Namely, pick an orthonormal basis {{,} and say that a property is true a.e.
if it is true a.e. with respect to each u,, . Then lté(f)llg(,, =|flls.

In the next section, we will return to the operators yq(A4) where xq is a
characteristic function; this is the most important set of operators in the
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measurable but not in the continuous functional calculus. For the time being,
we turn to using the spectral measures to form [? spaces. We first define:

Definition A vector Y e o is called a cyclic vector for A if finite
linear combinations of the elements {4"Y}, are dense in #.

Not all operators have cyclic vectors (Problem 14), but if they do:

Lemma 1 Let 4 be a bounded self-adjoint operator with cyclic vector .
Then, there is a unitary operator U: # — I*(c(A), du,) with
(UAUT ) = M (D)
Equality is in the sense of elements of L*(a(4), du,).
Proof Define U by Up(/ )W = f where f is continuous. U is essentially the

inverse of the map ¢ of Theorem VIIL.1. To show that U is well defined we
compute

I$UWIE = W, $5(NSUIW) = W, $UTNW)
= [17®1* du,

Therefore, if f= g a.e. with respect to u,, then ¢(f ) = ¢(g)¥. Thus U is
well defined on {¢(/ ) | fe C(o(A))} and is norm preserving. Since ¥ is cyclic

{(NHW|fe Cla(A)} = #, so by the B.L.T. theorem U extends to an iso-
metric map of # into I*(6(A), du,). Since C(o(A)) is dense in I?, Ran U =
LX(o(A), du,). Finally, if fe C(a(A)),
(UAUT)A) = [UA(NA)
= [Up(xNI(H)
= f(A)
By continuity, this extends from fe C(a(4)) to fe I*. |

To extend this lemma to arbitrary 4, we need to know that 4 has a family
of invariant subspaces spanning # so that A is cyclic on each subspace:

Lemma2 Let A4 be a self-adjoint operator on a separable Hilbert space
#. Then there is a direct sum decomposition # = @Y., #, with N=1,
2, ..., 0r o so that:

(a) A leaves each o2, invariant, that is, | € &, implies Ay € #,,.

(b) For each n, there is a ¢, € 3, which is cyclic for 4 | 5#,, i.e. I,

= {f(A)¢,|f€ Clo(4))}.
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Proof A simple Zornication (Problem 15).

We can now combine Lemmas | and 2 to prove the form of the spectral
theorem which we regard as the most transparent:

Theorem VIL3 (spectral theorem—multiplication operator form)  Let 4
be a bounded self-adjoint operator on J#, a separable Hilbert space. Then,
there exist measures {u,}Y.., (N=1,2,... or ) on o(4) and a unitary
operator

U:# - é LX(R, dy,)
n=i
so that
(UAU),(A) = W (A)

where we write an element ¢ € @Y., *(R, du,) as an N-tuple {y,(4), ...,
¥(A)). This realization of A4 is called a spectral representation.

Proof Use Lemma 2 to find the decomposition and then use Lemma 1 on
each component. J

This theorem tells us that every bounded self-adjoint operator is a multi-
plication operator on a suitable measure space; what changes as the operator
changes are the underlying measures. Explicitly:

Corollary Let 4 be a bounded self-adjoint operator on a separable

Hilbert space #. Then there exists a finite measure space (M, u), a bounded

function F on M, and a unitary map, U: 5 — I*(M, du), so that
(UAU™f)(m) = F(m)f(m)

Proof Choose the cyclic vectors ¢, so that @, =27" Let M = ()R,
i.e. the union of N copies of R. Define u by requiring that its restriction to the
nth copy of R be p,. Since u(M) = Y ., 4, (R) < o0, p is finite. ||

We also notice that this last theorem is essentially a rigorous form of the

physicists’ Dirac notation. If we write ¥,(x) = y(x; n), we see that in the
*“new representation defined by U” one has

W, $) =T [du ¥ med; )

W, 48) = T [ dua ¥k mAd(2; m)
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These are the Dirac type formulas familiar to physicists except that the
formal sums of Dirac are replaced with integrals over spectral measures,
where we define:

Definition  The measures du, are called spectral measures; they are just
dp, for suitable y.

These measures are not uniquely determined and we will eventually discuss
this nonuniqueness question. First, let us consider a few examples:

Example 1 Let A be an n x n self-adjoint matrix. The “usual> finite-
dimensional spectral theorem says that A has a complete orthonormal set of
eigenvectors, ¥,, ..., ¥,, with Ay, = A,¥,;. Suppose first that the eigenvalues
are distinct. Consider the sum of Dirac measures, g =) 7., d(x — 4)).
LX(R, dy) is just €" since fe I? is determined by f= {f(4}), ...,/ (A))-
Clearly, the function Af corresponds to the n-tuple {4, f(4,), ..., 4, f(4)),
so A is multiplication by A on I*(R, dp). If we take ji = Y 1., ,6(x — ;) with
a,,...,a,>0, A can also be represented as multiplication by 4 on L*(R, dj).
Thus, we explicitly see the nonuniqueness of the measure in this case. We
can also see when more than one measure is needed: one can represent a
finite-dimensional self-adjoint operator as multiplication on I*(R, du) with
only one measure if and only if A4 has no repeated eigenvalues.

Example 2  Let A be compact and self-adjoint. The Hilbert-Schmidt
theorem tells us there is a complete orthonormal set of eigenvectors
{Y.}= , with Ay, = 4, ¥, . If there is no repeated eigenvalue, Y 2., 27"3(x — 4,)
works as a spectral measure.

Example 3 Let o = ¢*(— 0, o), that is, the set of sequences, {2,}%% _ ,,
with Y= _ |a,|? < . Let L: # — # by (La), = a,+,, that is, L shifts to
the left. L* = R with (Ra), = a,-,. Let A = R + L which is self-adjoint. Can
we represent A as a multiplication operator ? Map J into I*[0, 1] by U: {a,}
=Y _.a,e*™"™ Then ULU™! is multiplication by e~2** and URU™!
is multiplication by e*2** so UAU ™! is multiplication by 2 cos(2rx). The
necessary transformations needed to represent A as multiplication by x on
LX(R, du,) ® I*(R, du,) are left for the problems. u, and u, have support in
[-2,2].
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Example 4 Consider i ~*d/dx on I*(R, dx). This is an unbounded opera-
tor and thus not strictly within the context of this section, but we will prove
an analogue of Theorem VIL.3 in Section VIIL.3. We thus seek an operator U
and a measure dyu (it turns out that only one u is needed) with U: [*(R, dx) —
IX(R, du(k)) so that

(3 = 1)) = kurdo

The Fourier transform (Uf)(k) = (2r)~Y/? | f(x)e™ ** dx which we study in
Chapter IX precisely does the trick. Thus, the Fourier transform is one
example of a spectral representation.

We now investigate the connection between spectral measures and the
spectrum.

Definition  If {y,})_, is a family of measures, the support of {u,} is the
complement of the largest open set B with u,(B) = 0 for all n; so

~N
supp {f,} = Ulsupp Ha
n=

Proposition Let 4 be a self-adjoint operator and {u,}Y_, a family of
spectral measures. Then

o(A4) = supp {ia- s

There is also a simple description of o(4) in terms of the more general
multiplication operators discussed after Theorem VII.3:

Definition  Let F be a real-valued function on a measure space (M, u>.
We say A is in the essential range of F if and only if

umliAi—e<Fim)<i+¢e >0
for all ¢ > 0.
Proposition Let F be a bounded real-valued function on a measure
space {M, p). Let T be the operator on I*(M, dy) given by
(T 9)m) = F(m)g(m)
Then o(T}) is the essential range of F.
Proof See Problem 17b.
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We can now see exactly what information is contained in the spectrum.
A unitary invariant of a self-adjoint operator A4 is a property P so that
P(A) = P(UAU %) for all unitary operators U. Thus, unitary invariants are
“intrinsic” properties of self-adjoint operators, that is, properties inde-
pendent of “representation.” An example of such a unitary invariant is the
spectrum o(A4). However, the spectrum is a poor invariant: for example,
multiplication by x on I?([0, 1], dx) and an operator with a complete set of
eigenfunctions having all rationals in [0, 1] as eigenvalues are very different
even though both have spectrum [0, 1].

At the conclusion of this section, we will see that there is a canonical
choice of “spectral measures” which forms a complete set of unitary in-
variants, that is, a set of properties which distinguish two self-adjoint opera-
tors A and B unless A = UBU ~! for some unitary operator U. This explains
why o(A) is such a bad invariant for different sorts of measures can have the
same support. If we wish to find better invariants which are, however,
simpler than measures, it is reasonable to first decompose spectral measures
in some natural way and then pass to supports. Recall Theorem I.13
which says that any measure y on R has a unique decomposition into
U= o, + Moo + Ung Where po is a pure point measure, u,. is absolutely
continuous with respect to Lebesgue measure, and pg;,, is continuous and
singular with respect to Lebesgue measure. These three pieces are mutually
singular so

LX(R, dy) = [A(R, du,,) @ (R, dp,.) @ (R, d,jng)

It is easy to see (Problem 18) that any § € I*(R, du) has an absolutely con-
tinuous spectral measure dy, if and only if ¥ € I*(R, du,.), and similarly
for pure point and singular measures. If {,}Y_, is a family of spectral measures,
we can sum @, [X(R, du,. ,.) by defining:

Definition Let 4 be a bounded self-adjoint operator on 5. Let 5, =
{|p, is pure point}, #,. ={y|u, is absolutely continuous}, #;,, =
{¥| uy is continuous singular}.

We have thus proven:

Theorem VI1L4 H = H o @H . ®H i, - Each of these subspaces is
invariant under A. A [ 5, has a complete set of eigenvectors, A4 [ &, has
only absolutely continuous spectral measures and A [ #;,, has only con-
tinuous singular spectral measures.
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Definition o,p(4) = {4|1 is an eigenvalue of A4}
Ocont(A) = 0(A [ Hoops =H 510 DH )
0,(A) =0a(A [ #,)
Osing(A) = 0(A [ H0p)

These sets are cailed the pure point, continuous, absolutely continuous, and
singular (or continuous singular) spectrum respectively.

While it may happen that o,, | ) 0,0 | 0, # 0, this-is only true because
we did not define o, as 6(4 [ J#,,) but rather as the actual set of eigenvalues.
One always has

Proposition  6,,,(4) = 6,.(4) | 0,44
o(A) = 6,,(A) | ) 6.on(A4)

The sets need not be disjoint, however. The reader should be warned that
O,ing(A) may have nonzero Lebesgue measure (Problem 7). For many pur-
poses, breaking up the spectrum in this way gives useful information. In
Section VI11.3, we introduce another breakup which is also useful.

As we discussed in the notes to Section V1.3, some authors use a notion
of “continuous spectrum” which is distinct from the above, namely they
define the continuous spectrum to be the set of A € o(T) which are neither in
the point spectrum nor in the residual spectrum. To illustrate the difference
between the two definitions we let # = C @ I*[0, 1]and define 4: {q, f(x)) -
{(3a, xf(x)>. With our definition, the point A = } is in both the pure point and
the continuous spectrum. The other authors assign 4 = 4 to the point spectrum
and their continuous spectrum is [0, 4) U (3, 1].

Finally, we turn to the question of making canonical choices for the
spectral measures, a subject which goes under the title of *multiplicity
theory.” We will describe the basic results without proof:

1. Multiplicity free operators

We must first ask when A is unitarily equivalent to multiplication by x on
LR, dy), that is, when only one spectral measure is needed. A look at
Example | tells us this happens in the finite-dimensional case only when 4
has no repeated eigenvalues, so we define:
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Definition A bounded self-adjoint operator A4 is calied multiplicity free
if and only if 4 is unitarily equivalent to multiplication by 1 on [*(R, dy) for
some measure p.

One is interested in intrinsic characterizations of * multiplicity free” and
there are several:

Theorem VII.L5  The following are equivalent:

(a) A is multiplicity free.
(b) A has a cyclic vector.
(¢) {B|AB = BA}is an abelian algebra.

2. Measure classes

Next we must ask about the nonuniqueness of the measure in the multi-
plicity free case. The situation in the finite-dimensional multiplicity free case
was seen in Example 1: the “acceptable” measures were Y n., «,6(1 — 4,)
with each a, # 0. There is a natural generalization. Suppose du on R is given
and let F be a measurable function which is positive and nonzero a.e. with
respect to u and locally L'(R, dy), that is, [¢ | F| du < oo for every compact
set C «R. Then dv = Fdu is a Borel measure and the map, U,

U: IX(R, dv) > (R, dy)

given by (Uf)(4) = \/F(A)f(/l) is unitary (onto since F # 0 a.e.) and A(Uf) =
U(4f). Thus, an operator 4 with a spectral representation in terms of u could
just as well be represented in terms of v. By the Radon-Nikodym theorem,
dv = Fdu with F a.e. nonzero if and only if v and u have the same sets of
measure zero. This suggests the definition:

Definition = Two Borel measures u and v are called equivalent if and only
if they have the same sets of measure zero. An equivalence class {u) is called
a measure class.

Then, the nonuniqueness question is answered by:

Proposition  Let u and v be Borel measures on R with bounded support.
Let A4, be the operator on I*(R, du) given by (4, /)(1) = Af(4) and similarly
for A, on I*(R, dv). Then A, and A, are unitarily equivalent if and only if
and v are equivalent measures.
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3. Operators of uniform multiplicity

If one wants a canonical listing of the eigenvalues of a matrix, it is natural
to list all eigenvalues of multiplicity one, all eigenvalues of multiplicity two,
etc. We thus need a way of saying that A is an operator of uniform multi-
plicity two, three, etc. It is natural to take:

Definition A bounded self-adjoint operator A is said to be of uniform
multiplicity m if A is unitarily equivalent to multiplication by 1 on *(R, du)
@ -+ @ I}(R, du) where there are m terms in the sum and u is a fixed Borel
measure.

That this is a good definition is shown by

Proposition If A is unitarily equivalent to multiplication by 4 on
PR,dy)@® - ® AR, du) (m times) and on L*(R,d @ ‘- @ [*(R, dv)
(n times), then m = n and u and v are equivalent measures.

4. Disjoint measure classes

In listing eigenvalues of multiplicity one, two, three, etc. in the finite-
dimensional case, we must add a requirement that prevents us from counting
an eigenvalue of multiplicity three once as an eigenvalue of multiplicity one
and once as an eigenvalue of multiplicity two. In the finite-dimensional case,
we avoid this “error’ by requiring the lists to be disjoint. The analogous
notion for measures is:

Definition Two measure classes {u) and {v) are called disjoint if any
H#y, € {u) and v, € {v) are mutually singular.

5. The multiplicity theorem

We can now state the basic theorem:

Theorem VH. 6 (commutative multiplicity theorem)  Let 4 be abounded
self-adjoint operator on a Hilbert space #. Then there is a decomposition
H=H DH,D - @ H, so that

(a) A leaves each #,, invariant.
(b) A [ o, has uniform multiplicity m.
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(¢) The measure classes {y,,» associated with the spectral representation
of A | o#,, are mutually disjoint.

Moreover, the subspaces #,,..., #,, ..., # , (some of which may be
zero) and the measure classes {p1), ..., s - .., {Poy are uniquely deter-
mined by (a)-(c).

The spectral theorem with the multiplicity theory just described is thus
one of those gems of mathematics: a structure theorem, that is, a theorem
that describes all objects of a certain sort up to a natural equivalence. Each
bounded self-adjoint operator A is described by a family of mutually
disjoint measure classes on [— || 4]}, || 4]]]; two operators are unitarily equiva-
lent if and only if their spectral multiplicity measure classes are identical.

V1.3 Spectral projections

In the last section, we constructed a functional calculus, fi— f(4) for any
Borel function fand any bounded self-adjoint operator 4. The most important
functions gained in passing from the continuous functional calculus to the
Borel functional calculus are the characteristic functions of sets.

Definition Let 4 be a bounded self-adjoint operator and Q a Borel set
of R. Py = yo(A) is called a spectral projection of A.

As the definition suggests, Pg, is an orthogonal projection since y3 = xq =
¥q pointwise. The properties of the family of projections {Pq|Q an arbitrary
Borel set} is given by the following elementary translation of the functional
calculus (Problem 22).

Proposition  The family {P,} of spectral projections of a bounded
self-adjoint operator, A, has the following properties:

(a) Each Pg is an orthogonal projection.
(b) Py =0;P, ,=Ifor some a.
(© o=z, Q,withQ,nQ, =g for all n# m, then

N
PQ=S‘]im (2 Pn")
1

N-w n=

(d) P('hPﬂz:Pﬂlr\ﬁz
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Condition (c) is very reminiscent of the condition defining a measure and
in fact one defines:

Definition A family of projections obeying (a)-(c) is called a (bounded)
projection-valued measure (p.v.m.).

We remark that (d) follows from (a) and (c) by abstract considerations
(Problem 22).

As one might guess, one can integrate with respect to a p.v.m. If Py is a
p.v.m., then (¢, Pod) is an ordinary measure for any ¢. We will use the
symbol d(¢, P;$) to mean integration with respect to this measure. By
standard Riesz lemma methods, there is a unique operator B with (¢, Bo) =

Q) d(@, P, ). Thus:

Theorem VIL7 If Py is a p.v.m. and f a bounded Borel function on
supp Pq, then there is a unique operator B which we denote { f(1) dP; so
that

6. B$) = [f() d(¢, P, ), Vées

Example If A is a bounded self-adjoint operator and { P} its associated
p.v.m., it is easy to see (Problem 23) that f(4) = | f(1) dP,. In particular

Now, suppose a bounded p.v.m. P, is given and we form 4 = | 1dP;.
Not surprisingly (Problem 23), P, is just the p.v.m. associated with A,
Summarizing:

Theorem VI8 (spectral theorem—p.v.m. form)  There is a one-one
correspondence between (bounded) self-adjoint operators 4 and (bounded)
projection valued measures {Pg} given by:

A{Pa} = {xa(4)}
{(Po}ios A = f,wpl
It is through this theorem and its generalization to unbounded operators

that self-adjoint operators arise in quantum mechanics, for the observables
occur most naturally as projection-valued measures (see Section VIIL3 for
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the generalization and the notes to Section VIII.11 for the quantum-
mechanical explanation).

Spectral projections can be used to investigate the spectrum of 4:

Proposition A€ d(4) if and only if P;_, ;4,(A4) # 0 for any ¢ > 0.

The essential element of the proof is that [[(4 — 2)~!|| = [dist(1, 6(4))]*
The details are left to Problem 24.
This suggests that we distinguish between two types of spectrum:

Definition  We say 4 € g, (A), the essential spectrum of A, if and only if
P;-¢, 140(A) is infinite dimensional for all e > 0. If 1 € a(A), but Py, ;14,(4)
is finite dimensional for some & > 0, we say 1 € 64,,.(4), the discrete spectrum
of A. P is infinite dimensional means Ran P is infinite dimensional.

Thus, we have a second decomposition of ¢(4). Unlike the first, it is a
decomposition into two necessarily disjoint subsets, We note that a,;,, is not
necessarily closed, but:

Theorem VILS Ocs,(A) is always closed.
Proof Let A,— A with each 4, € g (A4). Since any open interval 7 about A
contains an interval about some 4,, P;(A) is infinite dimensional. J]

The following three theorems give alternative descriptions of o;,. and o,
their proofs are left to the reader (Problem 26).

-
SS ¥

Theorem VII.10 A€ gy, if and only if both the following hold:

(a) A is an isolated point of o(A4), that is, for some ¢, (A —¢, A +¢&) N
a(A) = {4}.

(b) 4 is an eigenvalue of finite multiplicity, i.e., {{|AY = WY} is finite
dimensional.

Theorem VIIL.11 Aea_, if and only if one or more of the following
holds:

(a) )“ € aconl(A) = ac(A) 15 asing(A)'

(b) A is a limit point of g,,(4).

(c) A is an eigenvalue of infinite multiplicity.
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Theorem V.12 (Weyl’s criterion) Let 4 be a bounded self-adjoint
operator. Then A € a(4) if and only if there exists {§,}=, so that |i,] =1
and lim,_, ,, (4 — AW, =0. A € 6,,(A4) if and only if the above {i,} can be
chosen to be orthogonal.

As one might guess, the essential spectrum cannot be removed by essentially
finite dimensional perturbations. In Section XIII.4, we will prove a general
theorem which implies that ¢.,(4) = 0,,(B) if 4 — B is compact.

Finally, we discuss one useful formula relating the resolvent and spectral
projections. It is a matter of computation to see that

0 x ¢ [a, b)
f,(x)—»{& x=aorx=>b
i xe(a, b)

if € | 0 where

1 b 1 1
f’(x)=5;r—i-’.a (x-—}.—i&:_x—-,l—f-ix»:)d/1

Moreover, |f(x)| is bounded uniformly in e, so by the functional calculus,
one has:

Theorem VI1.13 (Stone’s formula) Let A be a bounded self-adjoint
operator. Then

b
s-lim (21) ™! [[(4 = A= ie)™ — (4 = A +ie) '] dA = HPru,my + Pea, )
&0 a

Vil.4 Ergodic theory revisited : Koopmanism

In Section I1.4 we defined ergodicity for a measure preserving bijective
map, T: Q- Q where Q is a measure space with a finite measure u, and
W(T"Y(M)) = (M) for any measurable set M < Q. Koopman’s lemma
told us that the map U defined by (Uf}(w) =f(Tw), is a unitary operator
on I*(Q, dy). T was called ergodic if and onlyif 1 wasa simpleeigenvalue of U
(that is, an eigenvalue of multiplicity one). In this section, we wish to examine
in detail the idea of Koopman that interesting properties of T can be described
in terms of spectral properties of U.
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To appreciate the notion of mixing which we will shortly introduce, let us
first consider an example:

Example 1 Let Q be the surface of a torus: We can think of Q as all
pairs of numbers {x, y> with0 < x < 1; 0 < y < 1 topologized so neighbor-
hoods of 0 include points near 1. We consider two pairs {x, y) and {z, w) of
reals as equivalent if x — z and y — w are integral. Then Q is also all equiva-
lence classes of pairs. Let us define a two-parameter family of maps T, ,:
Qo Qby T, {x,y>)=<{x+a,y+b). T,,is Lebesgue measure preserving.
When is T, , ergodic relative to Lebesgue measure? If one uses the definition
of ergodic which requires that there be no invariant sets of measure different
from 1 or 0, it is not clear which T, , are ergodic. However, if one looks at
(U, o S ¥x.y) =f(x + a, y + b), one notices that it has a complete family of
cigenvectors, o, ,(x, y) = exp[Rri(nx + my)}. U, ,¢, . = exp[2ni(na + mb)]
X @q.m- When is 1 a simple eigenvalue ? Obviously, if and only if na + mb = k
has no solution with n, m and k integral, except for n =m =0 (e.g. when
a=mn,b=./2).

Thus T, 3 is ergodic, so space averages equal time averages in this case.
This happens because the images {T"w|w € Q} are a set which is dense and
fairly uniform rather than because T" takes a small neighborhood of w and

L |

FiGure VIL.1 The intuitive idea of thermodynamic behavior in phase space.
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spreads it all out as in Figure VII.1. In fact T" is *“ shape preserving in this
case.” We expect “irreversibility ” to mean that nearby points w and u are
not nearby after many iterates of T

How can we describe what it means to have a set M spread out ** uniformly
upon iteration ? One should expect a point to * forget ” at what time it started
in A, that is, the probability of being in 7" 4 and another set B should approach
an n-independent limit.

Definition A measure preserving transformation T:Q2-Q on a
measure space {€, u> with u(Q) = 1 is called mixing if and only if for all
measurable sets A and B in Q:

lim u(T"A ~ B) = p(A)u(B)

n- o0

If T is ergodic, then by the mean ergodic theorem:

. 1 n-t . { a1
fim 5 FpA0D) = I L E W e
= (XA’ 1)(1’ XB)
= p(A)u(B)

Thus, ergodicity is equivalent to the mixing limit existing in a Cesaro sense,
so that mixing implies ergodicity. Alternatively, we can see this directly.
If T[A] = A, then lim,_, , u(T"A N A) = p(A) so mixing implies that u(4)* =
u(A), i.e. u(4) =0 or 1. Before stating that mixing implies ergodicity as a
formal proposition we introduce an intermediate notion:

Definition A measure preserving transformation T: Q- Q on a
measure space {Q, u) with g(Q) = 1 is called weakly mixing if and only if for
all measurable sets 4 and B in Q:

. 1 n-1
lim " Z;,ol.u(T"'A N B) - p(A)u(B)| =0

Clearly:
Proposition Mixing = weakly mixing => ergodicity.

Let us first consider an example which we will shortly prove is mixing.
We will see that Example 1 is not mixing.
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and x, =0, let x(x,3)=1and if x,=1, let y,(x,y)=—-1. If n<0 and
Yoner =0 let y(x, yy=landify_,,, = Llety(x,p)=—1. ¥ {n,,...,n,}
is a finite set of integers, define

Xinseceammd (%2 9) = T %2 3)
Define yg = 1. Then:
(@) XaXxs=Xanp Where A A B = (A\B) U (B\A4)
0 if A# g
® fudd={] & 472
(c) The y, are an orthonormal set, by (a) and (b).

(d) If m,n, k and j are integers with 0 <m < 2", 0 <k < 2/, then the
characteristic function of

m—-1 m k-1 k
] Rl TRl
can be written as a finite product [, (I + x,,) for suitable integers,
Ny ooy Ny
() The y, are an orthonormal basis for I*(Q, dx ® dy) for the linear
combinations of the characteristic functions of (d) are dense.
) Uxn,. ... ny = Xiny#1. ... ,mm+1y- Thus {I}* has an orthonormal basis
Y, m With U¥,, = ¥,4 . m runs through a countably infinite sequence.

Thus the map in Example 2 is mixing.

Ergodicity, mixing and spectral notions are important not only in statistical
mechanical contexts but also in studying the following problem: Let (M, u)
and {N, v) be measure spaces and let 7: M - M and S: N — N be measurable
transformations which are invertible and measure preserving. When are they
equivalent? That is, when is there a R: M — N so that T= R™!SR? R is
required to be bijective almost everywhere (i.e. u{x| Ry = Rx for some y # x}=
0 and u{N\Ran R} = 0) and measure preserving. This is analogous to the
unitary equivalence problem for self-adjoint operators which is solved by the
multiplicity theorems, but it has nor been completely solved. In Problem 29
we construct various maps equivalent to the Baker’s transformation.

The unitary equivalence problem for self-adjoint operators was solved
by finding a complete set of invariants. Koopmanism immediately gives a
whole family of invariants of measure preserving maps, for if T: M - M
and S: N — N are equivalent, the induced unitaries are unitarily equivalent.
Given a measure preserving transformation, T, the multiplicity measure
classes of the associated unitary operator are invariants for 7, i.e. if Sand T
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are related by 7= R™!SR, then their classes are the same. Since ergodicity
and mixing are expressible in terms of the induced Koopman unitaries they
are not additional invariants. Are these invariants associated with the induced
unitaries complete ? That is, if the induced unitaries are unitarily equivalent,
is it necessarily true that there exists an R so that T = R~ !SR? Under some
special additional assumptions, the answer is yes.

Theorem VIL.16 (Halmos, von Neumann) LetT:M —»>Mand SiIN-> N
be measure-preserving ergodic transformations, Us and V; the induced
unitaries. Suppose Us and ¥ have only pure point spectrum. Then T and S
are measure theoretically equivalent if and only if Us and F; are unitarily
equivalent.

On the other hand, Kolmogorov and Sinai have constructed an invariant
(called the entropy) for a class of mixing measurable transformations called
K-systems. On {1}*, the unitary induced by a K-system has an orthonormal
basis (Y, min m=-a With Uy, . =, . Thus, the unitaries induced by
K-systems are all unitarily equivalent to one another. But, there exist K-
systems with different entropy so the invariants of the induced unitaries do
not distinguish all measure-preserving transformations.

NOTES

Section VII.1 For a proof and discussion of the finite dimensional spectral theorem
see P. R. Halmos, Finite Dimensional Vector Spaces, Van Nostrand-Reinhold, Princeton
New Jersey, 1958.

For a related but slightly different proof of Theorem VIIL.1, see E. Nelson, Topics in
Dynamics, Vol. 1, Princeton Univ. Press, Princeton, New Jersey, 1969,

The general functional calculus, A+ f(A) for functions fanalytic in a neighborhood of
o(A) which we alluded to is often called the Dunford functional calculus after its appearance
in N. Dunford, * Spectral Theory I, Convergence to Projections,” Trans. Amer. Math. Soc.
54 (1943), 185-217. The basic idea is to pick a contour C in the domain of / with o(A) con-
tained within C. Then one takes f(A4) = (2mi)~! ¢ f(z0(z — A)~' dz. Thus, for example,
the resolvent identity (z— A)"'(w—A)"' =(w—2)"'[(z— A)~! — (w — A)~"'] implies
(foXA) =[f(A)g(A). For further discussion, see N. Dunford and J. Schwartz, Linear
Operators, Part 1, pp. 5§56-577, Wiley (Interscience), New York, 1958 (also Problem 1).

Section VII.2 For a summary of the history of the spectral theorem, see the article
by E. Hellinger and Q. Toeplitz, in Encyklop. Math. Wiss. IIC 13 (1928), 1335-1616.
The derivation of the functional calculus form of the spectral theorem is also discussed in
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Example 2 (the Baker’s transformation) Let Q be the torus. Let

(2x, 39D ifosx<i
K{x, o = _
x-1L,3++3y> ifi<x<l
(see Figure VIL.2). One can explicitly see the sets being * ripped apart™ by
T and “ spread around.”

Ficure VII.2 The Baker’s transformation.

Weakly mixing and mixing have simple descriptions in terms of the
associated unitary U:

Theorem VII.14 Let T be a measurable transformation and U the
associated unitary operator. Then:
(a) U is mixing if and only if
w-lim U" = P,
n-=oo

where P, is the projection onto the constants, i.e. if and only if

lim (f, Ug)= (f, 1)(1, 9)

n—a

(b) U is weakly mixing if and only if U has no eigenvalue other than one
and one is a simple eigenvalue.

Proof (a) Mixing is clearly implied by (f, U"g)— (f, 1)(1,9) for take
f=yx4and g = xz. Conversely, if T is mixing, the limit statement is true if
f and g are characteristic functions, and thus also if they are finite linear
combinations of characteristic functions. Since these are dense, |U") =1,
and |P,]| = 1, the result follows.

(b) See references in the Notes. |
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Example 1 is not mixing since Uy = Ay implies that w-lim U™ # Py
ifA#1.

There is a spectral condition on U which often is useful in proving mixing.
One can prove a spectral theorem for normal (and thus unitary) operators
(Problems 3 and 5) so the notion of absolutely continuous spectrum makes
good sense.

Theorem VII.15  Let T be a measure preserving transformation and U
the associated unitary operator. Then

(a) If U has purely absolutely continuous spectrum on {1}%, that is, if
He ={f1(f, 1) = [ fdu =0}, then T is mixing.

(b) If {I}* has an orthonormal basis {¢, .}, ~0 <n<o, l Sm<
N + 1, where N may be finite or infinite, so that Up, ,, = @,+1,m, then U has
purely absolutely continuous spectrum on {1}*, and T is mixing.

Proof (a) It is quite easy to see that U3 P, if and only if (f, U"g) =0
for all £, g € {1}*. Suppose that U has purely absolutely continuous spectrum.
Then we can find functions {F,}¥_, and realizations of fe{l}* as f=

@), . ful®), ... so that
N 2r ——
(fLUg=Y fo €™ 7, ()9 m(6)F n(6) 40

= * ¢im0(6) df
[+

where [3* | 0(6)] d8 < co. By the Riemann-Lebesgue lemma which we prove
in Section 1X.2, (f, U"g) — 0.

(b) On {1}, U is just N copies of the right shift on £,(~ c0, o0). We have
analyzed this shift in Example 4 of Section VII.2 and seen that it has abso-
lutely continuous spectrum. |

Example 2 (revisited) It is intuitively reasonable that the Baker’s trans-
formation is mixing and we now have the tools to prove that it is. Let us
reexpress T. Write {x, y) € Qin a base two decimal expansion x = . x;x; ***;
¥ = .y, - with each x,= 0 or 1 and each y, =0 or 1. Then

T:(xyx3 >y 1 p2 )= (XaX3 o Xy 1 Y2 %),

i.e. if we write a point in Q as (..., y3, V3, Vi, X(» X3, ...) T is just a left
shift. Warning: this is not the same as saying U is a left shift! This suggests
what we should do. Define the functions y,(x, y) on  as follows: If n >0
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J. Diximier, Les Algébres d’Opérateurs dans I’Espace Hilbertien, Gauthier, Paris, 1957,
Appendix. The multiplication operator form is discussed in Nelson (ref. to Section V1l.1)
pp. 66-74.

There has arisen an extensive literature on a *‘rigorous”” Dirac notation which attempts
to capture the flavor of bras and kets more fully. For the original Dirac notation, see
P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford Univ. Press (Clarendon),
London and New York, 1935. For the rigorous forms in terms of * rigged Hilbert spaces”
see K. Maurin, General Eigenfunction Expansions and Unitary Representations of Topological
Groups, Polish Scientific Publ., 1968; J. Roberts,” The Dirac Bra and Ket Formalism,”
J. Math, Phys. 7 (1966), 1097-1104; ** Rigged Hilbert Spaces in Quantum Mechanics,”
Commun. Math. Phys. 3 (1966), 98-119; or J. P. Antoine, ** Dirac Formalism and Symmetry
Problems in Quantum Mechanics 1, 11, J. Marh. Phys. 10 (1969), 53-69, 2277-2290. We
must emphasize that we regard the spectral theorem as sufficient for any argument where a
nonrigorous approach might rely on Dirac notation; thus, we only recommend the abstract
rigged spaceapproach to readers with a strong emotional attachment to the Dirac formalism.

For an additional discussion of o,c, O.ing, Opp. see T. Kato, Perturbation Theory for
Linear Operators, pp. 516-519. Springer-Verlag, Berlin and New York, 1966.

The multiplicity theory for seif-adjoint operators dates back at least as far as: H. Hahn,
* Uber die Integrale des Herrn Hellinger und die orthogonalinvarianten der quadratischen
Formen von unendlichen Veridnderlichen.,” Monarsh. Math. Phy. 23 (1912), 161-224 and E.
Hellinger, **Neue Begrindung der Theorie quadratischen Formen von unendlichvielen
Veranderlichen,” J. Reine Angew. Marth. 136 (1907), 210-271. For a modern readable ap-
proach, see Nelson (ref. to VI1.1) pp. 77-97. The notion of measure class is often the correct
continuous analogue to the notion of subset of a discrete set. This idea has been emphasized
especially by G. W. Mackey. see Group Representations and Applications, pp. 48-80, Oxford
Lectures.

Almost all the spectral theory we discuss has a suitable generalization to the nonseparable
case. It is for convenience and brevity that we only discuss the separable case.

Section VII.3 For a discussion of the spectral theorem in p.v.m. form and the related
*“resolution of the identity form,” see M. Naimark, Normed Rings, Nordhoff, New York,
1964 or E. Lorch, Spectral Theory, Oxford Univ. Press, London and New York. Lorch’s
method of proof is closely linked to the Dunford functional calculus and Stone’s formula.
See Kato's book (ref. to Section VI1.2) for a related point of view.

Stone's formula goes back at least as far as M. Stone’s classic book, Linear Transformations
in Hilbert Space and Their Applications to Analysis, Amer. Math. Soc., Providence, Rhode
Island, 1932,

The term essential spectrum goes back to Weyl's famous analysis of singular differential
operators, ‘* Uber gewohnliche Differential-gleichungen mit Singularitaten und die zugehor-
igen Entwicklungen Willkurlicher Functionen,” Marth. Ann. 68 (1910), 220-269; for example,
if H= —d?*/dx* + Visin the limit point case at infinity and the operators H; are the various
extensions of H on L*0, x) with different boundary conditions, Weyl called ﬂ o(H)
the essential spectrum, that is, the spectrum independent of boundary conditions. It turns
out that g.(H,) is the same for éach A and is just the Weyl éssential spectrum. For dis-
cussion of this phenomenon, see Section X111.4.

Section Vil 4 Koopmanism dates back to the fundamental paper of Koopman (see
notes to Section I1.4). Much of what we discuss may be found in the review article by Wight-
man and the books of Avez-Arnold and Halmos (notes to.Section 11.4). In particular,
proofs of Theorems VIl.14(b) and V1I.16 may be found in Halmos’ book.
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Mixing was introduced by E. Hopf in his note: ** Complete Transitivity and the Ergodic
Principle,” Proc. Nat. Acad. Sci. 18 (1932), 204-209.

The theorem of Halmos and von Neumann (Theorem VII.16) was first proven in J. von
Neumann, * Zur Operatoren methode in der Klassichen Mechanik,” Ann. Math. 33 (1932),
587-642. Simplifications and additions may be found in P. R. Halmos and J. von Neumann,
“Operator Methods in Classical Mechanics, 11,” Ann. Marh. 43 (1942), 332-350. Halmos
and von Neumann also prove that the possible discrete spectra of ergodic transformations
are all countable subgroups of the circle.

Entropy for K-systems was introduced in A. N, Kolmogorov, * On the Entropy per Time
Unit as a Metric Invariant of Automorphisms,” Dokl. Akad. Nauk. 124 (1959), 754-755.
It generalizes the idea of C. Shannon, *“A Mathematical Theory of Communication,” Bell.
System Tech. J. 27 (1948), 379-423, 623-656 and is further discussed in J. Sinal, *“ Dynamical
Systems with Countably Multiple Lebesgue Spectrum, 1,” Izv. Akad. Nauk. SSSR Mat. 28
(1961),899-924 [ Engyl. Transl.. Amer. Math. Soc. Transl.(2) 39 (1964), 83-110]. For a readable
introduction to the theory, see P. Billingsley, Ergodic Theory and Information, Wiley, New
York, 1965.

In an important series of papers, D. Ornstein has clarified the extent to which entropy is
a distinguishing invariant. The basic paper in the series is *“Bernoulli Shifts with the Same
Entropy are Isomorphic,” Advan. Math. 4 (1970), 337-352.

PROBLEMS

*], Let fbe analytic in a neighborhood of a(A) where 4 is a bounded operator and let C
be a contour as shown in Figure VIL3. Let f(A) be defined by

1
f)y = ﬁ.- f(@z — Ay dz

Prove that fg(A4) = f(A)g(A).

FiGure VIL3 The contour C.

2. Suppose a(A4) is not connected, say o(A4) ~ o,V o, where o, and o, are disjoint
and closed. Consider the function f which is 1 in a neighborhood of o, and 0 in a
neighborhood of o;. Prove that P = f(A) defined as in Problem | is a projection
and that P4 = AP. Prove that & = Ran P is an invariant subspace for 4 and that
o(4 | #)) = o,.
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3.

*4.

*6.

t7.

18.
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(a) Prove that if 4 is normal, that is, A4* = A*A, then
14ll= sup |A] =(4)
2eal{A)

Hint: Use ||A}}* = |4* A}l and the formula r(4) = lim [|4*|j*/".
(b) Prove that for any polynomial P and any normal operator A4, IP(4)ll=
SUDacornr| P(A)].

Let A, ..., A, be commuting bounded self-adjoint operators on 3, a separable

Hilbert space.

(a) Let Q,, ..., Q, be Borel sets on R. Prove that Pq,(4)), Pa,(A42), ..., Pa,(A,) all
commute.

(b) Let fbe a function on R" which is a linear combination of characteristic functions
of rectangles (that is, sets of the form Q=Q, x --+ x Q,), Show that f can be
written

n
f=‘zl €i Xatn with QA QW= if i#j
(<) For f of the above form, define
sy A =3 e Pail) -+ PolfAD

where QO = QP x .-+ x Q.
(d) By using the B.L.T. theorem, construct a continuous functional calculus,
f(A;, ..., A,) for continuous functions on [— {|4 1], 431} X **+ X [~ |4all, |4a)i}.
(e) Construct a Borel functional calculus.
(f) Show there is a U: # —L*(M, du) for some finite measure space (M, u) and
bounded real-valued Borel functions Fi(m), ..., F,(m) on M with

(UA, U)~fKm) = Fy(m) f(m)

. Let A be a normal operator. Prove:

(a) A =B + iC where B and C are commuting self-adjoint operators.
(b) Thereisa U: o — L¥(M, dp) for some finite measure p on some space M and a
bounded Borel function, F(m) (in general, complex valued) so that

(UAU=fYm) = F(m) f(m)
Reference for Problems 4, 5: Nelson (see the Notes to Section VII.1).

Extend Problem 4 to the case of countably many A, . Hint: Use the product topology
on X[—1{i4.ll, 14al].

