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Preface

This treatise is the outgrowth of a course which has been given by one
or the other of the authors for the past sixteen years. The book itself
has been in the process of production, for more than half this time, though
with numerous interruptions, major and minor. Not the least difficult
problem in its development has been to arrive at a general philosophy
concerning the subject matter to be included and its order of presentation.

Theoretical physics today covers a vast area ; to expound it fully would
overflow a fivefoot shelf and would be far beyond the authors’ ability
and interest. But not all of this area has recently been subjected to
intensive exploration ; the portions in which the most noticeable advances
have heen made in the past twenty years are mostly concerned with fields
rather than with particles, with wave functions, fields of force, electro-
magnetic and acoustic potentials, all of which are solutions of partial
differential equations and are specified by boundary conditions. The
present treatise concentrates its attention on this general area. Fifty
years ago it might have been entitled ““Partial Differential Equations of
Physics” or ¢ Bouundary Value Problems.” Today, because of the spread
of the field concept and techniques, it is perhaps not inappropriate to
use a more general title.

Even this restricted field cannot be covered in two volumes of course.
A discussion of the physical concepts and experimental procedures in all
the branches of physies which use fields for their deseription would itself
result in an overlong shelf, duplicating the subject matter of many excel-
lent texts and, by its prolixity, disguising the fundamental unity of the
subject.  TFor the unity of field theory lies in its techniques of analysis,
the mathematical tools it useg to obtain answers. These techniques
are essentially the same, whether the field under study corresponds to a
neutral meson, a radar signal, a sound wave, or a cloud of diffusing
neutrons. The present treatise, therefore, is primarily concerned with
an exposition of the mathematical tools which have proved most
useful in the study of the many field constructs in physics, together with
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vi Preface

a series of examples, showing how the tools are used to solve various
physical problems. Only enough of the underlying physics is given to
make the examples understandable.

This is not to say that the work is a text on mathematics, however.
The physicist, using mathematics as a tool, can also use his physical
knowledge to supplement equations in a way in which pure mathemati-
cians dare not (and should not) proceed. He can freely use the construct
of the point charge, for example; the mathematician must struggle to
clarify the analytic vagaries of the Dirac delta function. The physicist
often starts with the solution of the partial differential equation already
described and measured; the mathematician often must develop a very
specialized network of theorems and lemmas to show exactly when a
given equation has a unique solution. The derivations given in the
present work will, we hope, be understandable and satisfactory to physi-
cists and engineers, for whom the work is written; they will not often
seem rigorous to the mathematiclan.

Within these twofold limits, on the amount of physics and the rigor
of the mathematics, however, it is hoped that the treatise is reasonably
complete and self-contained. The knowledge of physics assumed is that
expected of a first-year graduate student in physics, and the mathematical
background assumed is that attained by one who has taken a first course
in differential equations or advanced calculus. The further mathe-
matics needed, those parts of vector and tensor analysis, of the theory
of linear differential equations and of integral equations, which are
germane to the major subject, are all treated i the text.

The material is built up in a fairly self-contained manner, s that only
seldom is it necessary to use the phrase “it can be shown,” so frustrating
to the reader. Even in the earlier discussion of the basic mathematical
techniques an attempt is made to relate the equations and the procedures
to the physical properties of the fields, which are the central subject of
study. In many cases derivations are given twice, once in a semi-intui-
tive manner, to bring out the physical concepts, & second time with all
the symbols and equations, to provide as much rigor as seems necessary.
Often part of the derivation is repeated in a later chapter, from a different
point of view, to obviate excessive back reference; this was considered
desirable, though it has increased the size of the treatise.

An effort has been made to avoid trivial and special-case examples of
solutions. As a result, of course, the examples included often require
long and complicated explanations to bring out all the items of Interest,
but this treatise is supposed to explain how difficult problems can be
solved; it cannot be illustrated by easy ones. The variational technique
applied to diffraction problems, the iteration methods used in calculating
the scattering of waves from irregular boundaries, the computation of
convergent series for eigenstates perturbed by strong interaction poten-
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tials are all techniques which show their power only when used on prob-
lems not otherwise soluble.

Another general principle has also tended to lengthen the discussions:
The authors have tried, as often as possible, to attack problems “head
on,” rather than by “backing into them.” They have tried to show how
to find the solution of a new and strange equation rather than to set down
a list of results which someone has found to be solutions of interesting
problems. A certain number of “backing-up” examples, where one
pulls a solution out of the air, so to speak, and then proceeds to show
it is indeed the solution, could not be avoided. Usually such examples
have saved space and typographic complications; very many of them
would have produced a state of frustration or of fatalism in the student.

It is hoped that the work will also prove to he reasonably self-con-
tained in regard to numerical tables and lists of useful formulas. The
tables at the end of each chapter summarize the major results of that
chapter and collect, in an easily accessible spot, the properties of the
functions most often used. Rather than scattering the references among
the text, these also are collected at the end of each chapter in order to
make them somewhat easier to find again. These only include titles
of the books and articles which the authors feel will be useful to the reader
in supplementing the material discussed m the chapter; they are not
intended to indicate priority or the high points in historical development.
The development of the subject matter of this book has been extensive
and has involved the contributions of many famous persons. Techniques
have been rediscovered and renamed nearly every time a new branch of
physics has been opened up. A thorough treatment of the bibliography
would require hundreds of pages, much of it dull reading. We have
chosen our references to help the reader understand the subject, not to
give each contributor in the field his “due credit.” Frankly, we have
put down those references we are familiar with and which we have found
useful.

An attempt has been made to coordinate the choice of symbols for
the various functions defined and used. Where usage is fairly consistent
in the literature, as with Bessel functions, this has been followed. Where
there have been several alternate symbols extant, the one which seemed
to fit most logically with the rest and resulted in least duplication was
chosen, as has been done with the Mathieu functions. In a few cases
functions were renormalized to make them less awkward to use; these
Wwere given new symbols, as was done with the Gegenbauer polynomials.
The relation between the notation used and any alternate notation
appearing with reasonable frequency in physics literature is given in
the Appendix, together with a general glossary of symbols used.

The numerical table in the Appendix should be adequate for the
majority of the calculations related to the subject matter. It was con-
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sidered preferable to include a number of tables of limited range and
aceuracy rather than to have a few tables each with a large number of
entries and significant figures. Most of the functions used in actual
physical problems are tabulated, though many of the auxiliary functions,
such as the gamma and the elliptic functions, and some functions with
too many independent parameters, such as the hypergeometric functions,
are not represented. A few functions, such as the parabolic and the
spheroidal wave functions, should have been included, but complete basie
tables have not yet been published.

Qeveral of the figures in this work, which have to do with three dimen-
sions, are drawn for stereoscopic viewing. They may be viewed by any
of the usual stereoscopic viewers or, without any paraphernalia, by relax-
ing one’s eye-focusing muscles and allowing one eye to look at one drawing,
the other at the other. "Those who have neither equipment nor sufficient
ocular decoupling may consider these figures as ordinary perspective
drawings unnecessarily duplicated. If not benefited, they will be at
least not worse off by the duplication.

The authors have been helped In their task by many persons. The
hundreds of graduate students who have taken the related course since
1935 have, wittingly or unwittingly, helped to fix the order of presenta-
tion and the choice of appropriate examples. They have removed nearly
all the proof errors from the offset edition of class notes on which this
treatise is based; they have not yet had time to remove the inevitable
errors from this edition. Any reader can assist in this by notifying the
authors when such errors are discovered.

Assistance has also been more specific. The proof of Cauchy’s
theorem, given on page 364, was suggested by R. Boas. Parts of the
manuseript and proof have been read by Professors J. A. Stratton and
N. H. Frank; Doctors Harold Levine, K. U. Ingard, Walter Hauser,
Robert and Jane Pease, 5. Rubinow; and F. M. Young, M. C. Newstein,
L. Sartori, J. Little, E. Lomon, and F. J. Corbaté. They are to be
thanked for numerous improvements and corrections; they should not be
blamed for the errors and awkward phrasings which undoubtedly remain.
We are also indebted to Professor Julian Schwinger for many stimulating
discussions and suggestions.

Philip M. Morse
Herman Feshbach
May, 1953
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CHAPTER 1

Types of Fields

Our task in this book 1s to discuss the mathematical techniques which
are useful in the caleulation and analysis of the various types of fields
occurring in modern physical theory. Imphasis will be given primarily
to the exposition of the interrelation between the equations and the
physical properties of the fields, and at times details of mathematical
rigor will be sacrificed when it might interfere with the clarification of the
physical background. VMathematical rigor is important and cannot be
neglected, but the theoretical physicist must first gain a thorough under-
standing of the physical implications of the symbolic tools he is using
before formal rigor can be of help. Other volumes are available which
provide the rigor; this book will have fulfilled its purposc if it provides
physical insight into the manifold field equations which occur in modern
theory, together with a compreliension of the physical meaning behind
the various mathematical techniques employed for their solution.

This first chapter will discuss the general properties of various fields
and how these fields can be eapressed in terms of various coordinate
systems. The second chapter discusses the various types of partial
differential equations which govern fields, and the third chapter treats
of the relation betwecen these equations and the fundamental variational
principles developed by Hamilton and others for classic dynamics. The
following few chapters will discuss the general mathematical tools which
are needed to solve these equations, and the remainder of the work will be
coucerned with the detailed solution of individual equations.

Practically all of modern physics deals with fields: potential fields,
probability fields, electromagnetic fields, tensor fields, and spinor fields.

Mathematically speaking, a field is a set of functions of the coordinates
of a point in space. From the point of view of this book a field is some
convenient mathematical idealization of a physical situation in which
extension is an essential clement, 7.e., which cannot be analyzed in terms
of the positions of a tinite number of particles. The transverse displace-
ment from equilibrium of a string under static forces is a very simple
example of a one-dimensional field; the displacement y is different for

1
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different, parts of the string, so that y can be considered as a function of
the distance z along the string. The density, temperature, and pressure
in a fluid transmitting sound waves can bhe considered as functions of the
three coordinates and of time. Fields of this sort are obviously only
approximate idealizations of the physical situation, for they take no
account of the atomic properties of matter. We might call them material
Selds.

Other fields are constructs to enable us to analyze the problem of
action at a distance, in which the relative motion and position of one body
affects that of another. Potential and force flelds, electromagnetic and
gravitational fields are examples of this type. They are considered as
being ‘““‘caused” by some piece of matter, and their value at some point
in space is a measure of the effect of this piece of matter on some test
body at the point in question. It has recently become apparent that
many of these fields are also only approximate idealizations of the actual
physical situation, since they take no account of various quantum rules
associated with matter. In some cases the theory can be modified so
as to take the quantum rules into account in a more or less satisfactory
way.

Finally, fields can be constructed to “explain” the quantum rules.
Examples of these are the Schroedinger wave function and the spinor
fields associated with the Dirac electron. In many cases the value of
such a field at & point is closely related to a probability. For instance
the square of the Schroedinger wave function is a measure of the prob-
ability that the elementary particle is present. Present quantum field
theories suffer from many fundamental difficulties and so constitute one
of the frontiers of theoretical physics.

In most cases considered in this book fields are solutions of partial
differential equations, usually second-order, linear equations, either
homogeneous or inhomogeneous. The actual physical situation has
often to be simplified for this to be so, and the simplification ean be justi-
fied on various pragmatic grounds. For instance, only the “smoothed-
out density ”’ of a gas is a solution of the wave equation, but this is usually
sufficient for a study of sound waves, and the much more tedious calcula-
tion of the actual motions of the gas molecules would not add much to
our knowledge of sound.

This Procrustean tendency to force the physical situation to fit the
requirements of a partial differential equation results in a field which is
both more regular and more irregular than the “actual’” conditions. A
solution of a differential equation is more smoothly continuous over
most of space and time than is the corresponding physical situation,
but it usually is also provided with a finite number of mathematical
discontinuities which are considerably more “sharp’ than the “actual”
conditions exhibit. If the simplification has not been too drastic, most
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of the quantities which can be computed from the field will correspond
fairly closely to the measured values. In each case, however, certain
discrepancies between calculated and measured values will turn up,
due either to the “oversmooth” behavior of the field over most of its
extent or to the presence of mathematical discontinuities and infinities
in the computed field, which are not present in “real life.” Sometimes
these discrepancies are trivial, in that the inclusion of additional com-
plexities in the computation of the field to obtain a better correlation
with experiment will involve no conceptual modification in the theory;
sometimes the discrepancies are far from trivial, and a modification of
the theory to improve the correlation involves fundamental changes in
concept and definitions. An important task of the theoretical physicist
lies in distinguishing between trivial and nontrivial discrepancies between
theory and experiment.

One indication that fields are often simplifications of physical reality
is that fields often can be defined in terms of a limiting ratio of some sort.
The density field of a fluid which is transmitting a sound wave is defined
in terms of the “density at a given point,” which is really the limiting
ratio between the mass of fluid in a volume surrounding the given point
and the magnitude of the volume, as this volume is reduced to ““zero.”
The electric intensity “at a point” is the imiting ratio between the force
on a test charge at the point and the magnitude of the test charge as this
magnitude goes to “zero.”  The value of the square of the Schroedinger
wave function is the limiting ratio between the probability that the
particle is in a given volume surrounding a point and the magnitude of
the volume as the volume is shrunk to “zero,” and so on. A careful
definition of the displacement of a “point” of a vibrating string would
also utilize the notion of limiting ratio.

These mathematical platitudes are stressed here because the technique
of the limiting ratio must be used with caution when defining and cal-
culating fields. In other words, the terms “zero” in the previous para-
graph must be carefully defined in order to achieve results which cor-
respond to ‘“‘reality.” For instance the volume which serves to define
the density field for a fluid must be reduced several orders of magnitude
smaller than the cube of the shortest wavelength of transmitted sound
in order to arrive at a ratio which is a reasonably accurate solution of the
wave equation. On the other hand, this volume must not be reduced to a
size commensurate with atomic dimensions, or the resulting ratio will
lose its desirable properties of smooth continuity and would not be a
useful construct. As soon as this limitation is realized, it is not difficult
to understand that the description of a sound wave in terms of a field
which is a solution of the wave equation is likely to become inadequate if
the “wavelength” becomes shorter than interatomic distances.

In a similar manner we define the electric field in terms of a test
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charge which is made small enough so that it will not affect the dis-
tribution of the charges “causing’ the field. But if the magnitude of
the test charge is reduced until it is the same order of magnitude as the
electronic charge, we might expect the essential atomicity of charge to
involve us in difficulties (although this is not necessarily so).

In some cases the limiting ratio can be carried to magnitudes as small
as we wish. The probability fields of wave mechanics are as “fine-
grained” as we can imagine at present.

1.1 Scalar Fields

When the field under consideration turns out to be a simple number,
a single function of space and time, we call it a scalar field. The dis-
placement of a string or a membrane from equilibrium is a scalar field.
The density, pressure, and temperature of a fluid, given in terms of the
sort of limiting ratio discussed previously, are scalar fields. As men-
tioned earlier, the limiting volume cannot be allowed to become as small
as atomic dimensions in computing the ratio, for the concepts of density,
pressure, etc., have little meaning for individual molecules. The ratios
which define these fields must approach a “macroscopic limit’’ when the
volume is small compared with the gross dimensions of the fluid but is
still large compared with atomic size; otherwise there can be no physical
meaning to the concept of sealar field here.

All these scalar fields have the property of imwariance under a trans-
formation of space coordinates (we shall discuss invariance under a
space-time transformation later in this chapter). The numerical value of
the field at a point is the same no matter how the coordinates of the point
are expressed. The form of mathematical expression for the field may
vary with the coordinates. For instance, a field expressed in rectangular
coordinates may have the form ¢ = y; in spherical coordinates it has the
different form ¢ = r sin 9 cos ¢, but in either coordinate system, at the
point z = 10, y = 10, 2 = 0 (r = /200, & = 45° ¢ = 0) it has the
value ¢ = 10. This is to be contrasted to the behavior of the x com-
ponent of the velocity of a fluid, where the direction of the z axis may
change as the coordinates are changed. Therefore, the numerical value
of the x component at a given point will change as the direction of the
Z axis is rotated.

This property of invariance of a scalar will be important in later dis-
cussions and is to be contrasted alternatively to the invariance of form
of certain equations under certain coordinate transformations. For
some of the scalar fields mentioned here, such as density or temperature
or electric potential, the definition of the field has been such as to make
the property of invariance almost tautological. This is not always the
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case with less familiar fields, however. In some cases, in fact, the prop-
erty of invariance must be used as a touchstone to find the proper
expression for the field.

Isotimic Surfaces. The surfaces defined by the equation ¢ = con-
stant, where ¢ is the scalar field, may be called ¢sotimic surfaces (from
Greek isotimos, of equal worth). Isotimic surfaces are the obvious
generalizations of the contour lines on a topographic map. In potential
theory they are referred to as equipotentials; in heat conduction they
are isothermals; etc. They form a family of nonintersecting surfaces,

r=8, ©=8,
6=0° Z 8=30° 6-0% Z 6-30°
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¢- i d=0° 1 7=076=30°
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Fig. 1.1 Examples of isotimic surfaces, © = constant, where
ccoshp=3\0+e)2+224 3@ — )2+ 23,
of 6 = constant, where
ccos =3V +e)2+22— 4V (r— )2+ 22
and of ¢ = C, where tan ¢ = y/x.

which are often useful in forming part of a system of coordinates naturally
suitable for the problem. For instance if the field is the well-known
potential ¢ = (z* 4+ y? + 2%)7%, the isotimic surfaces (in this case surfaces
of constant potential) are concentric spheres of radiusr = /22 + 32 + 22
= constant; and the natural coordinates for the problem are the spherical
ones, 7, &, ¢. Another set of surfaces is shown in Fig. 1.1, together with
the corresponding coordinate system. The surfaces y = constant cor-
respond to the equipotential surfaces about a circular charged disk of
radius ¢, lying in the z,y plane (u = 0).

The derivatives of the scalar ¢ with respect to the rectangular coordi-
nates x, y, 2 measure the rapidity with which the field changes as we
change position. For instance the change in ¢ from the point (z,y,2)
to the point (z + dx, y + dy, z + dz) is

W @ar@e

If the two points are in the same isotimic surfuce dyy = 0; in fact the
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differential equation for these surfaces is

oY A A4 —
(@)t @)+ (a0 i

The displacement (dz,dy,dz) is perpendicular to the surface if the

component displacements satisfy the equation.
dx _ dy  _ dz (1.1.3)
ayjox /oy oy/oz

These relations are the differential equations for a family of lines, called
the normal lines, which are everywhere perpendicular to the isotimic
surfaces. Together with the isotimic surfaces they can be used to define
the natural coordinate system for the field. For instance, for the field
Y = (2 + y? + 22)# the surfaces are spheres (as we noted before) and
the normal lines are the radii, suggesting (but not completely defining)
the spherical coordinates (r,9,¢).

The normal lines are pointed along the direction of most rapid change
of ¢. A little manipulation of Eqs. (1.1.1) and (1.1.3) will show that
the change of ¥ as one goes a distance ds along a normal line is

V (3y/32)? + (8¢/oy)? + (8¢/92)? ds

The square-root factor is called the magnitude of the grodient of . Its
properties will be discussed in more detail later in the chapter.

The Laplacian. An extremely important property of a scalar field
is expressed in terms of its second derivatives. In the simple one-
dimensional case where ¢ 1s the transverse displacement of a string from
its straight-line equilibrium position, the second derivative d%/dz? is
closely related to the difference between the value of ¢ at z and its average
values at neighboring points. Using the fundamental definition of the
derivative

lim (4(@) — $¥(@ — do) + ¥(e + da))
= —}lim (Y@ + do) = ¥@)] — W) — ¥ — )]}
= — (@ /dx?) (do)"

Consequently if the second derivative is negative, ¥ at z is larger than
the average of ¢ at © + dz and z — dz and the plot of ¢ against z will
have a downward curvature at that point. If the second derivative is
zero, Y will have no curvature.

It is not difficult to see that the equation for the shape of a stretched,
flexible string acted on by a transverse force F(x) per unit length of
string, distributed along the string, must be expressed in terms of this
second derivative. For the greater the transverse force at a point, the
greater must be the curvature of the string there, in order that the tension
T along the string may have greater transverse components to equalize
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the force. The equation turns out to be
T(d%/dx*) = —F(z)

as a detailed analysis of the problem will show later.