Find a self-adjoint operator A for which [0, 1] < 0,,,(A4) (Hint: Take A multiplicity
free with a spectral measure which is an infinite weighted sum of translates of Cantor
measures.)

Let A be a bounded self-adjoint operator and let f be a continuous function on o(A4).

@) IfA¢ Ranf, let g = (f—A)~". Prove that ¢(g) = ($(f) — ).

(b) Let A € Ran f(4). Prove that there are ¥ € #, with bl =1 and ($(/) — D!l
arbitrarily small so that A € o(¢(f)).

(¢) Conclude (e) of Theorem VII.1.
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110.

11.

t12.
t13.
14.

t15.
l16.

t17.

t18.

*19.

t21.

122,

123.

t24.
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Suppose that fis continuous and fis not nonnegative on o(A4) where A4 is a bounded
self-adjoint operator. Show that there is a { € o with (), $(f/ ) < 0.

Prove that the range of the continuous functional calculus is the C* algebra generated
by A if A is self-adjoint (Theorem VI1.1) or normali (Problem §5).

Suppose that ¢: C(X)— Z(#) is an algebraic *-homomorphism, X a compact
Hausdorff space:

(a) Prove that ¢(f)>0if f >0.

(b) Prove (NN < Iflw .

Let A > 0. Prove that (4 — A)~! exists if A < 0.
Fill in the details of the proof of Theorem VII.2.

Prove that a self-adjoint operator on a finite-dimensional space has a cyclic vector if
and only if it has no repeated eigenvalue.

Prove Lemma 2 needed for Theorem VII.3.

Complete the reduction of Example 3 of Section VIL.2 to a multiplication operator.
Does this operator have uniform multiplicity ? What is it ?

(a) Prove that o(A) = supp {pa}lxy if {a}rxy are the spectral measures. (The first
proposition after Theorem VI1.3.)

(b) Let T; be the operator of multiplications by F, a real-valued bounded measurable
function. Prove that o(T) is the essential range of F.

Let 4 be multiplication by x on LX(R, du) = L¥R, dp.) ® LR, dpyp) @ LAR, ditging)-
Let b € L¥(R, dy). Prove that du, is absolutely continuousif and only if s € L(R, dj,).

Is it possible to have a measure on [0, 1] absolutely continuous w.r.t. dx with support
(0, 1] but which is not equivalent to dx, that is, is supp {u> a distinguishing invariant
for measure classes absolutely continuous w.r.t. dx?

. Let 4= U|A| be the polar decomposition of A. Let f, be defined by f,(x) = l/x if

x >1/n and f(x) = 1/n if x < 1/n. Prove that U = s-lim A f.(]4}). Conclude that U is
in the von Neumann algebra generated by A, that is, the smallest strongly closed
+-algebra containing A4.

(a) Prove that conditions (a) and (b) of Theorem VILS5 are equivalent.
*(b) Prove condition (a) of Theorem VII.5 implies condition (c) in general. (Hint: Prove
that {B|AB = BA} = L*(M, du).)
(c) Prove (c) implies (a) in the finite-dimensional case.

(a) Prove that the properties (a)-(d) of a p.v.m. hold for the spectral projections of an
operator A.
(b) Prove that condition (d) for a p.v.m. follows from (a) and (c).

(a) Supply the details of the proof of Theorem VIL7.
(b) Prove that f(4) ={ f(A) dP; if Po = xa(A).
(¢) If A=J AdP,, prove that Pq = ya(A).

Prove A € o(A) if and only if P, 246 (4) # O for all &.
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25.
+26.

27.

28,

29.

30.

31,

32,
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By considering compact operators, prove that o, is not always closed.

(a) Prove Theorem VIL.10.
(b) Prove Theorem VIL.11.

Let C be self-adjoint and compact. What is 0.,(C)? How is this related to the invari-
ance property of o, described at the end of Section VIIL.3?

(a) Suppose that u is a measure of unit mass with the property: Given 0 <x <1,
there is a set N © M with u(N) = x. Let T: M — M be measure preserving with
T* = I for some k. Prove that T is not ergodic.

(b} Prove directly that 7, , of Example I of Section VIIL.4 is not ergodicif na+ mb=r
has a solution with r integral and <{n, m) # <0, 0> (that is, without recourse to
the unitary U).

Show that the following measurable transformations are ali equivalent to the Baker’s

transformation:

(a) M= X._, A, where each A, is the two-point set {H,, T,} = 4,[Heads, Tails].
p is the product measure = Op%-ope Where p({Ha}) = § = pu{{Ts}). Let
T: M — M by shifting to the right. (This is called the honest coin toss space.)

(b) M = X .-« B, where each B, is the three-point space, B= {0, 1, 2}. u is the pro-
duct measure p = S _ 5 v, where v, ({0}) = # = v,({2}); va({1}) = 0. T is a right
shift.

(¢) M is the square with the product of the Cantor measure with itself. T is given by

3x, 3 if 0<x<1i
T<x,y; ={Bx—1Liy+ 1> f I<x<}
GBx=-2,y+ 3% if $<x<l1

Let <M., p> be a measure space with T: M— M. Define TQT: M x M— M X M by

(TS TH)x, y>=<Tx, Ty>.

(a) Show that u ® u is an invariant measure for T® T if u is an invariant measure
forT.

(b) Find an example which shows that 7® T may be not ergodic for (M x M, u® ud>
even if T is ergodic for <M, u>. [Hint: Look at Example 1 of Section VII.4.]

(c) Show that TE T is mixing for (M X M, u ® p) if T is mixing for <M, p>.

(d) Show, once more, that Example | is not mixing by using (c).
Remark: 1t is known that T& T is ergodic if and only if T is weakly mixing.

Prove that the only closed *-ideals in £(#), where 5 is separable, are {0}, Com(3#),
and £(¥). Hint: If the ideal # strictly contains Com(s¢), find a self-adjoint, non-
compact, operator 4 € J. Show that for any interval(a, b), with 0 ¢ (a, b), Pia,s)(4) € S.
Conclude that . contains an infinite-dimensional projection and thus that / € J.

(a) Let A be self-adjoint and let U, be the partial isometry in U;|4 —A] = 4 — A,
Prove that U, =P, «,— P-«.s and that P, 1 =lim,;;3(1 — U) and
Poox oy =limya #(1 — Un).

(b) Given a self-adjoint operator, use the polar decomposition and the formula of (a)
to prove the spectral theorem without recourse to the functional calculus.
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1 tell them that if they will occupy themselves with the study of mathematics they will find in it
the best remedy against the lusts of the flesh. Thomas Mann in The Magic Mountain

VII.1 Domains, graphs, adjoints, and spectrum

It is a fact of life that many of the most important operators which occur
in mathematical physics are not bounded. In this chapter we will introduce
some of the basic definitions and theorems necessary for dealing with
unbounded operators on Hilbert spaces. The Hellinger-Toeplitz theorem
(see Section I11.5) says that an everywhere-defined operator 4 which satisfies
(Ao, ¥) = (¢, AY) is necessarily a bounded operator suggesting that a general
unbounded operator T will only be defined on a dense linear subset of the
Hilbert space . Thus an operator on a Hilbert space # is a linear map
from its domain, a linear subspace of 2, into J#. Unless we specify otherwise,
we will always suppose that the domain is dense. This subspace, which we
denote by D(T), is called the domain of the operator T. So, to identify an
unbounded operator on a Hilbert space one must first give the domain on
which it acts and then specify how it acts on that subspace.

Example 1 (the position operator) Let # = L*(R) and let D(T) be the
set of functions ¢ in L2(R) which satisfy [g x?| @(x)|? dx < c0. For ¢ € D(T)
define (To)(x) = x¢(x). It is clear that T is unbounded since if we choose ¢ to

249
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have support near plus or minus infinity, we can make ||Top!| as large as we
like while keeping || ¢l = 1. Of course, even if ¢ ¢ D(T), xp(x) has a well-
defined meaning as a function, but it is not in L3(R). Thus, if we want to deal
only with the Hilbert space L*(R) we must restrict the domain of T. The
domain we have chosen is the largest one for which the range is in L*(R).

Example 2 Let & = L*(R) and D(T) = ¥(R). On D(T) define Ty =
— (%) + x2Y(x). If @,(x) is the nth Hermite function (see the appendix
to Section V.3), then ¢,(x) € D(T) and To,(x) = 2n + D¢, (x). Thus T must
be unbounded since it has arbitrarily large eigenvalues.

The notion of the graph of a linear transformation, introduced by von Neu-
mann, is very useful for studying unbounded operators.

Definition  The graph of the linear transformation T is the set of pairs

{{o, Tp>| @ € D(T)}
The graph of T, denoted by I'(T), is thus a subset of J# x 2 which is a
Hilbert space with inner product
@1 ¥32, @2, ¥2D) = (01, 92) + (Y1, ¥2)
T is called a closed operator if I'(T) is a closed subset of ¥ x 5.

Definition Let T, and T be operators on 5. If I'(T,) o I'(T), then T}
is said to be an extension of Tand we write T} = T. Equivalently, T = Tif and
only if D(T}) = D(T) and T,¢ = To for all ¢ € D(T).

Definition An operator T is closable if it has a closed extension. Every

closable operator has a smallest closed extension, called its closure, which we
denote by T.

A natural way to try to obtain a closed extension of an operator, T, is to

take the closure of its graph in & x 2. The trouble with this is that i‘(—T)may
not be the graph of an operator (for example, see Problem 1). However, most
operators which we deal with will be symmetric operators (introduced in
Section VIII.2) and we will see that they always have closed extensions.

Proposition  If T is closable, then I'(T) = I'(T).

Proof Suppose that S is a closed extension of 7. Then I(T) < I'(S) so if
€0, ¥> e I'(T) then y = 0. Define R with D(R) = {{/| <y, ¢> e T(T) for some
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¢} by Ry = ¢ where ¢ € o is the unique vector so that (Y, ¢> € I—:(—T) Then

I'(R) = I'(T) so R is a closed extension of 7. But R = S which is an arbitrary
closed extension, so R=T. J

The following example illustrates the concepts we have just introduced.

Example 3 Let o# = L*[R), D(T) = C¥(R), and D(T,) = C}(R), the
once continuously differentiable functions with compact support. Let
If=if'(x) if fe D(T)and T, f = if (%) if fe D(T}). Ty is an extension of T. We
will show that I'(T) = I'(T;). When we prove that T is symmetric and there-
fore closable, it will follow that T extends 7. First we introduce the approxi-
mate identity, {/,(x)}. Let j(x) be any positive, infinitely differentiable function
with support in (—1, 1) so that |2 j(x) dx = 1. Define j(x) = ¢ j(x/e). If
¢ € D(T), set

0= jtx— o) d

Then
199 — 9091 < [ilx = Dle(t) — p(x)] dt

<( sup_to - o01) [Jx - a

{tl ix—tige)

= sup |o(t) — o(x)|

(tlix—tise)

Since ¢ has compact support, it is uniformly continuous which implies that
¢, — ¢ uniformly. Since the ¢, have support in a fixed compact set, ¢, — @
in L*(R). Similarly,

©
i

0= [ i e = e
=7 -i(gi =)o ar
@ . d
= [ Jdx=nig e ar

LN
ax
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Since j,(x) has compact support and is infinitely differentiable, ¢, € CJ(R).
Thus, ¢,€ D(T) for each €¢>0. What we have shown above is that

P, Lo, ¢ and To, 28, T, ¢ for any @ € D(T,). Thus, the closure of the
graph of T contains the graph of T;.

The notion of adjoint operator can be extended to the unbounded case.

Definition Let T be a densely defined linear operator on a Hilbert space
H. Let D(T*) be the set of ¢ € & for which there is an n € 5 with

(T, )=, n) forall ye D(T) (VIIL1)

For each such ¢ € D(T*), we define T*¢ = 5. T* is called the adjoint of 7. By
the Riesz lemma, ¢ € D(T*) if and only if |(TY¥, ¢)| < Cliy| for all § € D(T).

We note that S < T implies T* c §*.
Notice that for n to be uniquely determined by (VIII.1) we need the fact
that D(T) is dense. Unlike the case of bounded operators, the domain of T*

may not be dense as the following example shows. As a matter of fact it is
possible to have D(T*) = {0}.

Example 4 Suppose that fis a bounded measurable function, but that
F¢L2R). Let D(T)={yeLl*R)|f|f(xW(x)] dx <o} D(T) certainly
contains all the L? functions with compact support so D(T) is dense in L2(R).
Let o be some fixed vector in L*(R) and define Ty = (f, YW, for ¥ € D(T).
Suppose that ¢ € D(T*), then

W, T*0) = (T¥, ®) = (/s ¥Wo, ¥)
=, 9)Wo, 0)
=, Wo, 9)/)

for ally € D(T). Thus T*¢ = (Y,, @)/. Since f ¢ L¥(R), (¥, ) = 0. Thus any
¢ € D(T*), is orthogonal to Y, so D(T*) is not dense. In fact, D(T*) is just
the vectors perpendicular to ¥, , and on that domain T* is the zero operator.

If the domain of T* is dense, then we can define T** = (T*)*. There is a
simple relationship between the notions of adjoint and closure.

Theorem VIl Let T be a densely defined operator on a Hilbert space
. Then:
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(a) T* is closed.
(b) Tis closable if and only if D(T*) is dense in which case T = T**.
(c) If Tis closable, then (T)* = T*.

Proof We define a unitary operator ¥ on ) x ) by

Ve, ‘»”) ={~y, )]

Since ¥ is unitary, V[E*] = (V[E])* for any subspace E. Let T be a linear
operator on J and suppose (¢, ) € # x #. Then (¢, n) € V[[(T)}* if and
only if (&, 1), {=T¥, ¥>) =0 for all ¥ € D(T) which holds if and only if
(¢, TY) = (n, ¥) for all Y € D(T), that is, if and only if {¢, n)> e I'(T*). Thus
I(T*) = V[I(T))*. Since V [['(T)}* is always a closed subspace of # x ¢, this
proves (a).

To prove (b), observe that I'(T) is a linear subset of ¥ x ) so

0(T) = (T(T)H)*
={V (D))
= (V(VT(T)*)*
= (VI(T*)*

Thus, by the proof of (a), if T* is densely defined, I'(T) is the graph of T**,
Conversely, suppose that D(T*) is not dense and that y € D(T*)'. A
simple computation shows that (¥, 0) e [[(T*)]* so V[[(T*)]* is not the
graph of a (single-valued) operator. Since I(T)= (VT (T*))*, we see that T is
not closable.
To prove (c), notice that if T is closable,

7%= (T =T+ = (T)* |

Definition Let T be a closed operator on a Hilbert space 5##. A complex
number Ais inthe resolvent set, o(T),if A/— T'is a bijection of D(T)onto s with
a bounded inverse. If A € p(T), R,(T) = (AI — T)" ! is called the resolvent of T
at A.

For a point to be in the resolvent set of T, several conditions must be satis-
fied. These conditions are not all independent. For example, if Af/— Tis a
bijection of D(T)onto i, by the closed-graph theorem, its inverse is auto-
matically bounded. For other relationships, see Problem 2.

The definitions of spectrum, point spectrum, and residual spectrum are the
same for unbounded operators as they are for bounded operators. We will
sometimes refer to the spectrum of nonclosed, but closable operators. In this
case we always mean the spectrum of the closure,
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Theorem VHL2  Let T be a closed densely defined linear operator. Then
the resolvent set of T is an open subset of the complex plane on which the
resolvent is an analytic operator-valued function. Furthermore,

{R(T)| 1€ p(T)}
is a commuting family of bounded operators satisfying
R(T) — R(T) = (p — AHR(TIR(T) (VI11.2)

The proof of this theorem is exactly the same as the proof of the bounded
case (Theorem VL.5).

It may seem to the reader that many of the questions about domains and
closures of unbounded operators are just a technical inconvenience; that one
need only choose any densedomain whichissmallenoughsothattheunbounded
operator makes sense and that is good enough. However, the choice of an
appropriate domain is often intimately connected with the physics of the
situation being described; see, for example, the discussion in Section X.1.
Further, many of the properties of operators which are important are very
sensitive to the choice of domain. The following example shows that the
spectrum is such a property. In the example we use the notion of ““ absolutely
continuous function™ and the corresponding fundamental theorem of calcu-
lus. The reader who is unfamiliar with the definition and theorem can find
them in the notes.

Example 5 We denote by AC[0, 1] the set of absolutely continuous
functions on [0, 1] whose derivatives are in L2[0, 1]. Let T, and T, be the
operation i d/dx with domains

D(Ty) ={¢leeAC[0, 1]}
D(T,) ={¢|o e AC[0,1] and ¢(0)=0}

Both D(T,) and D(T,) are dense in L%[0, 1] and both of the operators are
closed. But:

(a) The spectrum of T, is C.
(b) The spectrum of T, is empty.

The proof that T, and T, are closed is left as an exercise (Problem 3). To see
that the spectrum of T, is the whole plane we observe that

(AM~T)e~#*=0 and e e D(T,)
for all 1 € C. As for T,, the operator

(S29)) = i [ e 40g(s) ds
0
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satisfies (A7 — T,)S; = I and S,(AI — T,) is the identity on D(T,). Moreover,

1
152913 = [ |(S20))” dx

< (x sup |(S, g)(x)l)2

e€f0,1]

X 2
< ( sup | |e *Eg(s)| ds)

x€f0,1]v0

< ( sup (lee‘il(x—s)IZ dS))( sup Jxl g(s)lZ dS)
xe{0,1] 0 x€{0,1]10

< C(3) g}

50 S, is bounded. By the remark immediately after the definition of resolvent
set, we need only have shown that A7 — T, is a bijection to conclude that S;
is bounded. So, we could have avoided the above computation.

Viil.2 Symmetric and self-adjoint operators:
the basic criterion for seif-adjointness

Definition A densely defined operator T on a Hilbert space is called
symmetric (or Hermitian) if T < T*, that is, if D(T) < D(T*)and Ty = T*¢
for all ¢ € D(T). Equivalently, T is symmetric if and only if

(To,¥)=(o, TY)  forall o,y e D(T)

Definition T is called self-adjoint if T = T*, that is, if and only if T is
symmetric and D(T) = D(T*).

A symmetric operator is always closable, since D(T*) > D(T)is dense in 5.
If Tis symmetric, T* is a closed extension of T, so the smallest closed extension
T** of T must be contained in T*. Thus for symmetric operators, we have

TcT**cT*
For closed symmetric operators,
T=T**cT*

And, for self-adjoint operators,
T=T**=T*
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From this one can easily see that a closed symmetric operator T is self-
adjoint if and only if T* is symmetric.

The distinction between closed symmetric operators and self-adjoint
operators is very important. It is only for self-adjoint operators that the
spectral theorem holds (see Section V111.3) and it is only self-adjoint operators
that may be exponentiated to give the one-parameter unitary groups (see
Section VI11.4) which give the dynamics in quantum mechanics. Chapter X is
mainly devoted to studying methods for proving that operators are self-
adjoint. We content ourselves here with proving the basic criterion for self-
adjointness. First, we introduce the useful notion of essential self-adjointness,

Definition A symmetric operator T is called essentially self-adjoint if its
closure T'is self-adjoint. If Tis closed, a subset D = D(T) is called a core for T

ifTID=T.

If T is essentially self-adjoint, then it has one and only one self-adjoint
extension, for suppose that S is a self-adjoint extension of T. Then, S is closed
and thereby, since So T, S oT** Thus, §= 8% < (T**)* = T**, and so
S = T**. The converse is also true; namely, if T has one and only one self-
adjoint extension, then T is essentially self-adjoint (see Section X.1). Since
T* = T* = T*** Tis essentially self-adjoint if and only if

TcT**=T*

The importance of essential self-adjointness is that one is often given a
nonclosed symmetric operator T. If T can be shown to be essentially self-
adjoint, then there is uniquely associated to T a self-adjoint operator T = T**,
Another way of saying this is that if 4 is a self-adjoint operator, then to
specify A4 uniquely one need not give the exact domain of A (which is often
difficult), but just some core for 4.

Now, suppose that T is a self-adjoint operator and that there is a
@ € D(T*) = D(T)so that T* ¢ = ip. Then T = ip and

—i(o, @) = (ig, ) = (To, ) = (9, T*¢) = (¢, Tp) = i(p, ¢)
s0 @ = 0. A similar proof shows that T*¢ = —i¢ can have no solutions. The
converse statement, that if T is a closed symmetric operator and T*¢p =

+ i¢ has no solutions, then T is self-adjoint, is the basic criterion of self-
adjointness,

Theorem VIIL3 (the basic criterion for self-adjointness) Let T be a
symmetric operator on a Hilbert space #. Then the following three state-
ments are equivalent:
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(a) Tis self-adjoint.
(b) Tis closed and Ker(T* + i) = {0}.
© Ran(T+i)= .

Proof We have just seen that (a) implies (b). Suppose that (b) holds; we will
prove (c). Since T*¢ = —ip has no solutions, Ran(T — i) must be dense.
Otherwise, if ¢ € Ran(T — i)*, we would have ((T— e, ¥) =0 for all
¢ € D(T), so Yy € D(T*) and (T — D)*y = (T* + i}y = 0 which is impossible
since T*J = — iy has no solutions. (Reversing this last argumentwe can show
that if Ran(T - i) is dense, the kernel of T* + i is {0}.) Since Ran(T — i) is
dense, we need only prove it is closed to conclude that Ran(T — i) = #.But
for all ¢ € D(T)
I(T - Dol = |Tel* + lel?

Thus if ¢, € D(T)and (T — i)¢, — Yo, we conclude that ¢, converges to some
vector ¢, , and T, converges too. Since T'is closed, ¢ € D(T)and (T—i)p,=
Yo .Thus,Ran(T — i)isclosed,so Ran(T — i) = J#.Similarly, Ran(T + i) = #.

Finally, we will show that (c) implies (a). Let ¢ € D(T*). Since Ran(7 - i) =
H, there is an ne€ D(T) so that (T— i = (T*—i)p. D(T)c D(T*, so
¢ —ne€ D(T*) and

(T*—ife—n) =0

Since Ran(T + i) = #, Ker(T* — i) = {0}, so ¢ = n € D(T). This proves that
D(T*) = D(T), so T is self-adjoint. | .

Corollary Let T be a symmetric operator on a Hilbert space. Then the
following are equivalent:

(a) T is essentially self-adjoint.
(b) Ker(T* +i) = {0}.
(c) Ran(T + i) are dense.

We conclude with an example which shows that a symmetric operator may
have many self-adjoint extensions. Lest the reader be misled we remark that a
symmetric operator may have no self-adjoint extensions (see Problem 4 and
Section X.1).

Example Let T = i d/dx with
D(T)={¢|pe AC[0, 1], #(0) =0 = ¢(1)}

A simple integration by parts shows that as an operator on L?[0, 1}, T is
symmetric. We begin by determining T*. Let j, be the function defined in
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Example 3 of Section VIIL1. Fix 0 <a < f < | and define
f:,ﬂ(x) =jc(x - ﬂ) _jz(x - a)
ge () = [ f2#(t) dt
0
Let § € D(T*). For & small enough, g*# € D(T) so
(Tge’, ) = (92", T*Y) (VIIL3)
As ¢ - 0,— g*# converges to the characteristic function of (a, §) in L%(0, 1) so
]
(@22, T = [ (T*)(x) dx
The basic estimate of Example 3 shows that
1
oo = [ jdx = Do) di
0

converges in L* to ¢ if ¢ is continuous. Moreover, each J, is a bounded
operator of norm not greater than one. For if € L*(0, 1), then

|, .0 < [[Jx = Do 1Y dx dt
= [[:0) e 1y + ] dy dr
<ol vl [l dy

= lloll 1yl

By an ¢/3 argument, J, ¢ L o for all ¢ € L2[0, 1]. Thus, the left side of (VIIL3)
converges to —i(Y(f) — Y(«)) in mean square as ¢ — 0. So, for almost all «, 8

W) - b)) = [ (T dx

This means that ¢ is absolutely continuous (see the Notes for Section VIII.1)
and

200 = (T

Thus, ¢ € AC[0, 1} and T*y =i dy(x)/dx. Conversely, integration by parts
shows that any ¢ € AC[0, 1] is in the domain of T* and T*y = idy/dx.
Therefore T* = id/dx on D(T*) = ACI[0, 1].

It is easy to see that Tis not essentially self-adjoint since

d
et*e D(T*) and i—e** = +iet*
dx
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In fact, T is closed (Problem 6) so T is a closed, symmetric but not self-adjoint
operator.

Does T have any self-adjoint extensions ? Yes, uncountably many different
ones! Let a € C, |a| =1, and define T, = i d/dx on

D(T) ={ploe AC[0,1], ¢(0)=ap(1)}

Each of these operators 7, is a different self-adjoint extension of T(Problem 7).
Of course, each T, is in turn extended by T*. These extensions are depicted in
Figure VIII.1. The reason why there is exactly a circle of different possible
extensions will be made clear in Section X.1.

orT*

O T FiGure VIILI  The self-adjoint extensions of T.

ol

VIIl.3 The spectral theorem

A good definition should be the hypothesis of a theorem. J. Glimm

In this section we will show how the spectral theorem for bounded self-
adjoint operators which we developed in Chapter VII can be extended to
unbounded self-adjoint operators. To indicate what we are aiming for, we
first prove the following:

Proposition 1 Let {M, p) be a measure space with u a finite measure.
Suppose that f is a measurable, real-valued function on M which is finite

a.e.[u). Then the operator p—Z» fo on LM, dy) with domain

D(Tp) = {o| fo € LM, p)}
is self-adjoint and o(T) is the essential range of f.

Proof Ty is clearly symmetric. Suppose that € D(T7}) and let

{1 i | fm) < N
Xnlm) = ‘0 otherwise
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Then, using the monotone convergence theorem,

ITF Yl = :im lan TF YA

lim ( sup |(@, xn T}“'ﬁ)l)

N-ow \|jlell=1

= lim ( sup [(Tyxn @, ¢’)|)
N=~wo \jleli=1

= lim ( sup |(o, x~fll/)l)
N-oo \lell=1

= lim [lxy Il
N-o

Thus, fiy e (M, p), so Y € D(T;) and therefore T is self-adjoint. That
o(T;) is the essential range of f follows as in the bounded case (Problem 17 of
Chapter VII). §

With more information about f, one can say something about the domains
on which Ty is essentially self-adjoint:

Proposition 2 Let f and T, obey the conditions in Proposition 1.
Suppose in addition that fe IP(M, du) for 2 < p < 0. Let D be any dense set
in I%(M, du) where ¢! + p~! = 1/2. Then D is a core for T}.

Proof Let us first show that L' is a core for T,. By Holder’s inequality
lgll2 < 111, 1gl,2nd /31> < /1, Igll,50 I = D(T}). Moreover, ifg € D(T)),
let g, be that function which is zero where |g(m)| > n and equal to g other-
wise. By the dominated convergence theorem, g, —»g and fg, —fg in L2
Since each g, is in L, we conclude that ! is a core for Tj.

Now let D.be dense in If and let g€ IY. Find g,€ D with g, —» g in L.
Since llg,— gl < I, g, —gll, and [ T(g,— @l < WS, 1gn — gllgs
ge D(T; | D). Thus L* <« D(T, | D) so D is a core. §

Unless fe L*(M, p) the operator T, described in Propositions 1 and 2
will be unbounded. Thus, we have found a large class of unbounded self-
adjoint operators. In fact, we have found them all.

Theorem VIIL 4 (spectral theorem—multiplication operator form)  Let
A be a self-adjoint operator on aseparable Hilbert space 5## with domain D(A).
Then there is a measure space {M, u) with p a finite measure, a unitary
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operator U: #— L*(M, dp), and a real-valued function f on M which is
finite a.e. so that

@) ¥ e D(A) if and only if £(-YUY)(-) € LAM, dy).
(b) If ¢ € U[D(A)], then (UAU ~'p)(m) = f(m)ep(m).

Proof In the proof of Theorem VIIL.3 it was shown that A + iand 4 — i are
one to one and Ran{4 + i) = #. Since 4 + i are closed, (4 & i)~! are closed
and therefore bounded (Theorem 111.12). By Theorem VIIL.2, (4 + i)~! and
(4 — )~! commute. The equality

(A=W, (A + D714+ D)= (4 — )4 = DY, (4 + D)p)

and the fact that Ran(4 + i) = 2 shows that (4 + )" })* = (4~i)"!. Thus
(4 + )~ !is normal.

We now use the easy extension of the spectral theorem for bounded self-
adjoint operators to bounded normal operators. The proof of this extension
is outlined in Problems 3, 4, and S of Chapter VII. We concliude that there is a
measure space (M, u» with p a finite measure, a unitary operator U: 3¢ —
L*(M, p), and a measurable, bounded, complex-valued function g(m) so that
U(4 + i)~*U ~to(m) = g(m)p(m) for all ¢ € LXM, dp).

Since Ker(4 +i)™! is empty, g(m)# 0 a.e.[u], so the function f(m) =
gm ™! — i is finite a.e.[n]. Now, suppose € D(4). Then ¢ = (4 + i) !¢
for some ¢ € # and Uy =gUp. Since fy is bounded, we conclude that
S(UY) € LX(M, dy). Conversely, if f(U) e L>(M, dy), then there is a ¢ € # so
that Ug = (f+ i)Uy. Thus, gUp = g(f + D)UY = Uy, so ¢ = (4 + i) o,
which shows that € D(A4). This proves (a).

To prove (b) notice that if € D(4), then ¥ = (4 +i)"'¢ for some
@ € H# and AY = ¢ — if. Therefore,

(UAY)(m) = (Up)(m) —i(U)(m)

= (g(m)™" — i)(Uy)(m)

= f(m)(Uy)(m)
Finally, if Im(f) > 0 on a set of nonzero measure, there is a bounded set B in
the upper half plane so that S = {x| f(x) € B} has nonzero measure. If y is the
characteristic function of S, then fye L*(M, du) and Im(y,fx) > 0. This
contradicts the fact that multiplication by f is self-adjoint (since it is unitarily
equivalent to A4). Thus fis real-valued. |}

There is a natural way to define functions of a self-adjoint operator by
using the above theorem. Given a bounded Borel function # on R we define

h(A) = U-IT',(J‘) U
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where T,,, is the operator on L*(M, du) which acts by multiplication by the
function A(f(m)). Using this definition the following theorem follows easily
from Theorem VII1.4.

Theorem VIIL. 5 (spectral theorem—functional calculus form) Let 4 be
a self-adjoint operator on #. Then there is a unique map ¢ from the bounded
Bore! functions on R into £(5#) so that

(@) ¢ is an algebraic *-homomorphism.

(b) ¢ is norm continuous, that is, ||d3(h)||g(,) < Al -

(c) Let A,(x) be a sequence of bounded Borel functions with A,(x) rreond
for each x and |A,(x)| < |x| for all x and n. Then, for any Y € D(4),
lim $(h, )y = Ay.

n=s a0

(d) If A,(x) — h(x) pointwise and if the sequence {A,ll,, is bounded, then
$(h,) = (k) strongly.
In addition:

©) If 4y = Ay, d(y = h(A)y.

(f) Ifh=0,then ¢(h) = 0.

The functional calculus is very useful. For example, it allows us to define
the exponential ' and prove easily many of its properties as a function of ¢
(see the next section). In the case where A is bounded we do not need the
functional calculus to define the exponential since we can define ¢4 by the
power series which converges in norm.

The functional calculus is also used to construct spectral measures and can
be used to develop a multiplicity theory similar to that for bounded self-
adjoint operators. A vector V¥ is said to be cyclic for 4 if {g(4){|g € C(R)}
isdense in 7. If ¥ is a cyclic vector, then it is possible to represent # as
L*(R, du,) where #y is the measure satisfying

[ 9 e = @, gt

in such a way that 4 becomes multiplication by x. In general, # decomposes
into a direct sum of cyclic subspaces so the measure space, M, in Theorem
VII1.4 can be realized as a union of copies of R. As in the case of bounded
operators we can define 0,.(4), 0,,(4), 04.(A4), and decompose #
accordingly.

Finally, the spectral theorem in its projection-valued measure form follows
easily from the functional calculus. Let P, be the operator xq(4) where xq is
the characteristic function of the measurable set Q « R. The family of opera-
tors {Pg} has the following properties:
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(a) Each Pg is an orthogonal projection.

(b) Pg =0,P(-w,m)=1

© If Q== with Q,NnQ, = if n#m, then

Pn = S‘limn_.w ng 1 Pnn

(d) Pnlpﬂz = Pﬂl nQy
Such a family is called a projection-valued measure (p.v.m.). This is a gener-
alization of the notion of bounded projection-valued measure introduced in
Chapter VII in that we only require P(_, o) = / rather than P _, ,, = I for
some a. For @ € ¥, (¢, Py @) is a well-defined Borel measure on R which we
denote by d(¢, P, ¢) as in Chapter VII. The complex measure d(p, P, V) is
defined by polarization. Thus, given a bounded Borel function g we can
define g(A) by

@.90) = o) dg. P;0) (VIIL4)

It is not difficult to show that this map g > g(A4) has the properties (a)-(d) of
Theorem VII1.5, so g(A4) as defined by (V111.4) coincides with the definition of
g(A4) given by Theorem VII1.4. Now, suppose g is an unbounded complex-
valued Borel function and let

D,=lol | _ls]* dig. Pr¢) < ) (VIILS)

Then, D, is dense in # and an operator g(A) is defined on D, by
@.99) = [~ gD dlo, Pi9)
As in Chapter V11, we write symbolically
g(4) = [ g(0) aP,
In particular, for ¢, ¥ € D(A),
@40 = [~ Lde.Py)

If g is real-valued, then g(4) is self-adjoint on D,. We summarize:
Theorem VIIL6 (spectral theorem—projection valued measure form)

There is a one-to-one correspondence between self-adjoint operators 4 and
projection-valued measures {Pp} on J, the correspondence being given by

A=f 1dP,
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Definition If U(r) is a strongly continuous one-parameter unitary
group, then the self-adjoint operator 4 with U(f) = "' is called the infinitesi-
mal generator of U(1).

Suppose that U(r) is a weakly continuous one-parameter unitary group.

Then
HU(e — ol = 1UMe|* — (U, ) — (¢, UDe) + llel?
> 2llpl? = 2lpl* =0

as t— 0. Thus U(r) is actually strongly continuous. As a matter of fact, to
conclude that U(1) is strongly continuous one need only show that U(¥) is
weakly measurable, that is, that (U(f)e, ¥) is measurable for each ¢ and .
This startling result, proven by von Neumann, is sometimes useful since
in applications one can often show that (U(t)e, ) is the limit of a sequence of

continuous functions; (U(t)e, ¥) is therefore measurable and by von Neu-
mann’s theorem U(f) is then strongly continuous.

Theorem VIIL.9 (von Neumann) Let U(t) be a one-parameter group of
unitary operators on a separable Hilbert space 5. Suppose that for all ¢,
Y e o, (U, ¢) is measurable. Then U(1) is strongly continuous.

Proof Let Y € #. Then for all ¢ € S, (U(t)¥, ¢) is a bounded measurable
function and

o [ (U, 9) di
0

1s a linear functional on 4 of norm less than or equal to aliyy ||. Thus, by the
Riesz lemma there is a i, € # so that

Wer0) = [ (U, o) dt

Now,

(UMW, 0) = (Y, U(—b)p)
- [ wo. ve-bo) a

=mewmwm

a+b
=] wop.e)a
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Thus

[ wow. ora

b
(UObW., @) — (Ya, 0)| = JO(U(t)lll, ?) dt‘ +

< 2bllell vl

Therefore,
},in(t) (UMW, @) = Was 9)

so that U(b) is weakly and therefore strongly continuous on the set of vectors
of the form {{, | ¥ € 5#}. It remains only to show that this set is dense, since by
by an ¢/3 argument we can then conclude that ¢ — U(?) is strongly continuous
on #. Suppose that ¢ € {Y,|¥ € 5, a € R}* and let {y/} be an orthonormal
basis for . Then for each n,

0=, )= [ U™, ) dt

for all @ which implies that (U()y'™, ¢) = 0 except for t € S, , a set of measure
zero. Choose 1o ¢ | i S,. Then (U(to)y™, ) = 0 for all n which implies
that ¢ = 0, since U(t,) is unitary. J

The proof of essential self-adjointness in Theorem V111.8 directly implies the
following self-adjointness criterion.

Theorem VIII.10 Suppose that U(?) is a strongly continuous one-param-
eter unitary group. Let D be a dense domain which is invariant under U(t)
and on which U(?) is strongly differentiable. Then i ™! times the strong deriva-
tive of U(1) is essentially self-adjoint on D and its closure is the infinitesimal
generator of U(1).

This theorem has a reformulation which is sufficiently important that we
state it as a theorem.

Theorem VIIL.11 Let 4 be a self-adjoint operator on s and D be a
dense linear set contained in D(A4). If forall ¢, e"4: D— D, then D is a core
for A.

Finally, we have the following generalization of Stone’s theorem.
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If g(*) is a real-valued Borel function on R, then

o= gwyap,

defined on D, (VIILS) is self-adjoint. If g is bounded, g(4) coincides with
&(g) in Theorem VIILS.

We conclude with several remarks. First, Stone’s formula, given in Theorem
VI11.13, relates the resolvent and the projection-valued measure associated
with any self-adjoint operator. The proof is the same as in the bounded case.

The spectrum of an unbounded self-adjoint operator is an unbounded
subset of the real axis. One can define discrete and essential spectrum; they
are still characterized by Theorems VI1.9, VI1.10, and VI1.11. Theorem VII.12
(Weyl’s criterion) still holds if one adds the criterion that the vectors {{,,} must
be in the domain of 4.

Finally, we note that the measure space of Theorem VII1.4 can always be
chosen so that Proposition 2 is applicable:

Proposition 3 Let A be a self-adjoint operator on a separable Hilbert
space #. Then the measure space (M, u) and the function f of Theorem
VII1.4 can be chosen so that fe IP(M, du) for all p with 1 < p < 0.

Proof By Theorem VIIL4, we know that A is unitarily equivalent to T, on
some measure space (M, v) with v(M) < co. Let u be the measure given by
du=e " dv
Then T, on I*(M,dy) is unitarily equivalent to T, on I*(M, dv) under

V:IA(M, dv) - L*(M, du) given by Vg(m) = (e*f*?g)(m). Moreover, fe
IP(M, du) forany 1 € p < 0. |

VIiil.4 Stone's theorem

In this section we prove a theorem due to Stone which, like the spectral
theorem, is fundamental for quantum mechanics. Suppose that 4 is a self-
adjoint operator on J. If A is bounded, we can define the exponential of 4 by

ot = (it)"A"

n=0 n!
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since the series converges in norm. If 4 unbounded and self-adjoint, we cannot
use the power series directly, but we can use the functional calculus developed
in the last section to define e*4.

Theorem VHLT  Let A be a self-adjoint operator and define U(1) = e'*4,
Then

(a) Foreach te R, U(t) is a unitary operator and U(t + s) = U()U(s) for
alls, teR.
(b) If@esf and t—t,, then U(t)p— U(to)o.

(c) Fory € D(A), gﬂ‘éﬂ — iAY as t 0.
(@ If lim y@if—‘—‘/’ exists, then ¥ € D(A).
t—=0

Proof (a) follows immediately from the functional calculus and the corre-
sponding statements for the complex-valued function ¢**, To prove (b) observe

that
le*o — oI = [ |¢" ~ 117 d(P, 0, 0)
Since |e'* — 1|? is dominated by the integrable function g(1) = 2 and since
le“*-—llz-—? foreach Ae R

we conclude that |[U(f)g — ¢|> —» 0 by the Lebesgue dominated-convergence
theorem. Thus ¢+ U(?) is strongly continuous at t = 0, which by the group
property proves t— U(t) is strongly continuous everywhere. The proof of (¢),
which again uses the dominated convergence theorem and the estimate
le= — 1] < | x|, is left to the reader (Problem 11), To prove (d), we define
Uity —
D(B) = {y lim 2 =¥
t—-0 t
and let iBy = lim,, [U@®y — y}/t. A simple computation shows that B is
symmetric. By (c), Bo A,50 B=A. ]

exists}

Definition An operator-valued function U(f) satisfying (a) and (b) is
called a strongly continuous one-parameter unitary group.

The following theorem says that every strongly continuous unitary group
arises as the exponential of a self-adjoint operator.
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Theorem V1112 Let t— U(t) = U(t,, ..., t,) be a strongly continuous
map of R” into the unitary operators on a separable Hilbert space o satis-
fying U(t + s) = U(t)U(s) and U(0) = I. Let D be the sct of finite linear com-
binations of vectors of the form

0 =] JOU®odt gk, feCTR)

Then D is a domain of essential self-adjointness for each of the generators 4;
of the one-parameter subgroups U(0,0,...,¢;,...,0), each 4;: D—- D and
the 4; commute, j=1,..., n. Furthermore, there is a projection-valued
measure P, on R” so that

(U ¥) = "o, Pr¥)
for all @, Y € #.