We now seek a three-dimensional counterpart to this measure of
curvature of y. The limiting value of the difference between ¢ at x and
the average value of y at neighboring points is — 4(dz dy dz) Wy,

R L S
where v = 92 + 3y + pw (1.1.49)
is the obvious generalization of the one-dimensional second-derivative
operator. The mathematical operation given in Eq. (1.1.4) is labeled by
the symbol V* (read del squared), which is called the Laplace operator.
The result of the operation on the function ¢ is called the Laplacian of Y.
If v is negative at some point there is a tendency for ¢ to concentrate
at that point.

One immediate consequence of this definition is that a scalar function
¥(x,y,2) can have no mazima or minima in a region where V3% = 0. This
is a result of considerable importance.

The equation V% = 0, called Laplace’s equation, occurs in so many
parts of physical theory that it is well to have a clear picture of its mean-
ing. Accordingly we shall quote a number of facts concerning the
solutions of Laplace’s equation which will not be proved till later in the
chapter.

Suppose a perfectly elastic membrane to be in equilibrium under a
uniform tension applied around its boundary edge. If the edge les
entirely in a plane, then the membrane will lie entirely in the plane. If
the boundary support is distorted so that it no longer lies all in a plane,
the membrane will be distorted also. This distortion can be represented
by ¥(z,y), the displacement, normal to the plane, of the point (z,y) on the
membrane. It turns out that this displacement satisfies Laplace’s equa~
tlon in two dimensions, V% = 0. The equation simply corresponds to
the statement that the tension straightens out all the “bulges” in the
membrane, that the displacement at any point equals the average value
of the displacement for neighboring points. It also corresponds (as we
shall prove later) to the statement that the membrane has arranged itself
50 that its average slopeis as small as it can be.  Since the total stretching
of the membrane is proportional to the average square of the slope, we
see that the Laplace equation for the membrane corresponds to the
requirement that the membrane assumes a shape involving the least
stretching possible.

An additional loading force on the membrane, perpendicular to the
equilibrium plane ¢ = 0, produces a “bulging” of the membrane. As
will be proved later, the Laplacian of ¥ at a point on a loaded membrane
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is proportional to the load per unit area at that point. One can say that
the two-dimensional Laplacian operator measures the “bulginess” of the
shape function ¢.

The generalization of this discussion to three dimensions is somewhat
harder to picture but not more complicated in principle. We might
picture the scalar function ¢ as corresponding to the concentration of a
solute in a solvent. The three-dimensional analogue of ‘“bulginess”
might be termed “lumpiness”; if there is a tendency for the solute to
“Jump together” at any point, the Laplacian of the concentration will be

Fig. 1.2 Shape of circular membrane loaded uniformly (v2¢ = constant)
from r = 0 to » = %, unloaded (v = 0) from r = 1tor = 1, where it is
clamped.

negative there. In a case where V% = 0, the solute has no “Jumpiness”
at all, its density arranging itself so as to average out as smoothly as
possible the differences imposed by the boundary conditions. As in the
two-dimensional case, the Laplace equation corresponds to the require-
ment that ¥ at every point be equal to the average value of ¢ at neighbor-
ing points.

The presence of electric charge density p causes a (negative) con-
centration of the electric potential ¢, so that V% = —p/e, where € is a
constant. The presence of a distributed source of heat @ in a solid causes
a concentration of temperature T, so that V?T' = KQ, where K is a con-
stant. In a great many cases the scalar field is affected by a source
function ¢(z,y,2) (which is itself another scalar field, obeying some other
equations) according to the equation

Vip = —¢ (1.1.5)

This equation is called Poisson’s equation. We shall discuss it in more
detail later in this chapter and shall devote a considerable amount of
space later in the book to its solution.

1.2 Vector Fields

We have discussed in a preliminary sort of way a number of fields
which were characterized by a single magnitude at each point. These
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were called scalar fields. Many other fields require a magnitude and
direction to be given at each point for complete characterization. These
will be called vector fields. These fields also can often be defined in terms
of limiting ratios, though the definitions are usually more complex than
those for scalar fields. The force on a portion of fluid in a gravitational
or electric field is a vector, having magnitude and direction. The limit of
the ratio between this force and the volume occupied by the portion of
fluid, as this volume is decreased in size, defines a vector at each point
in space, which is the force field. As with scalar fields it is sometimes
important not to let the volume decrease to atomic dimensions.

Sometimes the vector field is most easily defined by a scalar ratio,
which has a direction inherent in it. For instance, for an electric con-
ductor carrying current we can imagine an instrument which would
measure the amount of current crossing an element of area dA centered
at some point in the conductor. We should find that the amount of
current measured would depend not only on the size of dA but also on
the orientation of the element dA. In fact the measurement would turn
out to correspond to the expression J dA cos ¢, where ¢ is the angle
between the normal to d4 and some direction which is characteristic of
the current distribution. The magnitude of the vector field at the point
measured would then be J, and the direction would be that which defines
the angle &.

Vector fields in three dimensions are specified by giving three quanti-
ties at each point, the magnitude and two angles giving the direction,
or three components of the vector along the three coordinate axes. Four-
vectors will be considered later.

Boldface Latin capital letters (AF,X) will be used in this book to
denote vectors; the corresponding normal-weight letters (A.F,X) will
denote the corresponding magnitudes (normal-weight letters will usually
denote scalar quantities). The components of A along the three eoordi-
nate axes will be denoted A., 4,, and 4.. A vector of unit length in the
direction of A is denoted by a; and in conformity with usual practice the
unit vectors along the x, y, and z directions will be labeled i, j, and k,
respectively. Unit vectors along curvilinear coordinate axes will usually
be labeled a, with a subscript indicating the axis in question (for instance,
in polar coordinates, the unit vector along r is a, that along ¢ is as, ete.).
Unless otherwise noted the coordinate systems used will be right-handed
ones: if a right-hand screw is placed along the z axis, then a rotation from
x into ¥ will move the screw in the positive z direction; or if the z, y plane
is on a blackboard which is faced by the observer, the = direction can
point to the observer’s right, the y axis can point upward, and the z axis
will then point toward the observer.

In the notation given above vectors A and B obey the following
general equations:
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A = Aa = Azi + ij + Azk
A+B=(4:+ BJi+ (4, + B)j + (4. + Bk

which constitute a definition of vector components and of vector addition.

Vectors are not invariant to change of coordinates in the same sense
as scalars are; for their components change as the coordinate directions
thange. The transformation properties of vectors will be discussed later.

Multiplication of Vectors. Two vectors can be multiplied together
in two different ways: one resulting in a scalar and the other in vector.
The scalar or dot product of two vectors A and B is equal to the product
of the magnitude of one by the component of the other in the direction of
the first:

(1.2.1)

A-B=ABcosd = 1,B, + A,B, + A.B, (1.2.2)

where ¢ is the angle hetween A and B. The expression 4B cos ¢ is
independent of the coordinate system used to compute the components
A, ete., so that the value of the dot product is independent. of the coordi-
nate system chosen. The dot product is therefore a true scalar, the
simplest mvariant which can be formed from two vectors.

The dot product is a useful form for expressing many physteal quanti-
ties: The work done in moving a body equals the dot product of the force
and the displacement; the electrical energy density in space is propor-
tional to the dot product of the elecirie mtensity and the electric dis-
placement; and so on. The dot product of two unit vectors is equal to
the direction cosine rclating the two directions. The maximum value
of the dol product of two vectors is obtained when the two vectors are
parallel; it is zero when the two are perpendicular. In a sense the dot
produet is & measure of the coalignment of the 1wo vectors.

The wector or cross product A X B of two vectors is a vector with
magnitude equal to the area of the parallelogram defined by the two
vectors and with direction perpendicular to this parallelogram. The
choice as to which end of the perpendicular to put the arrowhead is
decided arbitrarily by making the trio A, B, and (A X B) a right-handed
system: if a right-hand screw is placed perpendicular to A and B, a rota-
tion of A into B will move the screw in the direction of (A X B). In
terms of right-hand rectangular coordinates

A X B = (A,B, — ByA)i+ (A.B, — B.A.)j + (A.B, — B.A,)k

2.
Magnitude of (A X B) = AB sin 9 (1.2.3)

We note that vector multiplication is not commutative, for A X B
= —B X A.

Axial Vectors. Although the cross produet of two vectors is a vector
with most of the transformation properties of a ““true” vector (as we shall
see Jater), there is one difference which is of importance. The cross prod-
uct, as defined in Eq. (1.2.3), changes sign if we change from a right-



§1.2] Veclor Fields 11

handed to a left-handed system of coordinates. This is another aspect of
the fact that the eross product has the directional properties of an ele-
ment of area rather than of an arrow. The direction connected with
an area element is uniquely determined, the direction normal to the
element, except that there is no unequivocal rule as to which side of the
element is the positive direction of the vector. The area fixes the shank
of the arrow, so to speak, but dves not say which end should bear the
point. Which end does carry the point must be decided by some purely
arbitrary rule such as the right-hand rule, mentioned above, which we
shall use in this book.

Arealike vectors, with a fixed shank but interchangeable head, are
called axial vectors (they are also sometimes called pseudoveriors). We
shall sce later that the three components of an axial vector are actually
the three components of a second-order antisymmetric tensor in three
dimensions. Indeed only in three dimensions is it possible to represent
an antisymmetric tensor by an axial vector.

As indicated above, the axial vector associated with an element of
area dA can be written:

dA =ndA =dx x dy

where n is the unit vector normal to the element and where dx and dy are
the vectors associated with the component elements dx and dy. 1If the
first two notations are used, it is necessary in addition to indicate which
side of the element is positive; if the last notation is used, our arbitrary
right-hand rule will automatically decide the question.

Other axial vectors can be represented in terms of cross produets:
the angular momentum of a particle about some point is equal to the cross
product of the vector representing the particle’s momentum and the
radius vector from the origin to the particle; the torque equals the cross
product of the force vector and the veetor representing the lever arm;
and so on. Rotation fixes a plane and an axis normal to the plane, the
characteristics of an axial vector. According to our convention the
direction of a rotational vector follows the motion of a right-handed
screw turued by the rotation.

A useful example of a product of three vectors is the scalar triple
product

A, A, A,
A-BxC)=B-(CxA) =C-(AxXB)=I|B. B, B, (1.2.4)
c, ¢, C,

The magnitude of this quantity is equal to the volume (or to minus the
volume) enclosed by the parallelepiped defined by the vectors A B,and C.
Such a scalar, 8 dot produet of an axial vector and a true vector, which
changes sign if we change from left- to right-handed coordinates or if we
interchange the order of the vectors, is sometimes called a pscudoscalor,
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We note that the dot product of two axial vectors (or of two true vectors)
is a “true’”’ scalar, with no uncertainty in sign.
Incidentally, the rules governing the products of the unit vectors are

t=i-i=jg=k=1; i-j=i-k=j-k=0

{)v
ixi=---=0; ixj=k jxk=1i kXi=]j (1.2.5)

Lines of Flow. As we have said earlier, a vector field is defined by
specifying a vector at each point in space, in other words, by specifying
a vector which is a function of z, y, and z: F(z,3,2). In most cases of
interest this vector is a continuous function of z, y, and 2, except at
isolated points, or singularilies, or along isolated lines, or singular lines.
Where the vector is continuous, we can define lines of flow of the field,
which are lines at every point tangent to the vector at that point. The
differential equation for the lines is obtained by requiring that the com-
ponents dz, dy, dz of displacement along the line be proportional to the
components F,, F,, and F; of the vector field at that point:

dr dy dz
F.~ 7, T, (1.2.6)
Compare this with Eq. (1.1.3).

In certain simple cases these equations can be integrated to obtain

the algebraic equations for the family of lines of flow. For instance, if

$=l0y=7

Fig. 1.3 Helical lines of flow 6, ¢ = constants, together with pseudo-
potential surfaces = constant, as given on page 15.

F, = —ay, F, = az, F, = b(z® + ?), the lines of flow are helical. The
equation dz/F. = dy/F, becomes x dz = —y dy, which integrates to the
equation for the circular cylinder, =2 + y? = ¢?, with ¢ an arbitrary
constant, denoting the particular line of flow chosen. The equation
dy/F, = dz/F. becomes ¢ dy/\/¢* — y* = (a/b) dz, after substitution
for z from the equation relating z and y. This integrates to

z = (be?/a) sin~h (y/e) + ¢ = (b/a)(=* + ?) tan™ (y/x) + ¢
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where ¢ is the other constant of integration which is needed to specify
completely a particular line of flow. The two equations

o=z +y, ¢=z— (b/a)@®+ y’) tan? (y/2)

define a doubly infinite family of flow lines, one line for each pair of values
chosen for ¢ and .

Another example is the case F, = z/7%, I, = y/r®, F, = z/r*, where
7?2 = (22 + y? + #%). The equations for the flow lines reduce to dx/z
= dy/y = dz/z. The first equation gives In (z) =In (y) + constant,
or z/y = constant. Similarly we have either z/z or y/z = constant or,
combining the two, (z? + y?)/2? = constant. The most suitable forms
for the constants of integration, analogous to the forms given in the
previous paragraph, are

¢ = tan™! (y/z); ¢ = tan™' (V=® + ¥?/7)

Again, a choice of values for ¢ and ¢ picks out a particular flow line; in
this case a straight line radiating from the origin.

z z
=270° = °
$-90%-=10. ;509 b0
B-459 /
- o o
- 5, &
% ®
i % X
69 3 6-90°
r=10 r=10
/X ™
/ AN
0-35 Lizss
r=10 r=10

Fig. 1.4 Radial lines of flow and spherical potential surfaccs for field
about a source point.

From another point of view ¢ and ¢ can be considered as functions
of z, y, and z and are called flow functions. The values of ¢ and ¢ at
some point label the flow lines at that point. From still another point
of view the two families of surfaces ¢ = constant and ¢ = constant can
be considered as two families of coordinate surfaces for a generalized
system of coordinates. The intersection of two such surfaces, ¢ = ¢o and
& = &, is the flow line corresponding to the pair (po,d0) and is a coordi-
nate line in the new system.

Potential Surfaces. The lines of flow may also determine another
family of surfaces, perpendicular to the lines (unless the lines are so
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“curled” that no such set of surfaces can exist). By analogy with
Eq. (1.1.2) the equation for such a surface is

F-ds=F,de+ F,dy +F.de =0 (1.2.7)

corresponding to the fact that any displacement vector in the surface
must be perpendicular to F.

In certain cases this equation is integrable. If there is a function
such that u(3¢/dx) = F., n(d¢/dy) = F,, u(d¢/dz) = F,, then the equa-
tion for the family of surfaces becomes ¢ = constant. The quantity u
may be a function of z, y, and z and is called an integrating factor. The
criterion for whether an equation for the surfaces exists in integral form
1s developed as follows: Assuming that there is a ¢ as defined above, we
substitute in the expression

oF, oF, oF, _ dF, aF, oF,
Fx(ay_¥>+Fy(¥ 6w>+F5(5 61/)
_ a\p[a a¢)_a¢ a¢)]+ a¢[a a\p)_a a¢)]
P ay\Maz oz \" ay B oy | oz \" oz oz \M 32
ol o oy a( ap\| _
“5[&(%)“@(“&)]‘0 428

If there is a function ¢, this last expression is zero. Therefore, if the
expression involving the components of F turns out to be zero, then 1t is
possible to integrate the differential equation for the surfaces per-
pendicular to the flow lines. In other words, if the vector whose «, y, and
2 components are (6Fz — ﬂ); <6F’ — 6Fz>, and (6—F” — QF—’?)
dy oz dz 0x o dy

perpendicular to the vector F at every point, then it is possible to obtain
the equation for the normal surfaces in integral form, as ¢(x,y,2) = con-
stant. More will be said concerning this vector later. The function ¥
is called a pscudopotential function.

In certain special cases u is a constant and can be set equal to (—1),
so that F, = —(ay/dz), F, = —(0y/dy), F. = —(d¢/dz). The excuse
for the negative sign will appear later. In these cases the scalar function
is called the potential function for the vector field F, and the surfaces y =
constant are called equipotentiol surfaces. For this to be true, the three
o, _ LF”); (66‘I — dF") (6F” — 6F’> must each be zero
dy 0z 0z ox oz Ay ’
as can be seen by substituting the expressions assumed for the com-
ponents of F in terms of .

In other cases the equation for the surface is not integrable, either
with or without the use of the integrating factor; then it is impossible
to find a sensibly behaved family of surfaces everywhere perpendicular
to the lines of flow, We shall return to this discussion on page 18,

quantities (
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In the first example given in the previous section, where the lines of
flow are helices, the vector whose components are

oF or, or or or or
2T ¥) = 9by: — T %) = —9bx: —¥_ %) =9
<6y 6z> by; (E)z E)x) be; (6:1: 6y> ¢

is perpendicular to the vector F. Therefore, the differential equation
(1.2.7) for the family of surfaces is integrable. Dividing the equation
by the integrating factor u = x? + y? results in a perfect differential.
Setting ¢y = tan™' (y/x) + (b/a)z, we find that -

0
Fo= @403 Fu= @405l Fom @) 2

so that the integrated equation corresponding to (1.2.7) for this case is
¢ = constant. The system of surfaces ¢ = constant, 8 = constant, and
¢ = constant form a set of generalized coordinate surfaces (in this case
not mutually perpendicular) which are the natural ones for the vector
field considered. The values of ¢ and & for a point determine which
flow line goes through the point, and the value of ¥ determines the posi-
tion of the point along the flow line.

In the second example considered above, the quantities (6§ — %),

ay dz
oF, oF, oF, aF,
(EZ— 6x>’ and (

grable directly, without need of an integrating factor. The function

o 6y> are all zero, so that Eq. (1.2.7) 1s inte-

Y =1/Vat 2

is, therefore, a potential function, and the spherical surfaces ¢ = con-
stant are equipotential surfaces. The components of F ure related to
by the required equations:
W_ _ LWy Lz :
Y- _t_ _F,; it —Fy; 5=~ =—F;
7-2 — .E2 + y2 _|_ 22

ox T

' The coordinate system corresponding to the flow lines and the potential
surfaces is the spherical system

¢ =tan! (y/z); & = tan! (Va2 + 12/2); r =Vt + 2 + 2

In this case the coordinate surfaces are mutually perpendicular.

When a family of equipotential surfaces is possible, the vector field
F can then be represented in terms of the scalar potential field ¢, and it is
usually much easier to compute the scalar field first, obtaining the vector
field by differentiation.



16 Types of Fields [em. 1

Surface Integrals. There are a number of general properties of
vector fields and their accompanying lines of flow which are important
in our work. One is the “spreading out” or “net outflow” of lines of
flow in a given region, whether lines originate or are lost in the region or
simply pass through the region from one side to the other. Another
interesting property is the amount by which the lines of force have
“curled up” on themselves, whether the vector field is one with “whirl-
pools” in 1t or not.

The amount of divergence of flow lines out from a region can be
measured by means of the surface infegral. Suppose that we consider
an element of surface area as being represented by the infinitesimal axial
vector dA, of magnitude equal to the area of the surface element and
having direction perpendicular to the surface. The scalar product
F - dA then equals the product of the surface area with the component
of the vector F normal to the surface. If the vector field F(z,y,2) repre-
sents the velocity vector for fluid motion, then F-dA will equal the
volume flow of fluid across the surface element and the integral [F - dA
will equal the total volume flow over the surface covered by the integra-
tion. Its sign depends on the choice of direction of the axial vectors dA,
that is, on whether they point away from one side of the surface or
the other. Tts magnitude is sometimes called the number of flow lines
of F crossing the surface in question, a phrase which, in a sense, defines
what we mean by “number of flow lines.”

If the surface integrated over is a closed one, and if the vectors dA
are chosen to point oway from the region enclosed by the surface, then
the integral will be written as #'F - dA and will be called the net outflow
integral of the vector F for the region enclosed by the surface. When F
is the fluid velocity, then this integral equals the net volume outflow of
fluid from the region in question. The enclosing surface need not be a
single one, enclosing a simply connected region; it may be two surfaces,
an inner and outer one; or it may be more than two surfaces. For that
matter, the outer surface may be at infinity, so the region “enclosed”
is all of space outside the inner surface or surfaces. In this case the
vectors dA at the inner surface must point inward, away from the
“enclogsed” region.

The integral #'F - dA is a measure of the number of flow lines originat-
ing within the enclosed region. If no flow lines originate there, all lines
passing through from one side to the other, then the net outflow integral
is zero.

Source Point. One simple case of vector field is particularly impor-
tant in our later work and illustrates some interesting properties of net
outflow integrals. This is the case where all flow lines originate at one
point 0, when the vector F at P has the magnitude @/r? and is pointed
outward along r. The quantity 7 is the distance from O to P, as shown
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in Fig. 1.5, the point O is called a simple source of flow lines, and the con-
gtant Q is called the strength of the source. The element of the surface
integral for such a case isF-dA = (Q/r%)

cos & dA. However,dA (cos & /r?) is equal

1o 4%, the element of solid angle sub- P
tended by the element of area dA when
its normal is inclined at an angle & to the
adius. The net outflow integral thus
reduces to Q¢ d€, which is zero when O >
is outside the region enclosed by the in-
tegral and is equal to 47Q when 0 is in-
side this region. Detailed analysis sim-
jlar to the above shows that this is true
for all shapes and varieties of enclosing
surfaces.

The foregoing paragraph is a rather
packhanded way of defining a simple
source. A more straightforward way
would be to say that a simple source
of strength @ is a point singularity in a Fig. 16 Vector fidd about a
vector field such that a net outflow in- = point’. Flement of net
tegral of the field over any surface en- outflow integral.
closing the singularity is equal to 47Q.

The theorem which we have obtained can be stated by means of an
equation

Q 0; source outside enclosed region
= .. = ’ .. . 2.
95 <7~2 a, - dA 47Q); source inside enclosed region (1-2.9)

where a, is the unit vector pointing outward along r.

Sometimes the vector field is a combination due to several simple
sources, one at O, with strength @, one at 0, with strength @, one at
0. with strength @, etc. In other words

F = Z(Qn/r—%)am

where r, is the distance from the point O, to P and a., is the unit vector
pointing along r,. In this case the net outflow integral becomes

SF-dA = Z6(Q./rD)am - dA = Z'dx(Q), (1.2.10)

Where the unprimed summation is over all the sources but the primed
Summation is over only those sources inside the enclosed region.

Line Integrals. Instead of integrating the normal component of a
vector over a surface, one can also integrate its component along a line.
If ds is the vector element of length along some path, the integral [F - ds,
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taken along this path, is called the line tndegral of F along the path.
When F is a force vector, its line integral is the work done along the
path; when F is the clectric intensity, the line integral is the emf hetween
the ends of the path; and so on.

In general the value of the line integral between two points depends
on the choice of path between the points. In some cases, however, it
depends only on the position of the end points. This is the case dis-
cussed on page 14, where the components of F are derivatives of a
potential function . In such a case the line integral from a point O
to another point P, along path A, is equal in magnitude and opposite
in sign to the line integral in the reverse direction from P to O along
another path B. Therefore, the integral around the closed path from O
along 4 to P, then along B back to 0, 1s zero for such a field. In general,
however, a line integral of & vector field around a closed path is not zero.

The line integral around a closed path will be designated by the
expression

SF -ds

and will be called the net circulation integral for F around the path chosen.
This integral is a measure of the tendency of the field’s flow lines to
“curlup.” For iustance if the flow lines are closed loops (as are the lines
of magnetic intensity around a wire carrying current), a line integral of F
around one of the loops will, of course, not be zero. The expression is
called & circulation integral, because if F represents fluid velocity, then the
integral £'F - ds is a measure of the circulation of fuid around the path
chosen.

We have seen above that, whenever the vector field has a potential
function, the net circulation integral is zero. Therefore, we designate
all fields having potential functions as circulation-free or rrotational
fields. Fields having pseudopotentials do not necessarily have zero net
circulation integrals. Indeed this will be true only if the gradient of u
(discussed on page 14) is everywhere parallel to F.

There are cases of vector fields which are irrotational everywhere
except mside a limited region of space; in other words all the net circula-
tion integrals enclosing this region differ from zero and all those not
enclosing the region are zero. By analogy with the fluid-flow problem
we call the region which “produces” the circulation & vortex region.
Vortex regions must be of tubular shape, and the tube can never begin
or end. It must either extend to infinity at both ends or close on itself
to form a doughnut-shaped region. The only way for a vortex region
to end above V (sce Fig. 1.6) would be to have the circulation integral
about path 4 different from zero, and to have the integrals about paths
B, C, and D all equal to zero. However, a little close reasoning will
show that, when the integral around 4 is not zero and, for instance, those
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around B and C are zero, then the integral around D cannot be zero.
For by pairing off adjacent segments of the different paths one can show
that the sum of the four line integrals around 4, B, C, and D must be
gero, SINCe each pair consists of segments integrated over in opposite
directions, which must cancel each other exactly. Therefore, if the
integrals over B and C are zero, the integral over D must equal minus
that over A, which by definition is not zero. Therefore, the vortex
region cannot stop at V but must continue on in some such manner as is
shown by the dotted region in ¥ig. 1.6. (Of course this reasoning tacitly
assumes that the field is continuous at the vortex boundaries; anything
may happen if discontinuities are present.)

Fig. 1.6 Paths of net circulation integrals about vortex
regions.

A vortex region may, of course, “fray out’ into several tubes, some
of which may return on themselves and others may go to infinity. It is
possible to extend the theorem given above to include these more general
cases; a differential form of the generalized theorem will be given on
pbage 43.

Vortex Line. The simplest sort of vortex region is the simple vortex
line, whose field is given by the equation

F = (2/7)(Q X a,) = (20/7)a, (1.2.11)

where Q, sometimes called the vorticity vector, is a vector of arbitrary
length pointed along the vortex line L and q is & unit vector in the same
direction. The vector r represents the line perpendicular to @ between L
and the point P where the field is measured, &, is the unit vector in the
same direction, and a, = q X a, 1S & unit, vector perpendicular to ar
and Q. For a curve in a plane perpendicular to L, the line integral for
this field is

fF-ds = 2Q #(cos a/r) ds

where « is the angle between ds and a,.
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The second part of Fig. 1.7 shows that (ds cos a/r) = de, the element
of angle of rotation of r about L. Therefore, the net circulation integral
reduces to 2Q ¢ de which can be integrated directly. For path B,
enclosing L, it equals 47Q; for path A, not enclosing L, it equals zero.

This argument can be extended to paths not in a plane perpendicular
to L, and the final result for the field of the field of the simple vortex

line is
20 0; L not enclosed by path )
¢ (7) a,-ds = {i47rQ; L enclosed by path (1.2.12)

for all possible paths. The plus sign is used when the integration is
clockwise about L when viewed in the
direction of positive ¢; the minus sign
when the integration is in the opposite
sense.

Singularities of Fields. It is inter-
esting to notice the parallelism between
the properties of the net outflow inte-
gral near a simple source field, discussed
on page 17, and the net circulation
integral near a vortex line, discussed
mmmediately above. The source and
the line are the simplest examples of
singularities in vector fields. As our
discussion progresses, we shall find that
singularities like these two are usually
the most important aspects of scalar
and vector fields. The physical pecu-
Fig. 1.7 Vector field about vortex i, 1ities of the problem at hand are
line. Element of net circulation
integral. usually closely related to the sort of

singularities the field has. Likewise
the mathematical properties of the solutions of differential equations are
determined by the sorts of singularities which the equations and its solu-
tionshave. Much of our time will be spent in discussing the physical and
mathematical properties of singularities in fields.

The field due to a simple source radiates out from a point, whereas
that due to a vortex line rotates around the line. It is possible to spread
sources out into lines or surfaces or even volume distributions, and it is
possible to extend vortices into surfaces or volume distributions, but
it 18 not possible to crowd a vortex into & point. This property is related
to the fact that a rotation requires an axis, a line, to rotate about.

An interesting property which net circulation integrals and net out-
flow integrals, for any sort of field, have in common is their “additive-




§1.3] Curvilinear Coordinales 21

ness.”  For instance, in Fig. 1.8, the net circulation integral about path
¢ equals the sum of the integrals for
pat.hs A and B, because of the fact that
the integration over the internal portion
p is covered in opposite directions n
paths 4 and B and, therefore, cancels
out in the sum, leaving only the integral
over path (. Similarly the net outflow
integral for any region is equal to the
sum of the net outflow mntegrals for all
the subregions which together make up
the original region. This again is due
to the fact that the integrals over the
surfaces internal to the o_riginal surface Fig. 1.8 Additivity of net cir-
always oceur in pairs, which cancel each  culation integrals.

other out in the sum, leaving only the

integral over the outer surface of the original region.

1.3 Curvilinear Coordinales

Up to this point we have been tacitly assuming that the fields we
have been discussing could always be expressed in terms of the three
rectangular coordinates z, v, # (the fourth, or time, eoordinate will be
discussed later). Vector and scalar fields can in general be so expressed,
but it often is much more convenient to express them in terms of other
coordinate systems. We have already seen that it is sometimes possible
to set up a system of coordinates ‘“natural’ to a vector field, using the
Iines of flow and the potential surfaces. In many cases the nature of the
field is determined by specification of its behavior at a boundary surface
or by specifying the nature and position of its singularities (or both),
and the ““natural” coordinate system for the field will bear some simple
relationship to the boundary surface or to the distribution of singularities
(or both). In many cases the expression for the field has a simple and
tractable form in terms of these ‘“natural’ coordinates, whereas in terms
of z, y, and z the expression is complex and the necessary calculations
are intractable.

For all these reasons, and for others which will become apparent
as we delve into the subject, we find it expedient to learn how to express
our fields and the differential and integral operators which act on them
In terms of generalized three-dimensional coordinates. We shall restrict
ourselves to orthogonal coordinates, where the three families of coordinate
surfaces are mutually perpendicular, because problems which require non-
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orthogonal coordinates practically never can be solved exactly. Approxi-
mate techniques for solving such problems usually involve the use of
solutions for orthogonal coordinate systems.

A generalized coordinate system consists of a threefold family of
surfaces whose equations in terms of the rectangular coordinates are
£:1(z,y,2) = constant, &(x,y,2) = constant, £s(x,y,2) = constant (we assume
that the reader is sufficiently acquainted with the properties of the
rectangular coordinates x, y, 2 so that several pages of boring and obvious
remarks can be omitted here). These equations give the functions &,
£z, and £; as functions of z, y, and z.  In many cases it is more convenient
to invert the equations and express z, ¢, and z in terms of £, &, and &

S
L (]3|
! %
T
&, =const.| g,
7D
;cm%
4
(]| 7 \ Yoo
Y
€|,= const.

X X

Fig. 1.9 Element of curvilinear coordinate system with unit
vectors a, and direction cosines yun.

The lines of intersection of these surfaces constitute three families
of lines, in general curved. At the point (x,y,2) or (1,5, £s) we place
three unit vectors a,, a,, and as, each tangent to the corresponding coor-
dinate line of the curvilinear system which goes through the point.
These will be the new trio of unit vectors, in terms of which we can
express the vector field F.  'We note that the vectors a are of unit length,
i.e., 1 cm, or whatever the unit used, the same length as the vectors
i, 3, k. For orthogonal systems the vectors a at a point are mutually
perpendicular.

Direction Cosines. The direction cosines of the unit vector a; with
respect to the old axes are called oy = a1-1, 81 = a1+j, v1 = a1+ k;
those of a, are as, B2, v2; and so on. In general these direction cosines
will vary from point to point in space; 7.e., the o's, §'s, and ¥’s will be
functions of &, £, and £. Y¥rom the properties of direction cosines we
see that

for all values of the coordinates.
If the new unit vectors a are mutually perpendicular everywhere,
the new coordinate system is orthogonal, In this case o, a3, aj are the
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three direction cosines of i with respect to the a’s, and the nine direction
cosines are symmetrical with respect to the two systems. To emphasize
this symmetry we can relabel these quantities:

Oy = Ynl, ﬁn = ¥Yn2; Yn = ¥Ynd

80 that a, = 'Ynli + ’Yn?j + 'Yn3k; i= z Yn1n; ete.

Sincei-i=1,i-J=0,a;-a; = 1, a;+az = 0, etc., the above rela-
tions between the direction cosines and the unit vectors result in a series
of equations interrelating the values of the y’s:

E’Yms')/ns - E’Ysm'y.sn = an (1-3-1)

&

where 8,., i1s the Kronecker delia function, which is zero when m is not
equal to n, unity when m equals n.

Referring to Kq. (1.2.4) we note that, if the £ coordinate system is
right-handed (the z, y, z system 1s assumed to be right-handed), the
determinant of the 4’s, |v.m.l, is equal to +1; if the &s are left-handed,
then the determinant is equal to —1. Utilizing the second line of Eqs.
(1.2.5) or solving Eq. (1.3.1) for one of the v’s in terms of the others, we
obtain

Ymn = iMm'rL (1.3.2)

where the plus sign is used if the #s form a right-handed system and the
minus sign is used if the £'s are left-handed. The quantity M., is the
minor of ym, in the determinant |vy.ua|:

M11 = ¥22¥33 — ‘Y23Y32
JLII'Z = Y¥93Y31 — Y21Y33
Ms = vizyes — Tisv22;  ete.

It should, of course, be noted that the results expressed in Egs. (1.3.1)
and (1.3.2) hold, not only between any orthogonal system and the
cartesian system, but also between any two orthogonal systems. The
plus sign in Eq. (1.8.2) is used if both systems are right-handed or both
left-handed ; the minus sign if one system is right-handed and the other
left-handed.

Since we have assumed that the curvilinear coordinate system is
orthogonal, any vector F at (£,£,£s) can be expressed in terms of its
components along the new unit vectors:

F = szam; where F,, = F - a,,



24 Types of Fields [erm. 1

Utilizing the direction cosines y., we can easily show that the relation
between these components and the cartesian components of F are
F’m = 'Ym IF:c + 'Ym:!]"'_y + 'Yvn-'i["z = asz + 67“1'11, + 'YmIi'z

Fz = E’lelﬂm = zamFm: ete.
m m

(1.3.3)

Any set of three quantities defined with relation to a system of coordi-
nates, so that choiee of (x,y,2) gives a trio of functions of (z,y,2), a choice
of (&1, €3) gives another trio of functions of (£, £,,£3), etc., can be con-
sidered as the components of a vector if, and only if, the two trios are
related in the manner specified in Eq. (1.3.3).

Scale Factors. The above discussion does not help us much, however,
unless we know the values of the direction cosines «, 8, and v for each
point in space. Ordinarily we are given the equations for the new
coordinate surfaces; we must translate these into expressions for the
cosines. For instance, the usual definition for spherical coordinates
z2=E cos &, £ = £ sin £ cos £y, y = £ sin & sin £ does not give us
directly the o's, ’s, and 4’s in terms of &;, &, and & (£, = spherical coordi-
nate r, £ = spherical coordinate &, £; = gpherical coordinate ¢).

The needed connection is usually made by means of the line element.
The length of the infinitesimal vector ds is given as

ds* = da? + dy* + dz* = ) hEdEl

n

if the new coordinate system is an orthogonal one. Simple substitution
shows that the relation between the A’s and £'s1s

Y v\ o2\ _ [ [(o&.\ |, (0&\ |, (9&\'|™"
ha = (a‘s;) +(as;) +(6£n) = [(éw”) +(ay) +<az>]
(1.3.4)

The quantity kb, is a scale factor for the coordinate £,. A change d£,n
this coordinate produces a displacement h, d¢, cm along the coordinate
line. In general h, varies from point to point in space.

We notice that, in order to obtain the A’s in terms of the £’s, it is
necessary to express the old coordinates x, y, z in terms of the new ones,
£, £, &5, as was done for the spherical coordinates in the previous para-
graph. This mode of writing the relation between the two coordinate
systems is usually the most satisfactory.

Since h, d&, is the length of the displacement corresponding to d.,,
the rate of displacement along £, due to a displacement along the x axis
will be h,(8%,/0z). This quantity is, therefore, the direction cosine
an = yn1. Similarly, if @ is expressed in terms of the £'s, the rate of change
of = due to the displacement 4, d§, will be (1/h,)(9z/3%,), which is also
equal to .1 = a,. Thus the direction cosines for the £, axis w..h
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respect to the z, y, z axes can be written in terms of the derivatives
relating z, 4, 2, and the £s in either of two ways:

Yoo = = g, T et YT T R 9k, T ay?

—. Loz, 0%
Yn3 = Yo = hn 657, — Iy dz

(1.3.5)

depending on whether z, y, z are given in terms of the £'s, or the Fsin
terms of z, y, 2.

Equations (1.3.5) are useful hut are not needed so often as might be
expected. It isinteresting to note here that all the differential expressions

1 &=0 2

it
&

o P wnN

-0 G
Fig. 1.10  Urthogonal coordinate system with vari-
able scale factors h.  In this case by = haeverywhere
and h; = hs = 0 at point P, a concentration point
for the system.

we shall develop later in this chapter and use extensively later in the
book need only the #’s, and not the ¥’s, in order to be expressed In gen-
eralized coordinates. Evidently the scale of a new coordinate and the
variation of scale from point to point determine the important properties
of the coordinate. The direction of the coordinate with respect to z, ¥, 2
at a point is a property of relatively minor importance.

Curvature of Coordinate Lines. For instauce, even the change in
direction of the unit vectors a can be expressed in terms of the A’s. The
expressions for these changes are suggested in Fig. 1.11. In drawing (a),
we see that the change in a; due to change in & is asa, where

_ dkidty b
M db 0%
da; a» 6}],2

Ther gar _ g2
herefore, 35, = I 0k
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Similarly, in drawing (b), the change in a; due to change in £ has a £ com-
ponent equal to

_ dEl dg-z 6h1

B W T TR

and a similar {£; component. Therefore, the following formulas are

suggested:
9ar _ _ ap0ht 8,0, da; _ a, 9hy  Oar _ ag Ohy
23} N hs 3£, hs d&3’ 0&s hy 98’ 0&; k1 GRS
@:_i‘”’a_h?_ﬁah? 6&?:%%- a_azzé%_ (1.3.6)
6&2 hg 653 hl (951 (953 h-) 652 ’ 651 h-) 652 o
%8s _ _ 210hy 2y 0hy Oay _ a1 dln. das _ a;0hy
dts  hi ok hy 8L’ 0% hs; 0Fs’ 9E,  hs 0k

We can prove that these are the correct expressions by expressing

& dg, dg,an,
I i
h2d€2

Fig. 1.11 Change of direction of unit vectors a,,.

the a’s in terms of i, j and k, performing the differentiation, and utilizing

the definitions of the h’s given in Eqs. (1.3.4).

For instance,

da; 9 [i ox , j 9y , k az]
0k, 3% |h1 0k | ks 0& ' by 9E
a (1 . O% . 0% 9%
=l gy (h—) t [ at ok Tlapag T K 551‘652]
_ . 90lnh | 1 ’ 0%z [al or | a; dx |, as 6:11]
IR IR R ETw o DA T W Tl v Y
9%y a; oy a, dy az dy
+aslag[ma h—.zzrsﬁm&]
0% [al oz a, dz a; az]}
9t 08 | I 0k ha 0 1 by 3
or O, _ g 0Imh & ok ay 0k} _ a, ok
aés o0& 2h2 8¢, 2hihs 98, hi 08,

which coincides with the expression given above.
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Curvature and torsion of the coordinate surface & = constant can
easily be computed from Eqgs. (1.3.6). The unit vector a;, perpendicular
to the surface, changes in direction by an amount (da:/hs &) ds for a
displacement ds in the £ direction. This change is in the £; direction
and is a measure of the curvature of the §; surface in the direction of the
& coordinate line. In fact the magnitude a, - (da;/h 9%;) is just equal to
the reciprocal of the radius of curvature of the & coordinate line at the
point (£, £, £3); if the quantity is positive, it means that the curvature is
convex in the direction of positive £;; and if negative, the curve is concave
in the positive & direction.