Proof Let A; be the infinitesimal generator of Ugt)) = U(0, ..., 1;,...,0).
The procedure used in the proof of Theorem VII1.8 shows that D < D(4)),
Aj: D— D, and Ugt;): D D. Theorem VIII.11 shows that 4; is essentially
self-adjoint on D. Because of the relation U(t + s) = U(®)U(s), U,(t;) com-
mutes with Uy(t,) for all ¢;, t;€R. Therefore, it follows from Theorem
VIIL13, that 4; and 4; commute in the sense defined in the next section; that
is, their spectral projections commute.

Let P} be the projection-valued measure on R corresponding to 4;. Define
a projection valued measure P, on R" by defining it first on rectangles
r=(a;, b)) x > x(a,, b)) by P, =Pl 4Pl .5, " Plansy and then let-
ting P, be the unique extension to the smallest o-algebra containing the rect-
angles, namely the Borel sets. Notice that, by Theorem VII1.13, the P{,j
commute since the groups U; commute. For each ¢, Y € #, (¢, Poy) is a
complex-valued measure of finite mass which we denote by d(p, P, ¥).
Applying Fubini’s theorem we easily conclude that

jwe"'* d(@, Po¥) = (@, Uy(ty) ..., Uyt )W)
= ((pa U(t)‘//) l

VIIl.5 Formal manipulation is a touchy
business: Nelson's example

From the theorems proven in the last two sections it may seem to the
feader that unbounded operators are just like bounded operators except that
one needs to be a little careful about domains. First, of all, it is sometimes
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difficult to determine the domain of a self-adjoint operator exactly, and it is
not always enough to check statements on a core. Furthermore, formal
calculations can be misleading. These statements are illustrated by the question
of commutativity and the surprising example of Nelson which show how
difficult it is to deal with unbounded operators.

Suppose that 4 and B are two unbounded self-adjoint operators on a
Hilbert space o#. We would like to find a reasonable meaning for the state-
ment “A and B commute.” This cannot be done in the straightforward way
since AB — BA may not make sense on any vector in J; for example, one
might have (Ran 4) n D(B) = {0} in which case BA does not have a meaning.
This suggests that we find an equivalent formulation of commutativity for
bounded self-adjoint operators. The spectral theorem for bounded self-
adjoint operators A and B shows that in that case 4B — BA = 0 if and only if
all their projections, {P4} and {PJ}, commute. We take this as our definition
in the unbounded case.

Definition Two (possibly unbounded) self-adjoint operators 4 and B
are said to commute if and only if all the projections in their associated pro-
jection-valued measures commute,

The spectral theorem shows that if 4 and B commute, then all the bounded
Borel functions of 4 and B also commute. In particular, the resolvents
R,;(A4) and R,(B) commute and the unitary groups ¢4 and e"*® commute.
The converse statement is also true and this shows that the above definition
of “commute ™ is reasonable:

Theorem VIIl.13 Let 4 and B be self-adjoint operators on a Hilbert
space . Then the following three statements are equivalent:

(a) A and B commute.
(b) If Im A and Im p are nonzero, then R;(A)R,(B) = R,(B)R,(A).
() Foralls, teR,e'eis? = g'sBeit4,

Proof The fact that (a) implies (b) and (c) follows from the functional
calculus. The fact that (b) implies (a) easily follows from the formula which
expresses the spectral projections of 4 and B as strong limits of the resolvents
(Stone’s formula) together with the fact that

s-lim ieR, , ;,(4) = P fz)
)0

To prove that (c) implies (a), we use some simple facts about the Fourier
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Theorem VIil.8 (Stone’s theorem) Let U(1) be a strongly continuous
one-parameter unitary group on a Hilbert space J#. Then, there is a self-
adjoint operator 4 on J# so that U(f) = e'*4,

Proof Part(d) of Theorem VIIL.7 suggests that we obtain A by differentiating
U(t) at t = 0. We will show that this can be done on a dense set of especially
nice vectors and then show that the limiting operator is essentially self-
adjoint by using the basic criterion. Finally, we show that the exponential
of this limiting operator is just U(1).

Let fe CP(R) and for each ¢ € # define

o= 10UW

Since U(t) is strongly continuous the integral can be taken to be a Riemann
integral. Let D be the set of finite linear combinations of all such ¢, for

e and fe CF(R). If j{x) is the approximate identity introduced in
Section VIIL.1, then

15— ol =| [ sioxve - oyt

<( [ ioa) s juee- ol
- tef—¢, €]
Since U(1) is strongly continuous, D is dense in 5. We have used the inequal-
ity 1ifh(r) dt}i < [Ik(1)ii di for Banach space-valued continuous functions on
the real line (which can be proven using the approximate partial sums as in
the real-valued case).
For ¢, € D, we compute

(U(s) - 1)% _ f: m(U(s + zz- U(t))(p i

N

- f: Je-9 - ss) =IO vy de

- = [f@U@e dr

=(p_f,

since [f(t — 5) — f(1)]/s converges to —/"(7) uniformly. For ¢, € D, we define
Ag;=1i""@_;. Notice that U(): D— D, A:D— D, and U(Ag, =
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AU(t)¢, for ¢, € D. Furthermore, if ¢, ¢, € D, we have

(A¢;, ¢,) = lim ((U(s? — I)cpf, %)

s=0 is

1o (42

1
= (pf’_i(p—g'

=(¢,, AQ,)

50 A is symmetric.
Now we show that A is essentially self-adjoint. Suppose that there is a
u € D(A*) so that A*u = iu. Then for each ¢ € D(4) = D,

‘% (U@, u) =({AUN)e, u)

]

—i(U()e, A*u)
= —i(U(t)g, iu)
= (U(t)gp, u)
Thus, the complex-valued function f(t) = (U(f)g, u) satisfies the ordinary
differential equation f* = f'so f(#) = f(0)e'. Since U(t) has norm one, | f(t)| is
bounded, which implies that f(0) = (¢, u) =0. Since D is dense, u=0. A
similar proof shows that A*u = —iu can have no nonzero solutions. There-
fore, by the corollary to Theorem VIIL.3, A4 is essentially self-adjoint on D.
Let V(1) = ¢"A. It remains to show that U(f) = V(7). Let ¢ € D. Since
o e D(A), V(itdpe D(A) and V(o = iAV(f)e by (c) of Theorem VI1.7.
We already know that U(f)p € D < D(A) for all t. Let w(f) = U)o — V(t)o.
Then w(t) is a strongly differentiable vector-valued function and
w(t) = iAU@e — iAV()e
= iAw(1)

Thus

% IW(IE = — iAW), wo)) + iw(s), Aw(i))
=0

Therefore w(t) = 0 for all ¢ since w(0) = 0. This implies that U(t)p = V(t)p
forallteR, ¢ € D. Since D is dense, U(t) = V(t). |
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transform proven in Section IX.1. Let fe &(R). Then, by Fubini’s theorem,

I rxeto.mrai=[" soff” eapto )

— a0

=2 [ 10 dPle,v)
= /21(¢, /()

Thus, using (c) and Fubini’s theorem again,

. JEW) = [~ [ J0a )0, & 4emBy) ds

= (9, 4(BY(AW)

so, for all f, ge P(R), f(A)j(B) — §(B)f(A) = 0. Since the Fourier trans-
form maps Z(R) onto ¥(R) we conclude that f(A)g(B) = g(B)f(A) for
all f, g € £(R). But, the characteristic function, x,, ;) can be expressed as the
pointwise limit of a sequence f, of uniformly bounded functions in 4.
By the functional calculus,

JuA) > PG 4
Similarly, we find uniformly bounded g, € 4 converging pointwise to ., 4, and
9n(B) >P (Bc, ')
Since the f, and g, are uniformly bounded and
J(A)g,(B) =g.(B)f(A)

for each n, we conclude that P{, ,, and P{, ; commute which proves (a). [

Although the above theorem shows that the definition of *“commute™ is
reasonable, it is not always easy to deal with. In practice, one is usually given
A and B on sets of essential self-adjointness, Dg(A4) and Dy(B), and it may be
very difficult to construct the spectral projections, the resolvents, or the
groups corresponding to 4 and B. Thus, one would like to have a criterion in
terms of the operators themselves. In Problem 13, the reader is asked to find
disjoint domains of essential self-adjointness for the operators x and x on
L*(R), so such a commutativity criterion could never be necessary, but with
enough restrictions might be sufficient. Here are two conjectures which seem
reasonable but which are false:

1. Let D be a dense subspace in 3 which is contained in the domains of
A and B. Suppose further that 4: D— D and B: D— D. Then, if
ABp — BAp =0 for each ¢ € D, A and B commute (FALSE!),
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2. Let D be a dense domain of essential self-adjointness for 4 and B. Sup-
pose further that 4: D — D and B: D — D. Then, if ABg — BAp =0
for all ¢ € D, A commutes with B (FALSE!).

Both of these statements are false, the hypotheses are not sufficient to guarantee
commutativity. This is surprising for several reasons. First, the conditions
seem reasonable. Secondly, in condition (2), D is assumed to be a domain of
essential self-adjointness for both 4 and B, so the action of 4 and Bon D
should provide enough information to determine whether 4 and B com-
mute. Finally, in a formal sense

I+ Z (ltA)

(VIIL6)
. Z (1sB)"

Since it follows from the conditions in (1) and (2) that 4"B™p — B"4"¢ =0
for all ¢ € D, one might expect that ¢4 and e'*® commute for all s and ¢. By
Theorem VII1.13 this would imply that 4 and B commute, The trouble with
this argument is that the expressions in (VII1.6) are only formal and may
have meaning on no vectors in D since 4 and B are unbounded. The finite
sums make sense on D and

(r+ 50 £.5 e (0 £ 5F) (- £57)

but we cannot conclude from this that ¢4 and e**® commute. The following
example is due to Nelson.

Example 1 Suppose that M is the Riemann surface of the \/; and

= L*(M) with Lebesgue measure (locally). Let 4 = —i9/dx and B =
—i0/dy on the domain D which consists of all infinitely differentiable func-
tions with compact support not containing the origin. Then

(a) A and B are essentially self-adjoint on D.
() A:D->D B:D->D

(c) ABgp = BA¢g for ¢ e D

(d) e and *? do not commute.

The proofs of (b) and (c) are obvious. To prove (a), first observe that integra-
tion by parts shows that 4 and B are symmetric. Let D, D be the functions
in D whose support does not contain the x axis on either sheet. D, is also
dense in L3(M). On D, define (U(D)o)(x, ) = @(x +t,y). Then U(t) is a
norm-preserving map with dense range and so extends to a unitary operator on
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L2(M). Since U(t) is strongly continuous on D, U(¢) is strongly continuous on
L*(M). Now, on D,, U(t) is strongly differentiable and i ™' times its strong
derivative is 4. Thus, by Theorem VIII. 10, 4 is essentially self-adjoint on D,
and therefore on D (Problem 14) and its closure generates U(f). A similar
proof shows that the closure of B is the infinitesimal generator of translation
in the y direction defined by extension from a domain D, . This proves (a).
To prove (d), let ¢ be an infinitely differentiable function with support
contained in a small circle about the point (—4, —3%) on the first sheet. Then

UV(e # V(HU(De

since the functions will have their support around (4, 4) on different sheets. J

Example 2 (canonical commutation relations) A pair P, Q of self-adjoint
operators is said to * satisfy ” the canonical commutation relations if

PQ— QP = —il (VIILT)

P and Q cannot both be bounded. For, if they were, the relation PQ" — Q"P =
—inQ" ! [which follows directly from (VII1.7)] would imply

nll Q1" =@ " i < 21IP HIQIN

So for all n, 2P || |Q}l = n, which is a contradiction. Thus, either P or Q
or both must be unbounded so we cannot discuss the relation (VII1.7) without
worrying about domains. The standard realization or *“representation” used
in quantum mechanics is the Schrodinger representation where 3 = L?(R)
and P and Q are the closures of i "!d/dx and multiplication by x on &(R).
&(R) is a domain of essential self-adjointness for i ~*d/dx and x,

l_ i 1 Z(R) - #(R), x: Z(R) - (R)
idx

and for ¢ € #(R),
1 d( ) x(l d ) ,
--—{X — - —— = —
idx ¢ idxq) a4

The question is: in what sense is the Schrodinger representation the * only ™
representation of the relation (VII1.7). One method of dealing with (VIIL.7) is
with the unitary groups. If U(f) = ¢"f and V(s) = "9, then a formal calcula-
tion using (VIIL.7) and the formal power series expansion for ¢"*? and ¢
yields

UV (s) = e V(s)U(1) (VIILE)
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The reader should not be surprised to learn that the two problems, solving the
relation (VIIL.7) and solving the relation (VIH.8), which are related by a
formal calculation are not equivalent. Let us first discuss (VII1.8), which is an
easier problem because we need deal only with bounded operators. Two con-
tinuous one-parameter groups satisfying (VIIL.8) are said to satisfy the
Weyl relations. The reader can easily check that in the Schrodinger representa-
tion, the groups ¢*F and e™? do satisfy the Weyl relations; e'** is just transla-
tion to the left by ¢, and ¢*¢ is multiplication by ¢**. The following theorem
states that up to multiplicity and unitary equivalence, the Wey! relations
have only one solution (for a proof see Theorem XI.84 or Problem 30 in
Chapter X).

Theorem VHL.14 (von Neumann) Let U(?) and V(s) be one-parameter,
continuous, unitary groups on a separable Hilbert space # satisfying the
Weyl relations. Then, there are closed subspaces ), so that

(@) # =@).,#, (N apositive integer or o)

(b) U@):#,>H#,, V(s): #,—» H, foralls 1eR.

(c) For each ¢/, there. is a unitary operator T,: #,— L*(R) such that
T,U(DT; ! is translation to the left by t and 7,V(s)T,”! is multiplication by

eisx

Corollary Let U(r) and V(s) be continuous one-parameter unitary
groups satisfying the Weyl relations on a separable Hilbert space J#. Let P be
the generator of U(f), O the generator of V(s). Then there is a dense domain
D < # so that

(a) P:D->D,Q:D->D
(b) PQp — QPp = —ipforallpoe D
(¢) P and Q are essentially self-adjoint on D.

This corollary (whose easy proof is given as Problem 36) shows that any
solution of the Weyl relations has infinitesimal generators which satisfy the
canonical commutation relations in the sense given by (a), (b), and (c). The
converse of this statement is not true as is shown by the followingslight pertur-
bation of Nelson’s example. Let # = L*(M) as in Example 1,

10 190
P == - —— = X —_——
i dx Q=x +i dy
on the domain D given there. P and Q satisfy properties (a), (b), and (¢). The
proof of self-adjointness is similar to the proof in Example 1. But the groups
they generate do not satisfy the Weyl relations.
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One point of this section was to show that formal calculations with the
formal power series expansion for ¢/ can lead to false conclusions. This does
not imply that one can never make sense out of the formal series for /4 if 4 is
unbounded. In fact, suppose that A4 is an unbounded self-adjoint operator and
Py, is the corresponding projection-valued measure. Then the set D_ of vectors
of the form P_ y my @, Where @ € 5 and M is arbitrary but finite, is a dense
set contained in D(4") for all n and A is essentially self-adjoint on D_. Fur-
thermore, if ¥ = Pi_p, 1y @, then A < M"Y, so

"20 | A"l

n!

for all 1. Therefore, if Y € D_ the series Z,‘?: o (i)Y’ A™Yn' converges. Vectorsy €

*_ 1 D(A") which satisfy (VI11.9) for some ¢t > 0 are called analytic vectors
for A. On such vectors the power series for ¢’* makes sense and converges
to e'"y as long as ¢ is sufficiently small. We will return to analytic vectors
in Section X.6 where we prove a theorem of Nelson that if a symmetric
operator A has a dense set of analytic vectors in its domain D then 4 is essen-
tially self-adjoint.

<o (VIIL9)

Vill.6 Quadratic forms

One consequence of the Riesz lemma is that there is a one-to-one corre-
spondence between bounded quadratic forms and bounded operators; that is,
any sesquilinear map g: o# x # — C which satisfies |g(o, ¥)| < M ol Iyl
is of the form g(p, ) = (¢, AY) for some bounded operator 4. As one might
expect, the situation is more complicated if one removes the boundedness
restriction. It is the relationship between unbounded forms and unbounded
operators which we study briefly in this section.

Definition A quadratic form is a map q: Q(q) x Q(g) - C, where Q(q)
is a dense linear subset of # called the form domain, such that ¢(-, ) is
conjugate linear and g(¢, ) is linear for ¢, Y € Q(q). If q(o, ¥) = q(y, @) we
say that ¢ is symmetric. If g(p, ¢) = 0 for all ¢ € Q, g is called positive, and
if g(e, @) = — M | ¢||? for some M, we say that ¢ is semibounded.

Notice that if g is semibounded, then it is automatically symmetric if 5
is complex.
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Example 1 Let o = L*(R) and Q(q) = C¥(R) with q(f, g) = F(0)g(0).
Then ¢ is a positive quadratic form. Since ¢( f, g) = 8(fg) one could formally
write g(f, g) = (f, Ag) where 4: g 8(x)g(x). Since multiplication by &(x) is
not an operator, g is an example of a quadratic form not likely to be associated
with an operator.

Example 2 Let A be a self-adjoint operator on . Let us pass to a
spectral representation of A4, so that A is multiplication by x on @Y.,
L*(R, ,). Let

0(g) = {{w,,(x)}i.ul
and for ¥, @ € Q(q) define
N 0 —e
a0 = 3 [ x0.00x) diy

We call g the quadratic form associated with A and write Q(g) = Q(4);
Q(A) is called the form domain of the operator A, For y, ¢ € O(A4), we will
often write g(@, ¥) = (¢, AY) although A does not make sense on all i € Q(A).
Q(A) is in some sense the largest domain on which g can be defined.

3 R0 d < )

To investigate the deep connection between self-adjointness and semi-
bounded quadratic forms we need to extend the notion of “closed” from
operators to forms. An operator A4 is closed if and only if its graph is closed
which is the same as saying that D(A) is complete under the norm ||y, =
| AY (| + 1yl (Problem 15). Analogously, we define:

Definition Let g be a semibounded quadratic form, gq(¥,y)>
— M [|y1%. g is called closed if Q(g) is complete under the norm

IWller = Ve, ¥) + (M + DY

If g is closed and D < Q(g) is dense in Q(q) in the ||*|,, norm, then D is
called a form core for q.

Notice that {|¥!l., comes from the inner product

W, @) sy = q(Y, ¢) + (M + D), (P)

It is not hard to see (Problem 15) that g is closed if and only if whenever

@€ 0@), 0, @ and ¢(, — Pm» @ — @) 0, as n, m— oo, then ¢ € O(q)
and ¢(¢o, — @, ¢, — ¢)— 0. This criterion and the dominated convergence
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theorem show that the form ¢ associated with a semibounded self-adjoint
operator (Example 2) is closed. Furthermore, any operator core for A is a
form core for g (Problem 16).

Now, let g(f, g) = f(0)9(0) as in Example 1 and ¢, be the C5 function
shown in Figure VIIL.2. Then ¢, 20, and 4Py — Oms Ou — ¢m) — 0, but
9., ¢,) — 1 # q(0, 0) which proves that ¢ has no closed extensions. There-
fore, even though g is positive (and therefore symmetric) there is no semi-
bounded self-adjoint operator A so that ¢(f, g) = (f, Ag) for all £, g € C§.

FIGURE VIII.2 The graph of ¢,.

B0

|
RIS o

The deep fact about semibounded quadratic forms is that unlike the case
for operators, they cannot be closed and symmetric, yet not self-adjoint.

Theorem V.15 If g is a closed semibounded quadratic form, then ¢ is
the quadratic form of a unique self-adjoint operator.

Proof We may assume without loss of generality that ¢ is positive. Then,
since g is closed and symmetric, Q(q) is a Hilbert space, which we denote by
# 4y, under the inner product

((P’ l/’)-6-1 = ‘1(% '//) + (§0, ‘p)

We denote by ##_, the space of bounded conjugate linear functionals on

# 4, Let j, given by W (-, ¥), be the linear imbedding of J# into ) _,.
Jj(¥) is bounded because

W) < llellilll < ol iyl
Since the identity map i embeds # ,, in 5 we have a “scale of spaces”
HawHSH

We now exploit the Riesz lemma. Given ® € 5, ,, let B® be the element
of  _, which acts by

[BDY(p) = q(p, D) + (9, D)
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By the Riesz lemma, B is an isometric isomorphism of o, onto J#_;. Let
D(B) ={y € #,,| By € Ran }. Define Bon D(B) by B=j'5.

HoX, B lw

First, we prove that the range of j is dense in o _,. If it were not, there would
be a A€ #*, so that 2 # 0, and A[j(¥)] = O for each ¥ € . By the Riesz
Lemma, there is a ¢, # 0 in # 4, so that 0 = A[j(¥)] = [i)N@,) = (94, ¥)
for all Y € #. Since ¢, # 0, this is impossible. Therefore Ran j is dense in
X _,. Since B is an isometric isomorphism we conclude that D(B) is || *|l44
dense in #,,. Further, since ||-[| < || ll+; and ., is norm dense in &,
D(B) is norm dense in .
Suppose ¢, Y € D(B). Then

(o, BY) =q(o, ¥) + (0, ¥)
=q(y, o) + (¥, 9)
= (¥, By)
= (Bo, ¥)

Thus, B is a densely defined symmetric operator.

We will prove that B is self-adjoint. Let C = B ™'j. C takes # into # and
is an everywhere defined symmetric operator. By the Hellinger-Toeplitz
theorem, C is a bounded self-adjoint operator. Moreover, C is injective. A
simple application of the spectral theorem in multiplication operator form
shows that C "!: Ran C - J is a self-adjoint operator, But C ™! = B.

We now define 4 = B — I. Then A4 is also self-adjoint on D(4) = D(B) and
for @, ¢ € D(A), (¢, AY) = g{o, ¥). Since D(4)is || - |, ,-dense in 5 ., q is the
quadratic form associated to A. Uniqueness is left as a problem. |

Thus, there is an interesting distinction between semi-bounded symmetric
operators and semi-bounded quadratic forms. For symmetric operators, there
is never any problem finding closed extensions. A smallest closed extension
always exists (the double adjoint), but it is possible that none of these closed
extensions is self-adjoint. On the other hand, semibounded forms need not
have any closed extensions, but when such extensions exist and are semi-
bounded, they are the quadratic forms associated with self-adjoint operators.
We caution the reader about several pitfalls.

(1) [If Aand Bare self-adjoint operators and D(4) « D(B) with B} D(4) =
A, then A = B. But it can happen that a and b are closed semi-
bounded quadratic formsand b} Q(a) x Q(a) = awithout havinga = b.
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(2) Let A be a symmetric operator that is semibounded. Let ¢ be the
quadratic form g(g, ¥) = (¢, AY) with Q(a) = D(A). Suppose that ¢
has a closure (it always will, see Section X.3) 4, that is, a smallest closed
form which extends it. Then the self-adjoint operator A which cor-
responds to 4 (by Theorem VIIL.15) may be bigger than the operator
closure of 4.

(3) While a general quadratic form may have no closed extensions, forms
that come directly from semibounded operators always have closures
and thus semibounded operators always have self-adjoint extensions:
see Section X.3.

The following example illustrates the first two of these phenomena.

Example 3 Let AC?[0, 1] denote the functions /'€ L2[0, 1] such that fis
differentiable, f” is absolutely continuous and f” € L?[0, 1]. We define

Do ={f|feAC?[0,1], f(0)=/(1)=0=/(0)=/(1}
D, ,={f|fe AC?[0,1), af(0) +f(0)=0=bf(1) + f(1)}
Dy, ={f|feAC?[0,1), f(0)=0=/f(1)}

D={f|fe AC?[0, 1]}

and let Ty, T, 5, T, o, and T be the operation —d?/dx? with domains Dy,
D, ,, Dy, »,and D respectively. Then

(a) The operators Ty, T, ;, T, o, and T are closed. T, is symmetric but
not self-adjoint; its adjoint is T.

) T, (—-w<a<w, —0<b<w®)and T, , are all distinct self-
adjoint extensions of T, (there are others!).

(c) i, ¥) = (0, Toy)for @, ¥ € Dy, the form 1, has a smallest closed
extension #,. This extension is the form associated with T, ., which
illustrates the remark (2) above.

(d) The form 1, , associated with T, , has a form domain Q(t, ,) which
contains the form domain Q(t,,, ,,) of t,, o, the form associated with
Tw.w> and 1, y [ Q(t,, o) =1, - This illustrates the remark (1)
above.

Finally, we extend some of the ideas we have considered to nonsymmetric
forms. Our use of the terms * sectorial” and *“ accretive” is not precisely the
standard one (see the Notes).
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Definition A quadratic form ¢ is called strictly m-aceretive if
(i) gq is closed in the sense that if ¢, € Q(g), ¢, — ¢, and
lim q((Pn — @Pms Py — (pm) =0

n,m— o

then ¢ € Q(q) and g(@, — ¢, ¢, — @) 0.
(ii) thereis a 8, 0 < 8 < #/2, with |argq(e, ¢)]| < 6 for all ¢ € O(g).

Now, suppose that ¢ is strictly m-accretive. Define a new quadratic form R,
by

R0, ) = ; (Rela(o + ¥, ¢ + )] = Relg(o = ¥ ¢ = )]

1 1
+3 Relg(e + iy, ¢ + iY)] - 7 Re[g(e — iy, ¢ — i)]

Notice that R (¢, @) = Relg(p, ¢)] so R, is a closed positive form. We can
now use R, to set up a scale of spaces # ., < # < H#_, as was done in the
proof of Theorem VIIIL.15, and obtain a map T: # ., » #_, so that
[T®) @) = g(®, ¢). By using the proof of Theorem VIIL15, and by taking
T to be a suitable restriction of T, one can prove:

Theorem VIIL16 Let g be a strictly m-accretive quadratic form. Then
there is a unique operator T on 3 such that

(a) Tis closed.

(b) D(T)< Q(q), and if ¢, ¥ € D(T), then g(o, ¥) = (¢, TY).
Further, D(T) is a form core for g.

() D(T*) < Q(q) and if @, ¥ € D(T*), then q(o, ¥) = (T*e, ¥).
Further, D(T*) is a form core for g.

The unique operator T given by the above theorem is called the operator
associated with the form g. Of course, T is called a strictly m-accretive operator.
Such operators have spectral properties which result from the properties of
the associated forms.

Lemma Let T be a strictly m-accretive operator. Then any 4 with
Re A< 0isin p(T)and (T— )" <(~Re )~
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Proof Let 2= p+ ivwith y <0. Then
I(T = Del? = (T = Do, (T— o)

= (|| Tol* — 2v Im(p, Tp) + v*ll@|*) — 21 Re(o, Tp) + p*ll @l

> 12 lol?
since Re(p, Te) =0 and

I To|? — 2v Im(g, To) + v*il o
2 (| Tol* = 2|v| ITel ol + v?i@|* 20
As a result, T — 1 is injective and Ran(T — 2) is closed. Similarly,
(T — A*ell = p?llol?
so (Ran(T — A))* = Ker(T — A)* = 0. Thus, T — 4 is invertible and
T—A"M<(=» 1

Before stating this lemma in slightly extended form as a theorem, we extend
the notion of accretive.

Definition A form g is called strictly m-sectorial if there are complex
numbers z and e, with « real, so that e’g + z is strictly m-accretive. The
operator T associated with g is also called strictly m-sectorial.

Noticethat if g is strictly m-sectorial, then the values of g(¢, @) lie in a sector
S, ={w|0, <argw-2)<6;, with |0, —8y| <m}

S, is called a sector for g.

Theorem VL7 Let g be a strictly m-sectorial form, S, a sector for g,
and T the associated operator. If ¢ S,, then A€ p(T)and [(T—2) "'l <
[dist(4, S,

The idea of the proof is to translate and rotate S, so that dist(4, S,) is
arbitrarily close to the real part of the translate of 1 (see Figure VIII.3).

Example 4 Let H, and V be positive self-adjoint operators with
Q(Hy) n Q(V) dense. Let Q(h) = Q(H,) n Q(V). Given e C\(—c0,0),
define h(p, V) = (¢, Ho ) + B(p, V). Then h is closed and is a strictly
m-sectorial form so we can use Theorem VIII.17 to gain information about
H=H,+ BV.
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Rotate and translate
the line £ to the
imaginory axis

Ficure VIIL3

In the past, the symbol 4 + B meant the operator sum defined on D(4) N
D(B), or perhaps its operator closure. In Example 4, the plus in H, + gV
indicates the operator associated with the sum of forms defined on Q(H,) N
Q(V). In the future in cases where no confusion can arise we will write
A + B without being explicit about the meaning of +.

VIIL.7 Convergence of unbounded operators ¥

One of the main difficulties with unbounded operators is that they are
only densely defined. This difficulty is especially troublesome when one
wants to find a notion of convergence for a sequence 4, - A4 of unbounded
operators since the domains of the operators 4, may have no vector in
common. For example, if 4, = (1 — 1/n)x on L*(R), it is clear that in some
sense 4, > A = x; yet we could have been given domains D(4,) and D(A) of
essential self-adjointness for these operators which have no nonzero vector
in common (Problem 19). Of course, in this simple case the closures of 4, and
A all have the same domain, but in general this will not be true, and in any
case, one is often forced to deal with domains of essential self-adjointness
since closures of operators are sometimes difficult to compute. It is very
natural to say that self-adjoint operators are “close” if certain bounded
functions of them are “close.” Most of this section is devoted to this
approach. However, we also introduce graph limits, a topic which will be
explored further in Section X.8.

+ A supplement to this section begins on p. 372.
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Definition Let 4,, n=1, 2, ... and 4 be self-adjoint operators. Then
A, is said to converge to A in the norm resolvent sense (or norm generalized
sense) if R;(4,) = R;(A) in norm for all A with Im A # 0. 4, is said to converge
to A in the strong resolvent sense (or strong generalized sense) if R,(4,) = R;(4)
strongly for all 1 with Im 4 # 0.

We have not introduced the notion of weak resolvent convergence since
weak resolvent convergence implies strong resolvent convergence (Problem
20). The following theorem shows that norm resolvent convergence is the right
generalization of norm convergence for bounded self-adjoint operators. A
similar result holds for strong resolvent convergence (see Problem 28), but the
analogue for weak convergence is not true (Problem 30).

Theorem VIIi.18 Let {4}, and A be a family of uniformly bounded
self-adjoint operators. Then 4, — A4 in the norm resolvent sense if and only if
A,— A in norm.

Proof Let A,— A in norm. Then if ImA#0, (4, — A4 —2)"'=0 in
norm. Thus, using

Ay =D = (A =D T+ (4= A -H™H!
we see that (4, — 1)™! > (4 — )~ in norm.
Conversely, suppose A4, — 4 in the norm resolvent sense. Then, since
An —A= (An - l)[(A - i)—l - (An - i)_l](A - l)
and sup |l4,1l < o0, we conclude that
|4, — 41l < (sup 14,0l + DIA = D)™ ~ (4, = D741+ 1)
-0 as n—ow |

The following theorem shows that to prove generalized convergence one
need only show convergence of the resolvents at one point off the real axis.

Theorem VIIL19  Let {4}, and A4 be self-adjoint operators, and let 4,
be a point in C.

(@) If Im4y #0 and ||R;(4,) — R, (4)!|- 0, then 4,— A4 in the norm
resolvent sense.

(b) If ImA,#0 and if R, (4,)¢ — R, (4)p -0, for all ¢ € #, then
A, — A in the strong resolvent sense.
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Proof (a) Both R,(A4) and R,(4,) are analytic in the half-plane containing 1,
and have power series around 4,,

Ri(A) = F (o = MR (A"

P

R(4,) = Zo(lo — A"[R; (A1
which converge in norm in the circle {4 — 45| < |Im 4,| ~. Since R, (4,) -
R, (4) in norm, R,(4,) = R;(A4) in norm for 4 in this circle. Therefore, by
repeating this process, we get convergence for all A in the half-plane con-
taining 4, . Furthermore, since

IR1.(45) — Ry Al = (R (4,) — Ry (AN*|
= [|R)(4,) — Ry (A
-0 as n—w

the same argument shows that the resolvents converge in norm in the half-
plane containing 1, .

(b) The proof is the same as the proof of (a) except for two things. First,
one considers the vector-valued functions R,(A4,)¢ and R,(A4)¢. Secondly,
since the map T— T* is not continuous in the strong topology, one needs a
separate argument to get from one half-plane to the other. Suppose that 4, is
in the lower half-plane. Then, as in (a), we get convergence everywhere in the
lower half-plane, in particular at 4 = —{. The formula

A, - 1=UA-D"!
=[(4, + X4, — ) WA, + D = (A + D)W+ )4 - D))

which follows from elementary manipulations, can then be used to prove that
(4, — i)™* converges strongly to (4 — i)™, The above argument then shows
that R,(A4,) converges strongly to R,(A4) everywhere in the upper half-plane, ||

For alternative ways of proving that strong convergence, R {A4,)S Ry(A),
in one half-plane implies strong convergence in the other half-plane, see
Theorem VIII.26 or Problem 20b.

We will investigate several aspects of generalized convergence. First, we
ask how resolvent convergence is related to the convergence of other bounded
functions of A4, and A. Secondly, we investigate the relationship between the
spectra of A, and the spectrum of 4 if 4, — A in a generalized sense. Finally,
we give criteria on the operators 4,, 4 themselves which are sufficient to
guarantee that 4, — A in a generalized sense.
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Theorem VIII.20 Let 4, and A be self-adjoint operators.

(a) If A, Ainthe norm resolvent sense and f'is a continuous function on
R vanishing at oo, then [/ (4,) — f(A)|— 0.

(b) If A, A in the strong resolvent sense and f'is a bounded continuous
function on R, then f(A4,)¢ — f(A)e for all ¢ € .

Proof By the Stone-Weierstrass theorem, polynomials in (x +i)™! and
(x — i)~ " are dense in C,(R), the continuous functions vanishing at infinity.
Thus, given ¢ > 0, we can find a polynomial P(s, ¢) so that

Ifx) = P((x + )% (x =)Dl < &/3
Therefore,
1f(4n) = P((4, + D)7, (4~ D7D < ¢/3
and
If(4) = P((A+ D)7 (A - <¢3
If A, = A in the norm resolvent sense, then
P((A+ )" (A= DD (PUA+ ) (4-D)7Y

in norm as n — o, and thus for » large enough, ||f(4,) — f(4)}| <e. This
proves (a).

To prove (b) we first note that the same proof as above shows that if
A, — A in the strong resolvent sense and 4 € C(R), then h(4,)p — h{(A)p.
Let ye€# and ¢>0 be given and define g,(x) = exp(—x*/m). Since
Iu(x) 11 pointwise, g,(4A)W — ¢ by Theorem VIILS5, so we can find an m
with [gn (AW — ¥ || < &(6]f|l,)~'. Furthermore since g, € Co,(R), gnl4)¥ —
gu(A)W by the remark above, so we can find an N,, so that n > N, implies
(gAY — gu(AW || < (611 1l,) . Therefore, if n 2 Ny,

Iigm(An)w - *ﬁ” < 6(3 ”f"cx,)—l

Since fg,, is continuous and goes to zero at co, there is an N; so that n > N,
implies
Let N = max{N,, N,}. Then for n > N,
IS (AW = F(AYN < NS (Agn(ADY — f(A)gn(AW |
+ If A gm(AI — Y1l

+ I (DI gmlDY — ¥
<&

Since ¥ and ¢ were arbitrary, this proves (b). }
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As an example of an application of part (a) let {4,} and 4 be positive self-
adjoint operators. Then, if 4,— 4 in the norm resolvent sense e ~*4» converges
in norm to e~* for each positive . To see that part (a) does not extend to all
of C(R), notice that on L*(R) the operators 4, = (1 — 1/n)x converge to the
operator A = x in the norm resolvent sense but [e*4" — e'4|| = 1 for all n.

A very important application of part (b) is the following theorem.

Theorem VIL21 (Trotter) Let {4,} and A be self-adjoint operators.
Then A,— A in the strong resolvent sense if and only if e”4" converges
strongly to e*4 for each .

Proof Since e™* is a bounded continuous function of x, Theorem VIII.20
implies that if 4, — A4 in the strong resolvent sense, then '~ — ¢4 strongly
for each t.

To prove the theorem in the other direction, we first derive a formula for
the resolvent of a self-adjoint operator 4. Suppose that Im g < 0. Then, by the
functional calculus

W R = [

-

0

i f:e""‘( j ® e dey, P, ¢)) dt

- w0

(;‘1:1) A, P,0)

i

[Temtme dt) A, P, o)

0

i

iJ' e—ltn(w’ eitA(p) dt
o

(\l/, i fo P ) dt)

«©

R(A)p =i fo e~ithgitAg 4 (VIILY)

it

Therefore,

where the integral is a Riemann integral. The third step in the computation
uses Fubini’s theorem. Applying (VIIL.9) to the operators 4, and 4

a0
IR(4)0 ~ R (Aol < [ "e=¥le"4rg — o] dt

itdn itd

soif e ¢ for each t,

p-—e
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by the Lebesgue dominated convergence theorem. Using a formula similar to
(V111.9) one concludes in the same way that

IR(4)p — R(Aell-»0 for Imu>0J

We remark that it is possible to show (Problem 21) that if 4, — 4 in the
strong resolvent sense, then e'"47¢p — e'*4¢ for each ¢, uniformly for t in any
finite interval. Next, we prove a related theorem.

Theorem V.22 (Trotter-Kato) Let A, be a sequence of self-adjoint
operators. Suppose that there exist points, 1, in the upper half-plane and y in
the lower half-plane, so that R, (4,)¢ and R, (4,)¢ converge for each ¢ € .
Suppose further that one of the limiting operators, T,, or T, has a dense
range. Then there exists a self-adjoint operator A so that 4,— A4 in the
strong resolvent sense.

Proof Since IR, (A < |Im o] 7%, [Ty, ll < |Im 4o| %, and so

T, = Zo('io - A)"(Tzo)"“
is well defined for |1 — A,| < {Im 45| 1.

Furthermore, since R, (4,)¢ - T, @, Ri(4)9 — T, ¢ in the same circle.
Continuing in this way we can define an analytic operator valued function T,
in the half-plane containing 4, which is the strong limit of R,(4,). Since the
half-plane is simply connected, the determination of T, at a point 1 is inde-
pendent of the path taken from 4, to A. The same argument for the half-plane
containing po shows that we can extend the definition of T to that half-plane
so that

T,o=limR,;(4,)¢ Viwithlmi#0
n—o

The T, commute, satisfy the first resolvent equation, and T; = T; since these
statements are true for each R;(4,). It follows from the first resolvent formula
and the commutativity that the ranges of all the T, are equal; we denote this
common range by D. By hypothesis, D is dense and this implies that the
kernel of T, is empty, since Ker T, = (Ran T;)* = (Ran Tp)* = D* = {0}.
We can therefore define 4 = A/ — T7 ! on D and a short calculation with the
resolvent equation shows that this definition is independent of which 1, with
Im A # 0, is chosen. Since Ran(4 + i) = Ran(—T3}) = o, A is self-adjoint.
It is clear that the resolvent of 4is T;. |

Notice that in the Trotter-Kato theorem we need convergence at two
points, one in the upper half-plane and one in the lower half-plane. For, we
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cannot use Theorem VII1.19b until we know that the limiting operator is self-
adjoint, and the self-adjointness proof depends on the convergence in both
half-planes.

The Trotter-Kato theorem is important since its hypotheses do not assume
the a priori existence of a limiting operator 4. It can be used to assert the
existence of a generalized limit of a sequence of self-adjoint operators. This
can also be done with the one-parameter groups (see Problem 23). To see why
it is necessary to use the resolvents or groups rather than the operators them-
selves to prove such an existence theorem consider the following example:
Let A be a closed symmetric operator which is not self-adjoint but which has a
self-adjoint extension 4. Let P, be the spectral projection of 4 corresponding
to the interval [—#, n). Then P, AP, are bounded self-adjoint operators (and
therefore essentially self-adjoint on D(A)) such that for all ¢ € D(4)

P,AP,¢ - Ap = Ag

Thus the P, AP, are essentially self-adjoint on D(4) and the strong limit
exists but the limit is not essentially self-adjoint.

One of the most useful aspects of generalized convergence is that the
spectra and projections of the 4, are related to the spectrum and projections
of A. For applications of the following two theorems see Sections X.2 and
XL5.

Theorem VII1.23 Let {4,}>., and A4 be self-adjoint operators and sup-
pose that 4, — A in the norm resolvent sense. Then

(@) If u ¢ a(A), then u ¢ o(4,) for n sufficiently large and
IR.(4,) — R (D]l -0
(b) Leta,beR, a<b, and suppose that a € p(A4), b € p(4). Then
1P e, 5y (An) = Pia, 5y (D] >0

Proof (a) We need only consider the case where u is real. Since u € p(4),
there is a 6 > 0 so that (u — 8, u + 8) N 6(A) = &. Thus, by the functional
calculus, |[R,,;53(4)]l < 1/6. Now, we can find N so that

IR, + 15/3(AD N < 2/6

for n > N, which implies that the power series for R,(4,) about y + i3/3 has
radius of convergence at least §/2. We already know that where the series
converges it is an inverse for 4,. So, p € p(4,) for n > N and

IR(4s) — R(A)|| -0
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To prove (b), we note that since a, b € p(A), there exists ¢ < 4(b—a) and an
N, so that

S:E{II(A.. - a7, (4, = D)< Ue

Therefore, by the functional calculus, 6(4,) N (@, b)c(@+¢,b—¢) for
n > N. Let f'be a continuous function which equals one on (g + ¢, b — ¢) and
is equal to zero outside (a, b). Then

P4 =f(4)  Pe,pf4) =f(4)
and so by Theorem VIII1.20,

”P(a,b)(An) - P(a,b)(A)” -01

Theorem V.24  Let {4,}, and A be self-adjoint operators and sup-
pose that A, — A in the strong resolvent sense. Then

(a) If a,beR, a<b, and (a,b) Nno(4,)= for all n, then (a,b) N
o(A) = &. That is, if 4 € 6(A4), then there exists A, € a(4,) so that 1, — 4.

(b) Ifa,beR,a<b,and a,b¢oa,,(4), then Py, 4,(4,)p = P, 1 (A)e for
all pe .

Proof By the functional calculus, the statement that (@, b) N a(4d) = & is
equivalent to the statement that

A = 20)"H] < ;‘f——za

where

a+b [(b-
ho=——+il—

But (4, — 4,) ™! converges strongly to (4 — 4,) ! so we have

(A=20) ' | < Tim |[(4,=20) i< b;{%
This proves (a).
To prove (b), we find uniformly bounded sequences of continuous functions
f» and g, so that 0 < f, < ¥, 5)» [u(®) 7 Yo, »y(x) pointwise and xpa, 57 < Gn»
9n(¥) \ Ko, 0(x) pointwise. Then f(A) > P, 1)(4) and g,(4) = Py, (4
strongly.
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Since a, b ¢ 0,,(4), Py, ,)(4) = Py, 5(A4) which means that given y and
& > 0, we can find continuous functions f, g, with f < ¢, 4) < Xpa. 17 S 9> S0 that
I (A — g(AW | < ¢/5. By Theorem VIIL.20b we can find N so thatn> N
implies
(A — (AW < /5 llg(A W — g(AW || < &/5

so by an &/3 argument

Since the functional calculus implies

1f(AW = P, (AW 1| < IIF ()Y —~ g(AW |l

another ¢/3 argument implies
WP, 0y (AW — P, sy AWl < € |

Part (a) of Theorem VIII.24 says that the spectrum of the limiting operator
cannot suddenly expand, It can, however, contract rather spectacularly as the
following example shows: Let 4, = x/n on L%(R); then A, converges to the
zero operator in the strong resolvent sense. For each n, 0(4,) = R, but the
spectrum of the limiting operator contains only the origin. An easy appli-
cation of part (a) is the statement that if the A, are positive and 4,— 4
in the strong resolvent sense, then A is positive.

If A, converges to A in norm resolvent sense, Theorem VII1.23 tells us that
the spectrum of the limiting operator cannot suddenly contract in the sense
that if 1 € 6(4,) for all sufficiently large », then 1 € 6(A4). Notice that in the
example 4, = x/n above, A, does not converge to 4 in the norm resolvent
sense.

The principle of noncontraction of the spectrum under norm resolvent
convergence remains true even when A, and A4 are not self-adjoint. But the
principle of nonexpansion of the spectrum in the strong resolvent limit is not
always valid for general not-necessarily-self-adjoint operators. In fact, there
exists a norm convergent sequence of uniformly bounded operators A4, — A
with a(A4,) the unit circle in C for each 7 and o(A) the entire unit disc. Thus the
reader should be careful to apply Theorem VIIL24 only in the self-adjoint
case.

In applications, one is usually given the operators {4,} and 4 on domains
of self-adjointness or essential self-adjointness and it may be very difficult to
compute the resolvents, Thus, in order to use Theorems VII1.23 and VII1.24
one must have criteria on the operators A4,, 4 themselves which guarantee
norm or strong resolvent convergence.
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Theorem VIIL.25 (a) Let {4,};>, and A be self-adjoint operators and
suppose that D is a common core for all 4,, 4. If 4,9 —» Ag foreach g e D,
then 4, = 4 in the strong resolvent sense.

(b) Let {4,}>, and A be self-adjoint operators with a common domain, D.
Norm D with [lgll, = |4l + lle|. If

sup Ji(4, — Al -0

lella=1

then 4, » A in the norm resolvent sense.
(c) Let {4};>, and A be positive self-adjoint operators with a common
form domain 5 ., which we norm with

Wller =V, 4¥) + G, ¥)

If A, » A in norm in the sense of maps from 5#,, to 3# _,, that is, if

ovvnen NI NV e orven W (A+ 1Y)

then 4, — A4 in the norm resolvent sense.

-0

Proof (a) Let o € D, Y = (A + i)o, then
(A + D)7 = A+ D)W= (4, + )74 - 4o

converges to zero as n— o, since (4 — A,)¢ -0 and the (4, + i)~! are
uniformly bounded. Since D is a core for 4, the set of such § is dense so

A, +) oA+ forall geH

A similar proof works for (4, — i)~ ".

We sketch the proofs of (b) and (¢). For (b), first one proves that the
hypothesis is equivalent to (4, — A)(4 + i)"! - 0 in the ordinary s#-operator
norm. Thus (I + (4, — A)XA + i) *)"! exists and converges to I in norm as
n— o0, As a result

A+ D) ' =(A+D) T+ A, - DA+ Y T A4+

in norm. Similarily (4, — ) 1—> (4 - i)~
To prove (c), one first proves that the hypothesis is equivalent to

A+ D VA4, —AA+1)"V2 50
in the ordinary operator norm. Using
A, + D =AU+ D) VT + A+ D) V4, — AA+ D)V Y4+ )12
one then follows the proof of (b). §
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Finally, we introduce graph limits and compare them with generalized
limits. Graph limits will be discussed again in Section X.8.

Definition Let A, be a sequence of operators on a Hilbert space 5. We
say that {y, ¢> € 3 x 3 is in the strong graph limit of A, if we can find
¥, € D(A,) so that W, =y, A, ¥, — ¢@. We denote the set of pairs in the
strong graph limit by 'S . If '8 is the graph of an operator 4 we say that 4 is
the strong graph limit of A4, and write 4 = st. gr.-lim A4,,.

First, we consider the case where all the A, are self-adjoint and A is also
self-adjoint.

Theorem V.26  Suppose that {4,} and A are self-adjoint operators.
Then A4, — A in the strong resolvent sense if and only if 4 = st, gr.-lim 4,,.
Proof Suppose first that (4, + i)' — (4 + i)~ ! strongly. Suppose ¢ € D(A4).
Then @, =4, +) " (A+i)p—-¢ and 4,9,= (4 + o —ip,— Ap, so
(@, Ap>eTE. Thus I'(4) « T&. On the other hand, suppose ¢, € D(4,),
.~ @ and 4,9, - . If we let n, = (4 + i) '(4, + i)¢, € D(A), then
Ho = Pn = [(A + i)—‘ - (An + i)’l][(An + i)¢n]
=[A+D)7 = (4, + )74, + Do, — ¥ — ie]
+[(4+)7 = (4, + D)7y + io]
-0 as n— o

Thus, 5, ¢ and An, = (4, + e, — in, = ¥, so since A is closed (@, Y>> €
I'(A). Thus, I[(4) =T¢.

Conversely, suppose that 4 =st. gr.-lim 4,. Let ¢ € D(4). Then there
exist ¢, € D(4,) so that ¢, — ¢ and 4,9, = A¢. Thus,

(4, + D)7 = (A + )74 + Do
= (4, + )74 + Do — (4, + Do, — (0 — ¢,)
-0 as n-—»co

since ||(4, + i)~ < 1, (4, + Do, — (4 + )p,and @, — ¢.Since Ran(4 + i)=
¥, the strong convergence of (4, + i) ! to (4 + i)~ follows. |

Thus, we see that if the limit is self-adjoint, then strong graph and strong
resolvent convergence are the same. It is in the case when we do not know
a priori that the limit is self-adjoint that strong graph limits are particularly



24 VIII: UNBOUNDED OPERATORS

interesting. For example, in Section X.8 we will see that the existence of graph
limits can sometimes be combined with other information to prove that the
limit is seif-adjoint.

Theorem VIIL.27 Let {4,} be a sequence of symmetric operators.

(@) Let DS ={¥|<y, ¢) e TS for some @}. If DS is dense, then I'$ is the
graph of an operator,
(b) Suppose that D; is dense and let A = st. gr.-lim A4,,.

Then A is symmetric and closed.

Proof We will prove (a); the proof of (b) is left as an exercise (Problem 24).
Suppose @,, ¢, € D(4,) and ¢, @, 9, — ¢, 4,0, ¥, and 4,¢, > ¥'. Let
n € D%, . Then there is an #, € D(4,), so that y, - n and 4,7, — p. Thus,

W-y.n =}i!2 (A ®x — 92), 1)

= lim (‘Pn - (P"n > An "n)

| Sad-]
=0
so Y = y’, since D& is dense. |

One can also define weak graph limits. We give the definition and state one
theorem.

Definition Let A, be a sequence of operators on ). We say that
(P, @) € # x H is in the weak graph limit ' if we can find ¢, € D(4,) so
that ¢, "}, ¥ and 4,y, - ¢ weakly. If I'Y is the graph of an operator, 4,
we say that 4 is the weak graph limit of 4,; 4 = w. gr.-lim 4,.

Theorem VIIL.28 Let A, be a sequence of symmetric operators. If

D% ={y|{y, p}e T for some ¢}
is dense, then I'y, is the graph of a symmetric operator.

Finally we note that if 4, is a uniformly bounded sequence of operators
then A = w. gr.-lim A4, if and only if 4, —» 4 in the weak operator topology
(Problem 26). This fact combined with Problems 20 and 28 shows that the
notions of weak graph limit and weak resolvent convergence are distinct. It is
not true that weak graph limits are necessarily closed if each A, is symmetric.
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VIil.8 The Trotter product formuiat

In this section we prove a useful approximation theorem for exp (4 + B)
in terms of exp t4 and exptB. It is illuminating to first consider finite-
dimensional matrices for which one has the classical theorem of Lie:

Theorem V.29 (Lie product formula) Let 4 and B be finite-dimen-
sional matrices. Then

exp(4 + B) = lim [exp(A4/n) exp(B/n)}"

L ad]

Proof Let S, =expl(4 + B)/n)}, T, = exp(A/n) exp(B/n). Then

n—1
Sp=Th= Y SXS,-T)I;"'™"
m=0
SO
ISy — Thil < n(max{[iS,ll, IT, I} IS, — T,
< nlS, — T, exp(ll4li + B )
Since

usn - Tn" =

LS - (Em ) EmC))

< C/n*  (C depends on ||4] and |B])
we conclude that ||S; — Tili— 0. |

This theorem and its proof can be extended to the case where 4 and B are
unbounded self-adjoint operators and A + B is self-adjoint on D(4) ~ D(B).

Theorem VIN.30  Let A and B be self-adjoint operators on # and sup-
pose that 4 + B is self-adjoint on D = D(4) n D(B). Then

S-lim [eitA/neirB/n]n _ eit(A+B)

Lk~ ]

Proof Letye D. Then

s—l(eisAeisB - [)d/ = S-l(eisA - I)l,(/ + s—ler’sA(eisH . 1).1/__, l’Aw + jB!//
and
s—l(eis(A+B) — I)'I’ —*i(A + B)‘/’

t A supplement to this section begins on p. 377,
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as s —0. Letting K(s) = s '(e"4e™8 — &4+ D)) we see that K(s)y -0 as
5s— 0, for each Y € D. Since A + B is self-adjoint on D, D is a Banach space
under the norm

Wiiaen =14+ B+ W]

Each of the maps K(s): D — ¥ is bounded and K(s)iy X 0ass — 0or oo for
each ¥ € D. Thus, we conclude from the uniform boundedness theorem that
the K(s) are uniformly bounded, that is, there is a constant C so that

KW < Cligilysp forall seRandyeD

Therefore, an ¢/3 argument shows that on [+ ]|, 5 compact subsets of D,
K(s){y — 0 uniformly.

Since A + B is self-adjoint on D, e*“4*®y e D if Yy e D. Moreover,
s - e 4* By is a continuous map of R into D when D is given the |||l 45
norm topology. Thus {e*“4* By |se [—1, 1]} isa || ||, + p compact set in D for
each fixed y.

We are now ready to mimic the proof of the Lie product formula. We know
that

t~ 1 [eilAeirB . el’t(A+B)]el's(A+B).l/ — 0
uniformly for s e [—1, 1]. Therefore, we write

[(eiM/neirB/n)n — (eir(A + B)/n)n]w

_ ni;(eitA/neirB/n)k[eiM/neitB/n _ ei!(A+B)/n][eil(A+B)/n]n— 1-k "
The norm of the right hand side is less than or equal to

|t] max
Isl <t

-1
(L) (ei!(A+B)/n . e'."‘/"ei'sl")eis("+3)l[/
n

and so we conclude that
(e"“"'e"B"')"l[t eu(A*l-B)w, asn—o oo if 'l’ eD

Since D is dense and the operators are bounded by one, this statement holds
on all of . }

The above proof shows that on a fixed vector the convergence is uniform
for t in a compact subset of R.
The same argument can be used to show that

s-lim (e—-lA/ne—tB/n)n — e—t(A+8)
n—o
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if A and B satisfy the same hypotheses and in addition are semibounded. The
following result is considerably stronger than Theorem VI111.30 since it only
requires essential self-adjointness of 4 + B on D(A4) n D(B). The proof is
quite different from the proof of Theorem VIIL.30 (see the notes for refer-
ences).

Theorem VIHIL.31 (the Trotter product formula) If A and B are self-
adjoint operators and A4 + B is essentially self-adjoint on D(4) n D(B), then
s-lim (ei:A/ueirB/n)n = ei(A+B)!

t ad- ]
Moreover, if A and B are bounded from below, then
s-lim (e—tA/ne-tBln)u = e—t(4+B)

[ 2ad- ]

For applications of the Trotter product formula the reader should see
Section X.10 (Feynman path integrals), Section X.7 (hypercontractive semi-
groups), or Chapter X1X (the section on constructive quantum field theory).

VIiil.9 The polar decomposition for closed operators

In Section V1.4, we saw that an arbitrary bounded operator T can be
written T = U|T| where | T| is positive and self-adjoint and U is a partial
isometry. Moreover, the conditions that Ker|T| = Ker T and that the
initial space of U equals (Ker T)* uniquely determine |T| and U. In this
section we want to extend this result to closed unbounded operators. As in the
bounded case, U is easy to construct once | T| has been constructed and, as in
the bounded case, we will let | T| = ./T*T. In the bounded case, the hard
part was the construction of the square root. Now that we have the spectral
theorem, it is easy to construct ./ T*T if we can prove that T*T is a positive
self-adjoint operator. It is this fact that is hard in the unbounded case.
A priori, it is not clear that {{|y € D(T) and Ty € D(T*)} is different from
{0}. In fact, this set is dense (Problem 45), but our approach using the theory
of semi-bounded quadratic forms does not require us to prove this.

Theorem VIN.32 (the polar decomposition) Let T be an arbitrary
closed operator on a Hilbert space 3. Then, there is a positive self-adjoint
operator | T'|, with D(| T |} = D(T) and a partial isometry U with initial space,
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(Ker T)*, and final space, Ran T, so that T= U|T|. | T} and U are uniquely

determined by these properties together with the additional condition
Ker(| T|) = Ker(T).

Proof Define the quadratic form s on D(T) by sy, ¢) = Ty, T9). s is
clearly positive. Now suppose ¥, — ¥,ll+1 = 0. Then ¥, — ¢, =0 and
(T, — Yl = 0. Since T is closed there is a Y € D(T) with ||y, — || +
1T, — )l =0, ie. |, — ¥+ = 0. Thus s is a closed form. Therefore, by
Theorem VIIL15, there is a unique, positive self-adjoint operator S with
Q(S) = D(T) and s(¥, ¢) = (¥, S¢) in the sense of forms. Let |T| = S*/2,
Then D(|T|)= Q(S) = D(T) and by construction ||T|y|* = sy, ¥)=
ITy]? so ker | T| = ker T. Define U: Ran |T| - RanT by U|T|y = Ty.
Since ||| T|¥ll = §TYl, U is well defined and norm preserving. Thus U
extends to a partial isometry from Ran |T| to Ran T. Finally, since |T| is
self-adjoint, Ran |T| = (Ker |T|)* = (Ker T)*. Uniqueness is left to the
reader (Problem 44). |}

Viil.10 Tensor products

In this section we describe some aspects of the theory of tensor products of
operators on Hilbert spaces. Let 4 and. B be densely defined operators on
Hilbert spaces #, and J#, respectively. We will denote by D(4) @ D(B) the
set of finite linear combinations of vectors of the form ¢ ®  where ¢ € D(A)
and Y € D(B). D(4) ® D(B) is dense in #, ® #,. We define A®B on
D(4) ® D(B) by

(AQB)$Q@Y) =49 @ BY

and extend by linearity.

Proposition The operator A ® B is well defined. Further, if 4 and B
are closable, so is 4 ® B.

Proof Suppose that Y ¢;¢,® §; and Y d; ¢; ® ¥ are two representations
of the same vector fe D(4) ® D(B). Using Gram-Schmidt orthogonalization
we can obtain bases {5} and {6,} for the spaces spanned by {¢;} U {¢;} and
{¥;} U {¥;} respectively so that 7, € D(4) and 0, € D(B). ;@ y; and ¢; @ y;
can be expressed

6:®Yi=3 o, ®86,

4’}@ ‘/‘; = Z ﬁljztﬂk ®6,
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Since the two expressions for f give the same vector, Y ; c,ah, = Y ; d,pf, for
each pair <k, ¢).
Thus,

(A®B)Y ci(d:@Y) = f‘; (Z ¢i otk )(An, ® BO,)
= ; (; d; Bi,XAn, ® BE,)
=(A®B)Y d¢;®V))

s0 A ® B is well defined.
If g is any vector in D(4*) ® D(B*), then (4 ® Bf, g) = (f, A* ® B*g) so

D(4*) ® D(B*) = D((4 ® B)*)
If A and B are closable, D(4*) and D(B*) are dense. Therefore, in that case
(A ® B)* is densely defined which proves that 4 ® B is closable. |

Similarly, if A and B are closable then A ® 7 + I ® B, defined on D(4) ®
D(B), is closable.

Definition Let 4 and B be closable operators on Hilbert spaces ¢, and
. The tensor product of 4 and B is the closure of the operator A® B
defined on D(4) @ D(B). We will denote the closure by 4 ® B also. Usually
A + B will denote the closure of A® I+ I® B on D(4) ® D(B).

Proposition Let 4 and B be bounded operators on Hilbert spaces 4,
and #,. Then |4 ® B| = ||4] || B].

Proof Let {¢,} and {,} be orthonormal bases for #, and 3¢, and suppose
Y i $ @Y, is a finite sum. Then

4®1) z o (N ¢1)l|2 = z;, "; ck(Ad)k”z
S:Z IlAll’kZ [ewl?

= 4121 e b ® Yl

Since the set of such finite sums is dense in 3#; ® 3¢, (Section 11.4, Proposi-
tion 2), we conclude that |4 ® I{| < | 4|l. Thus

14®@B| < 4RI |[I® Bl < | 4] ||B|
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Conversely, given ¢ > 0, there exist unit vectors ¢ € #,, ¥ € i, so that
4l = Al — e and || By|| = ||B|| - &. Then,

(4 ® B)(¢ @)l = 491l I BY |
> |41l 1Bl — el 4l — el B) + &

Since ¢ >0 is arbitrary |4 ® Bl| > |4} | Bl which concludes the proof. }

We remark that both of the above propositions have natural generaliza-
tions to arbitrary finite tensor products of operators. This can be proven
directly or by using the associativity of the tensor product of Hilbert spaces.

We turn now to questions of self-adjointness and spectrum. Let {4,}}-, bea
family of operators, 4, self-adjoint on #,. We will denote the closure of
L ®  ®A4® I on D=Q@D(A4,) by A, also. Let P(x;,...xy) be a
polynomial with real coefficients of degree », in x,. Then, the operator
P(A4,, ..., Ay) makes sense on ®, D(4A™) since D(A™) = D(A") forall £ < n,.
In fact, P is essentially self-adjoint on that domain.

Theorem V133 Let A4, be a self-adjoint operator on #,. Let
P(x,, ..., xy) be a polynomial with real coefficients of degree », in the kth

variable and suppose that Dj is a domain of essential self-adjointness for A7,
Then,

(@) P(A,, ..., Ay) is essentially self-adjoint on
N
D= ®D;
k=1

(b) The spectrum of P(4,, ..., Ay) is the closure of the range of P on
the product of the spectra of the A4, . That is

G(P(Al’ ooy An)) = P(U(Al)’ ey U(AN))

Proof We will first prove that P(A4,,..., Ay) is essentially self-adjoint on
D = ®;- , D(4*). By the spectral theorem, there is a measure space {M,, >
so that 4, is unitarily equivalent to multiplication by a real-valued measurable
function f; on L*(M,, du,). By Proposition 3 in Section VII].3 we may assume
that p, is finite and that £, € (), <, < L7(M,, dy,). Furthermore, by Theorem
1L10(a), ®}- , }(M,, du,)is naturally isomorphicto (X | My, @y duy).
Under this isomorphism P(A;, ..., Ay) corresponds to multiplication by
P(f,,...,fy) and D corresponds to the set of finite linear combinations of
finite linear combinations of functions ¢,(m,)¢,(m,) - - - Px(my) such that
Sk € (M, dy).
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To prove essential self-adjointness we use Proposition 2 of Section VIII.3.
First, since y, is finite and f;™ e I[P(M,, du,) we conclude that f! € I[*(M, , du,)
for 1 < p < co. From this it follows immediately that P(f;, ..., fy) is in IF for
all such p; in particular P(f, ..., fy) € L*OC}= 1My, ®F=, du). Since f* is
self-adjoint on D, D, contains the characteristic functions of measurable
sets in M, . Thus D contains all finite linear combinations of the characteristic
functions of rectangles. The remarks on product measures at the end of Sec-
tion 1.4 show that the characteristic function of any measurable setin X} M,
is equal to such a finite linear combination except on a set of arbitrarily small
®~., du, measure. Thus the simple functions on X}-;M, can be approxi-
mated in the I? sense (I < p < o) by elements of D. In particular D is dense
in 'O - 1M, ®1-, duy). Essential self-adjointness now follows from Propo-
sitfon 2.

To show that P is essentially self-adjoint on D we need only show (by
Problem 14) that P | D® extends P | D. Suppose ®F.,¢.€ D. Then ¢, €
D(A}), so since Dj is a domain of essential self-adjointness of Af* there
is a sequence {¢{}2., so that ¢f — ¢, , and AL — ATp,. An easy estimate
shows that this implies that AT¢; — AT ¢, for all 1 <m < n,. Therefore

®kN=1¢£ e ®k~=1¢k and P(4,,..., AN)(®2’=1¢0 - P(Ay, ..y A)(®R=190)-
The same argument works for finite linear combinations of vectors of theform

®~.,¢, so P | D extends P [ D. This completes the proof of (a).

To prove (b), suppose that 1 € P(6(4,), ..., 6(Ay)). If I'is any open interval
about A then P~'(I) contains a product X}.,J, of open intervals so that
I, N 6(A,) # . Since a(A,) = ess range /™, w (/M) (1)) # 0 so

”[P(fh e 5fN)_l(I)] 5& 0
That is, A € ess range P(f;, ..., fy) which equals o(P(A4,, ..., Ay)) by the first
proposition in Section VIIL3. Conversely if 1¢ P(6(A4,),...,(4y)) then
(A= P(fy, -, fw) " is bounded a.e. on Xi- M, s0 A€ p(P(Ay, ..., Ay). §
If A, ..., Ay are bounded, P(6(A4,), ..., 06(4,)) is closed, but in general it is

not (Problem 43). The following corollary displays the two most important
special case of Theorem VII1.33.

Corollary Let 4,, ..., Ay be self-adjoint operators on #y, ..., 5 and
suppose that, for each k, D, is a domain of essential self-adjointness for 4,.
Then,

(@) The operators A, =4, ® - @Ay and Ay =4, + -+ Ay are
essentially self-adjoint on D = ®J)_,D,.

(b) o(4,) = HI?:IG(Zk) and 0'(;12) = Zf:la(Ak)‘
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Example 1 Suppose that V(x) is a potential so that Hy = —A, + V(x)
is essentially self-adjoint on (R3). Then H, = —A, + V(x) + —A, + V(y)
is essentially self-adjoint on the set of finite sums of products ¢(x)¥(y), with
o, ¥ € P (R). Further o(H,) = o(H,) + o(H,).

Example 2 (second quantization of the free Hamiltonian) Let 5 be a
Hilbert space, & (o) the associated Fock space over 5 (see Section 11.4).
Suppose that A4 is a self-adjoint operator on # with a domain of essential
self-adjointness D. Corresponding to each such 4 we can define an operator
dT'(4) on F() as follows. Let A" =A@ [ QI+ IRAQR @I -+
I® -®Aon ®.,D. Let D, « F(#) be the set of Y = {Y, ¥y, ...} such
that ¢, = 0 for n large enough and ¥, € ®;_,D for each n. D, is dense in
F(#) since D is dense in o#. Define A® =0 and dT'(4) = ) 2. oA™. dT(A)
makes sense on D, and easily seen to be symmetric. By Theorem VIIL.33,
A™ is essentially self-adjoint on ®]-,D. Thus 4™ + pui has a dense range on
®%.,D whenever u € Rand u # 0. From this it follows quickly that dT(A) + i
has a dense range on D,. Thus dI'(4) is essentially self-adjoint on D,. If 4
is the quantum mechanical operator which corresponds to the free energy,
dI’(A) is called the second quantization of the free energy. dI'(4) commutes
with the projections onto the symmetric and antisymmetric Fock spaces and
it follows that dI'(4) | F(#) and dT'(4) | F () are essentially self-adjoint
on D F(#)and D n F () respectively.

Part (b) of Theorem VIIL33 holds when A,,..., Ay are allowed to be
arbitrary bounded operators. Because of the techniques involved, we delay
the proof until Chapter XIII, where we will also discuss some cases where
Ay, ..., Ay are unbounded but not self-adjoint.

VIHIL.11 Three mathematical problems in
quantum mechanics

Our purpose in this short section is to describe briefly the mathematical
model of quantum mechanics and to describe three general mathematical
problems which arise. In the Notes we discuss how the model can be *“ derived ™
from various axiomatic schemes.

Quantum mechanical systems are described by operators and vectors in a
separable Hilbert space J#. Corresponding to every vector of norm one in 3
there is a physical state. Two such vectors correspond to the same state
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if and only if they differ by a complex multiple of absolute value one. Cor-
responding to each observable, there is a self-adjoint operator 4 on . If the
system is in the state ¢ and we measure the observable corresponding to A4, the
probability distribution of the value of the measurement is d(g, P, ¢) where
Py, is the projection-valued measure associated to A. That is, the probability
that the value of the measurement will lie in the interval [q, b], a, beR, is
(@, Pa,py9). The dynamics of the system is given by a continuous one-
parameter group of unitary operators U(t). If the system is in the state ¢ at
time ¢t =0, then it is in the state U(ty)p at time t =t,. For most systems,
there is a particularly useful realization of # as L?(M, du) and a simple
correspondence between classical observables and their quantum-mechanical
counterparts, self-adjoint operators on L%(M, ) (see the example).

The self-adjoint generator H of the group U(?) is of special interest. It is
called the Hamiltonian and is the operator corresponding to the classical
energy observable. For vectors ¢ € D(H) we have

d .
= (U] = iH U]

which is called the Schrodinger equation. The point spectrum of H is of
interest because the corresponding eigenfunctions are stationary states of the
system; the typical reaction of the system to outside stimuli is to move from
one stationary state to another emitting light whose frequency is proportional
to the difference between the corresponding point spectra.

There are three general mathematical problems which arise in any quantum
mechanical model:

(1) Self-adjointness: In most cases, physical reasoning gives a formal
expression for the Hamiltonian and other observables as operators on
a realization of # as L%(M, du). We use the word *formal” because
domains are not specified. It is usually easy to find a domain on which
a given formal expression is a well-defined symmetric operator. The
first mathematical problem is to prove essential self-adjointness or,
if the operator is not essentially self-adjoint, to investigate the various
self-adjoint extensions and choose the *“right one” to be the observ-
able.

(2) Spectral analysis: The second problem is to investigate the spectra of
the observables (in particular, the Hamiltonian) and to estimate the
position and multiplicity of the point spectra.

(3) Scattering theory: The third problem is to describe in some way the
behavior of the system for large ¢.
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The development and application of techniques for resolving these prob-
lems occupies much of Volumes II-1V. Self-adjointness is studied in Chapter
X, spectral analysis in Chapters XII and XIII, and scattering theory in
Chapter X1

We do not mean to imply that all interesting mathematical problems
associated with quantum mechanics fall under one of these three headings, far
from it. But, these three problems are central to a rigorous mathematical
description of quantum mechanics.

Example (n-electron atom) We will very briefly describe an approximate
model for the n-electron atom. The classical energy of the n electrons is

e S (P2 + (A + (P _ $ ne T e
= 2m i ind wE lne—re

where p%, pk, p¥ are the x, y, and z components of the momentum of the kth

electron, r, ={x,, ¥i, z;» 1ts position, m and e its mass and charge. The term

—ne?/|r,} is the potential energy of the kth electron due to the attraction of

the protons in the nucleus; the term e?/|r, — r,| is the contribution to the

potential energy due to the repulsion between the kth and /th electrons.

We take as our Hilbert space # = L?(R%") and make the following cor-
respondence between the classical observables and operators on # (we
choose units in which the rationalized Planck’s constant #, is equal to one):

| S , 10 ., 10

k —— — — —— — —
oo PTTe,, PTG

X4, Y 24 correspond to multiplication by x,, y,, z, respectively,

m o
h-oH= —k;-i;A,‘+V(rl,-u,ru)

where
? @
*ToxiT ot on
and V denotes the operator which acts by multiplication by the function

" ne? id 2
— Z e
x=1 il

e

x<e V= rel

All of the operators are essentially self-adjoint on &(R>"), though the proof
in the case of H is not at all immediate (see Section X.2). The dynamics is
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given by the unitary group U(f) = e~ “#. If ¢ € o, |l@]] = 1, is the state of the
system at ¢ = 0, then

b
f f lo(x, ..., z) 2 dx, - dz,
Xi=zag YRt

is the probability at t = 0, that the x coordinate of the kth particle will be
in the interval (a, b) and

b

I

Xx=a

J‘Ri’"*l [(U(t)e)(xy5 - -5 Z")I2 dx, - dz,

is the probability at t = t,. It is clear that the spectral analysis of H and the
large ¢ behavior of e~ ¥ are difficult mathematical problems.

We remark that this model is a rather crude approximation to the n-electron
atom for several reasons: We have ignored electron spin and the Pauli
exclusion principle. We have also ignored the motion of the nucleus, treating
it as fixed. And finally, the model is nonrelativistic.

NOTES

Section VIII1. The theory of unbounded operators was stimulated by attempts in the
late 1920s to put quantum mechanics on a rigorous mathematical foundation. The sys-
tematic development of the theory is due to von Neumann, *‘Allgemeine Eigenwerttheorie
Hermitescher Functionaloperatoren,” Math. Ann. 102, 49-131 (1929-1930) and M. Stone,
“Linear Transformations in Hilbert Spaces and their Applications to Analysis,” Amer.
Math. Soc. Collog. Publ. 185, New York, 1932. The technique of using the graph to analyze
unbounded operators was introduced by von Neumann in * Uber Adjungierte Funktional-
operatoren,” Ann. Math. (2) 33 (1936), 294--310.

A function on [a, 5] © R is said to be absolutely continuous if, given € > 0, thereisa & > 0
so that

n
ka IfOD — fix)| < ¢
for every finite collection of disjoint intervals [x,, x1] satisfying

{X;“X[l <8.

M:

(=1

We then have the Fundamental Theorem of Calculus: If f is absolutely continuous on {a, b],
then f is differentiable a.e., f'(x) € L'{a, b), and f is the indefinite integral of f'(x). Conversely,
if g(x) € L'{a, b], then the indefinite integral, G(x), of g(x) is absolutely continuous and
G'(x) = g(x) a.e.
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Section VIII.2. Theorem VIIL3 which is due to von Neumann (in the first paper
cited above) is a special case of Theorem X.2 and its corollary. In his paper, von Neumann
attributes the isolation of the notion of self-adjointness to E. Schmidt. We remark that
von Neumann calls symmetric operators * Hermitian”’ and self-adjoint operators  hyper-
maximal Hermitian.”

Section VIII.3. The fact that Hilbert’s spectral resolution would not carry through
for arbitrary symmetric operators was made clear by Carleman’s book Sur les équations
intégrales singuliéres & noyau réel et symétrique, Almquist and Wilesells, Uppsala, 1923.
Von Neumann first discussed the spectral decomposition of unbounded operators in his
investigation of the mathematical problems of quantum theory. The systematic proofs first
appeared in the works of Von Neumann and Stone mentioned above and in F. Reisz,
** Uber die linearen Transformation des komplexen Hilbertschen Raumes,” Acta Sci. Math.
(Szeged) 8 (1930-1932), 23-54. Many of the ideas of spectral analysis already appear in
matrix form in the work of A. Wintner.

One can develop a theory of integration with respect to vector-valued measures. This
theory can then be applied to the projection-valued measure associated to any self-adjoint
operator A. In particular, one can prove that for any ¢ € D(4),

Ap= f/\ d(P,g)

where this integral converges strongly, that is, the Riemann-Stieltjes sums converge in norm
to Ag. This is a stronger notion of convergence that we used in Section VIIL.3 where the
integral converged weakly,

Section VIl 4. Stone’s theorem was announced in his paper ‘‘ Linear Transformations
in Hilbert Space, II1,” Proc. Nat. Acad. Sci. U.S.A. 15 (1929), 198-200, and was proved in
**On One-Parameter Unitary Groups in Hilbert Space,” Ann. Math. (2) 33 (1932), 643-648.
Theorem VIIL.9 appeared in von Neumann, * Uber einen Satz von Herrn M. H. Stone,”
Ann. Math. (2) 33 (1932), 567-573. Our proof of Stone’s theorem is due to Gérding and
Wightmann (unpublished), The idea of using the group invariance to prove essential seif-
adjointness is due to Nelson, ““Analytic Vectors,” Ann. Math. 70 (1959), 572-614.

Let G be a locally compact Lie group and let U(g) be a continuous unitary representation
of G on &, dg Haar measure on G. Then the set D of finite linear combinations of vectors
of the form

os = j fQU@pds, e X, fecCRG)
G

is a dense set contained in the domains of the generators of all one-parameter subgroups of
G and these generators take D into itself. This statement is due to L. Garding, “ Notes on
Continuous Representations of Lie Groups,” Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 331~
332 and D is often called the *“ Garding domain.” The existence of the Garding domain
is important because it allows one to get a representation of the Lie algebra of G on D.

Section VIIILS. The example due to Nelson is unpublished but a similar example ap-
pears in the “Analytic Vectors™ paper cited above, Nelson also proves that if 4 and B are
symmetric. D a dense set contained in D(4) n D(B) and invariant under 4 and B, ABp —
BAp = 0for @ € D,and A* 4 B? is essentially self-adjoint on D, then 4 and B are essentially
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self-adjoint on D and their closures commute. The original proof of Theorem VIII.14 may
be found in J. von Neumann, * Die Eindeutigkeit der Schridingerschen Operatoren,”
Math. Ann. 104 (1931), 570-578. A more modern proof can be found in Kastler, ** The
C*-Algebra of a Free Boson Field, 1,” Commun. Math. Phys. 1 (1965), 14-48. The Weyl
relations were introduced in H. Weyl, ** Quantenmechanik und Gruppentheorie,” Z. Phys.
46 (1927), 1-46. We prove Theorem VIIL.14 in Chapter X1V (see also Problem 30 in Chapter
X).

Concerning the question of a converse to the corollary to Theorem VIIL.14 it is known
that if P and Q are symmetric on D and (a) and (b) hold and P? 4+ Q? is essentially self-
adjoint on D, then P and Q are essentially self-adjoint on D and the groups satisfy the Weyl
relations. For a proof and a discussion of the generalization to » degrees of freedom see
J. Dixmier, ¢ Sur la Relation / (PQ — QP) = I,” Compos. Math. 13 (1956), 263-269. Also of
interest is B. Fuglede, **On the Relation PQ — QP = il,” Math. Scand. 20 (1967), 79-88.

Section VIIL6. The spectral theory for bounded operators was originally expressed in
terms of quadratic forms. It is an interesting historical fact that the simple properties of
quadratic forms which are semibounded were not really appreciated until twenty-five years
after the spectral theory had been extended to unbounded objects by using operators in-
stead of forms. The idea of the relations of forms and operators is implicit in the work of
Friedrichs discussed in the notes to Section X.3 (especially in Freudenthal’s proof’) but the
Friedrichs extension theorem was always expressed in terms of operators before 1950. In the
1950s, Theorems VIIL.15 and VIII.16 were independently discussed and discovered by a
variety of authors: particularly by P. Lax and A. Milgram in ** Parabolic Equations,” Ann.
Math. Study 33 (1954), 167-190; T. Kato in ** Quadratic forms in Hilbert spaces and asymp-
totatic perturbation series,” Tech. Rep. No. 9, Univ. of Calif, (1955), and by J. Lions in his
work Equations différentielles opérationnelles et problémes aux limites, Springer, New York,
1961. The discussion and proof of Theorem VIII.15 in terms of scales of spaces was empha-
sized by Nelson, see, e.g. E. Nelson, Topics in Dynamics, Vol. 1, Princeton Univ. Press,
Princeton, New Jersey, 1970 for additional discussion. There is also an exhaustive study of
quadratic forms in Chapter 6 of T. Kato, Perturbation for Linear Operators, Springer-Verlag,
Berlin and New York, 1966, and a nice discussion in Chapter 12 of M. Schechter, Principles
of Functional Analysis, Academic Press, New York, and London 1971.

The term ** accretive ™ originally appeared in K. Friedrichs ‘‘ Symmetric Positive Linear
Differential Equations,’” Comm. Pure. Appl. Math. 11 (1958), 333418 as something of a joke,
but it caught on. It referred to operators with Re(u, Au) > 0 for all «u € D{A). The study of
the such operators was essentially initiated by R. S. Phillips in ** Perturbation Theory for
Semigroups of Linear Operators,” Trans. Amer. Math. Soc. 74 (1954), 199-221 (Phillips
studied dissipative operators, that is, operators A with Re(v, Au) <0 for all u e D(A)).
Sectorial was then used if {(4, Au)} < {z||arg(z — w)| < 8} for some w and some 8 < /2.
These definitions are often carried over to the forms, that is, what we have calied strictly
accretive is often called sectorial. Since rotated as well as translated sectors often arise in
applications, we have introduced the term * strictly accretive” and extended the notion of
‘“ sectorial.”

m-accretive operators are maximal accretive operators in the same sense that self-
adjoint operators are maximal symmetric operators. We return to this question in Section
X.6.

Section VIII.7. For much of this section, the reader can consult Kato's book cited
above for additional discussion.
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The notion of norm resolvent convergence is the restriction to self-adjoint operators of a
natural topology on closed operators from one Banach space to another. Krein and co-
workers introduced a natural metric on closed subspaces of a Banach space in the 1940s.
Explicitly. given M and N in a Banach space X, one defines

dM,N)=sup ( inf Juw—ol})

ueM, llull=1 ceN,hrli=1

Then M < N if and only if d(M, N) = 0. If d(M, N) = max[d(M, N), d(N,M)], d is a metric
on all closed subspaces. If I'(T) is the graph of 7, one can introduce a metric on all
closed operators from X to Y, by p(T, S) = d(I(T), T(S)), where, say, I<x, > llx x¢=
wXliy + ly:y. This produces a topology on the closed operators first introduced by J. New-
burgh in "A Topology for Closed Operators,” Ann. Math. 53(1951), 250-255. When restricted
to the self-adjoint operators, this is precisely the topology of norm resolvent convergence.