It is not difficult to show that the total curvature of the surface
£1 = constant, at the point (£y,£,,£3), is

as 63.1 asg 63.1 1 0
¢ == () Ge) - (o) Ge) = — bty a0
where now the sign indicates the direction of the concavity of the curva-
ture. This formula and the corresponding ones for the &, and &; surfaces
will be of use later in calculating the restoring force produced by curved
surfaces under tension.

As a simple example, for the spherical coordinatesr, 9, ¢, the curvature
of the r surface is —(2/r), the spherical surface being concave inward
and being curved in both & and ¢ directions (which accounts for the 2).
The curvature of the conical ¥ = constant surface is —(1/7) cot ¢, and
the plane ¢ = constant surface has zero curvature.

In any case, once we know the equations giving z, ¥, and z in terms
of the new coordinates, Kqs. (1.3.4) to (1.3.6) enable us to compute the
scale of the new system, the components of a vector along these axes,
their variation, and many other important expressions which will be
discussed later.

The Volume Element and Other Formulas. Another quantity which
will be of importance later will be the expression for the volume element in
the new coordinate system. Since the elements dg,, d§,, d&s, correspond to
displacements hy d&:, hy d&s, hy d&; along mutually perpendicular axes, the
volume of the rectangular parallelepiped defined by these differentials is

di) = }Llhzhg dEl dgz d& (137)

This is the volume element in the new coordinate system. It is. of course,
always positive in sign.

As an example of these properties of the scale factors, we consider

the spherical coordinate system mentioned above: z = & sin £, cos &3
y = &isin £y 8in &y, 2 = £ cos .. We find that the scale factors are

h1 = 1; hg = El; hg = El Sill Eg
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The direction cosines of the unit vectors along the spherical axes are
therefore

a; = sin £ cos &; oy = cos £ cos £3; o3 = — SIn £
B1 = sin £y sin E5; B2 = cous Eo8in §3; B3 = cos &
y1 = c08 £g; Y2 = —8in&; 3 =0

These obey all the relations for orthogonality, etc., given on page 23.
The volume element in the new coordinate system is dv = Esin &
d& dE; dEs, and the components of a vector along the new coordinates are

F, =F,sin & cos £ + Fysin & sin & + F, cos &,
Fo = F,cos & cos £ + Fy cos £y sin & — F, sin &
F; = —F,sin & + Fy cos &

If the functions F,, Fy, and F, are expressed in terms of £, &, £, then
the new components will be expressed in terms of the new coordinates
and the transformation will be complete.

Rotation of Axes. Another example of coordinate transformation
18 the case where the new axes are also rectangular, being rotated with

Fig. 1.12 Rotation of axes, showing Euler angles.

respect to the old set by the Fuler angles 6, ®, ¢, as shown in Fig. 1.12.
The equations of transformation are

z = (sin ¢ sin ® + cos ¢ cos P cos 6) & + (cos ¢ sin P
— sin ¢ cos @ cos 0)§ + sin H cos P &

y = (8in ¢ cos & — cos ¢ sin ® cos 0) & + (cos ¢ cos & (1.3.8)
+ sin ¢ sin ® cos A)F;, — sin 6 sin P &3
z= —cosysinf g +sinysingh g + cos f &

The scale factors h, for this case are all unity, as was to be expected,
since the transformation does not involve a scale change. The direction
cosines for the transformation are the coefficients of the linear equations
given above:

ay = sin ¢ sin ® + cos ¢ cos P cos 0; etc.

B1 = sin ¢ cos ® — cos ¢ sin P cos 0; etc.
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From these direction cosines one ecan obtain the vector transformation
formulas.

Law of Transformation of Vectors. We have seen that, in order for
three functions of position to be considered as the three components of
a vector, they must trausform according to the rule given by Egs. (1.3.3)
and (1.3.5). If we transform the components from one curvilinear
coordinate system &, &, £ with scale factors Ay, hs, ks to another system
g, £, & with secale factors hi, hj, h}, the components in the new system
must be related to the components in the old system by the equations

F; - z ')’n'mFm
where (hn/ 1) (880 /08,) = Yrm = (/) (DE,/0Em)

Since h., d&.. and b, d&, are distances in centimeters, the new components
F! have the same dimensions as the old. In developing a new theory,
if we find three quantities which transform in a manner given by Eg.
(1.3.9), we can be fairly sure we have found the components of a vector.

It is interesting at this point to investigate the transformation
properties of the cross product (A X B). We recall that on page 11 it
was pointed out that (A X B) is not a true vector. The present dis-
cussion will show why. Using Eq. (1.3.9), the component of the cross
product of A and B along £ is

(1.3.9)

(A’ X B); = ALB, — A4B, = Z (Yi¥ns — VYms¥ns) AnBn

mn

Z ('YmZ'Y-n.'S - 'YWL3'Yn2) (44mBn - 447»Bm) (1310)

m>n

Using the relations given in Eq. (1.3.2) (it is easily seen that these rela-
tions hold for the more general transformation discussed here as long as
both systems are orthogonal) we finally obtain

(A" X B)1 = & ) (A X B)y, (1.3.11)

where the plus sign holds if the coordinate systems are both right-handed
or both left-handed, the negative sign holds if one is right-handed and
one left-handed [moreover, Eq. (1.3.11) holds only if both systems are
orthogonal].

It follows that A X B is an axial vector.

The equation also gives us a hint for a simple method of distinguish-
ing true and axial vectors, for they will behave differently under a trans-
formation which takes us from a right-handed to a left-handed system.
A simple example of such a transformation is the snwersion & = —=z,
£ = —y, £ = —=z. If the components of a true vector were 4., Ay, 4.,
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then 4; = —A, A, = —A,, etc.; i.e., the components of a true vector
change sign upon an inversion. On the other hand for an axial vector
A X B there will be no change in sign, so that the components of an axial
vector do not change sign upon an inversion.

Similarly, a true scalar or invariant, an example of which is A - B,
will not change sign upon an inversion. On the other hand a pseudo-
scalar, for example, A - (B x C), does change sign upon an inversion.

The detailed use of transformation equation (1.3.9) for the purpose
of discovering whether three quantities form the components a vector
may be very tedious. Another method makes use of the knowledge of
the invariants involving these quantities. For example, if S4.B; form
an invariant and B; are the components of a true vector, then A; must
form the components of a true vector. Several examples of this method
will oceur later in this chapter.

Contravariant and Covariant Vectors. There are two other methods
of writing vector components which have occasional use, obtained by
using different “unit vectors” for the decomposition of F into components.
Suppose the “unit vectors” are made to change scale with the coordinate
system, so that the new vector &, = h,a, corresponds to the size of a
unit change of £, rather than a unit length in centimeters (as does a,,)-
The vector F can be written in terms of these new “unit vectors”’:

F = 2.frén; J* = Fo/h,

In this case the transformation properties of the new ““components” are

o 208 N (B OEn
) = Zf ot zj (E) T (1.3.12)

The quantities f* are called the contravariant components of a vector
in the coordinate system £, &, #. They differ from the “actual” com-
ponents by being divided by the scale factor; and they give an actual
vector only when the components are multiplied by the “unit vector”
a, = h.a,

If the unit vectors along the coordinate lines have a scale inverse to
the coordinate, 4" = a,/h,, then the corresponding “components’” are

F =Y fd% fo=hbFa

in which case the transformation properties for the f’s are
RN AN
(J)' = zf g = me (hm> it (1.3.13)

The quantities f,, are called the covariant components of a vector in the
coordinate system (£;,£s,&s).
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These transformations have a somewhat greater formal symmetry
than does that given in Eqs. (1.3.9) for the usual vector components, for
the A’s have disappeared from the summation in at least one of the
expressions for each case. This dubious advantage is often offset by the
fact that the new components do not necessarily maintain their dimen-
sionality when transforming from coordinate to coordinate. TFor
instance, in spherical coordinates, if F has the dimensions of length,
F., Fs, and F, still have the dimensions of length after being transformed
whereas f? and f¢ are dimensionless and f; and f, have the dimensions of
area.

We shall return to this notation later, when we come to talk about
tensors. There we shall find that the f’s are useful in the preliminary
exploration of a problem, where the formal symmetry of their transforma-
tion equations may aid in the manipulations. When it comes to the
detailed calculations, however, we shall usually find it easier to use the
“actual” components F',, which always have the sume dimensions as F,
and the unit vectors a, which are all of unit length.

1.4 The Differential Operator v

Now that we have discussed the fundamental principles of coordinate
transformations and have indicated how we can recognize scalars and
vectors by noting their transformation properties, it is time to study the
general differential properties of vectors. In an earlier section we studied
the gross, macroscopic properties of vector fields by use of surface and
line integrals. Now we wish to study their detailed microscopic proper-
ties. By analogy to the differential operator d/dxz which operates on a
scalar function ¢ of z, changing it into a different function, the slope of ¢,
we have a differential operator, involving all three coordinates, which
operates on scalar and vector fields, changing them into other fields.
The resulting fields are measures of the rate at which the original fields
change from point to point.

The Gradient. The rate of change of a scalar ¢(x,y,2) is expressed in
terms of a vector, the direction being that of the greatest rate of increase
of ¢ and the magnitude being the value of this maximum rate of increase.
We have already indicated, in Eq. (1.1.1), that the change in ¢ as we go
from the point indicated by the vector A = zi + yj + 2k to the neigh-
boring point A + ds by the elementary displacement ds = idz + jdy
+ kdzis dy = ds - grad ¢, where

4

oy . . i,
gradgb:ng:%l—l—a—z]—l—é‘—:k (1.4.1)

If ds is in the isotimic surface ¥ = constant, dy must be zero, so that the
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vector grad ¢ must be perpendicular to the isotimic surface. The maxi-
mum value of d¢ occurs when ds is also perpendicular to this surface,
and in this case, as we have mentioned earlier,

dy = /(9¢/9z)* + (8¢/9y)* + (8¢/92)* ds

The quantity labeled by the symbols grad ¢ or Vy (read del y) is,
therefore, a measure of the rate of change of the scalar field ¢ at the point
(x,y,2). To show that it is definitely a vector, we must show that its
transformation properties correspond to Eq. (1.3.9). This is not difficult,
for it is obvious that the expression for the gradient in the curvilinear
coordinates &, &, £ is

a2 0, 8 0

grad v = V¥ = oo Yot ot

(1.4.2)
When we now transform this expression to another set of coordinates
g, &, &, as though it were a vector, it ends up having the same form
in the new coordinates as it had in the old. Using Eq. (1.3.9) and the

identities
-3
oL, 9t,) \9E,

m

we obtain

a, .0y ’ 1 oy b 0E. al, oy
W—ZEE*Z%ZQNQGHQ‘EE@
as, of course, we must if grad ¢ is to be a vector and have the form given

in Eq. (1.4.2) for any orthogonal curvilinear coordinates.

Note that grad ¢ is a true vector and not an axial vector. This
is demonstrated by the fact that dy = grad (¢) - ds is a true scalar invari-
ant. Since ds is a true vector, grad ¥ must also be a true vector. Note
also that the circulation integral for grad ¢, & grad () - ds = ¢ dy = 0.
The fact that the circulation integral of a gradient is always zero has
already been pointed out on page 18.

This short discussion serves to emphasize that, if we express ““physi-
cal”’ quantities in terms of the scale factors & for the coordinate £, then
they must turn out to be expressible by the same form of expression in
terms of the scale factors A’ for another set of coordinates .

Directional Derivative. The quantity B-grad ¢ will sometimes
oceur in our equations. When B is a unit vector, the quantity is called
the directional derivative of ¢ in the direction of the unit vector B, and
equals the rate of change of ¢ in the direction of B. Whether or not B
is & unit vector, the value of B - grad ¢ is
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—B-grady = B, Y W Lii4
(B'V)SL_B gra'dsb_Bzax"l_Byay"i_Bz (92

_Biov  Bady | By

ba 981 © ke 9% ' hy 9%

The scalar operator (B - grad) can also be applied to a vector, giving

B-V)A = (B-grad)A = i(B - grad 4.) + j(B - grad A,)
+ k(B - grad A4.)

In curvilinear coordinates this becomes somewhat more complicated,
because the unit vectors a also change with position, as given in Eqgs.
(1.3.6). Using these equations, we can show that the & component of
the vector is

_ Biody |, BidAy | Byod,
[(B-grad)Al =5 " oe + %, o6 T T os,
Ag [ ohy o, ohs] | Ag [ ohy ok,
+mﬂ&@ &%J mila &%]““>

and the other components can be obtained by cyclic permutations of the
subscripts. The first three terms in this expression are just B - grad Ay;
the other terms are corrections due to the fact that the directions of the
coordinate axes are not necessarily constant.

Infinitesimal Rotation. One type of coordinate transformation which
will have special interest later is that caused by an infinitely small rota-
tion of the rectangular coordinates about an axis through the origin.
Suppose that the vector do has magnitude equal to the angle of rotation
in radians and has the direction of the axis of rotation such that a right-
hand screw would move in the direction do if rotated with the coordinates.
The point designated by the vector r (in distance and direction from the
origin) would, if it were fixed to the rotating coordinate system, be dis-
placed by an amount represented by the vector do X r = —r X de.
If the point is, instead, fixed in space, then its coordinates in the rotated
system (which we shall label with a prime) will be related to its coordi-
nates in the unrotated system by the equation r’ = r + r X do, or

=2+ (ydw, — zdw,)
v =y + (do. — xdo.)
2 =2+ (xdwy, — yde,)

We could also write r = 1’ — 1’ X do. [These equations only hold for
very small rotations; otherwise we use the more general forms of Eq.
(1.3.8), which reduce to (1.4.3) in the limit of 8 and (® + ¢) small]
Now suppose that a sealar field ¢ is made to rotate slightly (the field
could be the density of a solid which is rotated slightly). Because of this
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rotation, the value of the field ¢ at the point (z,y,2), fixed in space, atter
the rotation, is related to its value ¢ hefore the rotation by the relation

V(25,2 = Py + @ X do)-grad ¢ = $(z,y2) — @ X V) - do
(1.4.4)

for (A X B)*C = — (A X C)-B for any vector trio. Therefore, the
vector (r X V¢) is a measure of the effect of any sort of infinitesimal
rolation on ¥; to measure the effect of a particular rotation de we take
the dot product of the two. Il the rotation axis is perpendicular to
(r X Vy), then a small rotation does not change ¢; if the axis is parallel
to (r X V), the effect of the rotation is the largest possible. Since any
f(r) is invariant against a rotation, then {r X vif(r)g(&e)} = f(r) -
-[r X Vg(9,0)]-

The Divergence. There are two uscful differential operations which
can act on a veetor field. One results in a scalar ndicating the rate of
increase of lines of flow, and the other in a vector indicating the rate of
twisting of the lines of flow. Oune can be obtained from the limiting
behavior of the net outflow iutegral for a vanishingly small enclosed

z va
- (X YaZe) {x5.2.)
ACNERY |
Lx X ', ' popm gy X
—dx — = —dx —,
a7 Y
v v

Fig. 1.13 Net outflon integral and divergence of vector ficld.

volume, and the other can be obtained by a similar limiting process on the
net circulation integral.

To obtain the scalar we first compute the net outflow integral of a
vector field F over the volume element dx dy dz at the poiut (vo.yo,2v).
By an extension of Taylor’s theorem. the z component. of F near (xro,70,20)
is

F. = Fa(xo,yo,20) + (9F2/02)(x — x0) + (9F=/y)(y — yo)
+ (0F./02)(z — =) + -

If the point (,0.20) is taken at the center of the volume element, then
the surface integral of the normal component of F over surface 1, shown
in Fig. 1.13, is
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/ Fodt = dydz [F.(vo,yo,20) + S(3F./0x) dx]
1
+ higher orders of differentials

The surface integral over surface 2 is

/ I.dA = —dy dz [F(zoyo,20) — $(8F./0z) dr] + higher orders

2

the negative sign outside the bracket coming in because the outward
poiuting component of F is being integrated, and the outward component
of F for face 2 is —F,. The sum of the surface integrals over these two
faces is, therefore, simply (0F./0z) dr dy dz, to the order of approximation
considered here. The contributions due to the other faces depend on
I, and I, and can be computed in a similar manner. The net outflow
integral for the volume element is therefore

oF, _oF, | oF.
QSF-dA—(aF—I— S+ ag)d.ldydz

This is the three-dimensional vector analogne of the differential du
of the scalar function u(x) of one variable. The analogue of the deriva-
tive is the net outflow integral per unit volume at the point (z,7,2).
This is a scalar quantity called the divergence of the vector F at the
point (x,y,2) and is written

or, ,
Frl v-F (1.4.5,

divF = Iim [

vol—-0

fF-_dA] _ 9k, n ar, N
volume dz dy
The divergence is equal 1o the rate of increase of lines of low per volume.

According to the fundamental definition given in the last paragraph,
the divergence of F at a point P is a property of the behavior of F in the
neighborhood of P, and its value should vot depend on the coordinate
system we have chosen. It is to be expected that the expression for the
divergence opcrator should have a dilferent mathematical form for
generalized curvilinear coordinates from what it has for rectangular
coordinates; nevertheless the numerical value of div F at P should be the
same for any sort of coordinate system. If the transformation of coordi-
nates involves only a rotation and not a stretching (i.e., if the A’s all eqnal
unity), then both form and value should be unchanged by the trans-
formation. This is, after all, what we mean by a scalar invariant.

To find the expression for divergence in the generalized coordinates
discussed on page 24, we return to the fundamental definition of div F
and compute the net outflow integral for the volume element defined by
the elemeutary displacements h, d£, in the new system. The net outflow



36 Types of Fields [cH. ]

over face 1 in Fig. 1.14 is d&, dfs {Fihohs + 5[(8/08) (Fih:hs)] d&a}. We
have had to include the factors hohs inside the derivative in the second
term for the following reason: The net outflow integral over face 1 differs
from that over face 3, at the center of the element, both hecause Fi
changes as & changes and hecause, in curvilinear coordinates, the area
of face 1 differs from that of face 3; that is, hohy also depends on &1
Therefore, both factors must be included in the differential term.

€,68)

Fig. 1.14 Net outflow and divergence in curvilinear coordinates.

The outflow over face 2 is d§; d&s { —Fihshs + [3(8/0%1) (F1hehs)] d&1},
and the net outflow over the two faces is, therefore, d& d&,; d&; (9/9E1)
(Fyhshs). The divergence of F in generalized coordinates is, therefore,

FF-dA 1

divE = =057 = hhks

[651 (F 1hshs) + 35 (thzh.s) T (h1hof3)]
(1.4.6)

where dV = hihohs dE1 dEs dE, is the volume of the elementary parallele-
piped.

This expression has certainly a different mathematical form from the
one in Eq. (1.4.5) for rectangular coordinates. In order to show that
the two have the sume value at a given point, we resort to direct trans-
formation from one to the other, using the equations of transformation
given on pages 23 to 25. Starting with the expression in rectangular coor-
dinates, we express F., F,, and F. in terms of Fy, Fs, and F3, using Fgs.
(1.3.5). After expanding some of the differentials and rearranging terms,
we obtain

dF . _ l[c')x oF, | oy 9F, | 9z oF,
ox y 62 0&: Az d¢1 dy 0§ 0z
L1 [ax oFy | dy oF, | 0z 9F,

9k ox T ok oy T ok oa]jﬁ;[' -]

3z d(L/hy) | 3y 8(1/h1) | B2 a(1/h1)] o
3% or + 3t o ton o + Pyl - ]+ Fof- - 1]

gaax 9 dy d 0z Fz__ Fag o
+h1[6x6£+6y651+6z6£1}+ L1+l |

+ Fy
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The first and fourth brackets can be simplified by using the relation

dx &,y 9 9 8 B

[ AV _—— — = f t,h th b

0k, oz | At oy | 9E 0z oF O At they become
1 0F: a(1/h1)

ot T o

The seventh bracket must be expanded further, by the use of

D _ 0 00 | 3o
ox dr 0% ox 0&, ox 0&;

and other similar expressions. Usiug also 8¢,/0z = (1/h})(dx/0¢y),
and similar equations obtained from Fgs. (1.3.5) and rearranging terms,
this seventh bracket becomes

Fill(oxd®x  oyd%y , dzd%y 1 . 1
—[E(aslasﬁaaaﬁ*aslas%)+hg( )+ )]

But from Iigs. (1.3.4) defining the A’s, we see that the first parenthesis
in this bracket is $(9h}/8£,), so that the whole bracket becomes

Fy [1 oh: 19k 1 ahg] Py 8(hihshs)

2hi | B3 08, " R30E ' RioE|  RRhoha 0%

which is the first term in the expression for div F given in Eq. (1.4.6).
The other six brackets likewise combine to give the other two terms,
showing that div F in rectangular coordinates is equal numerically to
div F at the same point expressed in any other orthogonal system of
coordinates. We therefore can call div F an smwariant to transformation
of coordinates.