Theorems VIH.21 and VI11.22 are stated most naturally in terms of the theory of semi-
groups of operators on an arbitrary Banach space. Theorem VIIL.21 seems to have been first
proven explicitly (in the general semigroup language) in H. Trotter, *“‘Approximation of
Semigroups of Operators ™ Pacific J. Math. 8 (1959), 887-919 although it was something of a
folk theorem at the time. Theorem VII1.22 was aiso proven by Trotter in the above paper
although one point in his proof was clarified by T. Kato in * Remarks onPseudo-Resolvents
and Infinitesimal Generators of Semigroups,” Proc. Jap. Acad. 35 (1959), 467-468. Theorem
VII1.2]1 is sometimes called the Trotter-Kato theorem also. For a discussion of norm and
strong convergence of operators which are not necessarily self-adjoint, see Kato's book:
Section 1V.2 (norm), Sections VIII.1 and VIIL.3 (strong).

Theorems like Theorems VII1.23 and VII1.24 were first proven in F. Rellich, ‘* St&rungs-
theorie der Spektralzerlegung, 1,”” Math. Ann. 113 (1936), 667-685. Extensions of Rellichs’
results appear in Sz.-Nagy ** Perturbations des transformations autoadjointes dans 'espace
de Hilbert,” Comm. Math. Helv. 19 (1946-1947), 347-366; and E. Heinz, ** Beitrige zur
Storungstheorie der Spektralzerlegung,” Math. Ann. 123 (1951), 415-438.

The systematic study of graph limits was begun in J. Glimm and A. Jaffe, * Singular
Perturbations of Self-Adjoint Operators,”” Comm. Pure Appl. Math. 22 (1969), 401-414. We
return to their ideas in Section X.10.

Section VIILS. The extension of Lie’s theorem to infinite dimensional cases was first
made by H. Trotter, ** On the Product of Semigroups of Operators,” Proc. Amer. Math. Soc.
10 (1959), 545-551. He proved Theorem VIIL.31 in the general context of semigroups on a
Banach space. His proof was later simplified in P. R. Chernoff, ** Note on Product Formulas
for Operator Semigroups,” J. Func. Anal. 2 (1968), 238-242.

The proof we give to Theorem VIIL.30 is given in E. Nelson, ** Feynman Integrals and the
Schrodinger Equation,”™ J. Math. Phys. 5 (1964), 332-343.

Extensions of Trotters formula to various special cases where 4 + B is not essentially
self-adjoint but has a definition as a sum of forms have been given by W. Faris, * The Prod-
uct Formula for Semigroups Defined by Friedrichs Extensions,” Pacific J. Math. 22 (1967),
47-70 and P. R. Chernoff, ** Semigroup Product Formuias and Addition of Unbounded
Operators,” Bull. Amer. Math. Soc. 76 (1970), 395.

Section VIIII0. The first mathematical treatment of second quantization may be
found in J. Cook, ** The Mathematics of Second Quantization,” Trans. Amer. Math. Soc.
74. 222-245. For more information see I. Segal, ** Tensor Algebras over Hilbert Spaces, 1,”
Trans. Amer. Math. Soc. 81 (1956) 106-134.
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The notation “dI'” arises in the following way. Z(5#) is an algebra in a natural way
with a product defined so that (b, ® - ® ) (Was1 @ @ Ynsl) =) ®** @ hyss.
This product is denoted by ®. Thus ¢ ® ¢ is defined for all i, ¢ e F(H#). The
natural ‘‘automorphisms™ of Z( ) are invertible linear, norm preserving maps, ¥,
obeying V(§ ® ¢)= Vi) ® V¢. The natural automorphisms of H# are just the unitaries.
With each unitary, U, one can associate uniquely an automorphism, I'(U) on # () obeying
T(U) = U on 5 by requiring that on #" = ®}.;#, T(U)be just U ®--- ® U (n times).
Thus I" maps the group of unitaries on 5 into the group of automorphisms on F(#) in
a strongly continuous manner. dT" is then defined by requiring !4 = T'(e!'4); that is
for any self-adjoint 4 on #, dT'(A) is the infinitesimal generator of the strongly continuous
unitary group I'(e''4). In the language of Lie theory, dT is differential of I" as a map on
the ** Lie algebra ” of the group of unitaries in  to the Lie algebra of the group of unitaries
on F (). That the dT defined in the text has a closure equal to dT" as defined in the above
paragraph is a simple exercise.

In the usual physicist’s notation, if # = L*R?, dx) and A4 is defined by (Af)(x) =
w(x) f(x), then dT(A) is what is written fw(x)a*(x)a(x) dx.

The proof of Theorem VII1.33 shows how the spectral theorem allows one to use L”
techniques on abstract Hilbert space problems. By using the spectral theorem one can often
formulate the given problem in terms of L*(M, dp) for some convenient measure space
<{M, p>. After this has been done the standard theorems and estimates of L? theory can
often be used.

Section VIIIL11, Attempts at an a priori justification of the quantum mechanical
picture we discuss go back to von Neumann’s famous Mathematische Grundlagen der
Quantenmechanik, Springer, New York, 1932 (reissued by Springer-Verlag, Berlin and New
York, 1968; English transl. published by Princeton Univ. Press, Princeton, New Jersey,
1955). The approach of G. Mackey in The Mathematical Foundations of Quantum Mechanics,
Benjamin, New York, 1963 and Induced Representations of Groups and Quantum Mechanics,
Benjamin, New York, 1968 emphasizes the similarity with classical statistical mechanics and
isolates the ad hoc elements of any axiomatic approach to quantum mechanics.

Mackey presents the following picture of classical statistical mechanics: The basic states
of a classical mechanical system are points in a * phase space,”” M. Statistical states are just
measures of total mass | on M. Observables are just measurable functions on M. Given a
state p and an observable f the measure v, , on R given by v, () = u(f~'(Q)) represents
the probability a measurement of £, produces a value in €. The first remark of Mackey is that
the points of M do not really enter in this picture; rather the family € of Borel sets enter as
the basic objects. The states u are really functions on € and to form v,, , one only needs f !
which is a function from the Borel sets of R to £. The abstract structure on £ needed for
v,, s to be a probability measure (total mass 1) on R is:

(i) ¢ has a partial order <(A4 < Bif A is a subset of B) with a largest element, | (we have
M = 1) and a smallest element 0 (we have & = 0).
(ii) € has a complementation * (A4’ is just the complement M\A4), with the basic properties

(AY=A;A<Bifandonlyif B <A4'; I'=0.
(iii) ¥ is a countable lattice; that is, given A4,, ..., 4,, ... € £ there exists
-]
A=V A,
a=mi

with A > A,forallnand 4 < Bwhenever B > A4, for all n.
(iv) The lattice and complementation structures are related by 4 V 4" = 1.
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An abstract set £ with properties (i)~(iv) is called an orthocomplemented lattice. When one
has such an object, 4, B € € are called disjoint if A < B’. A measureon 8isamap u: £ R*
={a € R|a >0} with u(1)=1, and

if A, and A, are disjoint for ali / and j. An S-valued measure is a map P: #-> £ where & is
the family of Borel sets of R obeying P(R) =1,

€K @
P(’g‘A.) =V A and P(R\A) = P(A").

Thus Mackey’s description of classical statistical mechanics leads to an abstract notion of
statistical system as an orthocomplemented lattice. The observables are then 2-valued
measures and the states are measures on £. Given a state p and an observable 8 the Borel
measure v,, o(Q) = w(0(2)) on R is interpreted as the probability that a measurement of
the observable 8 in the state . will yield a value in Q.

In the first quoted Mackey reference, there is a description of a set of reasonable axioms
for the notion of measurement in a statistical system which lead to this orthocomplemented
lattice. To obtein quantum mechanics, one might add the ad hoc postulate to the basic
lattice picture: € is just the family, £,,, of closed subspaces of a separable Hilbert space ¢
with the operations: A < Bifandonlyif 4 € B; 4’ = A*,and V _ , An=3 0, An;1 = #;
0 = {0}. One is thus left with the problem of trying to justify this ad hoc postulate. Important
partial progress towards this result was obtained in C. Piron, “‘Axiomatique Quantique,”
Helv. Phys., Acta 37 439-468 (1964). See also the discussion in the Jauch monograph
mentioned below.

Once one has the ad hoc postulate, one can determine the states and observables in a
more explicit form. A. Gleason in ** Measures on the Closed Subspaces of a Hilbert Space,” J.
Math. Mech. 6, 885-894 (1957) proved that every measure on £, has the following form:
Eachsubspace 4 € £  is naturally associated with an orthogonal projection P withRan P = 4.
Gleason proved that every measure p on £, has u(A4) = tr (pP) where p is some positive
trace class operator with tr p = 1. By Theorems V1.17 and V1.21, we can find an orthonormal
basis, {(®.}%and ay, ..., &y, ... 2 0with >0 a, = l,sothatp =3 o, ; (P, -)P,. Thus,
arbitrary states are just sums of vector states, u(P) = (®,, P®,) (in the language of Section
XIV.1, these vector states are just the extreme points of the family of all states). As a result,
one may analyze all states by considering only vector states.

€ -valued measures are precisely projection valued measures! Thus, by the spectral
theorem (Theorem VII1.6), an observable is naturally associated with a self-adjoint operator
A. The probability of obtaining a value in Q, if 4 is measured in the vector state i is just
(i, Pa ) where Pq is the p.v.m, for 4.

Thus we see how the basic static elements of the picture in SectionVIII.11 arise from the
ad hoc postulate, The picture of the dynamics enters from the following analysist:

(1) For each time ¢ there should be a map «, on the set of all states, so that «, takes a
state at time s into the state at time s + . Since o, a_, = ao = I, each «, should be a bi-
jection. Moreover a(p; + p2) should be a(p;) + a(p2).

t For further discussion of this picture, see B. Simon: “ From Automorphism to Hamiltonian,”
pp. 305-326 in Studies in Mathematical Physics (E. H, Lieb, B. Simon,and A. S. Wightman, eds.).
Princeton Univ. Press, Princeton. New Jersey, 1976.
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(2) Because any state is a sum of vector states, we only need to know how « behaves on
vector states. Vector states are uniquely determined by the property that they are extreme
points, so a must take vector states into themselves since a is invertible, Thus, « is a map of
unit rays (that is, families of vectors of the form {e'%}|0 € [0, 27]}) into themselves. It is
not quite arbitrary since there are vector states pe, , -- ., po, With

$pe; + tpe, = $po; + 1pes

and it is necessary that

tpuo> T 1pacoz) = $puie3) + Hpr00)
For example, if @, and ®; are orthogonal and

O3 =230+ D@;) Py=2"Y}D, - D)

we can use the above to conclude «(®,) is orthogonal to a(®,). In general, one shows that a
map on the rays yields an automorphism of all the states, if and only if [(a(®,), 2(®,))] =
(@4, ®;)]| for all unit rays ©,, ©,.

(3) An analysis of E. Wigner in Group Theory and lts Applications to the Quantum
Mechanics of Atomic Spectra, Academic Press, New York, 1959 {see also V. Bargmann,
““ Note on Wigner’s Theorem on Symmetry Operations,” J. Math. Phys. 5, 862-868 (1964)]
uses the analysis of (2) to prove that every automorphism of the rays is of the form «(®) =
U® with U unitary or antiunitary. Up to an overall change of phase, U — ¢ U, U is uniquely
determined by «.

(4) Since &, = (04;2)?, the U, of (3) must be unitary. It is natural to suppose that t — a,(p)
is continuous. By a theorem of V. Bargmann ** On the Unitary Ray Representations of Con-
tinuous Groups,” Ann, Math, 59, 1-46, (1954) and E. Wigner * Unitary Representations of
the Inhomogeneous Lorentz Group,” Ann. Math, 40, 149-204 (1939), it is possible to choose
the phases left arbitrary in (3) so that U, is strongly continuous in ?.

(5) Since o, &, = a4, We can conclude U, U, = (1, s)U, s where JA(¢, 5)| = 1. (There is
still some arbitrariness left in phases.) A further analysis of Bargmann and Wigner (see the
references cited above) implies that A(t, 8) = u(t + H)p(r) ' u(s)~* for some measurable
function p with |p(r)| = 1. Letting V'(t) = pn(r)U(¢) we obtain a strongly continuous one-
parameter group of unitaries which can then be analyzed by Stone’s theorem as discussed in
the text.

There is one further element of the picture which one can justify on the basis of more basic
assumptions: this is the particular realization of 3 as L%(R*) with p = i~!8/dx etc, and the
free Hamiltonian given by Hy = —(2m)~'A, The realization of # as L3*(R") is connected,
of course, with von Neumann’s theorem on the uniqueness of solutions of the canonical
commutation relations (see Section VIILS5). On a more fundamental level, it is connected
with Euclidean invariance (Symmetry under spatial translation and rotation) and position
operators: this is discussed in the second Mackey reference and in A. Wightman, “ On the
Localizability of Quantum Mechanical Systems,” Rev. Mod. Phys. 34, 845-872. (1962). The
fact that Hyp is —(2m)~?A is connected with Gallilean invariance as discussed in the second
Mackey reference, Bargmann’s Ann. Math, article (above), E. Indnu and E. Wigner * Rep-
resentations of the Galilei Group,” Nuovo Cimento 9 (1952), 705-718 and C. Piron, “ Sur le
quantification du systéme de deux particles,” Helv. Phys. Acta. 38 (1965), 104-108.

We have just discussed in detail one approach to quantum axiomatics. For additional
discussion and other approaches, see G. Birkhoff and J. von Neumann, * The Logic of Quan-
tum Mechanics,” Ann. Marh, 37 (1936), 823-843; G. Dahn, “Attempt of an Axiomatic
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Foundation of Quantum Mechanics and More General Theories, 1V,” Commun. Math. Phys.
9 (1968), 192-211; E. B. Davies, ** Quantum Stochastic Processes,” Commun. Math. Phys.
15 (1969), 277-304; E. B. Davies and J. T. Lewis, ‘'An Operational Approach to Quantum
Probability,” Commun. Math. Phys. 17 (1970), 239-260; C. M. Edwards, ** The Operational
Approach to Algebraic Quantum Theory, 1,”” Commun. Math. Phys. 16 (1970), 207-230;
J. Gunson. ** On the Algebraic Structure of Quantum Mechanics,”” Commun. Math. Phys.
6 (1967), 262-285; K. E. Hellwig and K. Kraus, “ Operations and Measurements, I, II,”
Commun. Math. Phys. 11 (1969), 214-220; 16 (1970), 142-147; J. Jauch, Foundations of
Quantum Mechanics, Addison~-Wesley, Reading, Massachusetts, 1968; P. Jordan, J. von
Neumann, and E. Wigner ‘* On the Algebraic Generalization of the Quantum Mechanical
Formalism.™ Ann. Marh. 35(1934),29-64; G, Ludwig, ‘*Attemptatan Axiomatic Foundation
of Quantum Mechanics and more General Theories, I-111,” Z. Phys. 181 (1964), 223-260;
Commun. Math. Phys. 4 (1967), 331-348; 9 (1968), 1-12; B. Mielnile, ** Geometry of Quan-
tum States,”” Commun. Math. Phys. 9(1968), 55-80; R. J. Plymon, A Modification of Piron’s
Axioms,” Helv. Phys. Acta 41 (1968), 69-74; R, J. Plymon, ** C*-Algebras and Mackey’s
Axioms,” Commun. Math. Phys. 8 (1968), 132-146; J. Pool, ** Baer *-Semigroups and the
Logic of Quantum Mechanics,” Commun. Math, Phys. 9 (1968), 118-141; J. Pool, * Semi-
modularity and the Logic of Quantum Mechanics,” Commun. Math. Phys.9(1968),212-228;
E. Prugovelki, Quantum Mechanics in Hilbert Spaces, Academic Press, New York, 1971;
I. Segal, *‘ Postulates for General Quantum Mechanics,” Ann. Marh. 48 (1947), 930-940;
V. Varadarajan, Geometry of Quantum Theory, Van Nostrand-Reinhold, Princeton, New
Jersey, 1968; H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New York,
1931; N, Zierler, “Axioms for Non-relativistic Quantum Mechanics,” Pacific J. Math. 11
(1961), 1151-1169.

Despite the rather enormous literature on these ** first level’ foundations of quantum
theory, there is no definitive theory of quantum axiomatics. Probably the most important
result of the attempts to axiomatize quantum theory is the mathemetical *spin-off that
has resulted: the theory of unbounded self-adjoint operators, Jordan algebras, and the
C*-algebra approach to quantum theory (discussed in Chapters XIX and XX), all have
their origin in attempts at quantum axiomatization,

PROBLEMS

I. Let {g,} be an orthonormal basis for a Hilbert space /' and let ¢, be a vector in #
which is not a finite linear combination of the ¢, . Let D be the set of finite linear com-
bination of elements of {p,} and e , and on D define

N

T(bes +:}:'1 quh) = bes
Show that T'(T) contains both <es, €») and <es, 0> and thus is not the graph of
a linear operator.

2. Let S be an operator from D(S) to # which is injective. Consider the following
additional statements about S:
(1) S is a closed operator.
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16.
7.

10.
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(2) Ran S is dense.
(3) Ran S is closed.
(4) For some constant C and all ¢ € D(S), ISl = Cll!l.
(a) Prove that (1)-(3) imply (4) (Hint: Apply the closed graph theorem to S~*).
(b) Prove that (2)<(4) imply (1)
(c) Prove that (1) and (4) imply (3)
Remark. Let T be a closed operator. Applying (2) to A — T we see that A € p(T) if and
only if A --T is bijective. (b) also has a ** translation™ of this sort.

Prove that the operators in Example 5 of Section VIII.1 are closed.

. (a) Suppose that C is a symmetric operator, C> A4 and that Ran(4 +i)=

Ran(C +i). Prove that C= 4.
(b) Suppose that A4 is a symmetric operator with Ran(A4 + /) == # but Ran{4 — i) #
. Prove that A has no self-adjoint extensions.

. Let o = ¢, Let D(A) = {a e #| for some N,y ¥_o a,= 0 and a, = 0 if n > N}. For

a € D(A), define Aa € # by
-1 "
(Aa).=i[2am+ Zam]
m=0 m=0

(a) Prove that D(A) is dense in .
(b) Prove that A is symmetric. Hint: if Y N0 @.=0, then

=1 N
(Aa), = i[ Y an— 3 am]
m=0 mun+ i
(¢) Prove that Ran(4 4+ i) is dense in £,
(d) Prove that (1,0,0,...) € D(4*) and that (4* +i)}1,0,0,...)=0
(e) Prove that 4 has no self-adjoint extensions. (Hint: Apply Problem 4b to A).

Prove that the operator T in the example of Section VII1.2 is closed.

Prove that the operators T, in the example of Section VIIL2 are self-adjoint. (Hinz: It
follows from what was already proven that € D(T¥) implies that ¢ € AC[0, 1] and
T = i dif/dx.)

. Consider T= —d?/dx* as an operator on L?[R] with domain C&(R). What is the

adjoint of T'? Is T essentially self-adjoint ?

. Consider T = i d/dx as an operator on L0, o) with domain C§[0, ], the infinitely

differentiable functions with compact support away from the origin. Is T essentially
self-adjoint ?

Suppose that 4 is a densely defined symmetric operator which is positive, that is,

(p, Ap) =0 if p € D(A4).

(a) Prove that |i(4 + Dol > lipl* + lldpl?.

(b) Show that Ran(A4 + I) is closed if 4 is a closed operator.

(c) Provethat A is essentially self-adjoint if and only if the equation 4*{ = — 3 has no
nonzero solutions.

Prove part (c) of Theorem VIIL7.
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41.

42.

43.

44.
45.

46.

47.

48.

49.

50.

Vili: UNBOUNDED OPERATORS

Let Ho and ¥ be closed, positive quadratic forms and let 8 € C\(— o, 0]. Suppose that
Q(Ho) n Q(V) is dense in . Prove that Ho + BV defined as a quadratic form on
Q(Ho) n Q(V) is closed and sectorial.

Let T be a self-adjoint densely defined operator on a Hilbert space 5. Suppose that for
some Aq € p(T), R,,(T) is a compact operator. Prove that R(T) is compact for all
A € p(T) and discuss the various kinds of spectra that T can have.

Remark. We study operators with compact resolvent in Chapter X111,

(a) Give an example to show that the closure of the range of P on X}.; a(4:) may
be needed to obtain the whole spectrum of P(A4,, ..., Ax).
(b) Prove that if 4,, ..., Ay are bounded then the closure is not necessary.

Prove the uniqueness statement of Theorem VIIL32,

Let T be a closed operator. Prove that M = {{|yy € D(T"), Tip € D(T*)} is dense and
that T*T defined on M is self-adjoint (Hinr: Let S be the operator constructed in
Theorem VIII. 32. Show that D(S) © M and that T*T is a symmetric extension of S).

Let T be a closed operator on a Hilbert space. Define, N(T), the numerical range of T
by N(T) = {(h, TH) [ e DT): il = 1).

(a) Prove o(T) © N(T)U N(T*)* where N(T*)* is the set {(p, T* )| € D(T)}.

(b) Find a T with o(T) ¢ N(T)and thus with N(T') &£ N(T*)*. (Hint: Take T symmetric!)

Let 4 be self-adjoint on D(A4) in 3, and B be seif-adjoint on D(B) in #,. Use
Theorem VIIL10 to prove that A ® [+ I ® B is essentially self-adjoint on D(A)
% D(B). (Hint: e''* & e"® leaves D(A4) ® D(B) invariant.)

Let A be a closed symmetric operator with 4 # A*. Let a and 4 be the quadratic
forms with

Q(a) = D(4) a(y, p) = (4, Ap)
Qb) = D(4*)  b(f, @) = (4™, A*p)
Show that a < b but g # b despite the fact that g and b are positive symmetric forms.

A self-adjoint operator, A4, is said to have purely discrete spectrum in (g, b) if (a, b) N

o{A) = (a, b) N G4isc (A).

(a) Prove that 4 has purely discrete spectrum in (a, b) if and only if Py, p-e i8
compact for all small ¢ where {Pq} is the family of spectral projections for A4.

(b) Prove that 4 has purely discrete spectrum in (a, ) if and only if f(A4) is compact
for every C* function f with supp f < (a, b). (Hint: Use Problem 45 of Chapter V1)

{c) Let 4, A4 in the norm resolvent sense. Suppose that each A4, has purely discrete
spectra in (a, b). Prove that A has purely discrete spectra in (a, b).

Let 4 be a positive self-adjoint operator
(a) Prove that (4 +w) " lI<w™'forw>0
(b) Prove that

L
J‘ w HA + w) o dw
)

exists for all ¢ € Ran 4.
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(¢) Prove that

At = [7_1’ fw w (A4 + w)™! dw] Ay for any e D(A).
4]

(d) In the same way prove that

A= sin wa

Jm [w"‘(A + w)~ ! dw] Ay forany e D(A),
]

K

fo<a<l,
(e) Prove that

(lim '—4-:;———1)1/: =(log Ay forany e D(A)

317

If 4 and B are self-adjoint operators with 4, B> 0, we say 4 > B if Q(B)> Q(A)

and <, B> < <, AP, for all Y € D(A).

(a) If 0 < 4 < B, prove that /(4 + w)"! < BB+ w)"tifw>0.
(b) Prove that A* < B*if A<Band0<a<]l.

{c) Prove thatlog 4 <log Bif A <B.

Extend the proof of the spectral theorem in Problem 32 of Chapter VII to the un-
bounded case by using the polar decomposition for closed operators. Be sure to check
that you can prove the polar decomposition without using the spectral theorem in

the unbounded case. (Hint: You will need Problem 50).
Reference for Problem 52: Kato’s book, pp. 281-282, 322-324, 334-335.
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Prove Theorem VIII.11 directly without using Theorem VIII.10.

Find two dense, linear subspaces of L(R), D, and D,, with D; n D, = {0}, so that x
is essentially self-adjoint on D, and x? is essentially seif-adjoint on D, .

Let 4 be a symmetric operator with domain D < 5. Let D, < D be a dense linear
subset of # and suppose that 4D, is essentially self-adjoint. Prove that A4 is essentially
self-adjoint and 4 = A} D,.

(a) Prove that an operator A is closed if and only if its domain, D(4), is complete under
the norm

lla = UAPH + bl

(b) Prove that a semibounded quadratic form is closed if and only if whenever

k4
Pn € Q(q); Pn > Py and ‘I((P- - ¢ﬂ ’ ¢n - ‘Pm)- - 0:

then g € Q(q) and ¢, — @, . — P)—>0.

(2) Show that the quadratic form g associated with a semibounded self-adjoint
operator A (Example 2 of Section VIIL6) is closed.
(b) Prove that any operator core for A is a form core for q.

Prove the statements (a)-(d) in Example 3 of Section VIIL6.
Fill in the details of Theorem VIII.16.

Let A, = (1 — 1/n)x on L%(R) and A4 = x. Show that one can choose domains of essential
self-adjointness for A, and 4 which have no nonzero vector in common but that 4,— A4
in the norm resolvent sense.

. (a) Let {A.} and A be self-adjoint operators and suppose that for all g, ¢ € # and all

A with Im A # 0, (R, (4)p, ) = (R{Ap, ). Prove that 4,—> A in the strong re-
solvent sense. (Hint: You will need the first resolvent fomula.)

(b) Let {4,} and A be self-adjoint operators. Use part (a) to prove that if R,(4,) con-
verges strongly to R;(A4) in the lower half-plane then R(A4,) also converges strongly
to R;(A) in the upper half-plane.

Extend the proofs of Theorems VI11.20 and VIII.21 to show that if 4,— A4 in the strong

resolvent sense, then e'"“"p— e"“o uniformly for ¢ in any finite interval.

Fill in the details of the proofs of parts (b) and (c) of Theorem VIIIL.25.

(a) Let A4, be a sequence of self-adjoint operators and suppose that for each @ € &
and each ¢ € R, e'“"p converges in . Prove that there exists a self-adjoint oper-
ator A so that 4,— A in the strong resolvent sense. (Hint: You will need to use
von Neumann’s theorem from Section ViIL4.)

(b) Give an example to show that the conclusion of (a) may not hold if ¢"4” converges
weakly instead of strongly.

Prove Theorem VII1.27b.
Prove Theorem VIII.28.
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Let {4,} be a uniformly bounded sequence of self-adjoint operators. Let 4 be a bounded
self-adjoint operator. Prove that 4 = w.gr.-lim A4, if and only if 4,— 4 in the weak
operator topology.

Let {A4,} and A4 be positive self-adjoint operators. Prove that 4,— A in the strong re-
solvent sense if and only if (4, + I) ™' — (A4 + I)~! strongly.

Prove that if {4,} and 4 are uniformly bounded self-adjoint operators, then 4,— A4
in the strong resolvent sense if and only if 4,— A strongly.

Let 4 be self-adjoint.
(a) Prove that t4—14 A in the norm resolvent sense as t-> f, # 0.
(b) Prove that e**# - e!"* in norm if and only if 4 is bounded.

30.1(a) Prove that if {4,} and A are uniformly bounded self-adjoint operators and 4, — A4

31,
32.

33.

34.

3s.

+36.

t37.
38.

39.

40.

but 4, — % A, then A4, does not converge to A4 in the weak resolvent sense.
(b) Where does the weak analogue of Theorem VIIIL.18 breakdown?

Is the form analogue of part (a) of Theorem VIIL.25 true?

Prove that A, = nl has a strong graph limit as n-» o which is not the graph of an
operator,

Let {A,} be a constant sequence of symmetric operators (that is, A, =B, ¥n). Show that
the strong graph limit of the 4, is the closure of B.

Let R be the right shift operator on 7, . Prove that the w.gr.-lim R" is the zero operator
while the st.gr.-lim R" is the graph {<0, 0)}.

Prove directly (without using the Fourier transform) that i~ !(d/dx) is essentially self-
adjoint on Z(R).

Prove the corollary to Theorem VIIL 14,

Fill in all the details of the proof of Theorem VII1.22,

(a) Let {4,} and A4 be positive self-adjoint operators and suppose that e~4s—>¢~'4
strongly for each ¢ > 0. Prove that 4,— A in the strong resolvent sense.
(b) Prove the analogue of (a) if strong convergence is replaced by norm convergence.

Let U(t), t = 0, be a family of self-adjoint operators satisfying (i) 1U(2){| < e for some

E e R, (i) U@)U(s) = Ut + s), (iii) the map ¢ — U(r) is strongly continuous, (iv) U(0) =

I. Then

(a) By mimicking our proof of Stone’s theorem prove that U(t) = e~ 4 for a unique
self-adjoint operator 4.

(b) Reach the same conclusion using the functional calculus.

(¢c) Prove that 4 > —E.

Let <M, p.> be a measure space and # = L*(M, du). A map T of LM, du) into itself
will be called positivity preserving if (7f)(x) > 0 a.e. whenever f(x) = 0 a.c. Let 4, B be
self-adjoint operators on # and suppose that e~4* and e~ ** are positivity preserving
for all € R and that A + B is essentially self-adjoint on D(4) ~ D(B). Prove that
e't4r+ 30 s nositivity preserving for each ¢t € R.
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We have therefore the equation of condition

F(x) = quQcos qx

If we substituted for Q any function of g, and conducted the integration from q =0 to g = o,
we should find a function of x: it is required to solve the inverse problem, thatsis 1o say, to
ascertain what function of q, after being substituted for Q, gives as a result the function F(x),
a remarkable prohlem whose solution demands aitentive examination. Joseph Fourier

IX.1 The Fourier transform on &(R") and ¥'(R"),convolutions

The Fourier transform is an important tool of both classical and modern
analysis. We begin by defining it, and the inverse transform, on ¥(R"),
the Schwartz space of C* functions of rapid decrease.

Definition  Suppose fe &(R"). The Fourier transform of fis the function
f given by

70)= g |70 dx

where x + L =37, x;4;. The inverse Fourier transform of f, denoted by
/. is the function

1 -
)= wae"‘ ’f (x) dx
We will occasionally write / = #.

38
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Since every function in Schwartz space is in I}(R"), the above integrals
make sense. Many authors begin by discussing the Fourier transform on
L}(R"). We start with Schwartz space for two reasons: First, the Fourier
transform is a one-to-one map of Schwartz space onto itself (Theorem IX.1).
This makes it particularly easy to talk about the inverse Fourier transform,
which of course turns out to be the inverse map. That is, on Schwartz
space, it is possible to deal with the transform and the inverse transform
on an equal footing. Though this is also true for the Fourier transform on
I2(R") (see Theorem IX.6), it is not possible to define the Fourier transform
on I?(R") directly by the integral formula since I?(R") functions may not
be in I'(R"); a limiting procedure must be used. Secondly, once we know
that the Fourier transform is a one-to-one, bounded map of &(R") onto
Z(R"), we can easily extend it to &'(R"). It is this extension that is funda-
mental to the applications in Sections 5, 6, and 8.

We will use the standard multi-index notation. A multi-index

LR C TR

is an n-tuple of nonnegative integers. The collection of all multi-indices
will be denoted by I, . The symbols |a|, x*, D% and x? are defined as follows:

n
o} = X e
i=1
Xt = Xxg e X
Ol
= & B3 oo e »
Ox§r 0x33 -+ OxF

n
xt=Y x}

D

In preparation for the proof that ~ and ~ are inverses, we prove:

Lemma The maps ~and ~ are continuous linear transformations of
&(R") into &(R"). Furthermore, if « and § are multi-indices, then

((AFDF)(A) = D((— ix)f (x) (IX.1)

Proof The map " is clearly linear. Since

DTN = 7o | 2= ixPe ()

G |, T Phe N ) dx

-7 J_emDa((- Py o) d
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We conclude that
1
“]”1 B = Sup"] (Dﬁ] ' 2 )n/Z

so  takes #(R") into Y(R"), and we have also proven (IX.1). Furthermore,
if k is large enough, { (1 + x?)™* dx < oo so that

[ 1D30e5)] dx < o0

”f” ﬂ—- (2:)nIZJ 8-:_);) ID’( lx)”f Idx

S (o ([ (14 X7 1+ )41 Py

Using Leibnitz's rule we easily conclude that there exist multi-indices «;,
B; and constants c; so that

LTS

Thus, is bounded and by Theorem V.4 is therefore continuous. The
proof for is the same.

We are now ready to prove the Fourier inversion theorem. The proof
we give uses the original idea of Fourier.

Theorem IX.1 (Fourier inversion theorem) The Fourier transform is a
linear bicontinuous bijection from ¥(R") onto & (R"). Its inverse map is
-]

. . . x
the inverse Fourier transform, ie., f=f=f

Proof We will prove that / = . The proof that f = fis similar. f = f implies
that " is surjective and f = f implies that ~ is injective. Since ~ and ~ are
continuous maps of #(R") into &(R"), it is sufficient to prove that f= f
for f contained in the dense set C5(R"). Let C, be the cube of volume
(2/e)" centered at the origin in R". Choose ¢ small enough so that the
support of fis contained in C,. Let

K, = {k € R|each k;/ne is an integer}
Then
760 = T ((e)res = f)deyriet =
ke K,

is just the Fourier series of f which converges uniformly in C, to fsince f'is
continuously differentiable (Theorem I1.8). Thus

|kx

flx) = Z f )n,z (re)" (1X.2)
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Since R" is the disjoint union of the cubes of volume (ne)" centered about
the points in K,, the right-hand side of (IX.2) is just a Riemann sum for
the integral of the function f(k)e™ ' */(2n)"2. By the lemma, f (k)e* * € #(R"),
so the Riemann sums converge to the integral. Thus f =f 1

Corollary  Suppose fe #(R"). Then

[ TGP dx = | W[ F(k)[? ak

Proof This is really-a corollary of the proof rather than the statement of
Theorem IX.1. If f has compact support, then for ¢ small enough,

76) =, T (et =, S()ayren
Since {(3¢)"2e™ ek, is an orthonormal basis for L*(C,),
Gl dx = [ 1f I dx
-
Z ' ‘8)"/2 ik - x f )IZ
= k;( | f (k)P (me)

= [ | R ak

This proves the corollary for fe Cg. Since ~ and | - |, are continuous on
& and Cg is dense, the result holds for all of &. §

Example 1 We compute the Fourier transform of f(x) = e~**2 ¢ #(R)
where a > 0.

f@ay=

I e—ax’/Ze—il "% dx
R

J \/gexp(—tz - itﬂ.\ﬁ) dt
RVQ . o

%l Ql

l’/ZuJ_ i J
exp—{t+i——=}dt
T Jan ( \/2_)
e~/ e~ A2

i

N2 Y-
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The next to last step follows from the Cauchy integral formula and the
exponential decrease of e~ along lines parallel to the x axis.

We now define the Fourier transform on &'(R").

Definition Let T € &(R"). Then the Fourier transform of T, denoted by
T, is the tempered distribution defined by T(¢) = T(9).

Suppose that h, ¢ € #(R"), then by the polarization identity and the

corollary to Theorem IX.1 we have (h, @) = (k, ¢). Substituting § = g for h,
we obtain

To) = [ §(x)olx) dx = | g(x)p(x) dx = T,(6) = T,(0)

where T;and T are the distributions corresponding to the functions § and g
respectively. This shows that the Fourier transform on &'(R”) extends the
transform we previously defined on &(R").

Theorem IX.2 The Fourier transform is a one-to-one linear bijection
from &'(R") to &’(R") which is the unique weakly continuous extension of
the Fourier transform on & (R").

Proof 1fp,3 ¢, then by Theorem IX.1, $, 5 , so T(p,) — T(p)foreach T
in &'(R"). Thus T(¢,) = T(e), which shows that T is a continuous linear
functional on (R"). Furthermore, if T, T, then T, T because
T.(®) - T(¢) implies T,(¢) — T(¢). Thus T+ T is weakly continuous.

The remaining properties of ~ follow immediately from the correspond-
ing statements on &(R") (see Problem 19 in Chapter V). §

Example2 We compute the Fourier transform of the derivative of the
delta function at be R:

&(@) = 6,(0)
- (- 5o00)
= 51,((2—;%/—2—1 e” " (—ix)p(x) dx)

2y o = ibX

= J. (zxe__ )(p(x) dx
\/ 2n

So, the Fourier transform of &, is the function ixe™ ®*/./2n.

* x X
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We now introduce a new operation on functions.

Definitions Suppose that f, g e S(R"). Then the convolution of f and g,
denoted by f* g, is the function

(f+0)0) = [ S = xhalx) dx

The convolution arises in many circumstances (we have already used it in
discussing closed operators in Section VIIL.1). In Section 4 we use interpola-
tion theorems to prove I? estimates on the convolution f* g in terms of
fand g. In this section we concentrate on the properties of the convolution
as a map from #(R") x #(R") to £(R"). Using these properties we show
that the convolution can be extended to a map from &'(R") x #(R") to

v . the polynomially bounded C* functions. Convolutions frequently
occur when one uses the Fourier transform because the Fourier transform
takes products into convolutions (Theorem IX.3b and Theorem IX.4c).

Theorem 1X.3

(a) For each fe #(R"), g—f+g is a continuous map of F(R") into
Z(R").

(b) fg=(20)™"}x§andT+g = 2n)*y.
(c) Forfig, hinPR"), frg=gsfand f+(gsh)=(f*g)+h.

Proof From the polarization identity and the corollary to Theorem IX.1
we find that (¢, ¥) = (9, ¥) for @, ¥ € L(R"). Letting y € R" be fixed, we

apply this identity to e” *f(x) and g obtaining (¢” >, g) = (¢” "/, §). But
€ Fg)=[ e f(xlglx) dx

and

@ T o= (@0 [ e TR axlict i

=[ =24 aa

which proves that fg = (2r)"/?f* §. Using the inverse Fourier transform
this formula may be stated as

@uyifg=rxg
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This shows that convolution is the composition of the inverse Fourier
transform, multiplication by (21)*%f, and the Fourier transform. It follows
that convolution is continuous.

The statements in (c) follow trivially from (b). §

In order to extend the map C,: g — f* g to &', we look for a continuous
map C,: & — & sothat ', } & = C,. We then define C to be convolution
on ¥

Definition Suppose that fe L (R"), T € &'(R") and let f(x) denote the
function, f(— x). Then, the convolution of T and f, denoted T »f, is the
distribution in ¥'(R") given by

(T«f)o)=T(] * ¢)
for all p € #(R").

The fact that g — [+ g is a continuous transformation gparantees that
T x fe #(R"). The following theorem summarizes the properties of this
extended convolution.

Let f, denote the function f,(x) = f(x — y) and J, the function f(y — x).
When fis given by a large expression (--), we will sometimes write (---)~
rather than (-7-).

Theorem IX.4 For each fe #(R") the map T—T=f is a weakly
continuous map of &’(R") into &'(R") which extends the convolution on
Z(R"). Furthermore,

(a) T =fis a polynomially bounded C® function, i.e. T * fe 0},. In fact,

(T + f)y) = T(J,) and
DXT » )= (D’T)« f =T » D’f (IX.3)
by (Txf)xg=T=*(f=*g)
=~ -
©) Txf=@*fT

Proof Since T — T = fis defined as the adjoint of a bounded map from &
to &, it is automatically weakly continuous. The fact that it extends the
convolution on & is just a change of variables. The statements (IX.3), (b),
and (c). all follow immediately from the corresponding statements for T € &
and the facts that & is weakly dense in & and that &, D?, multiplication
by f, and convolution are all weakly continuous on &".
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It remains to prove the first part of (a). Since T € &'(R"), it follows
from the regularity theorem (Theorem V.10) that there is a bounded
continuous function h, a positive integer r, and a multi-index § so that

T(5) = W1+ YD)y - x) d

Since D’fe &, T(]',) is an infinitely differentiable function of y. The change
of variables T = y — x shows that

TG < Mhllo [_(1+ XY (D) = )] dx
= A jw(x + (y = Y| D (z)| de

from which it follows easily that y~ T(f,) is polynomially bounded.
A similar proof works for the derivatives of y T(f,). Thus T(f,) € O},.

Suppose that a distribution Se &'(R") is given by a polynomially
bounded continuous function s. Then, using Fubini’s theorem we find that
for ¢ € (R

(S*f)@)=S(F* o)
= J s(X)( f J(x = y)oly) dy) dx

= [ (] 500 <)o) ay
= (S;)o)

s0 S » f= S(f,). By the regularity theorem T = D*S for some such S. Thus
by (IX.3)

Tsf=(DS)» f =S»Df
S((DS);)

= (= 1)"IS(D*(7,))
- ps(7)
=T(},)

i

This completes the proof. §
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Theorem IX.5 Let Te &' (R") and fe £(R"). Then .ﬁe 03 and

ﬁ(k) = (2r)""2T(fe~* *). In particular, if T has compact support and
¥ € &(R") is identically one on a neighborhood of the support of 7, then

T(k) = (2n) " T(ye ™)
Proof By Theorem IX.4c and the Fourier inversion formula we have
ﬁ = (2r)""*f* T Thusﬁe 0% and

FT(k) = (2m)~"*T(})
= (zn)-nlz'r(e~ik-xf) '

We remark that one can also define the convolution of a distribution
T € 2'(R") with an fe 9(R") by (T * f)(y) = T(J,)- A proof similar to the
proof of Theorem IX.4 shows that T = fis a (not necessarily polynomially
bounded) C* function and that (IX.3) holds.

We have already introduced the term “approximate identity” in Section
VIIL.1; we now define it formally.

Definition Let j(x) be a positive C* function whose support lies in the
sphere of radius one about the origin in R" and which satisfies { j(x) dx = 1.
The sequence of functions j,(x) = ¢ "j(x/e) is called an approximate identity,

Proposition Suppose T € ¥'(R") and let j,(x) be an approximate iden-
tity. Then T » j, — Tweakly as ¢ — 0.

Proof 1f ¢ € #(R"), then (T  j,}¢) = T(J, * ¢), so it is sufficient to show
that J, *+ ¢ ~2(®), . To do this it is sufficient to show that 2n)"%,¢ % ¢.
Since j,(4) = j(eA) and j(0) = (2n) ™3, it follows that (2n)"%j,(x) converges
to 1 uniformly on compact sets and is uniformly bounded. Similarly,
D?j, converges uniformly to zero. We conclude that (2n)"%,¢ % ¢. §

I1X.2 The range of the Fourier transform: Classical spaces

We have defined the Fourier transform on &(R") and &'(R"). In this
section, Section IX.3, and Section IX.9, we investigate the range of the
Fourier transform when it is restricted to various subsets of &'(R"). These
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questions are natural and have historical interest, but more important,
characterizing the range of the Fourier transform is very useful. One is often
able to obtain information about the Fourier transform of a function and
one would like to know what this says about the function itself. We begin
with two theorems which follow easily from the work that we have already
done in Section IX.1.

Theorem IX.6 (the Plancherel theorem) The Fourier transform extends
uniquely to a unitary map of I*(R") onto I*(R"). The inverse transform
extends uniquely to its adjoint.

Proof The corollary to Theorem IX.1 states that if fe ¥(R"), then
I fl2 =1 fl2- Since F[¥] = &, F is a surjective isometry on I*(R"). ||

Theorem IX.7 (the Riemann-Lebesgue lemma) The Fourier transform
extends uniquely to a bounded map from I}(R") into C,,(R"), the continuous
functions vanishing at co.

Proof For f € #(R"), we know that f € #(R") and thus f e C(R"). The
estimate

17 < @m)=2] f1ls

is trivial. The Fourier transform is thus a bounded linear map from a
dense set of L'(R") into C,(R"). By the B.LT. theorem,  extends
uniquely to a bounded linear transformation of L!(R") into C,(R"). i

We remark that the Fourier transform takes I'(R") into, but not onto
C(R") (Problem 16).

A simple argument with test functions shows that the extended transform
on L)(R") and I?*(R") is the restriction of the transform on &'(R"), but
it is useful to have an explicit integral representation. For f € L}(R"), this
is easy since we can find f, e #(R") so that |f — f,ll; = 0. Then, for
each 4,

J(3) = lim (£,(3))

. 1 .
= lim | [ e
1

T @ay™ J o Tl dx



328 THE FOURIER TRANSFORM

So, the Fourier transform of a function in !(R") is given by the usual
formula.
Next, suppose f€ I2(R") and let

1 |x|<R

Xﬂx)= 0 IXI>’R

Then xz f e L{R") and yxg f—R':—f;»f, so by the Plancherel theorem

N 2
Xr f...;:?f, For yg f we have the usual formula; thus
J@) =Llim(@m)y " [ e % 5f(x)dx
R~ x|]<R

where by “lim.” we mean the limit in the I?>-norm. Sometimes we will
dispense with |x| < R and just write

F(A) = Lim.(2n)~"? J e -Xf(x) dx

for functions f € I2(R").

We have proven above that I}(R") > I>(R") and L!(R") > [°(R") and
in both cases ~ is a bounded operator. It is exactly in situations like this
that one can use the interpolation theorems which we will prove in the
Appendix to Section 4.

Theorem IX.8 (Hausdorff-Young inequality) Suppose 1 < ¢ <2, and
p~ !+ g~ ' = 1. Then the Fourier transform is a bounded map of L{(R")
to IZ(R") and its norm is less than or equal to (2z)*!/2~ 1/,

Proof We use the Riesz-Thorin theorem (Theorem IX.17) with gy =2 =
o pr = o, and g, = L. Since | 7, = | /1 and | 7. < (2) 72| /], we
conclude that || ||, < C/|| f]l, where p; ' = (1 = t)/2, ;' = (1 = t)2 + t =
1 —p !, and log C, = t log(2n)~"2. |}

We now come to another natural question. What are the Fourier trans-
forms of the finite positive measures on R"? Suppose that we define

A= @r)™ [ e du(x)
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Then, if ¢ € #(R"),

[, B0 a2 = = [ ([ e due)) o) di

= @ayo ([, e ol 42) du(x

= {9 dut)
so this definition coincides with the restriction of the Fourier transform
on &'(R") to the positive measures. Suppose Ay, ..., AyeR" and & =
&y &Eyy ey Ey> € CN. Then
N N 2
i; J‘(M =)= .[ ’ .z,‘{ie_n'"x du(x) = 0

This shows that the function #(A) has the property that for any 1, ...,
Ay € R {fi(h; — &)} is the matrix of a positive operator on C¥. Furthermore,
by the dominated convergence theorem, j is continuous, and since

D) < @n)™ [ e %] du(x)

= (2m) ™" u(R")
() is also bounded.

Definition A complex-valued, bounded, continuous function f on R" that
has the property that {f(A; — &)}, ; is a positive matrix on C" for each N
and all &, ..., Ay € R" is called a function of positive type.

There are three properties of functions of positive type which follow
easily from the definition. Letting N = 1, x ¢ R",

(1) f0)=0
since f(0) is a positive operator on C!. Letting N =2, and choosing
Ay = X, Ay = 0, we see that the matrix
( A (X))
f(=x) Sf(0)
must be positive and therefore self-adjoint with positive determinant. This
implies that
2) f(x)=f(=x)
B) /(=)< f00)
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Notice that in proving these three properties we did not use the fact that
f(x) is bounded, so we could have left out the word bounded in the
definition and recovered boundedness from (3) above. It is clear that any
convex combinations or scalar multiples of functions of positive type again
give functions of positive type, so these functions form a cone.

Theorem IX.9 (Bochner’s theorem) The set of Fourier transforms of
the finite, positive measures on R”™ is exactly the cone of functions of
positive type.

Proof We do not give Bochner’s original proof but rather an easy,
interesting argument based on Stone’s theorem. We have already shown
that the Fourier transforms of finite positive measures are functions of
positive type. We need to prove the converse. Suppose f is of positive type.
Let X denote the set of complex-valued functions on R" which vanish
except at a finite number of points. Then

W, 0); = Z fX— (x)(p()
X.yeR

has all the properties of a well-defined inner product except that we may
have (¢, @), = 0 for some ¢ # 0. If we let 4" be the set of such ¢, then
X[ is a well-defined pre-Hilbert space under (-, -),. Suppose that te R"
and define U, on " by (U, 9)(x) = @(x — t). Since U, preserves the form
(-, -);, it takes equivalence classes into equivalence classes and thus
restricts to an isometry on X' /A". Since the same is true of U -ty this
1sometry has dense range and thus extends to a unitary operator U, on
X = A" | . Furthermore, U.,, =0,0,, U, =1, and because of the con-
tinuity of f, U, is strongly continuous. Thus the map t — U, satisfies the
hypotheses of Theorem VIIL12 (the generalization of Stone’s theorem).
Therefore, there is a projection-valued measure P;, on R so that

(0. )y =[ e dig, Prw),

Let @, denote the equivalence class containing the function
i, x=0

(Po(x)= 0 X#O

Then
(‘) = t(Po, fpo)f (‘Po, ~-t¢0)f =fe_“‘l d(‘i’o, qu")o),

so we have displayed f as the Fourier transform of a finite positive
measure. |



1X.2 The range of the Fourier transform: Classmmmspaces 331

The notion of positive type may be generalized to distributions. If f(x)
is a bounded continuous function, then f(x) will be of positive type if and
only if

[ [1x = vebe(x) dx dy = 0 (1X.4)

for all ¢ € CP(R"). To see this one need only approximate the integral in
(IX.4) by a Riemann sum. This condition can be rewritten as

[[ 1@)0tx = Do) dedx = [ f(@)G * @)e)dr 20 (IX.5)

where @ is the function @(x) = ¢(— x). This suggests the following definition.

Definition A distribution T € 2'(R") is said to be of positive type if
T(@ * @) 2 0 for all ¢ € 2(R").

The following generalization of Bochner’s theorem is due to Schwartz.
This theorem is particularly interesting since it implies that certain ordinary
distributions must be tempered. The proof is sketched in Problem 20 (or
see the Notes for a reference).

Theorem IX.10 (the Bochner-Schwartz theorem) A distribution
T € 2'(R") is a distribution of positive type if and only if T € #'(R") and
T is the Fourier transform of a positive measure of at most polynomial
growth.

If f(x) is a function of positive type, then this theorem implies that the
weak derivatives (—A)"f are all distributions of positive type. For f= g,

a finite measure by Theorem 1X.9, and (i\?y‘—_— |x [*™y, a positive measure
of polynomial growth.

Finally, we determine which bounded measurable functions are distribu-
tions of positive type. A bounded measurable function f on R" is said to
be of weak positive type if (IX.4) holds. Since (IX.5) follows from (IX.4),
the distribution

Ty(o) = | fx)o(x) dx

is of positive type and therefore 7} =y, a polynomially bounded positive
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measure. If j(x) is an approximate identity that is symmetric about the
origin, then

1o 2 T » ) = TG V)
= @y (i) P)

= (2n)"* [ () du()

On each compact subset of R, j,(x) converges uniformly to (2n)™"? as
¢ — 0, so the y-measure of any compact set is less than (2z)"?| f||,. so
4 is finite.

We now come to the interesting point. Since u is finite, its Fourier
transform is a continuous function of positive type. Since y and f must
coincide a.e., we have proven:

Proposition A bounded function of weak positive type is equal almost
everywhere to a continuous function of positive type.

IX.3 The range of the Fourier transform: Analyticity

In this section we investigate the connection between the decay properties
of a function or distribution at infinity and the analyticity properties of its
Fourier transform. The most extreme form of decay at infinity is to have
compact support. We will prove the Paley-Wiener and Schwartz theorems
which characterize explicitly the Fourier transforms of C* functions and
distributions with compact support. We then state two theorems relating
exponential decay to analyticity properties of the Fourier transform. We
close the section by characterizing the Fourier transforms of tempered
distributions whose supports lie in symmetric cones. There are many other
theorems of this genre; some of them are discussed in the Notes.

Suppose that fe CF(R"). Then for all { = {{,, ..., {,> € C", the integral

J@) = @uy™2 [ e 5 (x) dx

is well defined. Furthermore, f({) is an entire analytic function of the n
complex variables {,, {,, ..., {, since we can differentiate under the
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integral sign. In addition, if the support of f is contained in the sphere of
radius R, then an integration by parts yields

NI Q = @0 [ e =D () dx

Taking the absolute value of both sides and using the fact that f({) is
bounded on the set {{| |Im {| < g}, we easily conclude that for each N,

Cy eRliml
S e e
where Cy is a constant that depends on N and f. The interesting fact is

that these estimates are not only necessary but also sufficient for f to be in
CZ(RM.

forall{eC"

Theorem 1X.11(the Paley-Wiener theorem)  An entire analytic function
of n complex variables g({) is the Fourier transform of a C§(R") function
with support in the ball {x||x| < R} if and only if for each N there is a
Cy so that

C eR|1mc1

l9(¢)| <
for all (e C".
Proof We have already proven the “only if ” part. Suppose that g is entire
and satisfies estimates of the form (IX.6). Let { = A + in, where 4, ne R".

Then for each 7, g(A + in) is in & (R") as a function of 4, since the derivatives
fall off polynomially by (IX.6) and the Cauchy formula. Let

f(x) = (2m)~"? j €= 3g(1) dA (Ix.7)
i

Then by Theorem IX.1, fe #(R") and g(1) = f(1). We want to show that
(x) has support in the ball of radius R. Because of the estimates (IX.6)
and Cauchy’s theorem, we can shift the region of integration in (IX.7) so that

S) = @uy™2 [ 4+ g(d + in) d (IX.8)
Rl
Thus, by (IX.6)
n-x-n =n C
|76 5 = @u) ™ [ et dd

< eRi=x "7 (oq)y=ni2 di

Fear,
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where we have chosen N large enough so that the integral on the right is
finite. Now, f(x) does not depend on #, so if we let  — oo in an appropriate
direction, we conclude that | f(x)| =0 if |x| > R. |

This theorem has a natural generalization to the distributions with
compact support. Recall that a distribution T € '(R") has support in a
closed set K if and only if T(¢) = O for every test function ¢ with support
in R"\K. If K is compact, then T is said to have compact support. The set
of distributions with compact support is the dual space of &(R") (see
Problems 39 and 40 of Chapter V).

Theorem 1X.12 A distribution T € &'(R") has compact support if and
only if T has an analytic continuation to an entire analytic function of n
variables T({) that satisfies

ITE)| < C(1 + [¢])"eRitmel (IX.9)

for all { e C" and some constants C, N, R. Moreover, if (IX.9) holds, the
support of T is contained in the ball of radius R.

Proof Suppose that T € &'(R") has compact support and let ¢ be a C3(R")
function which is equal to one on the support of T. Define F({)=
T[(2n) " "2e™ % *p(x)]. By Theorem IX.5, F(4 + i0) is the Fourier transform
of T. Furthermore, since

(exp(—i(xj(g“j +h)+D0si G x))e(x) — e‘i('x(;{(i))

h,

J
e —ixje o(x)
and T e ¥'(R"), F({) is differentiable in the complex sense in each variable
and is thus entire.
Since T € &'(R"),
TN <C Y ¥ D |

laf< N
BI<N

for some N and C; and all f € #(R"). Thus, if ¢ has support in the
sphere of radius R, then
|[FQI< Cat + R + [¢[)elimeIR
)

Conversely, suppose that F({) is an entire function satisfying the estimate
(IX.9). Then F(A + i0)e &'(R"), so it is the Fourier transform of some
T € &¥'(R"). Let j(x) be an approximate identity. Then by Theorem 1X.4,
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T/*\j, = (2m)~"?j,(A)F(4). Since j, has compact support in {x||x| < &}, we
know by the Paley-Wiener theorem, that for each M we can find a
constant C,, so that

- C
l]e(C)l < H:—'Z%—)Fﬁ etlim{]

Therefore
C,g CelR+e)lIm1|
L+ ey
which implies (again by the Paley-Wiener theorem) that the support of
T * j, is contained in the sphere of radius R + ¢. Since ¢ is arbitrary and

(T * j,) = T weakly, we conclude that the support of T is contained in the
sphere of radius R about the origin. |

|@r)™" 2% LF Q)| <

One natural way to extend the above theorems is to replace “compact
support” with some weaker notion of decay at infinity. The following pair
of theorems (whose proofs are outlined in Problem 76) will be used in
Chapter XIII to prove the exponential decay of bound states of atomic
Hamiltonians.

Theorem IX.13  Let f beinI*(R"). Then &*If € I2(R") for all b < aifand
only if f has an analytic continuation to the set {{ | |{Im {| < a} with the
property that for each ne R" with |n| < a, f(- + in) e (R") and for any
b<a

sup | (- + in)|l, <

Inl<b

Theorem IX.14  Let T be in &'(R"). Suppose that T is a function with an
analytic continuation to the set {{ | |Im {| < a} for some a > 0. Suppose
further that for each ne R” with |n| <a, T(- + in)e }(R") and for any
b < a,supy, <, | T(- + in)||; < co. Then T is a bounded continuous function
and for any b < a, there is a constant C, so that

|T(x)| < Cpe™ ™!

Paley-Wiener theorems are useful for understanding certain kinds of
analytic completion theorems in the theory of several complex variables. The
basic phenomenon is illustrated in the following simple example: Let D, be the
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Theorem 1X.14.2  (degencrate tube theorem) Let T(x,,z,) and
Tx(z,, x;) be tempered distributions in the x variables (x € R*) and poly-
nomially bounded analytic functions in the z variables in {z € C*||Im z| < 1},
ie, for each z,, Ty(x,, 2,) is a distribution in x, and { g(x,)T(x,, z;) dx, is
analytic. Suppose that Ty(x,, x, + i0) = T,(x, + i0, x,) as distributions in
the two variables. Then there exists a function f(z,, ;) analyticin 7 (3) with
S = {yuy2lInl+1y:| < 1} so that

Ti(x,, 2;) = f(x4 +i0, 2;) and Ty(zy, X3) = f(zy, X3 + i0)

Proof Let g(A) = T,(-, + i0). Then, by hypothesis, e’*'g(1) and e?*2g(4)
are in & for —1 < 0 < 1 so e**g(1) e & for |a,| + |a,| < 1, proving the
result. |}

NOTES

Section 1X.1 J. Fourier’s original argument for the inversion formula appears in his
classic La Théorie Analytique de Chaleur, Didot, Paris, 1822. Although his argument would
not be considered a “rigorous proof™ by modern standards, it contained the main ideas of
the proof we have presented. The approach of first defining the Fourier transform on & (R")
and ¥'(R") and then restricting to the classical If spaces is due to L. Schwartz and is
described in Théorie des Distributions, Vol. 11, Hermann, Paris, 1954. Schwartz’s lucid book
is the basic reference for the study of the Fourier transform on spaces of distributions and
the theory of convolutions of distributions.

The Hermite expansion discussed in the Appendix to Section V.3 can be used to provide
short proofs of the Fourier inversion and Pluncherel theorems since ¢,(k) = (—i)'@.(k).

Section IX.2  The Riemann-Lebesgue lemma was first proven for a restricted class of
functions in B. Riemann, “Ueber der Darstellbarkeit einer Function durch einen trigono-
metrische Reihe™ in Math. Werke, Teubner, 1876, pp. 213-253, and for all of ! in
H. Lebesgue, “Sur les Séries Trigonométriques,” Ann. Sci. Ecole Norm. Sup. 20 (1903),
453-485. The Plancherel theorem appears in M. Plancherel, “Contribution 2 Pétude de la
représentation d’un fonction arbitraire par des intégrales définies,” Rend. Circ. Mat. Palermo
30 (1910), 289-335. The Hausdorfl-Young theorem was first proven in W. Young: “Sur la
généralisation du théoréme de Parseval,” C. R. Acad. Sci. Paris Sér. A-B 155 (1912), 30-33;
and extended in F. Hausdorff, “Eine Ausdehnung des Parselvalschen Satzes tiber Fourier-
reihen,” Math. Z. 16 (1923), 163-169.

The original proof of Bochner’s theorem appears in S. Bochner, Vorlesungen itber
Fouriersche Integrale, Akademie-Verlag, Berlin, 1932. For a proof of the generalization to
distributions, see Schwartz's book. The proof of Bochner's theorem which we give depends
on Stone’s theorem. Conversely, it is possible to derive Stone’s theorem from Bochner’s
theorem, see E. Hopl: Ergodentheorie, Springer-Verlag, Berlin, 1937, or F. Riesz and
B. Sz.-Nagy: Functional Analysis. Ungar, New York, 1955.

In some sense, the “natural™ setting for the I? theory of the Fourier transform is on an
arbitrary locally compact abelian group; see Chapters XIV and XV.
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Section 1X.3 The close relationship between the support properties of a function and the
analyticity properties of its Fourier transform was first developed by R. Paley and N. Wiener
in Fourier Transforms in the Complex Domain, Amer. Math. Soc. Collogium Publication,
Providence, Rhode Island, 1934. Their work concerned I? functions and I? boundary values
(see below). Nevertheless, a whole class of theorems relating support properties to analyticity
properties are usually called Paley-Wiener theorems. The connection between analyticity and
the Fourier Transform was further studied by E. C. Titchmarsh, Introduction to the Theory
of Fourier Integrals, Oxford Univ. Press (Clarendon), London and New York, 1937. The
generalization to distributions with compact support was first proven in L. Schwartz,
“Transformation de Laplace des distributions,” Comm. Sém. Math. Lund, tome suppl. dédié
a M. Riesz (1952). A more detailed relation between support and analyticity for functions
supported on compact, convex, balanced sets is given in Problem 22.

For additional discussion of the phenemona of analytic completion, see: S. Bochner and
W. T. Martin, Several Complex Variables, Princeton Univ. Press, Princeton, New Jersey, 1948;
R. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall,
Englewood Cliffs, New Jersey, 1965: L. Nachbin, Holomorphic Functions, Domains of Holo-
morphy and Local Properties, North Holland, Amsterdam, 1970; L. Hormander, An Introduction
to Complex Analysis in Several Variables, Van Nostrand, Princeton, New Jersey, 1966. For
applications to quantum field theory, see the Epstein article and Wightman's J. Indian Math. Soc.
article quoted in the Notes to Section I1X.8.

Bochner's tube theorem is due to S. Bochner, “A Theorem on Analytic Continuation of
Functions in Several Variables,” Ann. Math. 39 (1938), 14-19. The connection between tube
theorems and the Paley-Wiener theorem has been noted by E. Stein and collaborators; see
E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ.
Press, Princeton, New Jersey, 1971. In particular, the degenerate tube theorem was proven using
these ideas by R. A. Kunze and E. M. Stein in “Uniformly Bounded Representations, I1,"
Amer. J. Math. 83 (1961), 723-786 (see Lemma 21). Independently, Malgrange and Zerner
proved this result using more classical methods; see H. Epstein’s article.

PROBLEMS

1. Find the Fourier transform of 3x2 + 1.

t2. Give the details of the convergence of the Riemann sum to the integral at the end of
the proof of Theorem IX.1.

3. (a) Let R be a rotation and R® its transpose. Let fe &. Prove thatf/o? =f-R".
(b) Let D, be the map D, x = Ax on R". Let fe ¥(R"). Prove that
TN _
f°D1=)- "]"Dl—x
{c) Let T € &'(R"). Prove that

TN L TN .
(T-R)=T-R', ToD,=2""ToDy

4. Compute the Fourier transform of #(1/x), the Cauchy principle part, by using
Equation (V.4).

5. Compute the Fourier transform of f(x) = ¢~ ***/? as follows:
(a) Prove that —4f(4) = « df (4)/dA and conclude that f(1) = ce™ %2
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polydisk {{z, w)||z| < r, |w| < r} in C2. Suppose that f is an analytic func-
tion of two variables in the “polyannulus™ D,\D,. Then for each z with
1 < |z| < 1, g,(w) = f(z, w) is analytic in the unit disk and for each z with
|z} < 4, g,(w) is analytic in the annulus 4 < w < 1. Thus for each z there is
a Laurant expansion

@

g:(W) = Y a2
with a,(z) = Ofor n < 0 and 1 > |z| > 4. But the a,(2) are easily seen to be
analytic functions of z so that q,(z) = Oforn < 0and |z| < 1. It follows that f
has a continuation from D,\D stoallof D,! This is in striking contrast to the
case of one variable where given any open connected set Q < C, one can find
an f that is analytic on Q and on no larger set.

Definition  An open connected set Q = C"is called a holomorphy domain
if and only if for any w ¢ Q, there exists a function f analytic in Q with no
continuation to w. Given open connected sets Q = €} < C”, we say that Q is
the analytic completion or holomorphy envelope of Q if and only if:

(i) Qis a holomorphy domain;
(i) every function analytic in Q has a continuation to all of Q

With this definition, not every open connected set will have an analytic
completion, although if one extends the definition to allow Q to have a
multisheeted structure, then every Q does have a unique analytic completion.
Intheexample above D, isthe analyticcompletionof D, \l—),} .Wehavealready
seen that D, obeys property (ii). To see that (i) holds, we note:

Proposition If Q < C" is an open, connected, convex set, then Q is a
holomorphy domain.

Proof Given w ¢ Q, we can find (by the Hahn-Banach theorem) a real linear
functional Z from C" — R so that /(w) > /(z) for all z € Q. Let

L(z) = £(2) — i£(iz)
and f(z) = (L(z) — L(w))"!. Then f is analytic on Q since Re L(z) #
Re L(w)for ze Q, but f is singular atw. J

Paley-Wiener ideas are useful in discussing the analytic completions of
certain special domains,
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Definition Let S c R" be open. The tube over S, denoted by F(8), is
defined by:

T ={x+iylxeR", yeS§}

]’heorem 1X.14.1(Bochner's tube thgorem) Let S = R” be open and let
S be its (open) convex hull. Then Z(S) is the analytic completion of 7(S).

Sketch of Proof It follows from the proposition that each 7 (S} is a holo-
morphy domain, so it suffices to show property (i). We shall sketch a proof of
the slightly weaker fact that any polynomially bounded function f(z) on
F(S) extends to F(8). Since we could replace f by, for eaxmple, e~ *1(2),
this is not really much of a restriction, and one can recover the full result from
this special case. By translating, we can suppose, without loss, that 0 € S. Let
gy(x) = f(x + iy). Foreach y € §,g,is a tempered distribution,solet T, = 4,.
By the Paley-Wiener method, T(x) = *’Ty(x). Thus T, is a tempered
distribution with ¢’ Ty(x) tempered for all y € S. By the lemma below, this is
true for all y € § and thus, turning the Paley-Wiener argument around, T is
analytic in 7(5). |}

Lemma Let T e #(R"). Then the set of y so that e*?’T(x)e ¥ (R") is a
convex set.

Proof Since convexity is defined in terms of line segments, it is not hard to
see that it suffices to show that if T and e*T(A) are in &'(R), then **T(4) is in
F'(R) for all B e (0, 1). Let ¢, be the nth Hermite function of the Appendix to
Section V.3 (where the sequence space representation of & and .9’ is dis-
cussed). Define

9ie) = [ Te*g, ) a2
which is entire since e** (1) € &. Since T, e*T(A) € &', we have that
lg/x)] < C(1 + n*)"(2 + x*y"
Iga(x — )| < CU + n®>"(2 + x*)"
for suitable C and m. Applying the maximum principle to (2 + z2)™™ " 'g,(2),
we see that |g,(~i6)] < D(1 + n?)"for all 8in (0, 1) so TN e s. |}

This method is ideal for dealing with certain “degenerate cases.” In the
result below the reader should keep in mind thecase S = {y,, y,>|y, = O0or
¥2 = 0;|y,] + |y2] < 1}, which is not an open set.
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(b) Use the Plancherel theorem to prove ¢ = l/\/d.
{c) Check the Fourier inversion formula explicitly in this example.

6. Let # = I}(R, e ** dx) and define y, = x"e # forn=0, 1, ....
(a) Prove that Y ¥_, ((ik)"/m!W,, w3 ¢** in the norm topology on .

{b) Suppose 1 € # and (x™, #) = 0 for all m. Prove ¢ = 0. (Hint: show that ne™** = 0.)

(b’) Reach the conclusion of (b) without recourse to the Fourier transform. (Hint: Use the
fact that the functions (x + i)~" are total in C(R) and the formula (x + i)™ =
i[5 e7%e™ ds).

(c) Let {H,} be the orthonormal set obtained from {¥,} by Gram-Schmidt orthogona-
lization. Prove that {H,} is a basis for J#.

{d) Prove that {H (x)e”**2}=, is an orthonormal basis for [}(®, dx).

(e) Prove that H,(x)e™*/? is just the nth Hermite function (defined in the Appendix
to Section V.3).

7. Let {4,(2)} be the polynomials determined by the formula

@® all

N = p— %3+ 23a
ZA,,(A.)n' e
n=0

Define ¢,(4) = (2'n!)" 124, (4)e *'12,
{a) Prove that

(_l)n : d\r -
D= el -
b=t ()

so that the ¢,(4) are just the Hermite functions of the Appendix to Section V.3.
(b} If fe IR, dx) and (f, ¢,) =0 for alln =0, 1, ..., prove that for all g,

j f{x)e "R gy =0

(c) Use the Fourier transform to show that if fg f(x)e”*~*"/2 dx =0 for all g,
then = 0.
{d) Conclude that {¢,} is a basis for [}(R, dx).

8. The purpose of this problem is to prove the Plancherel theorem and the inversion
formula by using the Hermite functions. Let

1 d
A=~—~(x+—) and A'=—1—(x—i)

\/i dx \/i dx

N
() If fe Z(R") prove A'f(2) = ~i(A'F}A).
(b) Prove that ¢, = (~i)¢,.
(c) Supposing the fact that the Hermite functions are a basis for I2(R), prove the
Plancherel theorem and the inversion formula.

9. Suppose that C is a continuous map of ¥(R") into C°(R") which commutes with
translations. Prove that there is a T € #'(R") so that C(p) = T » g, for all ¢ ¢ F(R").
(Hint: I T € #'(R") and ¢ € #(R"), then T(g) = (T » 3){0).)
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Prove directly (without using the Fourier transform) that for fixed f e #(R"), the map
g f* g is a continuous linear transformation of #(R") into #(R").

Let p, and u, be finite Borel measures on R” and define

(1 1)) = | (= ) diay)

(a) Prove that u, * u, is a finite Borel measure on R", that y, » u, = u, * g, and that
for any fe C(R")

(s d) =[] S0+ ) dua(x) disa)

(b) Prove that u, * u, is absolutely continuous with respect to Lebesgue measure if
either u, or u, is absolutely continuous with respect to Lebesgue measure. Give
an example where u, * u, is not absolutely continuous.

The Fourier transforms of Borel measures of mass one on R" are sometimes called

“characteristic functions.” A characteristic function E{4) is said to be infinitely divisible

if for all positive integers n, there exists a characteristic function E{4} so that

E(A) = (E.()).

(a) Let u be a Borel measure of mass one on R and let E be the corresponding
characteristic function. Prove that E is infinitely divisible if and only if for all n
there is a Borel measure of mass one, p,, so that

”=/“n"“n*“.‘”n

n times
(b) Show that

E() = expliod — 4647) + [ (e~ 1) dp

is an infinitely divisible characteristic function if « € R, # >0, and p is a Borel
measure of finite mass on R. Give a (convolution) formuia for the corresponding
measure in terms of «, f, and p. What is the corresponding measure if p = 0?
What is the corresponding measure if a = 0= f and p = §(x — x,)?

Remark: There is a characterization of the Fourier transforms of all infinitely
divisible distributions known as the Lévy-Khinchin formula. See, for example,
L. Breiman, Probability, Addison Wesley, Reading, Massachusetts, 1968, 193-195.

Let Q be an open set in R*, K a compact subset of 0. Prove that there is a function
in CF(Q) which is equal to one on K. (Hint: See Problem 61 of Chapter V.}

14. The purpose of this exercise is to prove the Fourier inversion formula by an

alternative method. Suppose that fe ¥ (R").
(a) Prove that lim, | o [}’ ((sin x)/x) dx exists. Call it d. Now, show that

e o R
lim J sm X dx =d foranyR>0
e} 0% X

(Hint: Use facts about telescoping series.)
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(b) Prove that

in R
_f(y)] Slnu “du R -0

-0

f” [f(y—u)+f(.v+u)
0 2

(Use the Riemann-Lebesgue lemma.)
{c) Using (b) conclude that

4df(y) = lim j ) (j ) R (k) dk) dx
-R

R=o® " ~w

(d) Prove that () = (\/21/4d) {© . %7 (») dk.
(e) By letting f(x) = e~ *''2, conclude that d = =/2.

The purpose of this exercise is to provide an alternative proof of the Plancherel
theorem.
(a) Prove directly that if £, g € #(R")
N~ .
[g9=Qa)"%;
(b) Letting f(x) = f{~x), prove that

(f « D)) = [ 1700 2™ ak
(c) Set y = 0 and conclude that

[ dx = [ 17 (k)] dk
Prove that the map L}{R") - C(R") is not onto by exhibiting a function in C,(R")
which is not in its range.

The purpose of this problem is to develop the Fourier transform on L'(R*) without
reference to #(R").
(a) If f e L}(R"), prove directly that

JOY=@ry ™2 [ e f(x) dx
Jar
is a bounded continuous function. (Hint: Use the dominated convergence theorem.}

(b)If fe I}(R"), prove that f()—0 as [i|—»co. (Hint: Prove that 2f(1)=
(2r) "2 [ e ™4 f(x) = f(x — =d/|A]*) dx.

(c) Prove directly that (22)"%§ = f + 3.

. Find a function f(x) that satisfies all the conditions in the definition of “functions of

positive type” except continuity. To which function of positive type is f(x) equal a.e.?

Display a distribution of positive type that is not a function. What is its Fourier
transform?

Prove the Bochner-Schwartz theorem (Theorem IX.10). (Hint: Mimic our proof of

Boghner‘s theorem using the inner product (p, )= T(@ *+¢) and the formula
T(@* 0.} = (T« 3 * p}x))
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What does the generalization of the Paley-Wiener theorem to distributions with
compact support say about the Fourier transform of distributions with support at the
origin? Compute the same result directly by using Theorem V.11.

Let C be a convex, compact, balanced set in R”. Let
C°={klk-x > —1forall xe C}
be its polar. Let p be the Minkowski functional of C°, i.e.,

pln) =sup(n - x) = inf{A|Le R, ine C°}
xeC A>0

Prove the following version of the Paley-Wiener theorem:

A function f e &(R") has support in C if and only if f is the restriction to R" of
an entire function f(z) which obeys the condition that for any n there is a constant
D, so that

[7(2)] < Dy(1 + [z[2)~"e=Pom
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Supplement to 1.2 Applications of the Riesz lemma

There are a number of applications of the Riesz lemma (Theorem I1.4)
illustrating the power of abstract methods.

Application 1 (Von Neumann’s proof of the Radon-Nikodym theorem)
The following result impiies both the Radon-Nikodym theorem (Theorem
1.19) and the Lebesgue decomposition theorem (Theorem 1.20) when all of
the underlying measures are finite. To go from the finite to the o-finite case is
not hard (Problem 1).

Theorem S§.1  Let ypand v be finite measures on a measure space (M, &).
Then, there exists a set 4 € 2 with (M\A4) = 0 and f € L*(M, dv) so that
J = 0and

u(B) = Lf(x) dv(x)

for all B — A.
334
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Proof Let o be the measure y + v. Define the linear functional L on
L*(M, do) by

Lg) = fgdu

By the Schwarz inequality,

4
L) < ( j g2 du) u(M)*

4+
< ( f Ig]? da) u(M)?

so L is a bounded linear functional on L%(M, d«). Thus, by the Riesz lemma,
there is a function F with

WO) = Lite) = [ F dot) (s.1)
Fixy > 1 and let C, = {x|F(x) = y}. Then, by (S.1),
KC,) = y((C)) + W(C,))
from which it follows that
HC)=vC)=0

sothat F < la.e. (withrespecttoa, u, and v). Since (S.1) holds with v replacing
pand 1 — F replacing F, we see that F > 0 a.e. also.
Let

A,=xl1l—-n"'<sFx)<1—-@m+ 1)1}
and
A= )4,
n=1

Then, since F(x) = 1 on M\ A4,

W(M\A) = f Fde = p(M\A) + WM\ 4)

M\4

so M\ A) = 0.
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Define g,(x) = F(x)(1 — F(x))"! for xe A,, and g,(x) =0 for x¢ A4,.
Then for any B and h = y,, the characteristic function of B,

f gohdy = j hF(1 — F)~ 'y, (1 — F) da

= JhFxAn do = J.hXA.. du

=uBnA,)
Taking B = M, we see that ) .22 [ g, dv = p(4) < 0,50 [ = Y209, isin
L' by the monotone convergence theorem. Moreover, if B < 4,

fnfdv -y fg,h dv=Y WBnr A)=uB) 1

Application 2 (the Bergmann reproducing kernel) Let Q be a bounded
open subset of C. We want to introduce a natural object associated with the
analytic structure of Q. Write z = x + iy and let d%z = dx dy. Let #/(Q) be
the set of functions f € L¥(Q, d?z) that are analytic in Q.

Lemma Forallfeo(Q)andzeQ,
| f(2)] < = ¥dist(z, D] | f 1, (82)
and #(Q) is a closed subset of LY(Q).

Proof First, suppose Q = {z||z| < 1}. Then, by the Cauchy integral
formula,

£ =~

2x
. )
27 Jo Sf(re®) do

for any r < 1. It follows that
1 1 2z .
/O] = —| [ [ swenraran
TiJo Jo

SHSflen”'at =27 S,

By scaling and translation, if {z||z — z,] < r} < Q, then

/@)l < 774 IS,

so that (8.2) follows.
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(S.2) implies that whenever f, — f in L? and f, € o, then f, converges to
J uniformly on compact subsets of . Therefore, by a theorem of Weierstrass
(which follows from the Cauchy integral formula), fisin.o/.

Theorem §.2 Let 2 be a bounded open subset of C. Then, there exists a
function K(z, w) on  x Q so that:

(a) Kisanalyticinzand w

(b) [K(z, w)| < =~ [dist(z, 0Q)] ' [dist(w, 6Q)] "
(©) Kz, w)= K(w, 2)

(d) For any fixed z, K(z, w) € &(QQ)

(e) Forany fe ()

1) = f K(z, w)f () d*w (53)
Q

Proof Bythelemma, o/(Q)isa Hilbert space. By(8.2), f — f(z)isabounded
linear functional on & for each fixed z € Q. So, by the Riesz lemma, there
exists h, € &£(2) such that

for any f € o and
[k} < n~*[dist(z, 0Q)]* (S.5)

Let P be the orthogonal projection from L%(Q) to &#/(Q) (projections are
defined in Section VL2, but their existence depends only on Theorem I1.3).
Since h, € o, for any ge L?,

(hs, 9) = (Ph,, g) = (h,, Pg) = (Pg)(2)
It follows (using Theorem V1.4) that z — h, is antianalytic in z. Now define
K(z,w) = (h,, h.)
Using (S.5) and the above, (a)-(c) are obvious. Moreover, by (S.4),
K(z,w) = (b, k) = h(w)
so (d) is evident and (S.4) implies (S.3). |

Because of (S.3), K is called the Bergmann reproducing kernel for Q.



348 SUPPLEMENTARY MATERIAL

Example Let {g,(2)}3, be an orthonormal basis for =/(Q) (orthonormal
bases are defined in Section I1.3). Then

So(h,, 6)Gn B

K(z, w)

};fog,mg—m S6)

By Theorem I1.6, the expression (S.6) converges to K(z, w) for each fixed zand
w. But, since the finite sums are uniformly bounded on compact subsets and
analytic in z and W, the Vitali convergence theorem implies that (S.6) is
uniformly convergent on compact subsets of Q.

Consider the case Q = {z||z| < 1}. Then {z"(2n + 2)}(2n)"*}2, is an
orthonormal set, and it is not hard to see that it is a basis (Problem 2). Thus,
by (8.6),

K(z, w) = i i+ DEW)" =11 - zw) "2

in the case where Q is the unit disk.

Supplement to lIl.1  Basic properties of L” spaces

In this supplement we prove some of the basic facts about L? spaces which
are presented without proof in Sections III.1 and II1.2.

Theorem §.3 (Holder’s inequality) Let 1<p<oo, p™' +q ! =1
Let feL? ge L% Then fge L! and

Ifgly < 1/ Nplgll (CN))

Moreover, if neither f nor g are a.e. zero, equality holds in (S.7) if and only if
[g| is a.e. a constant multiple of | f(x)|?~ .

Proof We begin by proving an inequality on positive numbers:
ab < a’p~' + big7! (S5.8)
To prove this, consider the graph of the function

a=Fp)=b"
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<0, o> <4, 0>

<5,0>

FIGURE S.I The graph ofa = b, b = g? ™1,

or equivalently
b=F Yay=a""!

since (p — 1)(q — 1) = 1. (8.8) is geometrically obvious from Figure S.1: for
the area of region I is clearly equal to {§ a?~! da = a®/p and the area of region
II is less than [§ b9~ ! db = b¥/q.