Incidentally, we have shown by this rather roundahout way that the
net outflow integral for an infinitesimal surface depends only on the
volume enclosed by the surface, and not on the shape of the surface,
i.e., not on whether the volume element is for rectangular or for curvi-
linear coordinates. If we had wished, we could have proved the invari-
ance of div F by proving this last statement directly, instead of going
through the tedious algebra of the previous page.

Gauss’ Theorem. It is possible to combine our knowledge of the
additive property of net outflow integrals and our definition of div F
to obtain a very important and useful method of calculating the net out-
flow integral for any region of space. Because of the additive property,
the net outflow integral for the whole region must equal the sum of the
outflow integrals for all the elements of volume included in the region.
According to Fq. (1.4.5) the integrals over the element of volume dv can
be written div F dv, thus giving us the very important divergence theorem

SF-dA = [[[divF dv (1.4.7)
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where the volume integral is taken over the whole region bound by the
surface used for the surface integral. This is called Gauss’ theorem.

This divergence theorem emphasizes the close relationship there must
be between the behavior of a vector field along a closed surface and the
field’s behavior everywhere in the region inside this surface. It cor-
responds to the rather obvious property of flow lines; <.e., their net flow
out over a closed surface must equal the net number “ created” inside the
surface.

A Solution of Poisson’s Equation. Furthermore, a juxtaposition
of Gauss’ theorem with the facts we have mentioned earlier concerning
vector fields and source points [see Eq. (1.2.9)] enables us to work out 2
useful solution to Poisson’s equation V¢ = —q(x,y,2), [Eq. (1.1.5)],
whenever ¢ is a finite function of z, y, 2 which goes to zero at infinity and
whenever the only requirement on the solution ¢ is that it also vanishes
at infinity. The suggestive connection comes when we derive a vector
field F = grad ¢ from the scalar-field solution ¢. For F must satisfy
Gauss’ theorem so that

S(grad ¢) - dA = [[[(VZ¢) dv

for any region ¢ bounded by a closed surface S.

Another suggestion comes from the fact that the vector field (Q/r*)a,
for a simple source turns out to be the gradient of the potential function
o= —(Q/r).

Collecting all these hints we can guess that a solution of Poisson’s
equation Vo = —g(x,y,2) 18 the integral

o(ey,2) — / / / G ’y z) e’ dy' d2’ (1.4.8)

where R = v/(x — 2")2+ (¥ — )2 + (z — 2/)? is the distance from the
point z, y, z to the point 2, 3/, 2’.  The quantity ¢ goes to zero at infinity
because ¢ does.

To prove that ¢ is a solution, we form the vector field

F(I,’y,Z) = gI‘ELd ¢ = -/:/:/- Q(i 7_1;?2 arp (l.l?’ dy' dZ’

where ay is the unit vector pointed in the direction from point z’, 3/, 2’ to
point z, y, 2, that is, along R in the direction from the primed to the
unprimed end. Next we form the net outflow integral for F over a closed
surface S which bounds some region ¢ of space. Using Eq. (1.4.7), we
obtain

56 F-dA = _/:/- (V2p) dx dy dz = —S{D dA /// Q(i %ZZ)aRdx’dy’dz’

where, of course, V% = div (grad ¢). The last integral is taken over all
values of z', ¥, 2’ and over those values of z, y, z which are on the sur-
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face S. 'The order of integration may be reversed, and we shall consider
first the integration over 8. The integrand is agz{¢(x’,y’,2")/4rR?
da’ dy’ d2’. Referring to Eq. (1.2.9), we see that the net outflow integral
over S for this integrand is just [¢(z’,1/,2")] da’ dy’ dz’ if the point z', i, 2’
is inside S and is zero if the point is outside S. Therefore the integral
over da’ dy’ dz’ is equal to the integral of ¢ inside the region ¢, and the
final result is

JI[ ) dzayaz = — [|j a@y2) de dy do

¢
What has been shown is that the integral of V2¢ over any region ¢ equals
the integral of —¢ over the same region. no matter what shape or size the

region has.
It is not difficult to conclude from this that, if ¢ is the integral defined
in Eq. (1.4.8), then ¢ is a solution of Poisson’s equation V¢ = —g,

when ¢ is a reasonable sort of function going to zero at infinity. It is not
the only solution, for we can add any amouut of any solution of Laplace’s
equation V% = 0 to ¢ and still have a solution of Vip = —q for the
same q.

What amount and kind of solution ¢ we add depends on the boundary
conditions of the individual problem. If ¢ is to go to zero at infinity, no
¥ needs to be added, for the ¢ given in Eq. (1.4.8) already goes to zero at
infinity if ¢ does. Of course, we might try to find a solution of Laplace’s
equation which is zero at infinity and not zero somewhere else, but we
should be disappointed in our attempt. This is because no solution of
Laplace’s equation can have a maximum or minimum (see page 7), and
a function which 1s zero at infinity and has no maximum or minimum
anywhere must be zero everywhere. Consequently, the ¢ of Eq. (1.4.8) is
the unique solution if the boundary condition requires vanishing at
nfinity.

For other boundary conditions the correct solution is ¢ plus some
solution ¢ of V& = 0 such that ¢ + ¢ satisfy the conditions. This
whole question will be discussed in much greater detail in Chap. 7.

The Curl. There now remains to discusg the differential operator
which changes a vector into another vector. This operator is a measure
of the “vorticity” of a vector field and is related to the net circulation
integral discussed on page 18, just as the divergence operator is related
to the net outflow integral. To find the vorticity of a vector field at a
point P we compute the net circulation integral around an element of
area at P and divide the result by the area of the element. However, it
soon becomes apparent that the present limiting process is more com-
plicated than that used to define the divergence, for the results obtained
depend on the orientation of the element of area.

For instance, if the element is perpendicular to the x axis, the circula-
tion integral for the path shown in Fig. 1.15 is
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FF-ds = [iF,dy + [F.dz — |oFydy — {4F. dz
oF, 02
= Fy(xo,yo,Z()) dy - (_('_’ZE —Q_ Y
+ F.(zo,yo,20) dz + Ty 2 dz

dz (x ;’ z)

orJorbol 12 o, dz

i ‘ v —F (o, yo,20) dY — _d_z;, 5 dy

L.__ _ oF . d

dy— ™ — F.(xo,y0,%0) d2 -+ i %Y e

Fig. 116 Net circula- ay 2
tion integral and eurl of ar. oFy
vector field. v = (’d y ~ oz dy dz

where we use the first-order terms in the Taylor’s series expansion for

both F, and F..

L —
'6»,/
/

Fig. 1.16 Net circulation at angle to axis.

On the other hand, the circulation integral for the element per-

. . oF ar.\ | -
pendicular to the y axis 18 [(%f) - ((—”;)] de dz, and so on. If the
a9z

clement is parallel to thez axis but at an angle 6 to the z axis. as shown in
Fig. 1.16, the computation 18 somewhat more complicated. For instance,
the displacement ds along path 1 corresponds to a change —ds cos 0
along = and a change ds sin 0 along ¥. Similarly, at the mid-point of
path 2, F. has the value F.(xo,Jo,20) — (ds/2) cos 6(ak./ox) + (ds/2) -
. sin 6(aF./dy)- Taking all these aspects 1nto account, we find for the
circulation integral in this case

(Fydssin 0 — F.ds cos ) — (}2—2 ds sin 0% — ds cos ﬁa—al;i’

4+ F,dz + dz ((—{; sin BiFJ — d—s cos 6 (-’,F—z)

2 ay 2 ax

— (Fydssin 8 — F.ds cos 0) — d—f (ds sin 0 Q,—l’:’-’ — ds cos 6 6FI>
2 az 9z

ds . oF, ds oF,
— F,dz + dz (7 sin @ -d? 5 cos 0 (,M)

BICAI AW oF, PN
= [(3!! (')z) sin 8 + ((,’z ax) cos 0] dz ds
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The cirenlation integral for an element having an arbitrary orienta-
tion in space is a still more complicated matter.
However, the complication vanishes if we consider the three quantities

oF, oF)\. (oF. _ oF.\, <aFy A
Ay az )’ dz ox /)’ oz Ay

to be the z, y, and z components, respectively, of a vector. For it turns
out that the circulation integral for any surface element d.A is simply
the component of this vector in the direction perpendicular to the surface
element, multiplied by d:A. For instance, the direction cosines for a line
perpendicular to the element shown in Fig. 1.16 are (cos 8, sin 0, 0), and
the component in this direction of the vector under discussion, multiplied
by ds dz, is just the result we have found.
The vector so defined is called the curl of F;

ol B (FF — 0 oy (9F 0 4 (aF._,, B aFI) Y XF
dy dz dz ax

ox Ay

(1.4.9)
The net circulation integral around a surface element dA is, therefore
dA - curl F, where dA is the axial vector corresponding to the surface
element. The vector curl F is a measure of the “vorticity” of the field
at the point, (z,,2). When F represents a fluid velocily, the direction of
curl F at point P is along the axis of rotation of the fluid close to P (pointed
according to the right-hand rule) and the magnitude of curl F is equal to
twice the angular velocity of this portion of the
fluid.

The curl is an operator analogous to the vec-
tor product, just as the divergence is analogous
to the scalar product. Note that curl F is an
axial vector if F is a true vector, for the net cir-
culation integral is a scalar and dA is an axial
vector, so that curl F must be axial also.

To complete our discussion, we must now Fig. 117 Net circula-
show that curl F acts like a vector, 7.e., transforms tion and curl in curvi-
like one. In generalized coordinates the element finear oordinates.
of area perpendicular to the £ axis is shown in Fig. 1.17. By arguments
similar to those used in obtaining Eq. (1.4.7), we see that the net circula-
tion integral for the path is

S{DF -ds = [h2F2 — 3 d&s .i (h2F2)] dg + [h:st +3 dE-z—a— (haFa)] d&s
(’53 (')Ez

) .
— l:thz + ‘%df:s (’(E (hz["-z)] dEs — [h;;F:a, - ‘% & (-i (h3F3)] dés

Ee
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Reducing this and dividing by the area hoh; d€» d&s give us the & com-
ponent of the curl. Further calculation shows that the expression for
the curl in genceralized coordinates is

cwl F =% [ﬂhi’a) _ ol -z)] as [a(hlﬁl) _ 30l
hshs d&s ot hihs aks 3t
ag d(haf's)  3(hiFr)
hihe [ ETH 9t (1.4.10)

To show that this is the same vector as that given in Eq. (1.4.9)
we consider the component of curl F = C along &. By Egs. (1.3.3) this
cquals

Cl = 01(7:c + Bl(jy + ’YlCz
., [ee (oF. _ QE,) oL (oF, 3K | ot (aF, _ oI\
= I {(7:1‘ (ay 92) Tay\oe ~ ax T ooz \ax  ay

But from Eq. (1.4.10), by the use of Eqgs. (1.3.2) and (1.3.5), we obtain

o = L [ﬂ%_f’f ar, . Oy oy , 9z 3, _ 0z O,
T hohy | 085 080 0%, 9Fs  0E; 0% 0% 0E 0E 0%

1 [(ﬂi _ _>> (12 _ 61)
hahsz dE; 0k d§s dE; 0z ady
dr Oz dx 9z ol ar,
+ (E’a‘z‘ - 5‘55‘5>(a“ - 'a?)
n (>_ dy _ oz g) (6@ _ M)]
03 082 0 O&a ady ox
d al, afr, d ar, alr, at, [ or ol
= hH’(W '7) +5€71(62 - ax) +E<T “W)]

which is identical with the previous equation and shows that the expres-
stons given in Bgs. (1.4.9) and (1.4.10) are the same vector. To show
that curl F is an axial vector when F is a true veetor, note thal we were
arbitrary in our choice of the direction of the line integral around the
clement of area. If we had reversed the direction, we should have
changed the sign of the curl.

Vorticity Lines. The vector curl F defines another vector field, with
new lines of flow. These lines might be called the vorticity lines for the
field F. For instance, for the field F, = —ay, Fy = ax. F, =0, the
vector curl F is directed along the positive z axis and has magnitude
2a everywhere. The flow lines of F are circles in planes perpendicular
to the z axis. For the field F, = —ay, Fy = az, F, = b(x* + y7), dis-
cussed on page 12, the vector curl F has components of 20y, —2bz, 2a.
We have shown that the helical flow lines of this case are defined by the
families of surfaces ¢ = V72 + o2, ¢ = 2 — (b/a)(x® + y°) tan™ (y/z).
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By methods discussed on page 14, we find that the lines of vorticity
are defined by the surfaces ¢ = /22 + ¥4, ¥ =2+ (a/b) tan™ (y/z).

In both of these examples the vorticity lines are everywhere per-
pendicular to the lines of flow. This is not always true, however. For
mstance, for the field F, = az, F, = ax, F, = ay, the vector curl F =
ai + aj + ak is not perpendicular to F.

One very interesting property is exhibited by vorticity lines for any
field: They never begin or end. This is in line with the argument on
page 18 about vortex tubes and can easily be shown from the properties
of the curl operator. To say that a flow line never begins or ends is to
say that the divergence of the corresponding vector is everywhere zero,
for then by the divergence theorem, Eq. (1.4.8), every net outflow integral
is zero. However, the divergence of every curl is zero, by its very defini-
tion, for

. O*F, 32F, O, O % O
div (curl F) = ,(—1,1— — Sty O N R AR L
dx dy  dx oz dy 0z dy dx  dz dx dz 0y

In fact the easiest way of obtaining a divergenccless vector field is to
use the curl of some other vector field, a dodge which is often useful in
electromagnetic theory.

Stokes’ Theorem. There is a curl theorem similar to the divergence
theorem expressed in Eq. (1.4.7), which can be obtained from the funda-
mental definition of the eurl and from the additive properties of the net
cireulation integral mentioned on page 21. We consider any surface S,
whose boundary~is the closed line (or lines) L, divide it into its elements
of area dA, and add all the net circulation mtegrals for the elements.
By our definition of the curl, this sum can be written [curl F- dA, where
dA is the vector corresponding to dA and where the integration is over the
whole of 8. According to the discussion on page 16 this defines the
number of vorticity lines which cut surface S. However, because of the
additive property of the circulation integral, the integral [ curl F - dA
must equal the net circulation integral around the boundary line (or
lines) L:

fcurl F-dA = £F.ds (1.4.11)

This curl theorem is called Stokes’ theorem; it enables one to compute the
net circulation integral for any path. It is one other relation between
the properties of a vector field at the boundary of a region and the
behavior of the field in the region inside the boundary. this one cor-
responding to the requirement that the net circulation integral around
any closed path must equal the number of vorticity lines enclosed by the
path.
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The Vector Operator ¥. .Just as the divergence operator iIs an
analogue of the dot produet of vectors, so the curl operator is an analogue
of the cross product. To make the analogy more complete, we can
define a vector operator, called del and writien ¥, with components given
by the equation
d
a2

.0 . 0
V=i—4+j=+k (1.4.12)
ar dy
In terms of this operator the three differential operators discussed in
this section ean be written symbolically:

grad ¢ = Vy; divF =V-F: curl F = Vv X F

Some of the formulas involving the vector operator V acting on a
product of two quantities can be simplified. The formulas

grad (yd) = ¢ grad ® + @ grad ¢
div (¢F) = adivF + F-grad a
div(AXB)=B-curlA — A-curl B (1 1.13)
curl (aB) = a curl B + (grad a) X B
curl (A X B) = A divB — Bdiv A + (B- grad)A — (A - grad,B

can all be obtained direcetly from the definitions of grad, div, and curl.

1.5 Veclor and Tensor Formalism

The analogy between V and a vector is only a symbolic one, however,
for we cannot give the operator del a magnitude or direction and say that
V is perpendicular to F if div F = 0 or that curl F is perpendicular to
V or even necessarily perpendicular to F, as we could if V were an actual
veetor. In fact the analogy is weaker still when we try to express V in
generalized coordinates, for the vector operator must have different
forms for its different uses:

1 o 1 o 1 0
M haE T heat T Thy ok

1

dJ » dJ
= s | 2 0 (P9 T 225, (uha)

vV = for the gradient

+ as 6_(;_ (hlh-_,)J; for the divergence
3

and no form which can be written down for the curl. In order to under-
stand how these operators transform and to be able to set up more com-
plex forms easily, we must delve into the formalism of tensor calculus.
Covariant and Contravariant Vectors. Tensor caleulus is a formalism
developed to handle efficiently problems in differential geometry, which
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has turned out to be decidedly useful in the study of general relativity.
We shall touch on the subject briefly in this book, covering only enough to
clarify the methods of calculating differential vector operalors in cur-
vilinear coordinates. We still consider only orthogonal coordinates in
three dimensions, though tensor calculus in its full power can handle
nonorthogonal coordinates of any nnmber of dimensions.

In Egs. (1.3.12) and (1.3.13) we defined the components of contra-
variunt and covuriant vectors and their law of transformation. If F,
are the components of an ordinary vector in a three-dimensional orthog-
onal system of coordinates with scale factors hn, then the quantities
Jn = h.F, are said to be the covuriunt components of a vector in the same
coordinate system and the quantities f» = Fro/h, are called the con-
travariant components of » vector in the same system.  Therefore, if f,
are the components of a covariant vector, then f* = f,, h? are the cor-
responding compornients of the contravariant vector in the same coordi-
nate system.

s we have shown in Egs. (1.3.12) and (1.3.13) the rules for trans-
formation of these vectors from the coordinate svstem £, to the system

£ are
r E aE’}. my! E N aiil
(f‘m) - _fn. (.’ e (f ) - f (”E,,L (1.5.1)

Sm
n

As we have pointed out earlier, these transformations have the mathe-
matical advantage of formal symmelry, but the new “vectors’” have
several disadvantages for the physicist. For oune thing, the different
components do not have the same dimensjonality; if an ordinary vector
has the dimensions of length, then the components of the cotresponding
contravariant vector have dimensions equal to the dimensions of the
associated coordinate and the dimensions of the covariant components
have still other dimensions.

The indices labeling the different components are written as super-
scripts for contravariant vectors in order to distinguish them from the
covariant components. There is, of course, a chance of confusion
between the components of real vectors and those of covariant vectors,
for we use subseripts for both. The difficulty will not be great in the
present hook, for we shall not discuss covariant vectors very much and
will mention it specifically whenever we do discuss them. A com-
ponent £, without such specific mention can be assumed to be for a real
vector.,

The quantities o 1. 8¢ ‘0., aY 3¢, are the components of a covari-
ant vector; they must be divided hy by, hs, hs, respectively, to be com-
ponents of a real vector, the gradient of .

The quantities by, bi/, b are called the components of a covariant or



46 Types of Fields [cm. 1

contravariant or mized tensor, respectively, of the second order in the
coordinate system £ if they transform according to the formulas

& 0&n . aE; 9k . It at,
fo= bm‘nf_/ i rij — mn 0S5 YSi. phi = m 981 O&n
bii z ag, 9%’ b 2 O ot 98 bi o ot ot

mn mn m,n
(1.5.2)

The products of the components of two covariant vectors, taken in pairs,
form the components of a covariant tensor. If the vectors are con-
travariant, the resulting tensor is contravariant. If A; and B; are the
components of two ordinary vectors, then (hi/hj)A:B; = ¢l are the com-
ponents of a mixed tensor.

The quantity z b, called a contracted tensor, formed from a mixed
m

tensor, does not change its value when transformed, since

LN ogan N0k _ N e
2 br= ) W an = 2, e, = L
k, m

n mk,n X

Such a quantity we have called a scalar; it is often called an tnpariant.

The scalar product of two vectors is a contracted tensor, EA,,B,L =
n

z (hn/Pn)AnBa, and is, therefore, an invariant.

Axial Vectors. To discuss the properties of the cross product we
must take into account the orthogonality and right-handedness of our
generalized coordinates. An extension of the formulas derived on page
93 from the equations a; X az = a;, etc., analogous to Egs. (1.2.5),
shows that, for a transformation from one orthogonal system to another,

aE, 9F,  0E,08,)  hihahs 9k

(dg& at. Ok 0%\ _ MiRGh, 9B

where if both systems are right-handed, the trios (4,5,k) and (A,p,v) must
be one or another of the trios (1,2,3), (2,3,1), or (3,1,2). By the use of
this formula, we find that, for any tensor fi, the quantities

; 1 ..
Cz:m(fik_fki); Z,j,k=1,2,30r2,3,101“3, 1,2

are the components of a contravariant vector, for by the equations for
tensor transformation

Jﬁ{L—fél_z Foen agmasn_agmagn]_ n(ag; e
KRR T Ly B |0k oF, 0% okl "\ 3. = (¢%)’; et

mn
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Similarly, hihihy(f* — f¥) = ¢; are components of a covariant vector for
orthogonal coordinates. We note that these vectors are axial vectors, as
is shown by the arbitrary way we have to choose the order of the sub-
scripts (1,2,3), ete.  We also should mention that these definitions hold
only in three dimensions.

Therefore, if A,, B., C: are components of ordinary vectors and
Gmy b, € are components of the corresponding covariant vectors, the sth
component of the cross product of A and B,

1 .
C; = A_,'Bk — ALBJ = E;}‘T (a,-bk — akbj) = hicz;
7]
t,hk=1230r2/3 1lor3 1,2

(1.5.3)

is an ordinary vector. We note again that this holds only for three
dimensions.

Christoffel Symbols. In order to discuss the properties of the
divergence and curl we must define a set of useful quantities, called the
Christoffel symbols, and discuss their properties. These symbols are

defined as follows:
i) _ Lok, [d] _[d) _Lah. [ ke ok
{u] = ot LJ} - {nl = ot L z’ = T oy 5

’jil('} = 0 for 4, 7, k all different

for orthogonal coordinates. These symbols are measures of the curvature
of the coordinate axes. Referring to Eqs. (1.3.6), we see that the change
in direction of the unit vectors a, can be expressed in terms of the Chris-
toffel symbols by the following simple expressions:

d n d a; n 7
3L, (hias) = z h.a, lill’ ET3 <E> = - z (h,.) ’n J} (1.5.5)

Now the unit vector a; gives the direction of the ; axis at the point P,
(£1,£2,£5); and h; gives the scale of this coorcdinate, that is, h; equals
the actual distance between the points (£1,£,85) and (& + dé&, Es,Es),
divided by the change of coordinate d%,. Therefore, the vector h.a; gives
both direction and scale of the coordinate & at point P. The rate of
change of this vector with respect to change in coordinate & is also a
vector, the ¢th component giving the change of scale and the components
Perpendicular to a; giving the change in direction as £ changes. The
nth component of this rate of change vector is h, times the Christoffel

symbol L”J}

We note that these symbols are symmetric in the two lower indices
(¢ and j in the symbol just above). In other words, the vector represent-
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ing the change of h;a; with respect to &; is equal in magnitude and direction
to the vector representing the change of hja; with respect to & This
corresponds to the fact that, if coordinate £ changesin scale as £; is varied,
then £ will change in direction as & is varied, and vice versa. A study of
Fig. 1.11 will show that this is true.

The Christoffel symbols are not tensors. It can be shown that their
rule of transformation is

T ’ aga’n 62; _ (9222- n af.;
Sifosa )5 ase

m,n n

where a prime indicates quantities in terms of the new coordinates &;.
Although Christoffel symbols are not tensors, they can be of great use
in the formation of derivatives of vectors which have tensor form. The
ordinary derivative df;/d&; is not a tensor, primarily because the coordi-
nates are curvilinear, and the change in direction of the coordinate axes
affects the vector components, adding a spurious variation to the real
variation due to change in the vector itself. In other words, the com-
ponents of the derivative of a vector are not just the derivative of the
vector’s components in curvilinear coordinates. To find the correct
expression for the components of the derivative, we differentiate the whole
vector at once and take components after differentiation.

Covariant Derivative. For instance, if f¢ are the components of a

contravariant vector, then the corresponding real vector is F = 2 afinfm
n

The derivative of this vector with respect to & can be reduced to the

form

oF _ of w9 - o w | P
3% Za”h’”azj + Zf O%; (@) = E Al [a&- + Ef lmJH

e

Therefore, the components of the contravariant vector which corresponds
to the rate of change of the ordinary vector F with respect to £; are the

quantities
T — afi 7 'L
f,] - (95_, + Zf {?n ], (1.5.7)

where f® are the components of the contravariant vector corresponding
to F. This derivative component has been corrected for the spurious
effects of coordinate curvature, and the vector components correspond
to the actual change in the vector with . The comma before the sub-
script indicates the differentiation.

As a matter of fact, f, are the components of a tensor, being covariant
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with respect to index j as well as contravariant with respect to index 4.
This can be shown by utilizing Eqgs. (1.5.1) and (1.5.6):

v 0 N (9 G_Eﬂ{z}
= Zf (%) + Ef o
_ Zass 3 ( aa) kaazsaz;as:n[ i }
65; ok 65;- 0k, 0k, |\mn
ks
N\ o 8¢ a¢ L, g, oL, : i ]
h 2 ags agn aEI + ka [6& aEk + 2 aEs aEk m n}

mn

_ i AN T ATS
B 2 [ags + 2 F lk s”(as as;—) B Zf * 9, OF,

Therefore, fi; are the components of a mixed tensor of the second order.
The tensor is called the covariant derivative of the contravariant vector
whose components are f.

Similarly, if f; are the components of a covariant vector, the quantity

F = 2 (aw/hu)f» is an ordinary vector, and

36 >[z—z—§;fm|mn

is also an ordinary vector. Therefore, the quantities

- Yl wss

are components of the covariant tensor corresponding to the rate of
change of F with respect to &. These quantities are the components of a
covariant tensor of the second order which is called the covariant deriva-
tive of the covariant vector f;.

The definition of covariant differentiation can be extended to tensors

also:
Fisn = (6]2,) 2 Jom jn;c} N Zf’”' lznkl
@A D) o
Fin = (afj> Ef 0 jn;c} + Efnf {nik}

and so on. These quantities are the components of tensors of the third
order, which transform according to obvious generalizations of Egs.
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(3.11). From these formulas it is possible to see that covariant differ-
entiation has the same rules of operation as ordinary differentiation.
For instance, for the differential of a product, (ab)x = abix + airbi
and so on.

Tensor Notation for Divergence and Curl. With these definitions
made we can now express the differential operators div and curl in a
symmetric form. The contracted tensor

SN i W) m
Y= D 2 )

AN i W 9 I NN S
= 2 aEﬂ + Zf aEﬂ In hm = 2 h]hzhg agn (f h1h2h3)

n n

is a scalar invariant, according to the discussion above. If now f* =
F./h., where F,, are the components of an ordinary vector, then the con-
tracted tensor is the divergence of F:

125 WS SN Y (U WY
2 (E),n - hihohs Zagﬂ( hon ﬁﬂ) = divF (1510)

From this, the invariance of the divergence follows directly, from the
general tensor rules.

Similarly, we have shown above that for orthogonal coordinates the
quantities '

. 1 ..
ct = — m (fj,k — fk.j)y 'ij = 123, 231, 312

are components of a contravariant vector. If now fo = hiF., where F,
are the components of an ordinary vector, then the quantities hic® are
components of an ordinary vector. Choosing one component and using
the definitions of the Christoffel symbols, we see that

S N _ Kl B Kl
th = h2h3 {622 (Fahs) (Fsh:s) 652 (ln hs) (F-zhz) 653 (ln hz)

- 6—65 (Fahs) + (Fshs) 3%3 (In hs) + (Fshs) 29%2 (In hy)

is, according to Eq. (1.4.10), the & component of curl F, an ordinary
vector.

Other Differential Operators. Once we have become familiar with
the technique of tensor calculus and with the definitions for covariant
differentiation, we can set up the correct form for vector or secalar com-
binations of vectors, scalars, and operators with very few of the tedious
complications we have met with earlier in this chapter while setting up
such combinations. The formalism of tensor calculus has taken care of
the complications once for all.
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For instance, we can be sure that the combination Eb"a,—,.n is the
7th component of a covariant vector, h; times the corresponding com-
ponent, of the ordinary vector. Substituting b" = B, /h, and a; = h:A,,
where A and B are ordinary vectors, and dividing by k; we obtain the
components of an ordinary vector, whose £ component is

1 B. 1 B, _ m
Fl = h—l ﬁ: (hlAl).'n - E z I:agn (hlAl) Z h”‘Am [1 nl:l

n m

B, @ ohi _ , Ohs
= [Zh_ﬂafn 1)+hh9(31? Bza£1>

Ay dhy dhy
t s Rl (B1 dEs — B <9_€1>]

and which is the vector (B grad)A, as reference to Eq. (1.4.3) shows.
Thus the formalism of tensor calculus again enables us to obtain the com-
ponents of a vector operator in any orthogonal system of coordinates.

The shorthand symbolism of tensor calculus enables one to express
an equation in the same form in any coordinate system. Once one has
set up a tensor equality and has made sure that the subscripts and super-
scripts on each side of the equality sign match, then one can be sure that
the equation will hold in any coordinate system. This corresponds to
the general aim of theoretical physics, which seeks to express laws in
a form which will be independent of the coordinate system.

The Laplacian defined in Eq. (1.1.4) can also be obtained in its
generalized form by means of the tensor formalism

) 1 oy 1 3 [hihshs 09
2, — . — I p— _ -
VY = div (grad ¥) = Z (h ag,),ﬂ Ty £y 95 [ B azﬂ]

(1.5.11)

As we have mentioned on page 8, the Laplacian of ¢ is a measure of the
“lumpiness’ of ¢.

The Laplacian operator can also be applied to a vector field F, resulting
in a vector which can be considered as a measure of the lumpiness of
either the direction or magnitude of the vector F. The z, y, and z com-
ponents of this vector are obtained by taking the Laplacian of the z, v,
and z components of F.  To obtain components along general coordinates
we use the relations

VZF = grad (div F) — curl (curl F)

(V)= b Zh [(hz)] ~ Zh (0r) ] (512
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The first equation can readily be obtained in rectangular coordinates;
it is, of course, true for any system. The second equation shows that the
vector VZF is related to the contra- and covariant veetors formed by the
double covariant differentiation of either F;/h; or hF; and the contraction
of the resulting third-order tensor. The resulting general form for
Vv2F, when written out, is a complicated one, but this form simplifies
considerably for most of the systems we shall use.

The first equation in Eqs. (1.5.12) is of interest in itself, for it shows
that V7F is related to the vorticity of F because of the last term, curl
(eurl F). If F represents the velocity of an incompressible fluid, then
divF = 0 and V2F = — curl (curl F). Therefore, in order that a diver-
genceless vector have a Laplacian which is not zero, not only must it
have a vorticity, but its vorticity lines must themselves exhibit vorticity.

Other Second-order Operators. The other combinations of two
operators V are less important than the Laplacian V?; however, they
will sometimes eufer into our equations, and it is well to discuss them
briefly.

Several of these operators are zero. The relation

curl (grad ¢) =V X (V¥) =0 (1.5.13)

has already been used in Sec. 1.2, where we showed that, if a vector was
the gradient of a potential function, its curl had to be zero. The relation

div (cul F) = V- (VX F) =0 (1.5.14)

has already been discussed on page 18, where we showed that lines of
vorticity can neither begin nor end.

Equation (1.5.13) indicates a property of fields which was discussed
on page 14, that if a field has zero curl everywhere, it can be repre-
sented as the gradient of a scalar, called the potential function. Equation
(1.5.14) indicates a parallel property, which can be verified without
much trouble, that if a field has a zero divergence, it can be represented
as the curl of a vector, which may be called the vector potential for the
zero-divergence field.

The operator grad (div ) = V(V . ) operates on a vector and results
in a vector. It measures the possible change in the divergence of a vector
field, and differs from the Laplacian of the same field, F, by the quantity
curl (curl F), as given by Iiq. (1.5.12). The operator curl (curl ) =
V X (V X ), the last of the second-order operators, is thus defined in
terms of two others. All these expressions can be given i tensor form.

Vector as a Sum of Gradient and Curl. We have now reached a
degree of dexterity in our use of vector formulas to enable us to analyze
further the statement made in the next to last paragraph. To be more
specific, we shall prove that any vector field F, which is finite, uniform,
and continuous and which vanishes at infinity, may also be expressed
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as the sum of a gradient of a scalar ¢ and a curl of a zero-divergence
vector A,

F=gradp+curlA: divA =0 (1.5.15)
The function ¢ is called the scalor potential of F, A is called its vector
potential, and the theorem is called Helmholtz’s theorem.

In order to prove this statement we need to show how ¢ and A can be
computed from F, and in order to compute ¢ and A we shall have to use
the solution of Poisson’s equation V% = —¢ which was given in Eq.
(1.4.8),

0= / / / W) g ay de; B2 = @ — @)+ (g — ) + = 2

By considering each of the three vector componenis in turn we can also
show that the solution of the vector Poisson equation V2F = —q has
the same form as the scalar solution, with F aud ¢ changed to boldface
letters. We shall show in Chap. 7 that both of these solutions are
unique ones as long as the integral of F over all xpace is finite. If it is
not, if, for example, F = az, we can take F to be ax within a sphere of
very large but finite radius and have it be zero outside the sphere.  After
the caleulation is all finished, we could then let R — «. If we are
dealing with a field mside a finite volume, we can choose I’ to be the
field inside the volume and be zero outside it. In all cases that F does
not specifically go infinite, we can make [F dv finite.
To compute ¢ and A we compute first the vector function

W = /// F‘T “’ zl)d *dy de' (1.5.16)

which is a solution of the vector Poisson equation v*W = —F. From
this we can see that div W may be set equal to —¢ and curl W may be
set equal to A, for then [using the vector formula (1.5.12)]

F=—-VW=—graddivW 4+ curl curl W = grad ¢ + curl A

which is Eq. (1.5.15). Since W is determined uniquely by Eq. (1.5.16),
¢ and A are determined uniquely as long as the integral of F is finite
(which can always be arranged by use of the trick mentioned above as
long as F is not infinite somewhere a finite distance from the origin).

We can express ¢ and A in somewhat simpler terms if we use the
symmetry of function 1/R with respect to (x,y,2) and (a',%/,2'), for the
gradient of 1, R with respect to (z,y,2) (written grad 1,'R) is the negative
of the gradient of |/R with respect to (z',y/,&’) (written grad’ 1/R).
Then using Gauss’ theorem (1.4.7), we have

, _ A F-dA" [ div'F
—divw = / F - grad (4 1?) ! R ik ¥
or ¢ = —[f[[div' F(a',y’,2") /47 R] dx' dy’ de’
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where the normal outflow integral of /4R is taken over a large, enclosing
surface entirely in the region where F is {(or has been made) zero.
Similarly, by using an equation related to Gauss’ theorem,

fewrl Bdv = — ¢B x dA (1.5.17)

we can transform the expression for A to the simpler one

{1\, (FxdA cur’ F |
curl W = / F X grad (4713) dv' = o / . dv
or A = [[[ [ewrV F(z',y,2") /4=R] dx’ dy d2’

Consequently ¢ and A can be obtained directly from the divergence and
the curl of F, with F subject to the conditions outlined above.

This property of any vector field, of being uniquely separable into a
divergenceless part, curl A, and a curlless part, grad ¢, is called Helm-
holtz’s thevrem. It will be of considerable use to us in this book, par-
ticularly in Chap. 13. It will be discussed from a different point of view
in Sec. };.3.

1.6 Dyadics and Other Vector Operators

We have already discussed the properties of vector fields and their
correspondence to various physical phenomena in order to get a ““physical
feeling”’ for the concept of a vector field. We next must become familiar
with the physical counterparts of the tensor forms defined in Egs. (1.5.2).
These forms, in three dimensions, have nine components, as contrasted
to the three components of a vector. In a tensor field these nine com-
ponents may vary from peint to point; they transform under change of
coordinate system in the manner given in Eqs. (1.5.2).

Dyadics. Just as we defined ‘“‘real” vectors as distinguished from
their contravariant and covariant forms, so here we shall define a dyadic
as a set of nine components A;;, each of them functions of the three
coordinates, which transform from one coordinate system to the other
according to the rule

Ay, O O
Y = Trmltm o Yn
(4s) : : hih; 8zl o] Amn

m,n

BANY R
N Fnhn, 0 0 "

—y (1.6.1)
b} by 8% 3z,
hon B 3%m O]

i
m,n

Ann

= Yim 7]"nAmn

m,n
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The dyadic as a whole whose components obey Eq. (1.6.1) is represented
by the German capital letter 2. The relation between the dyadic com-
ponents and the corresponding contravariant, covariant, and mixed
tensor components can be derived from Eqgs. (1.5.2):

am™ = Amn/hmhn; Qe = hmhniimn; a:," = hnA'm'n," h.m (1.62)

Two general properties of a dyadic % can be written down immedi-
ately; the contracted form

2 =) Auwn =y az (1.6.3)

m

is a scalar invariant whose value at a point is independent of change of
coordinates; and according to Eq. (1.5.3), the quantity

() = ay[das — Ass] + asfAg — As] + @[l — Aa]  (1.6.4)

is an axial vector, having the transformation properties of a vector.
(The quantities a,, are, as before, unit vectors along the three directions
of a right-handed system of coordinates.) The invariant || can be
called the Spur or the expansion factor of the dyadic, and the vector ()
will be called the rotation vector of 2 for reasons which will be apparent
shortly.

A dyadic can be combined with a vector to form a vector by con-
traction:

9-B = EamAmBﬂ; B-Y = EB,,,A,,”,aﬂ (1.6.5)

mn

Use of the definitions of transformation of vectors and dyadies will show
that these quantities transform like a vector (a ‘‘true” vector). 'This
result suggests that a formal mode of writing a dyadic in terms of its
nine components along the axes (¥1,£,,£;) is

U = ajdna; + ardias + a1da; + axdzia; + asAseas + axdzas
+ a3A31a1 + a3A3‘Za2 + a3A33a3 (166)

The quantities a.a, are neither scalar nor vector products of the unit
vectors but are operators such that the scalar product (a.a.) - B = B.an
is a vector pointed along &. of magnitude equal to the component of B
along £, etc.

We note that the vector B - 2 is not usually equal to the vector % - B.
The dyadic 2* formed by reversing the order of the subscripts of the
components (A%, = A.,) is called the conjugate of 2. It is not difficult
tosee that 1-B = B-Y* and B- Y = Y*. B.

Dyadics as Vector Operators. The last two paragraphs have sug-
gested one of the most useful properties of dyadics: They are operators
which change a vector into another vector. 'The new vector is related to the
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old one by a set of rules, represented by the nine components A5 The
values of these components determine how the new vector differs from
the old in magnitude and direction. The amount of difference, of course,
also depends on the direction of the original vector. The vector operator
represented by a dyadic is not the most general type of vector operator
(we shall discuss others later), but it corresponds to so many physical
phenomena that it merits detailed study.

X X
Fig. 1.18 Transformation of vector ficld by dyadic
i(1.5i + 0.2j) + j(G — 0.4k) + k(0.5j + 0.6k)

Black vectors are initial field; outlined vectors are trans-
formed field.

Examples of phenomena which can be represented in terms of vector
operators are found in many branches of physics. For instance, the
relation between M, the angular momentum of a rigid body, and its
angular velocity o is M = § -, where § is the moment of inertia
dyadic. Also, in a nonisotropic porous medium through which fluid is
being forced, the fluid velocity vector v is not in general in the same
direction as the pressure gradient vector, but the two are related by a
dyadic relationship, grad p = R - v, where 8 is the dyadic resistance.
Similarly the relation between the electric field and the electric polariza-
tion in a nonisotropic dielectric is a dyadic relationship. The most
familiar example of dyadics is in the distortion of elastic bodies, which
will be discussed shortly.