Now we can prove (8.7). It is easy to prove if f or g is a.e. zero. By replacing

Soyflifll; " and g by gligl; !, we need only prove (S.7) when || /1|, = ligll,
= 1. Then, by (S.8),

f |f()gCo)] dx < p~! f |FOOP dx + ¢~ f 9GOl dx

=pl+q =1
This proves (S.7). That equality holds when }g(x)| = | f(x)|? ! is easy. That it
only holds in this case is left to the reader (Problem 4). |

Corollary1 Letfel? 1 < p < . Then
11, = sup{ll fgll.|lgl, = 1} (5.9)

Proof. That || f|, is greater than or equal to the sup follows from (8.7). To
get equality, take g to be a suitable multiple of | f(x)[”~.

Corollary 2 (Minkowski’s inequality) Let 1 < p < co. Then

W +gl, <IN, + lal,
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Proof By (8.9) and the triangle inequality for ||-||,,

ILf + gll, = sup{li(f + @kl | IR, = 1}

< sup{llfhll, + lighll,|IAl, = 1}
sup{llfhl,| Ik, = 1} + sup{lighl;| Ikl = 1}
0k, + gl 1

A

i

Theorem 8.4 Let (X, i) be a o-finite measure space, | < p < oo, and
L be an element of LP(X, du)*. Then there exists g € LY X, du) with |ig|l, =
{L)l e sO that

L) = [0 dut) (S.10)
Thus (LP)* is isometrically isomorphic to L%

Proof By Theorem S.3, the L in (S.10) is a bounded linear functional on L? if
g€ L? with norm (L5 < ligll,. In fact, |L{| 1. = ligll, by Corollary 1.
Thus, we need only prove the existence of g, given L.

Suppose that u(X) < oo and that we are given an L e (L?)* which is
positive in the sense that L(f) > Ofor / > 0. Define a function v on measur-
able sets by

v(A) = L(x4)

where y,, is the characteristic function of 4. Since p < o, if 4 = | JZ, 4,
with A4; disjoint, then Y Y_, x,, — x4 in L? by the monotone convergence
theorem. Thus

N-w n=1 n=

WA) = hm L( i XA,.) = il vw(A4,)

so v defines a measure. If y(4) = 0, then y, = 0in L? so W(4) = 0. Therefore,
by the Radon-Nikodym theorem, there exists g € L! with g > 0 so that

LG = [a001x) duo)
for any 4. Now let h be bounded and positive. One can find h, so that

h,(x) 1 h(x), Ith, — hll, = 0, and each h, is a finite linear combination of x’s.
Thus, by the monotone convergence theorem,

L(h) = f h()g(x) di(x)
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Fix K and let h(x) = |g(x)|*~* (resp. 0) if {g(x)| < K (resp. |g(x)| > K). Then

lp
f 190G dp(x) = L(h) < |IL| (f lg(xyja=be dﬂ(X))
o) K [

g(x) <K

1—-1/q
= L] ( f lg(o) 1 du(x))
lg(x} < K

Therefore,
f 9GO du(x) < LI
la(x)}l K

Since ||L|| < o0, and g is a.e. finite, we conclude that g € L°.

This proves the result if L is positive and u(X) < co. The argument in the
proof of Theorem I'V.16 shows that any L e (L?)* is a finite linear combination
of positive L’s (Problem 6), and it is also easy to extend the result to the o-
finite case (Problem 7). |}

Supplement to IV.3 Proof of Tychonoff’'s theorem

In this supplement we provide a proof of Tychonoff’s theorem, Theorem
IV.5, fleshing out the proof sketched in the notes to Section IV.3.

Definition A net {x,},.; of points in some set X is called a universal net
if and only if for every subset A — X either eventually x, € 4 or else eventually
x, € X\A.

Notice that the notion of universal net makes no mention of topology. Also
notice that this is a very strange notion. For example, the sequence {x, = 1/n}
is not universal, for suppose that 4 = {1/2n}. In fact, no sequence which is not
eventually constant is a universal net (Problem 8). The point of the definition
is the following obvious result,

Lemma 1 Any cluster point of a universal net is the limit of the net.

Universal nets are so strange that it is not clear that any exist. Indeed, the
existence of a universal subnet for the sequence {x, = n}, .z is equivalent to
the axiom of choice. Using this axiom, we can construet lots of universal nets,
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The questions of the uniqueness of « and the positivity of da if L is positive
are left to the reader (Problems 9 and 10). Our proof is very special in that it
does not extend naturally to more general spaces. We give it for two reasons:
Most applications that we give, in particular the spectral theorem, require
only the case X = [0, 1] or the case X = (— 0, o0) which is a simple exten-
sion. Secondly, the proof is a nice illustration of the power of the Hahn-
Banach theorem.

Proof of Theorem 8.5 Let PCgl0, 1] be the space defined in Section 1.2. By
the Hahn-Banach theorem, L extends to a bounded linear functional L
on PCgl0, 1]. Let y, ,, denote the characteristic function of [x, y). Define

ax) = Lyeo.) if x<1
(1) = L(xgo. 1)

We first claim that « is of bounded variation. Fix0 = xy < x; < .- < x, = 1
and let y; = yix,_,.xo €Xcept for i = n, for which we take x, = xx,_,.x,- Then,
for any a;,...,a,€ R,

IZ afe(x) — a(x;- )]l = IE(Z a; x|
< |IL) Slfplaxl

From this it follows that
Y lex) — alxi- )l < IIL)

by taking each g; = + 1. Thus « has bounded variation.
Now, given [ € C[0, 1], let ! be the above functions for x; = i/n and let

d i
L=2f (—)x?"
i=1 \N
PCOg]) ~ .
Then, f, —f. Moreover, L(f,) = f [, do by construction. Thus

L(f)=|im1:(fn)=nmffnda=ffda i

Supplement to IV.5 Minimization of functionals

In this supplement we want to show how the Banach-Alaoglu theorem can
be used to prove that certain functionals on Banach spaces take on their
minimum value. Such minimization problems often occur, for example, in
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the problem of finding geodesics, i.e., curves of minimum length. They also
enter in the context of solving equations of the form

Tw)=0 (S.11)

where T is a map from X to X*. For suppose that T is the gradient of a map F
from X to R in the sense that

d
i+ =T

Ai=0

Then, if ¥ minimizes F, it obeys (8.11).

An attractive method for showing that a function takes its minimum value
is to show that it is a continuous function on a compact set. For this, the norm
topology is not usually suitable, since only rather small subsets of Banach
spaces are compact in the norm topology. On the other hand, the Banach-
Alaoglu theorem suggests that, when X is reflexive, the weak topology is an
attractive possibility. The only problem with this is that lots of natural
functions are not weakly continuous. For example, the norm is not weakly
continuous for if it were, then {x||x| = 1} would be weakly closed and it is not
(Problem 40 of Chapter IV). However, if x, — x weakly, then

il = sup{|£(x)I|£ € X*; £l = 1}
= sup{lim|/(x,)||£ € X*, |¢} = 1}
< sup{lim||/{ ||x,}} = lim|ix,|

This shows that ||-}} is weakly lower semicontinuous where:

Definition A function F from a topological space X to R is called
lower semicontinuous (1.s.c.) if and only if x, — x implies that F{x) < lim F(x,).

One can show (Problem 11) that F is Ls.c. if and only if {x|F(x) < a} is
closed for all a. The point of this definition is the following:

Proposition A lower semicontinuous function F on a compact space is
bounded from below and takes its minimum value,.

Proof Let A = inf, F(x), If 4 > — 0, pick x, with

F(x,)<A+n!
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Clearly, for every 4 < X, we must make a choice of either A or X\ 4. These
choices are not quite independent, since if x, is eventually in both 4 and B,
then it is eventually in A n B so A n B # . This motivates:

Definition A filter is a family & of subsets of X obeying:

() PesF;
(i) if A, Be#,then A n Be%;
(i) fAc Band Ae &, then Be £.

An ultrafilter is a maximal filter, i.e., a filter that is not strictly contained in any
other filter.

Example 1  Fix x,. Then {4]x, € A} is an ultrafilter.

Example 2  Let {x,},.; be any net. Then & = {4|x, is eventually in 4}
is a filter.

Lemma 2  Any filter is contained in an ultrafilter.
Proof A simple application of Zorn’s lemma. |

The following lemma shows the connection between ultrafilters and uni-
versal nets.

Llemma 3 If  is an ultrafilter, then for any A < X, either A% or
X\AeX.

Proof Suppose that & is any filter and B < X obeys B n C # & for all
Ce#.Then{C n D|Ce #, B c D}isafiltercontaining # and B. Therefore,
if % 1s an ultrafilter, and B¢ %, then there isa Ce % with BN C = (.

Thus if A¢ % and X\ A¢ %, wecan find C, De % with A n C = & and
(X\A) n D = &. Therefore,

CnD=CnDnX
= [(CnD)n A] u [(C n D) n (X\A4)]
=0

which is not allowed since C and D are in %. Thus, to avoid contradiction,
cither Ae % or X\Ae%. |
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The following lemma contains all the hard work in the proof of Tychonoff's
theorem.

Lemma 4  Any net has a universal subnet.

Proof Let {x,},.; be the net and let % be an ultrafilter containing the filter,
& of Example 2. Let J = {{a, Ad|oel, Ae ¥, x, € A}. Order J by (a, A
> {B,B)ifa > fand A < B. The foliowing argument shows that J is directed :
If A € %, then x, is frequently in A4 for if it were not, then X\ A e # < %.Thus,
given any 4, B, a, B, thereisy > «, Bsothat x,€ 4 n B, i.e,, J is directed. Let
F:J - I by F(a, A) = «. Then y, 4, = X, is a subnet of {x,},.,. Moreover,
givenany A e %, find a with x, € A. f (8, B) > {a, A),then y; s, € As0 yis
eventually in A. By Lemma 3, we conclude that y is a universal net. |}

Lemmab A Hausdorff topological space X is compact if and only if all
universal nets converge.

Proof If X is compact, then by the Bolzano-Weierstrass theorem, any
universal net has a cluster point and so, by Lemma 1, a limit. Conversely, by
Lemma 4, if all universal nets converge, then every net has a convergent subnet
so X is compact by the Bolzano-Weierstrass theorem. |

Proof of Tychonoff’s theorem (Theorem IV.5) Let {x#},_, be a universal
netin X = X X, where each X, is compact. Then {x?'},_, is universal in X,
so by Lemma 5, x#" — x{™ for some x!{™’ € X,. Thus, there is x{* in X with
x® — x(=) By Lemma 5 again, X is compact. |

Suppiement to IV.4 The Riesz—Markov theorem for X = [0, 1]

Functions of bounded variation and Riemann-Stieltjes integrals are defined
in Problem 11 of Chapter 1. In this supplement we prove:

Theorem 8.5 Let L e(Cg[0, 1])*. Then, there exists a function o of
bounded variation so that

1
L(f) = fo 1 do
for any f e Cgl0, 1].
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and if A = — ., pick x, with F(x,) < —n. Let x be a cluster point of the x,
and let x,,, be a subnet converging to x. Then, by lower semicontinuity,

F(x) < lim F(x,q) = A
Thus A # —o0 and F(x) = A. |}

The Banach-Alaoglu theorem therefore implies the following basic result:

Theorem S.6 Let M be a weakly closed subset of a reflexive Banach
space X. Suppose that F is a function from M to R obeying:

(i) forsome g, {x e M|F(x) < a} is a bounded nonempty subset of X ;
(ii) F is weakly lower semicontinuous.

Then, F is bounded from below and there exists x, € M with

F(x,) = min F(x)

xeM

Notice that there are no changes in the above if we allow F to take the value
+ oc. Henceforth we allow this.

It is important to have a large supply of weakly L.s.c. functions. The follow-
ing is often useful:

Definition A function F on a vector space V is called convex if
F(Ax + (1 — Dy) < AF(x) + (1 — HF(y)
forall x, yve Vand A€ [0, 1].

Theorem S.7  Let F be a function from a Banach space X to (— o0, o0]
(with + oc allowed). Suppose that {x € X | F(x) < o0} = Vis a subspace, that
F is convex on ¥, and that F is norm Ls.c. Then F is weakly ls.c.

Proof Since F is convex, {x|F(x) < a} is convex. It is norm closed by
Problem 11 since F is norm Ls.c. By general principles (Problem 12) such a set
is weakly closed. Thus, by Problem 11 again, F is weakly lsc. ]

Example1 Let G: C — [0, o0) be convex and let (M, u> be a measure
space. Then the functional

Fu) = f Gu(x)) dp(x)
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(F may be + o) is weakly Ls.c. on all the L? spaces, p < oo. For F is clearly
convex and therefore it suffices to prove that F is norm ls.c. Let u, —» u in
L? norm. Pick a subsequence with lim; F(u,) = lim F(u,) and then a further
subsequence so that u,;(x) — u(x) pointwise a.e. Then G(u,;(x)) = G(u(x))
pointwise since a convex function is automatically continuous. So, by Fatou’s
lemma (Theorem 1.17),

F(u) < lim F(u,)

This establishes that F is weakly 1.s.c. Notice that a special case of this example
is the fact that the L" norm is weakly l.s.c. on L? for any pand r < .

We want to sketch some applications of these ideas. Occasionally, we shall
use terminology not defined until Chapter V or Volume II.

Example 2 (a nonlinear elliptic equation)  Given a real-valued function
f € CP(R"), we shall show the existence of a real-valued function u € L%(R")
such that

—Au+ulul+u=f (S.12)

where — Au is interpreted in the sense of distributions. Once one knows that
this equation has a solution in L2, the regularity methods of Section IX.6 show
that u is, in fact, C3. To solve (S.12) we define F: L? - (— 0, o] by

Fu) =} J'IVul2 dx + 3 J‘Iul:’ dx + 3 Jlulz dx ~ ~ff()c)u(x) dx

where we set F(u) = co if u¢ L? or if Vu¢ L2. If ge CP(R") and F(u) < o,
then F(u + Ag) is differentiable in 4 and

d
o7 P+ 3g)

= [T ue) + ueotueo) + ux) — 50 dx

If ¥ minimizes F, then the left-hand side is zero. Since this is true for all
g € Cg, u satisfies (8.12). Thus, we wish to show that F takes on its minimum
value.

By the Schwarz inequality,

F(u) 2 $lul? — Mul20f1l2 2 3l - 1113

Thus, {u € L?>|F(u) < 1} is bounded, and it is nonempty since F(0) = 0. As a
result, by Theorem S.6, it suffices to prove that F is weakly .s.c. The last term is
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obviously weakly continuous, and the second and third terms are weakly Ls.c.
by Theorem S.7. As for the first term, let u, —» u weakly; then

IVull, = suptl(/. V")”/ eCq. M, = 1}
sup{|(V- fLu)l| f € C3 Il = 1}

]

{
{
{llm!(V-f, ull fe CE NS N2 = 1}

{hml(f, Vu)l||feCT. IS l2 = 1}
< lim||Vu, |,

This proves the existence of solutions of (S.12).

The proof that we used above depends very strongly on the form of the
nonlinear term g(u) = (|u| + 1u.In particular, it depends on the fact that g is
the derivative of a convex function. This is certainly necessary for the method
to work. However, our proof above would not work if g(u) = julu, even
though |z|? is convex, since we would not know that {u| F(u) < 1} is bounded
in L2, Also it would not work if g(u) = u> + u, for in that case we could not
argue that u € L? implies that g(u) is a distribution (i.e., an L}, function).
However, both of these difficulties are easy to overcome (Problem 15) if one
realizes that L? is not sacred. In fact, for }g(u)| < Ju}®~ !, the natural space to
take is L? ~ H, where H, = {ue L*|Vue L?} with the norm (||Vu}l2 +
flull3)t. That this space is the dual space of LY + H¥ follows from general
principles (Problem 14).

Example 3 (the Thomas-Fermi equations) Fix z,,...,2, >0 and
R,,..., R, eR?and let
k
V(r) = Zzi" - R
i=1
The Thomas-Fermi equations are
p = max(g, 0)}
o) = V() — [ pta)ix = y1™* dy (S.13)
Occastonally, this is written as the differential equation

—A@ + 4n[max(p, 0)]} = 4n i 2,6(r — R)

i=1
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To solve this, we let

8(p) = g fp*(x) dx — fV(x)p(x) dx + ! de dy

S.14
3 )% =y (5.14)

defined on {p|pe L}, pe K, p = 0}, where K is the completion of CJ in the

norm
(e !
Il = (j D ax dy)

That the integral in question is positive follows from the fact that ||p||Z =
lim,, 4n(p, (— A + a)™'p). By general principles (Problem 14), L*~Kis
the dual space of the sum of functionals in L* and K*, The first and third
terms of (S.14) are weakly L.s.c. by general arguments (Theorem S.7). We leave
it to the reader (Problem 16) to prove that the middle term is a linear func-
tional in L* 4+ K*. It follows that &(p) takes its minimum value and, as in
Example 2, the minimizing p solves (8.13). The reason that max{¢p, 0} enters
is that we know that

d
d—AJ(P"')-g) =0

A=0

only for g with |g| < cp. For general g > 0, we only know that

d
ﬁg(p-i-)»g) >0

A=0

It can be proven using special features of this problem that ¢ > 0if ¢ is
the minimizing function (see the reference in the notes).

Example 4 (Hartree equations for helium) We seek solutions of the
equations

—Au — 2|x|" 'u + W (x)u = gu

B (8.15)
—Av — 2|x|7 v + Wy(x)v = ¢g,0
x € R3, with the subsidiary conditions
flullz = foll, =1 (S.16)

and

Wy(x) = fix —~ "'y dy

W) = [1x =y ) dy
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The physical significance of the equations is that formally (S.15) comes from
minimizing

£, v) = f(|Vu|2 + Vo) dx — 2 flxl'*(lul’ + o)

+ fiu(x)mv(y)mx —yItdxdy (S.17)

with the subsidiary condition (S.16); the ¢; are just Lagrange multipliers. Foru
and v obeying (S.16), one sees that

&(u, v) = (¥, HY)
Y(x, y) = u(x)u(y)
where

2 2 1

H=-A,—-A - — - = 4 —
ooaxl vl x =yl

so that solutions of (S.15), (S.16) can be expected to give approximate
solutions of Hy = Ey in some vague sense.

The new feature of this example is the subsidiary condition (S.16), for the
set of functions obeying (S.16) is not weakly closed. Thus, once one shows that
& is weakly lower semicontinuouson H, @ H, withH, = {u|Vue L*,ue L%}
(see the reference in the Notes for this), one can use Theorem S.6 to show only
that & takes its minimum subject to the subsidiary conditions

ull, <1, fol; <1 (8.18)

for this set is the weak closure of the set obeying (S.16). However, one can
actually show that the minimizing function subject to (S.18) obeys (S.16). For,
let u® and ' minimize & subject to (S.18). Then

Ew, v = ¢ + (u, hu)
where

h=—A+ V(x)
2
V) = - =+ flv“”(y)l’lx — "t dy

Let i be the function that is the lowest eigenvector of i = ~A — [x|™!. Then

(@, hit) = (&, hil) + (9, Wv'®)
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where
W) = —ix|t + f|a<y)|2|x — Y™ dy

~ x4 flﬁ(y)lz[max{lyl,lxn]" dy <0

since # is spherically symmetric. Thus
@ hi) <0

It follows that ('@, '®) < 0, for if not, then we would have £, v'*) <
EW®, v ). If Ju'®||, = a, then

g(a—- lu(O)’ v(O)) = g(u(O), v(O)) + (a—Z - 1)(“‘0), hu(O))

Since (u'®, v'?> minimizes &', v'?) over all (u'®, v'?> with [[u'?) < 1,
119 < 1, we have that a = 1, so Ju'@|, = 1.

The above is typical of applications with subsidiary conditions in that extra
structure must be taken into account. Sometimes the extra structure is not
present. For example, if one tries to minimize &(p), given by (S.14), with the
condition { p(x) dx = A, then a minimum exists if and only if 1 < Y ¢, z
(see the reference in the Notes).

Example 5 (existence of geodesics) Let M be a closed subset of R”, for
example, a smoothly embedded surface. A continuous curve y:[0, 1] —
M < RYiscalled rectifiable if and only if its distributional derivative (thinking
of y as a function on [0, 1] with values in R*), Vy, lies in L'([0, 1], R"). For any
rectifiable curve, one defines its length L(y) by

1
Ly) = fowws)vds

We want to prove:

Theorem S.8 Let M be a closed subset of R” and let x and y be in M.
Suppose that there is a rectifiable curve lying in M with y(0) = x, (1) = y.
Then there is a curve § with these properties so that

L) = d,,, = inf{L(y)|y lies in M, y(0) = x, (1) = y}.

Such a minimizing curve is called geodesic.
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Proof One cannot try to use Theorem S.6 directly on L(y) because L! is not
reflexive. In fact, there is good reason why one cannot do this. For consider a
reparametrization. Let f be a positive L' function on [0, 1] with {§ f(s) ds
= 1. Define

T(s) = ff(t) dt
0

¥(s) = y(x(s)
Then V5 = [(Vy) - t]/. Thus

1 1
LG) = LIV?ldS= L:(w)orzdmuy)

Of course, this invariance of length is what makes length such a natural object.
But it means the following: Let y, be a sequence of curves with L(y,) — d, .
Let 7, be a curve which is a reparametrization of y, with the property that
{6/" IV,| ds = 4 (this can be done with a piecewise linear reparametrization).
Then L(3,) also converges to d, ,, but 3, cannot have a reasonable limit. This
says that one cannot hope to deal directly with L(y) by just being clever in the
choice of space.

The way around thisdifficulty is what mathematicians often call “ Dirichlet’s
principle” and what a physicist would describe by saying that “a free particle
on a curved surface moves along geodesics at constant velocity.” We define

EQ) = f Vy(s)[? ds
0

We shall use Theorem S.6 to find a curve y, that minimizes E and then verify
that L(y,) < L(y) for any y (i.e., y, is a geodesic). Along the way we shall show
that [Vye(s)| is a constant (constant speed).

We begin by setting

Y= {feLz([O, 1]; RY, dx)

X + rf(t)dt =) eM
0

for all s € [0, 1], and (1) = y}

and

1
() = f |F )1 ds = EGV)
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Clearly E(f) is weakly lower semicontinuous and for any a, {(fIE(f) < a}
is bounded. We defer the proof that it is nonempty for some a. Notice that

S fof () dt

is a continuous linear functional on L%([0, 1]; R", dx) so, since M is closed,
we have that Y is weakly closed. Hence there exists a p, minimizing E.
Given any rectifiable curve y define a function T by

T(s) = Liy)™* fouvwn dt

We claim there is a continuous curve y* so that
YHT(s)) = 9(s)

To see this, note that T(so) = T'(s,) if and only if y is constant on [sq, 5, ]. y* is
called the geodesic reparametrization of y, although in the special case that
{Vy] = O on an interval, it is not a reparametrization! However,

L(y*) = L(y)
since y is always a reparametrization of y*. Next notice that
IVy*()l = L(y)

since [§|Vy*(t)| dt = T(s)L(y) for any T(s). In particular, E(y*) < c0, so
that if there are rectifiable curves, there are also curves of finite energy. This
shows that the set Y above is nonempty.

Next notice that by the Schwarz inequality, for any 7y,

E(y) = L(y)* = L(y*)* = E(y*)

with equality only if y = y*! Thus, the curve of minimum energy has |Vy,| =
constant. Moreover, for any other y,

L(y) = E(y*)* = E(yp)* = L(y,)
SO 7o is indeed a geodesic. |}

Supplement to V.5 Proofs of some theorems in nonlinear
functional analysis

In this supplement we shall sketch the proof of the Leray-Schauder-
Tychonofftheorem in the case where C has a separable topology, and we shall
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state and prove the implicit function theorem. The Leray-Schauder-
Tychonoff theorem is already highly nontrivial in the finite-dimensional case.
We use some machinery which we take from algebraic topology. We state the
following Theorem without proof:

Theorem $.9 Forn=0,1,2,..., there is a map H, from the set of
topological spaces .7 to the set of abelian groups « so that for each X € 7,
Y € 7 and continuous function f: X — Y, there is a group homomorphism f,
from H,(X) to H,(Y) satisfying:

(i) Iff:X->Yandg:Y > Z then(go f), =g,° [

(i) Ifid: X — X is the identity map on X, then (id),, is the identity map on
H(X).

(i) If D™ is the m-dimensional disk, {x e R"|[x| < 1}, and S""! is its
boundary, then for m > 2, H,,_ ,(D™) = {0}, the group consisting of a
single element, and H,,_ ,(S""!) = Z, the integers. For n = 1, Hy(D')
=Zand Hy(S*) =7 ® Z.

H,(X) is called the nth hemology group of X. It is a measure of the number
and type of (n + 1)-dimensional “holes” in X.

Theorem $.10 (Brouwer fixed point theorem) Let C be a compact convex
subset of R” and suppose that f: C — C is continuous. Then f has a fixed
point.

Proof Suppose first that C = D", the n-disk, and suppose that f has no fixed
point. Given x € C, let g(x) be the point at which the line from f(x) to x
intersects $"”'; i.e., g(x) is determined by the conditions g(x) = f(x) +
a(x — f(x)) for some a > 0, and |g(x)| = 1. Since f(x) is assumed to be
always distinct from x, it is easy to see that x — g(x) is a continuous map of
D"into $""!, and it is clear that this map leaves points in "~ fixed. Let h be
the natural map of S"~! into D" obtained by inclusion. Then goh = id.
Thus, by parts (i) and (ii) of Theorem 8.9, g, o h, = id, on homology. But for
n>1,h,:Z — {0} and g,: {0} - Z so that g, o h, could not possibly be the
identityonZ.Forn = ,h,:Z®Z > Zandg,:Z - Z ® Zsoagaing,°h,
cannot be the identity. Thus, we have a contradiction and conclude that f
must have a fixed point if C = D"

Given a compact, convex C < R", we can find a plane P of minimal dimen-
sion mand a vector vy so that C < v, + P.Itisnot hard to prove (Problem 20)
that if we think of C as a topological subspace of v, + P, it has an interior
point x,. Thus, for any ve P, |v| = 1, the set {t > 0|x, + tve C} is a non-
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empty closed interval {0, h(v)] since C is convex and closed. Further, i(v) > 0
since x, is an interior point of C in v, + P. h is a continuous map of the unit
sphere S”~! to R, and the map

F:y— [h((y = xo)/ly — %0 1)1 '(y — %o)

is a homeomorphism of C onto D™ Thus, the theorem for disks implies the
general finite-dimensional case since all compact convex sets are homeo-
morphic to disks.

Proofof Theorem V.19 (in the case where C has a countable base) Let {x,} be
the countable dense set that we are assuming exists. For each n and m, we can
find by the Hahn-Banach theorem an /,,, € X* so that /,,(x,) # Z,m(x.,). Since
each £, is bounded on C we can normalize the /,,, so that sup, ¢ |/, ()| <
27""™ Introduce a metric d on C by

3
d(x, y) = [Z 1 (X — Y)IZ]

Since d separates the x, from one another, it is easy to see that it separates
points. Moreover, d is continuous. Thus, the identity map from C with its
original topology to C with the metric topology is a continuous bijection from
a compact space to a Hausdorff space, and hence a homeomorphism.

By the definition of d, it is easy to see that it obeys the parallelogram law
since this law is obeyed by each |£,,(x — y)| term separately. By mimicking
the proof of the lemma to Theorem 11.3, one sees that for each compact convex
subset D of C and each x e C there is a unique point np(x) in D closest to C and
that 7, is continuous.

Now, given ¢ > 0, we can find, by compactness, a finite subset y,, ..., yx
of C so that any point in C lies within ¢ of some y;. Let D be the set of points

9,=1}
1

D is a compact convex subset of C homeomorphic to a convex subset of some
R™ (m < n). Moreover,

M=

{01}71 + tre + 9,,y,,|0 Se, S ];

i

d(rp(x), x) < ¢ (8.19)

forallxe C.Letg: D — Dby g(y) = np(f(y)). By Theorem S.10, g has a fixed
point x,. By (S8.19), d(f(x,), x.) < . If x4 is a limit point of the sequence x,,,
then d(f(x,), xo) = 0, ie.,, x¢ is a fixed point of /. |

* % %
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To illustrate the uses of the contraction mapping theorem, we shail prove
the implicit function theorem in Banach spaces. First, we define:

Definition  Let X and Y be Banach spaces. We say that a function f from
a neighborhood N, of x, in X to Y is differentiable at x, if and only if there
exists a linear map T € (X, Y) so that

Hm x| [f(xo + x) = fx0) — Tx] =0

x—0
We write T = (Df){(x,). If N is open, if f is differentiable at all points in N, and
if x = (Df)}(x) is a norm continuous map of N into £(X, Y), we say that f is
ClonN.

Theorem S.11 (implicit function theorem)  Let X and Ybe Banach spaces
and let M, and N, be neighborhoods of xo € X and y, € Y, respectively. Let
F:My x Ny — Y be a C! function. From the definitions it follows that for
each {x.y,> € My x N,, there are bounded operators D, € Z(X, Y) and
D, e (Y. Y) so that DF(x,. y,;) is the linear operator given by {x, y> —
D\x + D,y. At the point {x,,y,;> = (X, Vo), We set T=D,, §=D,.

Suppose that F(x,, vo) = 0 and that § has a bounded inverse. Then, there
are neighborhoods M, =« M, and N, = N, of x4 and y, and a C' map
g: M, —» N, so that F(x, g(x)) = O for all xe M, and for each xe M, g(x)
is the unique point y in N, satisfying F(x, y) = Q.

Proof Weshall prove the existence and uniqueness of g. The verification that
g is C' is left to the reader (Problem 21). First, choose ¢, and 6 so that

M, = {x|lix — xoll <&} =My, Ny = {yllly — yoll <} = Ny
and, for {x, y>e M, x N,,

I = 87'D,|f < %
Such a choice is possible since S~ ! D, is norm continuous as {x, y) varies and
equals I at (x4, yo». Now, set
a= sup [IS7'Dy|

(x.y>eM3XN,

and let M, = {x|flx — xoll < &,} where ¢, is chosen so that ¢, < ¢; and
ag, < $0. We claim that for any fixed x, € M |, there exists exactly one ye N,

with F(x,, y) = 0. By the fundamental theorem of calculus, for any C!
function G.

I1G(a. b) — G(a'. b)) < ¢ylla — a'|| + c,llb — b’ (8.20)
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where

¢, = sup |D,G(fa + (1 — 6)a, b)|

Ogoxg1

and
¢, = sup ||D,G(a, 6b + (1 — 6)b)]

0s8s1

Given x, € M, as above, let

Hy)=y— S '"F(x;,y)
Using (S.20), we see that

IH(yo) — yoll < alixy — xoll < 49
Moreover, by (5.20) again,

1HQ) — HOOI < 4y - ¥

if yand y’ are in N,. Thus, H maps N, into itself and is a contraction. Notice
thatif N', is the open ball about y, of radius &' < d where|d’ — J|issmall, then
this same argument shows that H takes N into itself. Thus H has a unique
fixed point y, in N\ = N,. Since H(y,) = y,, we have F(x,,y,) =0. |

Corollary 1 (inverse function theorem) Let Y be a Banach space and
suppose that f: N — Yisa C' mapping where N is a neighborhood of y, € Y.
If (Df)(y,) is invertible, then there are neighborhoods N, of f(y,) and N,
of yoanda C' mapg: N, —» N, so that f o g = I and g(y) is the only point in
N, with f(g(»)) = y.

Proof Let F:N x N—>Y by F(x,y)=x — f(y). Then D,F = —Df is
invertible at {f(y,), yo». Now apply the implicit function theorem. §

Corollary 2 (implicit function theorem—extended form) Let X, Y, and
Z be Banach spaces and let Ny and M, be neighborhoods of x, € Xand y, € ¥,
respectively. Let F: My, x N, —» Zbea C! function. Thus if T= (Df)(xq, Jo),
there are R € #(X, Z)and S € Z(Y, Z)so that T{x, y> = Rx + Sy. Suppose
that F(x,, yo) = 0.

Suppose that S is onto Z and that there is a closed subspace Y; < Y so that
Y, + Ker S = Y, Y, n Ker S = {0}. Then, there is a neighborhood M, of x,
and a C! function g: M, - Y with g(x,) = y, so that F(x, g(x)) = 0 for all
xeM,.
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Proof Pick ¢ so that {y|lly — yoll < &} © N, and let G be the mapping of
M, x {ve Y,|lyl <€} into Z given by G(x,y) = F(x,y, + y). Then
D,Glxo.05> = S | Y;. By construction, S [ Y; is one to one, onto, and con-
tinuous. Thus Y, is isomorphic to Z and S [ Y, is invertible. By the basic
implicit function theorem applied to G, g exists.

Notice that the g(x) in this last corollary need not be unique; it is unique if
one adds the condition g(x) — y, € Y,. Two cases where a suitable Y, exists
whenever S is onto are the case dim Y < o and the case where Y is a Hilbert
space.

Supplement to V1.5 Applications of compact operators

In Section V1.4 we outlined the application of compact operators to the
solution of the Dirichlet problem for bounded regions in R In this supple-
ment we give two simpler applications. Consider the following initial-
boundary value problem in partial differential equations (g is continuous):

ux, 1) — uy(x,t) + g(xu(x, t) =0, 0<x<1
u(x, 0) = f(x) (58.21)
u0,) =0=u(l, 1

There are various physical situations that are modeled by this equation. For
example, u(x, t) could be the density at x at time ¢ of a gas in a pipe of length
one. If g(x) is zero, then we have the usual diffusion equation with diffusion
constant one. If g(x) is positive, then g(x)u(x, t) units of gas per unit length
per unit time are removed at {x, t) by a chemical reaction with other material
in the pipe. It is reasonable that the amount removed at {x, t) be dependent on
the local density u(x, ) and on the position in the pipe through g(x). The
condition u(x, 0) = f(x) gives the gas density at ¢ = 0, and the boundary
conditions reflect a situation where the gas can freely escape at the ends so
that the density at the ends is effectively zero.

Following the method of eigenfunction expansions, one first tries to find
solutions of the differential equation and boundary conditions of the form
Y(t)o(x). Plugging into the differential equation, we find that

v _ ')
W) ox)

— q(x)
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for all x and ¢, so both sides equal a constant, call it — 4. Thus, we must solve
the differential equation

Y + (@) =0

and the eigenvalue problem

—@"(x) + g(x)p(x) — Ap(x) =0 (8.22)
@(0) = 0 = ¢(1)

Recall what happens in the case g(x) = 0. In that case we can solve the
differential equation explicitly, and we find that the eigenvalue problem has a
solution if and only if A = 4, = (nm)?, n = 1, 2,.. ., in which case

ox) = @, (x) = L2sinntx  and  Y(t) = P,() = e

Thus, for each n, ¥,(t)@,(x) solves the differential equation and boundary
conditions in (S.21). Since the differential equation is linear and the boundary
conditions are homogeneous, any linear combination of these solutions is
again a solution of the differential equation and the boundary conditions. So,
one tries to write the solution of (S.21) in the form

w0 = 3 0,000

and tries to choose the coefficients {a,} so that

163 = 3,0 = ¥ 0,0, (523)

The fact that one can do thisis just the classical fact that every (sufficiently nice)
function f(x) can be represented by a convergent Fourier (sine) series.
Now, consider the case where g(x) is not identically zero. At first sight the
problem seems almost impossible. It is not immediately evident that the
eigenvalue problem will have solutions for a discrete set of A,. Even if it did, we
would not expect to be able to compute the A, or the corresponding eigen-
functions ¢, explicitly. And, even if we could compute the ¢, explicitly, how
could we expect them to obey the many identities for sine and cosine which
are used in proving the classical Fourier series theorem? Notice, however,
that if the eigenvalue problem (8.22) does have solutions 4,, ¢,, then

1
fow,,(xm(x) dx =0
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if n # mand A, # 4,,. This can easily be checked (Problem 22) by substituting
using the differential equation, and integrating by parts. Thus, the eigen-
functions, if they exist, are orthogonal in the sense of (real) L*[0, 1]. This
suggests that we reformulate our problem as a Hilbert space problem. What
we are really asking is whether (8.22) has a set of solutions {¢,(x)}, with
corresponding eigenvalues A,, which are an orthonormal basis for L?{0, 1].
If thisis true, then every f € L2[0, 1] can be written in the form (S.22). Further,
the ¢,(x) are automatically twice continuously differentiable. Also, one can
show by integration by parts (Problem 22) that any 4, that do exist must
satisfy A, > inf g(x). In the proof below it turns out that the A, can have no
finite limit point, so only finitely many of them can be nonpositive. Therefore
the series

u(e, ) = ¥ ae”0,(x)
n=1
will converge very rapidly for r > 0, so that one can check that u(x, t) satisfies
the differential equation (S.21) for t > 0. u(x, 1) satisfies the boundary con-
ditions since the ¢,(x) do, and u satisfies the initial condition in the sense that

fu(x, ) = f&N2— 0

as t | 0. Thus, we can solve our original problem in partial differential
equations if we show that (8.22) has a family of solutions {¢,} which are a
basis for L2[0, 1].

For simplicity, we shalil assume that g(x) is continuous and that ¢(x) > 0.
The positivity hypotheses is easily removed (see Problem 22). Let u,(x) be a
nonzero solution of —u"(x) + g(x)u(x) = 0 that satisfies uy(0) = 0 and let
1,(x) be a nonzero solution that satisfies u,(1) = 0. The Wronskian of the two
solutions W = ug(x)u,(x) — ue(x)u’(x) is constant on [0, 1] and equals zero
if and only if ug(x) = au,(x) for some a. But if this is s0, ug(0) = 0 = uy(1) so

1 1 1
f (up)? dx = —J- Upug dx = —J. q(x)u? dx
~Jo 0 0

which implies that ug(x) = 0 so ug(x) is constant. But since uy(0) = 0, we
would have uy(x) = 0. This contradiction shows that W # 0. Thus, for
ve [0, 1], we can define

K y) {uomu.(y)W“, x<y

uo(Vu, (x)W ™, X >y

and set

1
(TY)(x) = fo kG, V() dy
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Then, by Theorem VI.23, T is a Hilbert-Schmidt (and therefore com-
pact) operator on L2[0, 1]. We shall show that T is a right inverse to
= —d*/dx?® + q(x). Suppose that Y(x) € L2[0, 1] and write

x 1
(THE) = W™y (x) j UoIW() dy + W ug(x) f uy () dy

Since € L2, the indefinite integrals are absolutely continuous and
d X ., 1
7 T = W40 [ w00 dy + W= ute) [ n)w) dy

Again we see that (d/dx){Ty)(x) is absolutely continuous and
dz X 1
5 T =W ') [ aaO0) dy + W) [ w0 dy
+ Wi (ue(x)P(x) — W™ Tug(x)u, (x)(x)

= q(x) L k(x, ywW(y) dy — ¥(x)

Thus, (Ty)(x) is twice differentiable, with second derivative in L2[0, 1] and

2
~ 25T + dTHE = YK

that is, LTy = ¢. Notice also that, because uy,(0) = 0 = u,(1), Ty satisfies
(TY)(0) = 0 = (TyY)(1). In the terminology of Chapter VIII, we would say
that T takes L2[0, 1] into the domain of —(d?/dx?) + q(x).

As pointed out above, T is compact and since k(x, y) = k(y, x), T is
self-adjoint. Thus by the Hilbert-Schmidt theorem (Theorem VI.16), there is
an orthonormal basis {¢,} and a sequence of numbers {y,} so that

TQ, = ia®n

LT =1, so we have
¢, = LTo, = p, Lo,
which shows that u, # 0 and

1
—@n(x) + g(x)p.(x) = " ®,

n

and, since @, is in the range of T, we automatically have
¢.0) = 0 = ¢(1)
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Notice that u, - 0 since T is compact. Thus the 1, cannot have any finite
limit point. Since they are bounded below (Problem 22), we have 4, — o0.
We summarize:

Theorem S$.12  Suppose that g(x)is a continuous function on [0, 1]. Then
there exists an orthonormal basis {¢,} for L?[0, 1] consisting of twice con-
tinuously differentiable functions and a sequence of numbers 1, — oo such
that

= @n(x) + g(x)9,(x) = 4,0,(x)

In Problem 23 some of these ideas are extended to space dimension three.
The unbounded operator L discussed above has a compact resolventat 4 = 0
and therefore, by the first resolvent formula, L has a compact resolvent for all
A€ p(L). Operators with compact resolvent are discussed in Section XII1.14.

As a second application of compact operators we prove the following
classical theorem of Weyl:

Theorem 8.13  Suppose that 4 and B are self-adjoint operators on a
Hilbert space such that A — B is compact. Then o (A4) = o.(B).