The concept of 1 dyadic us a vector operator, as well as consideration
of the foregoing equations, leads us to the following rules of dyadic
algebra:

9+ B = 2 an[Amn + Bunla, = 8 + %

A B = Tgam [EA.,,,,-BM] a, = B9

m,n i

N = 2 an(cAn)a, = Ac

m,n
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The first equation shows us that addition of dyadics is commutative and
that a dyadic of general form can be built up as a sum of dyadics of
gimple form. The second equation shows that a dyadic times a dyadic
is a dyadic and that dyadic multiplication is not commutative. The
third equation defines multiplication by a scalar. Multiplication by a
vector has already been defined. The scalar “double-dot” product

A:B = z ApnBam = |A - B| is, of course, the completely contracted

form.
There is, of course, a zero dyadic © and a unity dyadic & called the
idemfactor:
O:F=0; §-F=F; & =aa, + axa, 4+ asas

where F is any vector.
One can also define A, the reciprocal dyadic to U, as the dyadic,
which, when multiplied by 9, results in the idemfactor

@A =% AN =3

The reciprocal of the zero dyadic is, of course, undefined. In terms of
the nine components of ¥, as defined in Eq. (1.6.6), the components of
the reciprocal are

(U Dnn = A/ Ba

where A}, is the minor of A... in the determinant

A A A
Ay = |Aor Aoy Asg
Asi Asz Ass

The definition of the multiplication of dyadics requires that the
conjugate to the product (N - B) is given in terms of the conjugates of
A and B by the equation

(A-B)* = (B*- A
involving an inversion in the order of multiplication. Similarly the
reciprocal of the product (¥ - B)~1 = (B~ A

Since a dyadic at any point in space is determined by its nine com-
ponents along orthogonal axes [which components change with coordinate
rotation according to Eq. (1.6.1)], it can be built up by a proper combina-
tion of vectors having at least nine independently chosen constants.
For instance, since a vector at a point is determined by three quantities,
a dyadic can be formed in terms of three arbitrarily chosen vectors A,,:

?[ = a1A1 -+ azAg + a3A3 = Ai“al + A;ka-z + A?ag (167)

where the a’s are unit vectors along three orthogonal, right-handed
coordinate axes. The conjugate dyadic is

2]’.* = A1a1 + Agaz ‘|" A;;a;; = alA;!< "‘I— a-_:,A’zk _i‘ a;;A;<
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These equations define the vectors A, and A¥. Their interrelation is
given below. The vector 4., can be called the component vector with
respect to the &, axis. For an arbitrary dyadic this may be in any
arbitrary direction and have any magnitude. A vector B pointing in
the %, direction is transformed by the operation B -9 into a vector
pointing in the direction of A,, and is transformed by the operation
9 - B into one pointing in the direction of A%

It is not difficult to see that the component vectors are related to the
nine components A.., of ¥ in the £, £, & axes [given in Eq. (1.6.6)] by
the relations

m

Am = E‘A'mnan; A* = Z‘an‘Anm

n

In the rectangular coordinates , y, z the dyadic is represented as

A =iA, +jA, + kA, = AXi + AN + Ak
A, = oy + asAs 4 asAs; Uy =1+a,
A, = By 4 BoAs + B:As; Br = ]-anx
A, = 711 + voho + vshs; v = k- an

More gene@ly, a dyadic can be expressed in terms of a series of com-
binations of vectors

9 = EAmBm

where there must be at least three terms in the sum in order to represent
any arbitrary dyadic.

Symmetric and Antisymmetric Dyadics. The dyadic 4aa; is a
particularly simple vector operator; it converts any vector F into a
vector of length A(a, - F) pointed along a;. It is a symmetric dyadic, for
its components in any rectangular system of coordinates are symmetric
with respect to exchange of subscripts. For instance, in the rectangular
coordinates z, ¥, 2, the components are

Aze = Aa%; Aw = Aﬁf, A = A'Y%
Azy = Ayz = Aalﬁl; A:z:z = Az:c - Aal')’l; Ayz = Azy = ABI'Yl

where a1, 81, and v, are the direction cosines of a; with respect to z, y, 2,
ete.

The most general symmetric dyadic can be expressed in terms of
three orthogonal unit vectors ay, a., as;

A, = aydia; + azdqa, + as4za; (1-6-8)

Since a symmetric dyadic is specified by only six independent constants
(three pairs of components are equal), specifying a definite symmetric
dyadic uniquely specifies the three constants A:, 4., As and uniquely
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specifies the directions in space of the three orthogonal unit vectors
ay, 4,5, a3 [which are given by the Eulerian angles ¢, ¢, ¢, see Eq. (1.3.8)].
Referring to Eq. (1.6.7) we see that for a dyadic to be symmetric it must
be possible to find a trio of unit vectors a such that the component vector
A, is parallel to a;, and so on.

Conversely, any symmetric dyadic can be expressed in the form of
Eq. (1.6.8), and the values of the A’s and the directions of the a’s can be
found, for Eq. (1.6.8) indicates that the symmetric operator ¥, operates
on a vector in either of the three orthogonal directions a,, a,, or as by
changing its length and not its direction whereas operating on a vector
in any other direction, direction is changed as well as length. Those
special directions in which the operation does not change the direction
of the vector are called the principal azes of the dyadic.

The direction cosines of a principal axis a; of the dyadic

A, = Aidi + Biij + B,ik + B.ji + 4,jj + B.jk + Bki + Bkj + 4.kk
may be found by solving the equation
U -a; = day (1.6.9)

which is the mathematical statement of the definition of principal axis
given above. Equation (1.6.9) is the first case of an eigenvalue equation
that we have encountered, but it will not be long before we turn up other
ones, in our discussions of ‘“vector space” in quantum mechanics and
wave theory and in many other aspects of field theory. The directions
of the principal axes a; are called eigenvectors, while the constants Ay,
As, As are known as the eigenvalues.

To solve Eq. (1.6.9) let ay = aui + B1j + vik.  Introducing this on
both sides of the equation we obtain three linear homogeneous equations:

(A:c - Al)al + B.8: + By’Yl =0
Bzal + (Ay - Al)Bl + Bx’Y1 =0
Byal + B:c)el + (Az - Al)’h =0

This set of equations can be solved only if the determinant of the coeffi-
cients of ay, B1, v1 is zero:

A, — A, B, B,
B, Ay — Ay B, =0
B!! Bg; Az — Al

Solving this equation (a third-degree one) for A, yields three roots cor-
responding to the three numbers A;, A, As. The determinant is known
as a seculor determinani. It turns up whenever one goes about solving
an eigenvalue equation by means of a linear combination of vectors such
as that used for a,.
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Corresponding to the three numbers A; there will be three sets of
values for o, B;, v: which are the direction cosines of the three principal
axes. These axes are perpendicular, as shown by the following argument:

Lo-ar = Awag; U-a, = Aqa,
Because of the symmetry of
= a2'2{s'ai_ 8.1'213'8.2 = (;4.1— Ag)al'az

Since A, and A, usually differ in value, this equation can hold only if
a;-8a; =
It may also be shown that the Spur or expansion factor is invariant,

Az+Ay/+ Az = Al +A2+ *43

as, of course, it must, since this expression is the scalar invariant || of
the dyadic. We can now see why this scalar is called the expansion factor
of 9, for it is three times the average fractional increase in length caused
by dyadic 9, on vectors pointed along its three principal axes. The
other term “Spur” is the German word for trace or “‘identifying trail”
(equivalent to the “spoor” of big game), a picturesque but understand-
able description.

We notice that the vector (9,) formed from a symmetric dyadic is
zero, and that for a symmetric dyadic %, - F = F - ¥, for any vector F.
In other words, any symmetric dyadic is equal to its own conjugate.

An antisymmetric dyadic has its diagonal components A,. zero, and
its nondiagonal components change sign on interchange of subscripts;
A, = —A.. The most general antisymmetric dyadic is specified by
only three independent constants. It can always be expressed in the
form

oA, = R X § = —ijR, + ikR, + jiR. — jkR. — kiR, + kiR, (1.6.10)

where & = (ii + jj + kk) is the idemfactor. Choice of the antisym-
metric dyadic uniquely specifies the vector R, which is equal to half the
rotation vector (¥,) of the antisymmetric dyadic %,. We note that the
expansion factor of an antisymmetric dyadic is zero. We also note that,
for any vector F, the operation %, - F = R X F = §() X F produces a
vector which is perpendicular to F and also perpendicular to the rotation
vector of .

We note that we may also set up an eigenvalue equation for an
antisymmetric dyadic,

A,-a =R Xa=>n

which may be formally solved to obtain the ‘““principal axes” of 9.

Setting up the secular determinant shows that the three roots for N\ are
4, =0, A; = iR, and 4; = —iR, two of the roots being imaginary.
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The unit vector along the principal axis corresponding to X = 4, = 0 is
ar, parallel to R; the other two unit vectors are not real. The sum
A1+ A, + A3 = 0, as it should be, since the expansion factor for an
antisymmetric dyadic is zero.

It is easy to see that any dyadic can be expressed in terms of a sum
of a symmetric and an antisymmetric dyadie:

A =9+ A
(%s)mn = %(44-'"”1, + Anm); (Q[a)mn = %(Amn - Anm)

By transforming to its principal axes (which are always real) we can
always express the symmetric part 2, in the form given in Eq. (1.6.8),
and by proper choice of the vector R we can always express the anti-
symmetric part 9, in the form given in Eq. (1.6.10).

Of course we can choose to find the principal axes of % itself, by solving
the eigenvalue equation

A-e =Ne

directly (before separating into symmetric and antisymmetric parts)
This results in a secular determinant equation

Aa:z - }\ ‘Azy A;vz
Ay A, — X A, | =0
Az:c Azy -Azz - )\

The roots of this cubic equation may be labeled N = A4, 4,5, A, and
the corresponding eigenvectors, along the principal axes, will be labeled

e = aqi + Bij + vik
€ = ool + Boj + vk
e; = azi + Bs§ + vk

Theory of equations indicates that minus the coefficient of the N2
term (A + As + Aszs), is equal to the sum of the roots (A1 + 4, + As).
It also indicates that the roots are either all three real or else one is real
and the other two are complex, one being the complex conjugate of the
other (as long as all nine components A,., of A are real). When all the
roots are real, the three eigenvectors e, are real and mutually per-
pendicular, but when two of the roots are complex, two of the eigen-
vectors are correspondingly complex. It is to avoid this complication
that we usually first separate off the antisymmetric part of 9 and find the
principal axes of 9,, for the eigenvalues and eigenvectors of a sym-
metric dyadic with real components are all real.

Rotation of Axes and Unitary Dyadics. A special type of vector
operator corresponds to what might be called rigid rotation. Considering
a number of vectors F as a sort of coordinate framework, the operation of
rigid rotation is to rotate all the vectors F as a rigid framework, main-
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taining the magnitudes of all the F’s and the relative angles between them.
If F, for instance, were the set of vectors giving the location of various
parts of a rigid body with respect to some origin, then the rotation of the
rigid body about this origin would correspond to the operation under
consideration.

Suppose that we consider such a vector operation to be represented
by the specialized dyadic (&, with components v,,, etc. In order that
the transformed vector & - F will have the same magnitude as F for any
F, we must have the following condition:

(G-F)- (G- F) = Y | ¥ voyma | FFL = F-F = ) F2; |, m,n= 3,9, 2

noom

or, in other words,

Y VoY = 601 = [é ; o (1.6.11)
Dyadics with components satisfying this requirement are called unstary
dyadics, for reasons shortly to be clear. Incidentally, when this require-
ment on the 4’s is satisfied, it can easily be shown that, for any pair of
vectors A and B, the dot product A - B is unaltered by a rotation cor-
responding to ©,

(-4)-(G-B)=A-B

and consequently (since magnitudes are unaltered by the rotation)
angles between vectors are unaltered by the operator &. Tt is also easy
to demonstrate that, if the dyadics @ and $ both represent rigid rotation
operations, then the dyadic (& - ) has components which also satisly
Eq. (1.6.11) and it consequently also represents a rotation. Products
of unitary dyadics are unitary.

Incidentally, all the possible real values of components v, correspond-
ing to all real rotations about a center, may be obtained by referring to
the Fuler-angle rotation of axes given in Eq. (1.3.8). If the dyadic
components of @ are

Yex = SIn ¢ sin ® + cos ¢ cos P cos 6;
Yoy = COS Y sin ® — sin Y cos @ cos f; v, = sin H cos P
Yyz = 810 ¥ cos & — cos ¥ sin @ cos 6;
Yuy = CcOs Y cos ® + sin ¢ sin P cos f; 7y, = —sin A sin P
Yex = ~— COS Y SIN 6; 7y = SIN Y 5In H; .. = COS 6

then reference to Fig. 1.12 shows that this transformation corresponds
to the rotation of the rigid vector framework by an angle ¢ about the z
axis, a subsequent rotation by an angle 6 about the y axis, and then a
final rotation of the (already rotated) system once more about the z axis
by an angle &.
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A certain amount of algebra will suffice to show that the operation ©,
with components v given above, satisfying Eq. (1.6.11), has all the proper-
ties of a rotation of axes. For one thing, the dyadic corresponding to a
product U - B, where U and B are both unitary, is also unitary and
represents the rotation which results when the axes are first turned
through the angles given by B and then turned through the angles
represented by U. As a matter of fact the statements made in the
preceding paragraph correspond to the fact that &, with its components
as given, is equal to the product € - B - 9, where the three unitary dyadic
factors are

cosy —siny O cos# O sin @
A=[siny cosy Of B= 0 1 0
0 0 1 —sinf O cosé
cos® sind® O
C=| —sin® cos® O
0 0 1

representing the elementary rotations by the three Euler angles. The
elements of the product are computed using Eq. (1.6.6).

The reason these rotation dyadics are called unitary is that the deter-
minant of their elements is equal to unity, as may be deduced from Eq.
(1.6.11). But an even more useful property may be displayed by using
Eq. (1.6.8), defining the reciprocal dyadic, and the definition of the
conjugate dyadic combining these with Eq. (1.6.11). The result is that,
if & is a unitary matrix [satisfying (1.6.11)], @ is its inverse and, if §*
is its conjugate, then

G1l1=0* or G*-© =g; O unitary (1.6.12)

Vice versa, if O satisfies Eq. (1.6.12), then it is unitary and its com-
ponents satisfy Eq. (1.6.11). Since ®* - @ is vaguely analogous to the
magnitude of a vector, we can say that the “amplitude” of a unitary
dyadic is “unity.”

Referring to Eq. (1.3.8) for the Euler-angle rotation, we see that, if
the components of vector F are its components in the coordinate system
z, ¥, 2, then the components of ® - F are the components of F in the
coordinate system £, £, £&. Thus the unitary dyadic & might be con-
sidered to represent the change of components of a vector caused by the
rotation of the coordinate system. Instead of considering the coordinate
system fixed and the vector changing, we can, in this case, consider the
vector as unchanged in amplitude and direction and the coordinate axes
as rotated, with the new components of vector F given by & -F. We
note the correspondence of Eqs. (1.8.9) and (1.6.5) for a unitary dyadic.

If a unitary dyadic can represent the change in vector components
caused by a rotation of axes, we might ask whether the change in com-
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ponents of a general dyadic U caused by the same rotation may not be
expressed in terms of the same unitary dyadic. This is answered in
the affirmative by appeal to the last of Egs. (1.6.1) or to the following:
If ® is the unitary dyadic representing the rotation of axes and if 2 is
any dyadic, transforming vector A into vector B by the equation A-A
= B, then @ - A and @ - B give the components of A and B, respectively,
in the new coordinates; and by juggling the equation relating A and B,
we have

G-B=G-9-A=(0-A-6G)-(G-4) =©-A-6%-(F-4)

Consequently the dyadic ® - % - &%, operating on the transform of A,
gives the transform of B, which is, of course, the definition of the transform
of the dyadic 9. In other words the components of the dyadic & - 9 - @*
are the components of % in the new coordinates produced by the rotation
represented by the unitary dyadic ©.

In particular, if @4 represents the rotation from the axes z, y, 2 to the
principal axes of a symmetric dyadic %, then the transformed dyadic
(®, - U, - OF) has the simple, diagonal form

A, 0 0O
(G- =10 A4, O
0 0 1‘13

No matter what sort of rotation is represented by ©, as long as
® is unitary and its components are real, the transform (G-A-GYH
of the dyadic 9 is symmetric if ¥ is symmetric or is antisymmetric if A
is antisymmetric.

Dyadic Fields. So far we have been discussing the properties of a
dyadic at a single point in space. A dyadic field is a collection of nine
quantities, transforming in the manner given in Eq. (1.6.1), which are
functions of z, ¥, 2 Or £, 3, £ At each point in space the dyadic repre-
sents an operator which changes a vector at that point into another
vector, the amount of change varying from point to point. From still
another point of view the expansion factor, the principal axes, and the
rotation vector of the dyadic are all functions of position.

A dyadic field % with components 4.. can be obtained from the
covariant derivative of a vector field F [see Eq. (1.5.8)]

1 1
Amn = (m) fm,n = (E;h—n) (hm,P1 m) N

8 (Fu) , 1 N\ Fnohs
= )+ L5 aot

k(3

_ Lol Fu Oh
N hn agn h'mhn GEm’

Aﬂ'm mFEn
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As shown in Eq. (1.5.10) e seq., the expansion factor [¥] for this dyadic
is the divergence of F, and the rotation vector () is the curl of F. This
dyadic is, therefore, symmetric only when the vector F has zero curl.
The dyadic defined in Eq. (1.6.13) can be written symbolically as
VF, with components along the z, y, z axes given by the formula
W= iS55+ kD Az A+ ATK
A¥ =grad F,; A} =gradF,; A¥=grad F,

(1.6.14)

. . —
The conjugate dyadic 1s, of course,

oF oF oF
* 9., OF . O A% Ak *
Fv 6xl+6y]+azk iAY + JAF + KA}
The change in the vector F in a distance represented by the elementary
vector dr = idx + j dy + k dz is obtained by operating on dr by VF.

oF

dr - (VF) = a

dx —l—%‘dy—l—%dz = dF (1.6.15)
The symmetric dyadic corresponding to VF is, of course, L(VF 4 Fv),
having zero rotation vector.

The variation of a dyadie field from point to point can be computed
by means of the differential operator V. For instance, V- % = i. (03 /dx)
+ j- (0%/dy) + k- (0N, 9y) is a vector formed by covariant differentia-
tion of the corresponding mixed tensor and contracting the resulting
third-order tensor.

OB, -

In terms of the expansion in component vectors, given in Kq. (1.6.7), this
vector is (0A./9x) + (8A,/dy) + (0A./d2); whereas the conjugate
vector

A-v = v Uq* = i(div A,) + j(div A)) + k(div A,) (1.6.16)

The physical interpretation of this quantity will be discussed later.
There is also the.dyadic formed by using the curl operator,

oA . o oA
51_‘+]X55+kx6_2

_ . [0A.  9A, .{0A.  0A, 0A, dA,
*1<6y ~6—{)_‘_3(6.2 Gx)—l—k(% 6y)

(curl AMi + (curl AD)j + (curl ANk (1.6.17)

VX A=iX

Related to these differential properties there are integral properties
of dyadics analogous to Gauss’ theorem [Eq. (1.4.8)] and to Stokes’
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theorem [Eq. (1.4.11)]. For a surface integral over a closed surface,
for any dyadic B
FdA-B=[v-Bdy (1.6.18)

where the volume integral is over the volume ““inside’ the surface and

where the area element dA points outward, away from the ‘‘inside.”
The integrals, of course, result in vectors. For a line integral around
some closed contour, for any dyadic 8B

Fds-B = [dA - (V X B) (1.6.19)

where the area integral is over a surface founded by the contour.

Deformation of Elastic Bodies. An important application of dyadic
algebra is in the representation of the deformation of elastic bodies.
A rigid body moves and rotates as a whole, but an elastic body can in
addition change the relative position of its internal parts. For such a
body the displacement of the part of the body originally at (x,y,2) is
expressed in terms of three vectors:

Here T is the constant vector representing the average translation of the
body, P the part of the displacement due to the average rotation about
the center of gravity, and s is the additional displacement due to the dis-
tortion of the body. By definition, therefore, s is zero at the center of
gravity of the body and is zero everywhere if the body is perfectly rigid.