Proof o, () is defined in Section V11.3 and according to Wey!’s criterion
(Theorem VI11.12), 1 € 6,,(A4) if and only if there is an orthonormal sequence
{¢.} such that |(4 — AW, || — 0. Suppose that this is the case. Since the y,
are orthonormal, they converge weakly to zero. By Theorem VL11, this
implies that ||(4 — BW,|| — 0 since A — B is compact. Thus,

(B — Dl < (A4 — Al + (A — Bl -0

Therefore, by Weyl's criterion, A € 6,..(B). This shows that ¢ . (A) < 6..(B).
By symmetry, 0..(B) = 0., (4). 1

Various generalizations of this theorem as well as applications are dis-
cussed in Section XII1.4.

Supplement to VII1.7 Monotone convergence for forms

In this supplement we prove some very useful approximation theorems for
positive self-adjoint operators.
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Definition  Lettand s be two positive quadratic forms on a Hilbert space
M. We say that t < sif and only if Q(¢) = Q(s) and (¢, @) < s(¢, @) for all
@€ Q(s)

Note that this definition says that if ¢ is an extension of s to a larger domain,
then ¢t < s. In particular, f < ¢ for any closable form ¢.

Theorem S.14  Let ¢, ¢,,...,1,,... be a sequence of closed, positive
quadratic forms satisfying 0 <t¢, <-.-- <1, <---.. Suppose that
(1) = {coe%’ sup (@, ¢) < oo}

is dense. Then the quadratic form

tw(q’a (P) = lim l,,((P, (P) = Sup tn((pa (P)
n—o n
with domain Q(t,,) is closed. Moreover, if T,, T, are the operators corre-
sponding to these forms, then T, - T, in strong resolvent sense.

We give two proofs of this theorem below. Note that by the Schwarz in-
equality applied to t,(¢, ¢), Q(t,,) is a vector space and that, by polarization,
the values of t (¢, @) determine those of t, (¢, ).

To state the second convergence theorem, we need some preliminaries.
We say that a form ¢ is closable if and only if it has a closed extension. Then
there always exists a smallest closed extension which we call 7, that is, a closed
extension whose domain is contained in the domains of all other closed
extensions.

Theorem $.15  Let t be any positive quadratic form. Then, there exists a
largest closable quadratic form ¢, that is smaller than ¢.

We can now state:

Theorem S.16  Let ¢,,...,¢,,... be a sequence of closed, positive,
quadratic forms with ¢, > t, > --- > 0. Let Q(t,,) = | J, O(t,) and

tolp, @) = lim t,(@, ¢) = inf 1,(, ¢)

Let T, be the operator corresponding to ¢, and let S correspond to the closure
of (t,),. Then T, — S in strong resolvent sense.
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Notice that part of the first convergence theorem has no analog in the
second.

Example LetQ = {fe# = LY ~cw, ©)|f €L* —o0,00)}. It can be
shown (see Example 3 in Section X.2) that any f € Q is continuous and that
the ¢, defined on Q by

W) =n [ TR0 dx + [0

are closed, positive, quadratic forms. Clearly ¢, 2 t; > --- and t,(f,9) =
1(0)g(0). But t, is not closed or even closable. In fact (t,), = 0s0 S = Oin this
case.

The following result, which is of independent interest, is relevant to the
monotone convergence theorems.

Theorem S$.17  Let Sand T be two positive self-adjoint operators and let
s, t be the corresponding quadratic forms. Then s < tifand only if (T + 1)7!
<SS+ 174

Proof Suppose that s < t. Then for any ¢, (T + 1) '@e D(T) < Q(t)
0(s), so

(@ (T+ D7) =S+ D)7, (S+ DNT + 1))
<@, (S + DT'OMT + D7 'o, (S + INT + D)7 o)t
< (@, (S + D7'OH(T + 1)1, (T + IXT + 1) o)
< (@, (S + Do), (T + 1))t
proving that (T + 1)~! < (S + 1)~ '. The first inequality is just the Schwarz

inequality and the second uses s < ¢.
Conversely, suppose that (T + 1)™! < (S + 1)~ Let 5 € Q(s). Then

T + )™XS + D¥gh? = (S + DI (T + 1)7XS + D)
< (S + Dig,(S+ 1)"YS + Dy
=(n, 1)

Thus (T + 1) ¥S + 1)! is a bounded map of norm at most one from Q(s)
to J. It follows that its adjoint is everywhere defined and has norm at most
one, i.e., Ran((T + 1)™ %) = Q(t) = Q(s) and for any n = (T + 1)" ¢ € Q(¢),

G+ DO =18+ DHT + D> < Jol> = (t + D.m)
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Our first proof of Theorem S.14 depends on the notion of lower semi-
continuous function defined in the supplement to Section IV.5.

Theorem S.18 Let ¢ be a positive quadratic form. Define t(¢) on 5# by
{t(q», @ if 9eQ
if o¢Q0)

Then ¢ is closed if and only if # is lower semicontinuous.

i(p) =

Proof Given any positive quadratic form ¢, we can define 5. | , to be the
completion of Q(t) in the norm [t(¢, ¢) + (@, ¢)Jt. The bounded linear map
@ — @ of Q(t) into ) extends to amap i of #°, , ,into /. It is not hard to see
(Problem 24 and Section X.3) that t is closable if and only if i is one to one, and
in that case 7 has domain Ran i with i(p, ¥) = (i"Y@), i ')+, — (@, ¥).

Iftisnot closable, wecan find ¢ € ), , withi(p) = 0, 1., @, in Q(¢) so that
¢, — 0and (@, — On> s — @) — 0 but with lim, t(¢,, ¢,) nonzero, say 2.
We can pass to a subsequence with t(¢, — ©,., ¢, — @) < 5 and (¢, ©,)
> 1 Letn,= ¢, — ¢, Thenn, - ¢, but p,) 21 >4 > lim¥n,) solis
not lower semicontinuous.

Suppose next that ¢ is closable but not closed. Then, we can find ¢ ¢ Q(¢),
¢ € Q(t) with @, — ¢ and (@, — @Om. @, — @,,) = 0. Then ¥¢p,) is Cauchy,
and so it has a finite limit «; thus ¥{(¢) = 0 > o = lim ¥¢,). Again, ¥ is not
lower semicontinuous.

Thus, we see that if 7 is lower semicontinuous, then ¢ is closed. Conversely,
suppose that ¢ is closed. Let T denote the corresponding self-adjoint operator.
Let T, = TP, where P, is the spectral projection of T for the interval [0, n).
Let ¢,, - ¢ and fix n. Noticing that T, < T and TZ¢,, — T}e since T, is
bounded, we have that

((P, 7::¢) = llm(‘Pm’ 7;.‘1’..;) < ﬁ_m_(fpm T(P,,,)
Since #(¢) = lim,(¢, T,p) by the monotone convergence theorem for the
spectral measure dy,,, we have that
Ho) < lim o.)
ie., T is lower semicontinuous. ||
First Proof of Theorem S.14 By definition 7 (¢) = sup, I,(¢) for any ¢

where § is defined in Theorem S.18, By that theorem, each i, is lower semi-
continuous. Thus, if ¢,, — ¢, then

(o) < lim I,(¢,) < limi,(¢,)
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since f, < . Taking the sup over n, we see that ¥, is lower semicontinuous
and thus ¢t is closed.

Now let T, be the operator corresponding to t,,. By Theorem S.15,
(0, (T, + )7'9) 2 (¢, (T, + 1) "¢) and (o, (T, + 1)" ') is monotone
decreasing. It follows that

lim(g, (T, + 1) ') = inf(p, (T, + 1)"¢)

has a nonzero value, so we can find a self-adjoint 4 with zero kernel so that
(T, + 1)~ — A weakly. Let s be the quadratic form of S = A~! — 1. Since
(T, + 1) ' =2 A> (T, + 1)7!, we have t, < s < t,. Since ¥, = sup, I,,
we have that §=1_, ie, A= (T, + 1)7'. Thus (T, + 1)~! converges
weakly to (T, + 1)~ . By a similar argument this holds if 1 is replaced by any
¢ > 0;and then by analyticity we have weak convergence of the resolvents on
C\[0, o). As noted in Section VIIL7, this implies strong resolvent conver-
gence. |

Proof of Theorem S.15 Let 5# , , and i be as defined in the proof of Theorem
S.18. Let P be the projection (orthogonal in the natural inner producton 5, ,)
onto Ker i and let @ = 1 — P. For ¢ € Q(¢), let j(¢) be its natural image in
H,, 80 that ioj =1 and (j(), (¢))+, = e, ©) + (@, ¢). Define

1o, ¥) = (Qi(@), j)+1 — (9, ¥)

We claim that ¢, is closable ; indeed, the 5#, , associated to ¢, is just Ran Q and
the corresponding i is just the above i restricted to Ran Q. Since Ran Q n
Ran P = {0}, this { is one to one.

Next, we note that t, > 0. For iQ = i(1 — P) = i since Ran P < Ker i.
Thus, for any ¢ € (1),

(@, @) = (ioj(@) i j(¥))
= (iQj(o), iQj(¢))
< (Qi(@), Qi(P)) + 1

since i is norm decreasing from J# , , to .

Now suppose that h is a positive closable form and h < t. By the corollary
to Theorem I1.4, there exists a unique positive operator 4 on 5 ,, with
h + (o, ¥) = (@), Aj(¥))+,. Let o e Ran P <« # . Pick 5, € Q(t) with
i) = ¢, — ¢. Then i(g,) = 1, — i(p) = 0. Moreover, since the ¢, are
Cauchy in 5, ,, they will be Cauchy in the h norm. Since h is closable,

K., 9a) = 0, ie., (@, Ap) = 0. It follows that h(p, ¢) = h(Qe, Q¢) <
(Qo, Qp) . ,sothath < t,. Thust, is the largest closable form less thant. §
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Second Proof of Theorem S.14 We give a second proof only of the fact that
t,, is closed. The rest of the proof is identical to the first proof.

Clearly ¢, < t,,; and since t, is closable, we have that ¢, < (¢t,),. But then
sup, t(@, ¢) < (to){e, @), ie, ty, = (t,),, sO £, is closable and therefore
I, < t,. Moreover, given ¥,, € Q(t.), such that y,, — ¥ in the t, norm, we
have that y,, —» ¥ in ¢, norm, so t,(y, ¥) < i (¥, V), ie., t, < i, . Thus, as
abovet, =7,. |

Proof of Theorem S.16 As in the proof of Theorem S.14, T, converges in
strong resolvent sense to an operator S given by

(¢, (S + 1)"'9) = sup(e, (T, + 1) '¢)

Let s be the quadratic form of S. By Theorem S.17, s < t,s0 s < t,. Since
s = 5,,5 < (t,), and thus, as in the last proof, s < (t.),. On the other hand, if
T, corresponds to (t,,),, then, since (), < t,, < t,, we have that (T, + 1)7!
> (T, + 1)~ !, Taking limits in n, (T, + 1)"!' > (S + 1)"'so s = (t,),, i

s={o) 1

Supplement to VIII.8 More on the Trotter product formula

In this section we want to consider positive self-adjoint operators 4 and B
and prove that
s-lim(e~'4/neBimpn — g~1C (8.24)

n— o

for suitable C under various hypotheses. As we explain in the Notes, some of
the ideas below can be used to prove the Trotter product formula for general
contraction semigroups on Banach spaces including Theorem VIIL.30.

Theorem S.19 (Chernoff’s theorem; self-adjoint case) Let A be a posi-
tive self-adjoint operator and let f(¢) be a family of self-adjoint operators with
0 < f(t) < 1. Define S(t) = t~'(1 — f(t)). If S(t) converges in strong re-
solvent sense to A4 as ¢ | 0, then for any fixed ¢,

n—*o

s-lim f('—i) . (525
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Proof By hypothesis and Theorem VIII.20,

s-lim cxp(—tS(%)) =e 4

so we need only show that

s-lim[exp(—tS (i)) - f (i—)n] =slimQn,t) =0 (8.26)

But, since tS(t/n) = n(1 — f(t/n)) obeys 0 < tS(¢/n) < n, we have that

on=s()

where

Thus (8.26) follows if we show that lim,||G, |, = 0. This is easily established
by using the fact that G,(x) — O pointwise, and therefore, since

1G] = e~ — (1 —f)m| <1

n

it goes to zero uniformly on bounded intervals. Moreover,

sup(l x),l < sup[(l l)a]x <e™”*
n2x n - ax1 a -

since u(x) = (1 — x~!)* obeys
S-S
(ln u)(X) = kg:‘ _x—" (1 — E) >0
i

on (1, o) and lim, ., u(x) = e .

It is now easy to prove the last half of Theorem VIIL31.

Theorem S.20(Trotter product formula, self-adjoint case) Let A and B
be positive self-adjoint operators such that 4 + B is essentially self-adjoint
on D(A) n D(B). Then (S.24) holds where C is the closure of 4 + B.
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Proof Let f(t) = e~ '42¢'B¢™'4/2 and suppose that n € D(A) n D(B). Then,
t-l(l - f(t))'l — e—lAlze-tB[t—l(l _ e—M/Z)ﬂ]
+e AL - T ] + 1T — ey

Using the fact that the product of uniformly bounded, strongly convergent
sequences of operators is strongly convergent,

' - fOMm—-(A+Bn=Cn

for n e D(A) n D(B). By Theorem VIII.25a, t~'(1 — f(t)) converges to C in
strong resolvent sense so, by Theorem 8.19, s-lim f(t/n)" = e~ .

Since s-lim,o f(t) = I, we have that f(t/n)" — f(t/n)"" ' = f(t/n)""! x
(f(t/n) — 1) converges strongly to zero, But

(e—-tA/ue—!B/n)n = e—!A/ZDy‘(t/nYI— le— lA/2ne— tB/n
50 (S.24) holds since products of uniformly bounded convergent sequences are
convergent. |

Theorem S.20 can be strengthened:

Theorem S.21 (Kato’s strong Trotter product formula) Let 4 and B be
positive self-adjoint operators with Q(4) n Q(B) dense. Then the quadratic
form {¢, ¥> - (¢, AY) + (@, BY) with domain Q(A4) n Q(B)is closed. Let C
be the corresponding self-adjoint operator. Then (8.24) holds.

Proof That the given form is closed is easy and left to the problems (Problem
25). By the same argument as at the end of the last proof, it suffices to show that
s-lim f(¢/n)" = €™ where

f(t) = e—m/ze-rse-m/z
By Chernoff’s theorem, we need only show that
S@=7'1 - f()
converges to C in strong resolvent sense. Define
A=t —e"*), B@)=t'(1-eP

and C(r) = A(3t) + B(z). Notice that
ltA@I < 1; LBl < 1 (8.27)
s-lim tA(t) = s-lim tB(t) = 0 (S.28)

t}0 t|o
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Moreover, since ¢t '(1 — e™™) = x {§ e"**ds is positive and monotone
decreasingin ¢ for x fixed, we see that A(t) and B(¢) are monotone increasing to
A and B, respectively, as ¢ | 0. It follows from the first monotone convergence
theorem for forms (Theorem S.14) that for b > 0,

h+CN'-Pp+0C)'H0 (8.29)
Rewriting S(t) in terms of A(r) and B(t), we see that

S(t) = C(t) + E(v)

t 1 t t t t t

Fix b > 0 and let

where

Q1) = (C(t) + b) E(t)(C() + b)~*

We claim that

(0, 0(Np) > — {—2- el (8.30)
and
s-lim Q(t) = 0 (8.31)

110

Accepting (S.30) and (S.31) for the moment, we can complete the proof. Since
all operators involved are bounded, we have that

(S(y + )™t =(C(t) + b)™*(1 + Q)" (C(t) + b)™*
Thus,
(S + b))~ —(C() + b)™' = —(C(t) + b) *(1 + Q1) 'Q()(C(e) + b)~*

By (S.30), i(1 + Q)" < 2/(2 - \/5) so since (C(t) + b) | < b~ %, we
need only that s-lim, o Q(1)(C(t) + b)™* = 0. This follows from (S.29) and
(S.31). Thus

s-m[(S() + b)™" = (C()) + b)™'] =0

o

so0, by (5.29), S(t) converges to C in strong resolvent sense.
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Therefore, we need only prove (S.30) and (S.31). We begin by noting that the
first term of E(t) is positive, so
t
(¢, Q()p) 2 —Re ((C(t) + b)"te, 1A<§)B(t)(C(l) + b)” *rp)

A | o]

x [|BONC() + b) ™ ol

V2 ((C(t) + by, {A (%) + B(t)](C(t) + b)'*(ﬁ)

v

— e B(0)Y))

277
5 2

T Ty (0, 9)
where in the last step we used ||C(t)(C(t) + b)™ !|| < 1, and in the step before

that the inequality xy < $(x? + y2). This proves (S.30).
To prove (8.31), first note that

1 2
nA(%) (C) + b)"to| + IBOXC(E) + b) Yo|* + bI(CE) + b) *o)?

= jlo|? (832)
(S.32) implies in the first place that

<1 IBOECO +b)7H sl (833)

t\?
A(E) (C@t) + b3

Moreover, the analog of (S.32) for A, B, C replacing A(3t), B(t), C(t), shows
that weak convergence of the three operators in (S.32) as ¢ | 0 implies strong
convergence (Problem 26). Because of (S.33), one only needs

(9, BIOHCQ@) + b)) — (@, BHC + b))

for ¢ in a dense set. This convergence for ¢ in D(B) and any ¢ follows from
(S.29). Thus

s-lim B()}(C(t) + b)™* = B¥(C + b)~*

tjo

and.similarly for A(4t) and A. Néw, to prove (8.31), take a typical term in the
sum like

.t t t -
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and write it as affyde with

o = (Ct) + b)‘*A(%)*

i)

y = (1 — tB(®))
. AN E
o= ["‘(z)]

£ = A()}C@) + b)}

and

2, B, 7, 8, and ¢ are uniformly bounded and since ¢ is strongly convergent, and
& — O strongly as t — 0, the product converges strongly to zero. ||

Additional supplement Uses of the maximum principle

It is not evident from looking at the basic definitions in functional analysis
that the theory of analytic functions should play any role in the subject at all.
That complex variable techniques are applicable is due mainly to the analytic-
ity of the resolvent (Theorem VL.5) and to the analyticity properties of the
Fourier transforms of functions with restricted support (see Section IX.3).
Since analytic functions have such strong properties, it is not surprising
that theorems from complex analysis are useful, indeed central, when many
of the basic objects under study have analyticity properties. One of the most
useful of these theorems is the maximum principle which states: Let f be an
analytic function on an open bounded subset D of C and suppose that f is
continuous on D. Then | f| achieves its maximum on the boundary. Often,
it is not the maximum principle itself which is applied, but a corollary of it
or an extended maximum principle for an unbounded domain. See, for
example, the three line lemma (in the Appendix to Section 1X.4), Theorem
X1.89, Theorem XI1.18, the lemma to Corollary 4 in Section XIIL4 (this is
equivalent to Example 2 below via a conformal mapping), Carlson’s theorem
(the lemma to Theorem XIIL.61), and the Borel-Carathéodory theorem
(Lemma $ in Section XIIL17). ‘
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In this section we want to acquaint the reader with a nice trick which is
the main device for proving many of the extended maximum principles and
corollaries of the maximum principle. Here is the idea: Let f be analytic in D
and continuous on D. If his another analytic function in D which is continuous
on D and which satisfies h(zo) = 1 for some z, € D, then

[f(zo)| = |h(zo) S (z0)| < sup |h(W)|| f(W)|
wedD
By choosing h cleverly one can arrange to give more weight to some parts of
the boundary where we have more information. We can let h depend on z,
and often it depends on an auxiliary parameter. We iilustrate this idea by
two examples.

Example 1 Let f(z) be a function which is continuous in the region
R={zl0 <Rez <1, Imz > 0}, analytic in the interior. Suppose that
Sup,crl f(2)l < oo and that lim,._. | f(iy)| = 0. Then, for each ¢ > 0,

lim sup |{f(x+iy)]=0 (8.39)

y~+o 0sxgl—-¢

To prove this, let C = sup,.z | f(2)| and let z, = x4 + iy, be a point in R.
Let the region D(y,) be given by

D(yo) = {zeR|0 < Rez < 1,}y, < Im z < 3y,}
and take
h(z) = o'z~ 20 ~B(z~30)

where B is a positive constant to be chosen in a moment. Since A is analytic
and h(z,) = 1, the maximum principle for D implies that

| f(z9)| £ max{ay, a;, a3, as}

where

a; = max |f(1 + iph(l + iy)| < Ce B~ va*1
tyosy<iyo

a, = max | f(x + biyo)h(x + }iyo)| < CePm0¥4+!
O0sxg1

a; = max | f(x + 3ipo)h(x + 3ipo)| < Ce®~VBH*!
0sxg1

a, = max |f(iy)h(iy)| £ Ce®*! max | f(iy)|
tyo<y<¥yo yz24yo

We now choose B (depending on y,) so that

™% = ¢78% 1 max| f(iy)|
y2iyo
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This implies that B < y3/8, 5o a,(y,) = 0 and a;(y,) — 0 as y, — 0. Also,
B(y,) = o0 as yo — 00, 50 ay(yo) — 0 since e® max,, ;.| f(iy)| = e % —
eB~ U84 Finally, a,(yo) —» 0 as y, — oo uniformly for all x, < 1 — &, so
(S.34) holds.

Example 2 Let {f,(2)}, be a sequence of functions which are analytic
intheunitdiscR = {z||z| < 1} and which satisfy sup,, ;;<1| fu(2)| = C < .
Fix some 8, > 0 and suppose that for each n, f, can be extended to be con-
tinuous on

R u {zl|z| = 1, ]arg z| < 0,}, and that lim sup | f,(e®)] = 0

n-o |61 <0

We shall show that for each § > 0,
lim sup |f(2)]=0 (S.35)

n—»w jz]st~-8
Let Dy, = {ze R||arg z| < 6,} and define g,(z) = f,(z2%'*) for z€ D, U
{zl|z] = 1, ]arg z| < /2}. Then sup, ;¢p,, |9.(2)| < Cand

lim suplg.(e®)] =0

n—wo |8}<n/2

On the straight piece of the boundary of D,,, we have no information except
boundedness of the boundary values of g,. Take z € D,;, and set h(z) =
€®¢~% for B > 0 fixed. Then, by the maximum principle for D, ,,

|gn(20)] < sup |eBE~0lg (7))
z€lDy

< Cy(B) sup |gu(e]| + Ce™ B
101 54x/2)

Thus, lim,_ . |g.(z0)] € Ce™ 5% and since B is arbitrary, we conclude that
lim, ., & [ga(zo)| = 0. Thus, lim, . , | f,(zo)| = O for z4 € Dg,. Standard meth-
ods in complex function theory now permit one to show easily that f,(z) = 0
uniformly on compact subsets of Dy, and analytic continuation then allows
one to conclude (S.35). The reader is asked to provide these details in
Problem 28.

We remark that in functional analysis the maximum principle and its
extensions are typically applied to Banach space-valued analytic functions.
This generalization causes no problems as the reader is asked to show in
Problem 29. In Problem 30, the reader can use the technique of this section
to prove a maximum principle for an unbounded domain.
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NOTES

Supplement 11.2  Theorem S.1 and its proof by these means is due to J. von Neumann,
“On Rings of Operators, I11,”” Ann. Math. 41 (1940), 127. The Bergmann kernel is named
after the work of S. Bergman, ** Ueber Hermitische unendliche Formen, die zu einem Bereich
gehoren, nebst Anwendungen auf Fragen der Abbildung durch Funktionen zweier komplexen
Verdnderlichen,” Math. Z. 29 (1929), 640-677. For further discussion and applications to partial
differential equations and several complex variables, see S. Bergman, The Kernel Function and
Conformal Mapping, Amer, Math. Soc. Survey, No. 5 (2nd ed., 1970), Amer. Math. Soc.,
Providence, Rhode Island.

Supplement IV.5  Theorem S.6 is a basic technique in nonlinear functional analysis some-
times called the direct method of the caleulus of variations. It is a descendent of ideas of Hilbert.
The existence properties of the Thomas-Fermi equations are discussed in E. Lieb and B. Simon,
“The Thomas-Fermi Theory of Atoms, Molecules and Solids,” Advances in Mathematics 23
(1977), 22-116, and of the Hartree equation in E. Lieb and B. Simon, “The Hartree-Fock
Theory for Coulomb Systems,” Commun. Math. Phys. 53 (1977), 185-194,

For further discussion and examples of this method, see Chapter 6 of M. Berger, Nonlinearity
and Functional Analysis, Academic Press, New York, 1977,

There is a readable discussion of the existence of geodesics which does not use Theorem S.6
but which uses instead ideas from differential geometry in M. Spivak, 4 Comprehensive Intro-
duction to Differential Geometry, Vol. 1, Publish or Perish, Cambridge, Massachusetts, 1970.
Theorem $.8 is closely related to what is usually called the Hopf-Rinow theorem.

Our proof of the existence of geodesics actually shows that there is a minimizing path in
each homotopy class (see Problem 18). For a beautiful application of this result to prove the
existence of periodic orbits in certain classical mechanical systems, see p. 248 of V. I. Arnold,
Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1978.

Supplement V.5  For a discussion of homology and the Brouwer fixed point theorem, see
any book on algebraic topology, e.g., the book of Hilton and Wylie quoted in the notes to
Section V.5 or J. Vick, Homology Theory, Academic Press, New York, 1973. There is an
“elementary” proof of the Brouwer theorem in J. Milnor, “Analytic proofs of the ‘hairy ball
theorem" and the Brouwer fixed point theorem,” Amer. Math. Mon. 88 (1978), 521-524, with
more details in J. Franklin, Methods of Mathematical Economics, Springer, New York, 1980.

Supplement VIIL.7  Versions of the monotone convergence theorems that suppose that
t,, is closed go back at least as far as Kato’s book quoted in the Notes to Section ViiL.6. That
is automatically closed in the increasing case is due to D. Robinson, The Thermodynamic
Pressure in Quantum Statistical Mechanics, Springer Lecture Notes in Physics 9(1971), Springer-
Verlag, New York, where an essentially equivalent result appears. Unaware of this work, E. B.
Davies found Theorem S.18 and the resulting proof of Theorem S.14 which we give as the first
proof in *“A Model for Absorbtion or Decay,” Helv. Phys. Acta 48 (1975), 365-382, as did T.
Kato (quoted in the next mentioned paper). See also B. Simon, * Lower Semicontinuity of
Positive Quadratic Forms,” Proc. Roy. Soc. Edinburgh 29 (1977), 267-273.

The decomposition Theorem S.15 and the identification of the limit in Theorem 8,16 are due
to B, Simon, *“ A Canonical Decomposition for Quadratic Forms with Applications to Monotone
Convergence Theorems,” J. Functional Anal. 28 (1978), 377-38S.
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There is a version of the first monotone convergence theorem even in the case where Q(1,)
is not dense ; see Simon's two papers quoted on page 385,

Supplement VII1.8 Chernoff’s theorem was proven in his J. Functional Anal. paper
quoted in the Notes to Section VIIL8. He proves it when A is the generator of any contraction
semigroup on any Banach space and f(¢) any family of contractions (operators with || f()]] < 1).
One advantage of the form of his theorem is that it implies that for many real-valued functions

F and G,
F '_’_1 G ZE — e 4B
n n

e.g., under the hypotheses of Theorem S.20,

-1 ~17n
(I (- N P
n n

The proofs in this section are such that it is easy to verify the uniformity of convergence in
the ¢ variable as 7 runs through compact subsets of [0,0).

Kato's strong version of the product formula is proven in T. Kato, * Trotter’s Product
Formula for an Arbitrary Pair of Self-Adjoint Contraction Semigroups,” in Topics in Functional
Analysis (G. C. Rota, ed.), Academic Press, New York, 1978, pp. 185-195. Extension to more
than two factors and some nonlinear operators can be found in T. Kato and K. Masuda,
“Trotter's Product Formula for Nonlinear Semigroups Generated by the Subdifferentiails of
Convex Functionals,” J. Marh. Soc. Japan 30 (1978), 169-178, Extensions to include generators
of holomorphic semigroups can be found in Kato's paper and a kind of Trotter product formula
for unitary groups under the hypotheses of Theorem S.21 is proven in T. Ichinose, ** A Product
Formula and Its Application to the Schrédinger Equation,” to appear.

Kato actually proves a stronger result than we prove in Theorem S.21. Namely, he proves that
whenever 4 and B are positive self-adjoint operators on a Hilbert space, then s-lim(e ™ #" ¢~ 57y
= e~ P where P is the projection onto Q(4) n Q(B) and C is the obvious operator on Ran P.

There has been a considerable amount of work on nonlinear product formulas. See, for
example: H. Brezis and A, Pazy, *“Semigroups of Nonlinear Contractions on Convex Sets,”
J. Funciional Anal.5(1970), 237-281; H. Brezisand A. Pazy, ** Convergence and Approximation
of Semigroups of Nonlinear Operators in Banach Spaces,” J. Functional Anal. 9 (1972), 63-74;
Paul R. Chernoff, ** Product Formulas, Nonlinear Semigroups, and Addition of Unbounded
Operators,” Memoirs of the American Mathematical Society, Number 140; A. J. Chorin,
T. J. R. Hughes, M. F. McCracken, and J. E. Marsden, * Product Formulas and Numerical
Algorithms,” Comm. Pure Appl. Math. XXXI (1978), 205-256; M. G. Crandall and T. M.
Liggett, *“Generation of Semi-Groups of Nonlinear Transformations on General Banach
Spaces,” Amer. J. Math. 93 (1971), 265-298 ; J. Marsden, * On Product Formulas for Nonlinear
Semigroups,” J. Functional Anal. 13 (1973), 51-72; Eric Schechter, “ Well-Behaved Evolutions
and Trotter Products,” Thesis, University of Chicago, 1978; G. F. Webb, ‘ Exponential
Representation of Solutions to an Abstract Semi-Linear Differential Equation,” Pacific J.
Math. 70 (1977), 269-279; and Fred B. Weissler, ** Construction of Non-Linear Semi-Groups
Using Product Formulas.” Israel J. Math. 29 (1978), 265-275. These product formulas play
an important role in the existence theorems for certain classes of nonlinear partial differential
equations.
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Additional Supplement  The results of this section and Problem 25 are often called
Phragmeén-Lindelof theorems. Some of the original papers are: J. Hadamard, “ Sur les fonctions
entiéres,” Bull. Soc. Math. France 24 (1896), 186-187; E. Phragmén, “Sur une extension d’un
théoréme classique de la théorie des fonctions,” Acta Math. 28 (1904), 351-368; E. Lindelof and
E. Phragmén, “ Sur une extension d’un principe classique de I'analyse et sur quelque propriétés
des fonctions monogénes dans le voisinage d’un point singulier.” Acta Math. 31 (1908), 381-406:
E. Lindeld!, " Sur un principe général d'analyse et ses applications a la theorie de la représentation
conforme,” Acta Soc. Sci. Finn. 46(4) (1915), 1-35. For simple proofs see L. Ahifors, “On
Phragmén-Lindelof’s principle,” Trans. Amer. Math. Soc. 41 (1937), 1-8.

PROBLEMS

1. Use Theorem S.1 to prove Theorems 1.19 and 1.20 in the general o-finite case,
2. (@) Let © = {z]iz| < 1} and define T,: LX(Q) = L*(Q) by
(T, f)2) = f(zn)

for0 <r < L.Provethat T, f — fasr — lforany f € L2 (Hint: Prove it for f € C({)
and use an ¢/3 argument.)

(b) If fisanalyticin {z}|z] < 1 + ¢}forsomee > 0, prove that the Taylor series for f about
z = 0 converges to f in L¥(Q).

(c) Conclude that {z"}=., is a basis for #(Q).

3. Let K be the Bergmann reproducing kernel for some set Q.
(a) Prove that |K(z, w)| < K(z, 2)}K(w, w)}.
(b) Prove that K(z, 2) + K(w, w) — K(z, w) — K(w, 2) 2 0.
(c) Fixze. Let

0 a . .
ai{2) = — — K(x, + ixs, 9, + iyy)

axla 5 Xy tixz=zmy; +iy2
Prove that a = {a,;} is a positive definite matrix.

Remark {a;(2)} defines a metric in the sense of Riemann geometry and introduces a
natural geometric structure into Q. For example, if Q is the unit disk, the resulting geometry
is one of the standard non-Euclidean geometries.

4. (a) Prove that equality holds in (S.8) only ifa = b7 !,
(b) Suppose that || fli, = |igll, = 1. Prove that equality in (S.7) holds if and only if |g| =
1O

{c) Prove that equality holds in general in (S.7) only if ¢ is zero (a.e.) or if

g(x) = TG feaP?

for some fixed 1 C.

(d) Let he L, Prove that j hdu = {hlt, if and only if h is a.e. nonnegative.

() Prove that | f(x)g(x) du(x)| < il )lgh, withequality only if g = | £ [P~ sgn f where
sgn f = f/|f] at points where f # 0 and sgn f = 0 otherwise.



388 SUPPLEMENTARY MATERIAL

5.

t6.

17.

10.

Use the method of the proof of (S.8) 10 prove Young’s inequality: xy < e* + ylogy — y
forallx > 0,1y > 0.

By mimicking the proof of Theorem IV.16 and its lemma, prove that any L € (L?)* is a finite
linear combination of positive functionals.

(a) Let X be o-finite and let Y  X. Given L € L%(X, dy)*, define Le LY, du)*by L(f) =
L(f)where f is the function on X obtained by extending f to be zero on X\ Y. Prove that
1L < L.

(b) Given Theorem S.4 for finite measure spaces, prove the same result in the o-finite case,

. Prove that no sequence that is not eventually constant can be a universal net.

. {a) Let x be a function of bounded variation on [0, 1]. Prove that for any ¢ € [0, 1], a{t — Q)

= limy,, «(s) and a(t + 0) = lim,, a(s) exist.

(b) Show that «(t — 0) = a{r + 0) for all but at most countably many ¢'s.

(c) Show that among ali s leading to the same Riemann-Stieltjes integral, there is pre-
cisely one with a(0) = 0 and «t) = a(t — 0) for all ¢.

(d) Show that if & obeys &(0) = 0, d& = da where o is the function of part (c), and
Variation () = Variation(&), then for any ¢, either

a(t - 0) < &(t) < ot + 0) or ot +0) < 6(t) < at — 0)

Let x be of bounded variation. Show that

(@) (b = a) ' {B(x - a)do = a(b — 0) ~ [[5a(x) dx}(b — a)™* and use Problem 9a to
show that

b
lim(b — a)™ ! f(x —a)yda =0

blo

(b) Fix a < ¢ and for 4 smali let f; be given by

0, x<a or x2¢
) 0 Yx - a), a<x<a+é
Jo(x) =

1. a+d<x<c—-9

3 YMe—-x), c¢-d<x<c

Show that

lim | f3(x)da(x) = a(c — 0) ~ a(a + 0)
410
(c) Prove that if { - du is a positive Riemann-Stieltjes integral on C[0, 1], then the a with
a(1) = ={t — 0) is monotone nondecreasing so that corresponding Lebesgue-Stieltjes
measure is positive.

. Let F: X - (— oz, =] Show that F is lower semicontinuous if and only if for all @, {x| F(x)

< a} is closed.

. Let C be a convex subset of a locally convex space X. Use the separating hyperplane

theorem (Theorem V.4) to show that C is closed in the topology of X if and only if C is
closed in the weak (a(X. X*)) topology.



13.

14.

15.

16.

ti7.
18.

19.

20.

21.
22.
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A function F on a vector space V is called strictly convex if and only if F(Ax + (1 — Dy) <
AF(x) + (1 — DF(¥)for x # yand 0 < 1 < 1. Show that a strictly convex function has at
most one point where its minimum value is taken and that any stationary point of F is its
minimizing point. Use these ideas to show that (S.12) has a unique L? solution.

Let |- | and ||-||*" be consistent norms on a vector space V in the sense of Section IX.4. Let
Ixi* = inf{{yl® + Jz§'Vjx = y + 2}

Let X,, X1, X, be the completions of V in the norms |-, -1, -4 Let 0> I-llcs, be
the norm of X§, Xt. Prove that X% = X§ n XT with the norm

Ik = max{§Zllo), #hc1)}

Let H be a C! convex function on (—x, x) with |H(u){ < Clu}® for some p > I. Let
f € Cy. Show that
—Au+ H@) = f

has a solution in L? n L2,
Let h(x) = [max{l, |x|}]1~ ! and g(x) = | x|~ ! — A(x). In the language of Example 3 of the
supplement to Section IV.5, prove that h € K* and that g € LY. Conclude that
s~ [ 160 ax
is an element of Lt + K*.
Fill in the missing details of Examples 2 and 4 of the supplement to Section [V.5.

Let M be a closed subset of R* and suppose that {yin M|y(0) = x, (1) = y} lies in several
homotopy classes. Fix one such class ¢ and let

Y,={feY}ec}

where Y and y? are given in the proof of Theorem S.8. Show that Y, is weakly closed and
conclude that there is a curve in ¢ minimizing the length among all curves in c.

Prove Theorem S.8 “directly " by showing that if y, is such that L(y,) — inf{L(y)} and that
if y, is geodesically parametrized, then {y,} is equicontinuous and so by the Ascoli-Arzela
theorem, there exists a subsequence y, — 7.

Let C be a compact convex subset of R” so that 0 € C and the vectors in C span R". Prove
that C has nonempty interior.

Verify that the map g in Theorem S.11 is C*.
(a) Show that if 1,, @.(x) and 4, ¢(x) are solutions of (§.22) and 4, # 4, then

1
[(oxr0umrax =0
0

(b) Prove that any 2 for which there is a ¢(x) satisfying (5.22) must satisfy

A= min g{x)
0gxs1

(c) Using part (b), extend the proof of Theorem S.12 to the case where g(x) can be negative.
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23.

24.
125.

+26.

27.

The purpose of this problem is to extend Theorem S.12 to three dimensions. Let Q < R bea

bounded open region with smooth boundary Q. Let Go(x, ) = (4njx — y|)~".

(a) Let y e Q. We suppose that the Dirichlet problem is solvable (see Section V1.4) and let
H(x, v) be the solution of —A_H(x,y) = 0. H(x, y) = Gg(x, y) for x on 9. Let
Gp(x. ¥) = Go(x. y) — H(x, ). Using the maximum principle, show that

0 < Gplx, ) < Golx, y)

(b) For f e C3(Q) define (T, f)(x) = §, Gulx, ) f(y) dy. Prove that (-A)T,f = f =
To(~A)f and (T, f)(x) = 0 for x on dQ2. Conclude that G, is symmetric,

(c) Prove that T, is Hilbert-Schmidt on L%(Q).

(d) Show that any eigenvalue of T;, is positive and, since Ty is compact, conclude that T,is a
positive operator.

(e) Suppose that g(z) > 0 for ail z € Q and that g is C. Using the fact that T is positive,
prove that

s = = [ G 2ate) (21 de
Q
has no solutions. Conclude that there is a unique solution k(x, y) of

k(x. y) = Gofx, y) — LG""" 2Da(2)k(z ) dz

forall yeQ.

(f) Use the maximum principle to prove that 0 < k(x, y) € Gp(x, y) and conclude that
k(x, v) is the kernel of a Hilbert-Schmidt operator T.

(g) Provethat T'is atwo-sided inverse for — A + g with the boundary condition / [ dQ =0.
Show that the eigenvalue problem

~ Aw{x) + g(x)u(x) — Au{x) = 0 for xeQ
u(x) =0 for xedi
has an L? basis of eigenfunctions.
Fill in the details of the .#", | , construction of Theorem S.18,

Let 4 and B be closed semibounded quadratic forms with Q = Q(A) n Q(B) dense. Prove
that the form <o, ¥> = (@, AY) + (9. BY) on @ x Q defines a closed semibounded
quadratic form.

(a) Let ¢, — @ weakly and |io,ll — l¢i- Prove that ¢, » ¢ in norm (Hint: Compute
e — @.12)
(b) Let @i} = o', ..., @i = @' weakly and

i ¥
Y o1 - ¥ Hot'i
i=1 i=1

Prove that ¢ - ¢ in norm.

Let A and B be semibounded self-adjoint operators with A + B essentially self-adjoint on
D(A) n D(B). Let C be the operator associated to the form of Problem 25. Prove that
C=4%8B
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t28. Complete the complex variables argument outlined at the end of Example 2 in the additional
supplement.

29. Let X be a Banach space and let D be a bounded open subset of C. Let f: D - X in such
a way that for each £ € X*, ¢ - f is analytic in D and continuous on D. Prove that

supll f(2)l| = suplif(2)

2eD 1€3D

30. Suppose that fis analytic in the wedge N = {z|{z| > 0,« < arg z < 8}, where f — « < =,
and continuous on N, Suppose further that | f(z)| < C,e!*!for all z € N and some con-
stants C,, C,. Prove that f obeys an extended maximum principle

(@) s max{] f(re®)], 1f (re”)}

(Hint: Consider the case —n/2 < a < f < n/2 and let h(z) = ¢~**" for an appropriate y.)
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