Fig. 1.19 Strain in elastic medium, producing displacement s
and deformation represented by dyadic © = Vvs.

In general s is much smaller than either T or P may happen to be. In
the present action we shall forget T and P and concentrate on s, for we are
not interested in the gross motions of the body, only its internal warps
and strains.

Even the relative displacement s is not a good measure of the local
strain in an elastic medium, for s is the total relative displacement of the
point (z,y,2), which may be larger the farther (z,y,2) is from the center of
gravity, even though the strain in any element of the medium is about
the same everywhere. What is needed is a differential quantity which
meusures the strain at the poini (x,y,2). This is obtained by computing
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the change in the vector dr = idz + j dy + k dz connecting the points
(z,y,2) and (z + dz, y + dy, 2 + dz) when the body is distorted. The
point (z,y,z) is displaced by the amount given by the vector s(x,y,2),
and the displacement of point (z 4 dx, ¥ + dy, z + dz) is given by the
vector s(z -+ dz, ¥y + dy, z + dz). The change in dr due to the strain

is, to the first order, P

Js Js Js

according to Eq. (1.6.15). Therefore, the vector dr representing the
relative position of the points (z,7,2) and (x 4 dz, y + dy, z + dz) is
changed by the strain into the vector dr’ representing the new relative
position, where

dt' =dr- (§+9D); D=Vs (1.6.20)

The dyadic © is a derivative operator, measuring the amount of
strain at the point (x,y,z). As indicated on page 58, it may be divided
into a symmetric and antisymmetric part;

D=R4+6; R= —i(curls) X
& = iend 4 jessj + kessk + e2(ij + ji) + ers(ik 4 ki) 1+ eq5(ik + ki)

= 1(Vs + sv) (1.6.21)
98z 1fds, , 0s
e — 6_61;37 etc.; €12 = § —C‘i[ “'— -a—xq); etc.

The dyadic 9% corresponds to the rotation of the element of volume around
(z,7,2) due to the distortion of the medium. The axis of rotation is in
the direction of curl s, and the angle of rotation in radians is equal to
the magnitude of curl s. Note that this term is nof due to the rotation
of the body as a whole (for this part of the motion has been specifically
excluded from our present study); it is due to the twisting of the material
as it is being strained. This type of rotation is zero when curl s is zero.

The symmetric dyadic © is called the pure sirain dyadic for the
point (z,y,2). When it is equal to zero, there is no true strain at this
point.

As pointed out earlier, it is always possible to find three mutually
perpendicular directions, the principal axes labeled by the unit vectors
ay, as, as, in terms of which the symmetric tensor © becomes

a;e1a, + 896285 "'— azCzadz — c3 (1622)

The three quantities ei, e, ez are called the principal extensions of the
medium at (x,7,2). A rectangular parallelepiped of sides d&i, d&;, dé&
oriented parallel to the principal axes is still a rectangular parallelepiped
after the medium is strained (this would not be true if it were not parallel
to the principal axes), but the length of its sides is now (1 + e;) d&,
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(1 4 eg) d&;, (1 + e3) d&s.  Therefore, the percentage increase in volume
of the parallelepiped is

6 = (61 + e+ es) = (exx + e2n + €35) = diV(S) = lfbl (1-6-23)

The quantity 6, which is the expansion factor of the dyadic © (in any
coordinate system), is called the dilaiion of the medium at the point

4

Fig. 1.20 Change of element of elastic medium in simple
contraction.

(z,y,2). It also equals the percentage decrease in densify (to the first
order in the small quantities €) of the medium at (z,,2).

Types of Strain. The simplest type of strain corresponds to a strain
dyadic which is independent of position; this is called homogeneous strain.
The simplest type of homogeneous strain is a simple expansion, cor-
responding to a distribution of displacement s and of strain dyadic &
as follows:

s=e(@i+yj+zk); D=6 =G (1.6.24)
This type of strain is isotropic; any axes are principal axes; there is no
rotation due to the strain. The dilation is 6 = 3e.

Another type of homogeneous strain, called simple shear, is obtained
when the extension along one principal axis is equal and opposite to that
along another, that along the third being zero:

s =ze(ai — yj); D=6 = fe(ii — jj)
The dilation is zero, the extension in the z direction being just canceled

[ 7

Fig. 1.21 Change of element of elastic medium in simple
shear, as given by dyadic e(ii — jj).

by the contraction in the y direction. If the axes are rotated 45° about
the z axis (\W2z =2" 4+ ¢; V2y =2 — 4"), the displacement and



§1.6] Dyadics and Other Operators 69

strain dyadic take on the form
s = Je@i + i) D= = pedi + 1) —

This type of strain is called pure shear. If it is combined with a rigid
rotation of the medium by e radians, corresponding to R = —ze(i’j’
— j'i’), the resulting displacement and strain dyadic,

s =eyi’;: D= ¢t (1.6.25)

correspond to what is usually called shear in the y' direction. The dis-
placement js entirely in the ' direction, the parts of the medium sliding
over each other as a pack of cards can be made to do.

Another type of homogeneous strain with zero dilation corresponds
to a stretch in the z direction and a proportional shrinking in both y and
z directions:

s=e(i— 3yj —3zk); D= = el — §jj — 3kk) (1.6.20)

This is the sort of strain set up in a material such as rubber when it is
stretched in the z direction. It can be called a dilationless stretch.

Direction of Direction of Direction of Direction of
contraction stretch contraction stretch

7 -4

N A
N N/

Fig. 1.22 Change of element of elastic medium in simple shear, as
given in dyadic eji.

The most general homogeneous strain, referred to its principal axes,
can be made up by combining various amounts of simple expansion and
of shear and dilationless stretch in the three directions. Rotation of
axes can then give the most general form to the expressions for s and &.

A simple type of nonhomogeneous strain is a helical twist along the x
axis:
= ex(yk — 2j)
=N + &S = figk — izj + jak — kaj]

R = 1e[22(k — kj) + y(ik — ki) 4 2(i — ij)] (1.6.27)
= —e[zi — 3yj — 32Kl X §
© = e[y(ki 4+ ik) — 2(ij + ji)]

9w

This corresponds to a rotation of the element at (z,y,2) by an amount
ex radians about the z axis [the term ezjk — exkj in D, see Eq. (1.6.10)]
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and a shear in the 2 direction of an amount proportional to the length
of the vector r = yj 4 2k joining (z,y,2) with the z axis [the term eyik
— ezij in D, see Eq. (1.6.25)].

Fig.1.23 Change of element of elastic medium in torsion,
as given in Eqs. (1.6.27).

Stresses in an Elastic Medium. The forces inside an elastic medium
which produce the strains are called stresses. They also are best repre-
sented by dyadics. The force across the element dy dz, perpendicular
to the x axis is F, dy dz, for instance, where F, is not necessarily parallel
to the z axis. Similarly the forces across unit areas normal to the y
and z axes can be called F, and F,. It can easily be shown that the force
across an area represented by the axial vector dA is T - dA, where

¢ =Fi+Fj+Fk

More detailed consideration of the relation between the forces F and the
areas dA will confirm that ¥ is a dyadic and transforms like any other
dyadic.

Fz(z+dz) z Fz (z+dz)
Fy(y+dy) Fy(y+dy)
Y
¥
“Trdx+dx) “Fefx+dx)
X Relx) /‘ - X
f
/ R
Y
Fz(Z) Fz (Z)

Fig. 1.24 TForces on faces of element of elastic medium corre-
sponding to stress dyadic F.i + F,j + F.k.

For static equilibrium these forces should not cause a rotation of
any part of the medium. A consideration of the torques on an element
of volume of the medium shows that

(F2)y = (F,)s; ete.
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Consequently the dyadic € is symmetric and is equal to its conjugate
T* = iF, + jF, + kF.. In terms of its principal axes and related orthog-
onal unit vectors a,, this can be written as

¥ = Tia,a; + Thaza, + Taaza;

where the constant 7', is the principal stress along the nth principal axis.
Various simple types of stress can be set up analogous to the strains
given previously. For instance, where 7'; = T; = 0, the stress is called
a lension in the a; direction; when 7, = —7T; and T5 = 0, it is called a
shearing stress; and so on. The scalar |¥] is minus three times the
pressure at the point.

Static Stress-Strain Relations for an Isotropic Elastic Body. When
the elastic properties of a medium are independent of direction, it is
said to be 7sofropic. If the medium can remain in equilibrium under a
shearing stress, it is said to be elastic.  'When both of these requirements
are satisfied, it turns out that the principal axes of strain are identical
with the principal axes of stress everywhere and the strains due to the
three principal stresses are independent and additive. For instance, the
effect due to the principal stress 7'; will be a simple dilation plus an exten-
sion in the a; direction. In other words the equations relating the prin-
cipal strains and the principal stresses are

Tn = )\(61 + () + 63) + 2[.I.en " = 1’ 2, 37

where the constants A and u are determined by the elastic properties of
the medium.

Referred to the usual axes, z, y, 2z, both stress and strain dyadics take
on a more general symmetrical form:

L ="Tadi+ - +Tud+j)+ - -
S =eu i+ - - Foe,i+) -
The equations relating ¥ and & and their components can be found by
transformation from the principal axes:
T = NG5 + 2
Toe = NMeww + ey + €.2) + 2pe.,; ete. (1.6.28)
Tw = 2ue,y; etc.

When the stress is an isotropic pressure, T = —P%, the strain is a
simple compression, © = —[P/(3\ + 2u)]3. The constant (3N + 2u)
= P/¢ is, therefore, the compression or bulk modulus of the isotropic
elastic medium. When the stress is a simple shearing stress ¥ =S(ii
— jj), the strain is a simple shear 1(S/x)(ii — jj), so that the shear
modulus of the medium is u. When the stress is a simple tension in the
z direction, ¥ = Tii, the strain is & = [T/2u(8\ + 2)][2(\ + w)ii
— A({Jj + Kkk)], representing a stretch in the = direction and a shrinking
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in the y and z directions. The quantity [u(@BN + 2u)/(A + w)] is the
ordinary tension or Young’s modulus of the material. The ratio of
lateral shrink to longitudinal stretch [A/2(A + w)] is called Poisson’s
ratio.

Dyadic Operators. In order to discuss the relation between stress
and strain dyadics for nonisotropic solids, we must introduce quantities
which transform dyadics in a manner similar to the way dyadies trans-
form vectors. The components must have four subscripts and should
transform in a manner analogous to Eq. (1.6.1):

(Gijkl), = z 'Y-im'Y]'n’Ykr'YlsGmnrs
mnry

These operators may be called tetradics and may be represented by the
Hebrew characters in order to distinguish them from other entities.
For instance the symbol representing the 81 components Gy 15§ (gimel),
and the equation giving the nature of the transformation performed on a
dyadic is

B =9 or B = 204 (1.6.29)

s

A tetradic may be represented by juxtaposing two dyadics, just as a
dyadic may be represented by juxtaposing two vectors. For instance a
particularly simple tetradic is ¥ (ayin) = 3J, which changes every
dyadic into a constant times the idemfactor

y B = |%|8, Ymm-s = anars

There is, of course, the unity tetradic, ¥ (yod), which reproduces every
dyadic, and its conjugate,
,:QI = 2{; (’*) :9[ = QI*; Imnrs = 6mr6ns; [:mrs = 517'3611,1-
In this notation the stress dyadic is related to the strain dyadie, for
isotropic solids, by the equation

T =Dy + 2+ w¥:S

where the tetradic in the square brackets is of particularly simple form
due to the isotropy of the medium. For nonisotropic media the relation
is more complicated, and the elements of the tetradic 77 (daleth)

T=9:&; Ton= szers

are not mostly zero. Since both ¥ and & are symmetric, we must have
Dmnrs = Dnmrs and Dnmrs = Dmnsr; we also have Dmnrs = Dr;mn- With all
of these symmetries, the number of independent components of 7 is
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reduced from 81 to 21. These components are called the elastic com-
ponents of the nonisotropic solid.

One could carry out an analysis of tetradics, their “principal axes,”
and other properties in a manner quite analogous to the way we have
analyzed the properties of dyadics. Lack of space and of importance
for our work, however, forbids.

Complex Numbers and Quaternions as Operators. Before we go on
to less familiar fields, it is well to review an example of vector operators
which is so familiar that it is often overlooked. The use of complex
numbers to represent vectors in two dimensions is commonplace; it is not
as well realized that a complex number can also represent a linear vector
operator for two dimensions.

The subject of complex numbers and of functions of a complex variable
will be treated in considerable detail in Chap. 4, for we shall be using
complex numbers as solutions to our problems all through this book. All
that needs to be pointed out here is that the real unit | can be considered
to represent @ unit vector along the z axis and the imaginary unit ¢ =
A/ —1 can be considered to represent a unit vector along the y axis; then
a vector in two dimensions with components x and y can be represented
by the complex number z = x + 7y. Such a quantity satisfies the usual
rules for addition of vectors (that is, we add components) and of mul-
tiplication by a scalar (that is, az = az + 70%).-

The vector which is the mirror image of z in the x axis is called the
complex conjugate of z, 2 = x —1y. The angle between z and the x axis
is tan™! (y/z), and the square of the length of zis |2|? = 22 = «* + ¢*
— 7. We note that multiplication of complex numbers does not cor-
respond to the rules for multiplication of three-vectors. If z2 =z + 1y
and w = u + iv, then wz = 2w = (ux —vy) + i(uy + vx) is another
vector in the z, y plane. It is not the scalar product of the two vectors
(the scalar product ux + vy is the real part of wZ), nor is it the vector
product (the vector product would have an amplitude equal to the
imaginary part of wZ, but its direction would be perpendicular to both w
and z, which requires the third dimension). Actually the product we
of two complex numbers corresponds more closely to the operation of a
particular kind of dyadic w on a vector 2.

The operation of multiplying by w changes the direction and mag-
nitude of z. To put this in usual vector and dyadic form, the vector z
would be zi + yj and the dyadic w would be wii — vij + vji + wjj, a
combination of the antisymmetric dyadic »(ji — ij) and the symmetric
dyadic wu(ii + jj), with principal axes along the = and y axes. This
dyadic is certainly not the most general two-dimensional linear operator
we can devise, for it has only two independent constants rather than
four. It represents the particularly simple type of operation which
changes the direction of any vector by a constant angle and changes
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the magnitude of any vector by a constant factor, as we shall see in a
moment.

The complex number represented symbolically by the exponential
¢, where 6 is a real number, is, by Euler’s equation,

e? = cos 0 + 7sin @

Viewed as an operator, this quantity rofafes any vecfor z by an angle 6
radians (counterclockwise) and does not change its length. Consequently,
the operator w = Ce® [C? = 4 + v?, § = tan™! (v/w)], when it multiplies
any vector z = x + 7y, rotates z by an angle 6 and increases its length by
a factor C. Many of our solutions will be representable as a complex
number ¥ multiplied by the time factor ¢** This factor rotates the
vector ¢ with constant angular velocity o, and if (as is often the case)
the physical solution is the real part of the result, the solution will
oscillate sinusoidally with time, with a frequency » = «/27.

An extension of this same type of representation to three dimensions
is not. possible, which is why we have had to use the more complicated
formalism of vectors and dyadics. It was shown by Hamilton, however,
that vectors and operators in four dimensions can be represented by a
rather obvious generalization of complex numbers, called quaternions.

We let the unit number 1 represent the unit vector in the fourth
dimension and the unit vectors in the three space dimensions be three
quantities 7, j, k, with rules of multiplication analogous to those for

AT
= =k=—1; ij= —ji=Fk; jk=—ki=14; ki= —ik=j

Then a space vector could be represented by the quantity ¢z + sy + ke,
and a general quaternion ¢ = a + #b + jc + kd would represent a four-
vector. The conjugate four-vector is ¢* = a — b — je — kd, so that
the square of the magnitude of fis g2 =¢*¢=a?+ b2+ 2+ d2 a
simple extension of the rule for ordinary complex numbers.

As with complex numbers, the multiplication of quaternions pg can
be considered as the operation which changes a four-vector represented
by ¢ into the four-vector represented by pg. If ¢ = a + b + je + kd
and p = o + 48 + 7y + k9, then

pq = (a0 — Bb — ye — 8d) + (b + Ba + vd — éc)
+ jlec — Bd + va + 8b) + E(ad + Be — vb + 8a) (1.6.30)

is another quaternion, which can represent another four-vector. We note
that quaternion multiplication is not commutative, that pg # ¢p. We
cannot pursue this general discussion further (beyond pointing out that
p cannot represent the most general four-dimensional dyadic), though
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the relationship between quaternions and space-time vectors in relativity
will be mentioned later.

However, it is useful to consider a particular quaternion which is
an interesting and suggestive generalization of the complex exponential.
Utilizing the rules for multiplication of 7, j, k£ and expanding the exponen-
tial, we can show that, when «? + g% + 2 = 1,

gftietiftim) — cos 0 + sin 0 ({a 4 jB + k)

which is the analogue of Euler’s equation for the imaginary exponential.
The exponent represents a space vector of length 6 and of direction given
by the direction cosines ¢, 3, v, whereas the exponential is of unit length.
We note that any quaternion can be represented in the form Qef¢etibtey,
where the number € is the length of the four-vector and where the angle 6
and the direction cosines fix the direction of the vector in four-space.
We might expect, by analogy with the complex exponential, that this
exponential operator (with @ = 1) is somehow related to a rotation
operator, though the relationship cannot be so simple as for the complex
plane.

The interesting and suggestive relationship is as follows: If f is a
vector iz + jy + kz, in quaternion notation, then the quaternion

f = @i 4 yf + 2’k = eO/DGackibHe) fg—(0/2 GackiB+im) .
where o + 824+ 42 =1

represents a three-vector which is obtained by rotating the vector f by an
angle 6 about an axis having the direction cosines «, 8, v. Note that the
angle of rotation about the axis is 6, not 6/2. We can show this in
general, but the algebra will be less cumbersome if we take the special
case of rotation about the x axis. We have

f’ — 6(9/2)i(ix + Jy + kz)e—(l?/?)i
=14z + j(y cos 8 — zsin 0) + k(y sin 6 + 2 cos 6)

which corresponds to the rotation of the y and z components of f by an
angle 6 in the y, 2z plane, 7.e., a rotation of the vector by an angle 6 about
the z axis. The proof of the general case only involves more algebra.

We can generalize this as follows: Suppose that we have a quaternion ¢
expressed in terms of its magnitude @ and ‘“ direction operator’ ef Ga+i+en) ;
we can set up the formal “square-root quaternions” ¢ = /Q et/ Geckif-+em)
and {* = 4/Q ¢~ @D Gatiptiy)  then the vector f = 4z + jy + kz is trans-
formed into the vector f/, with direction obtaiited from f by rotation by an
angle 8 about the axis with direction cosines e, 8, ¥ and with magnitude
equal to the magnitude /22 + y* + 2* of f multiplied by the scalar
factor @, by means of the equation

=
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A subsequent operation, involving another rotation and change of mag-
nitude, represented by the quaternions 5, n* is given by

77 = af'n* = oftin*

The geometric fact that two successive rotations give different end results
depending on the order in which they are carried out is reflected in the
fact that the quaternions 7 and ¢ (and, of course, {* and »*) do not com-
mute. The quantity Q is called the fensor (Latin for ‘“stretcher”) and
the exponential is called the versor (Latin for “turner’) of the operator ¢.

The most general rotation of a four-vector represented by ¢ = w
+ 4z + jy + kz is given by the equation

q’ = eﬂ(ia+iﬁ+k'y)qe—¢(i>\+iﬂ+k1')

where both o + 8% + 4% and A% + u? + »? equal unity. When both 6
and ¢ are imaginary angles, the transformation corresponds to the
Lorentz transformation discussed in the next section.

In later portions of this chapter and in Sec. 2.6, we shall have occa-
sion to use generalizations of the versor £ = €™, where 2 is a general
dyadic operator. This function is always related to the rotation of the
vector F on which the operator 2 acts, and in many cases the rotation
transformation will be represented by the formula

FF=Q-F-QF

as was the case with quaternions.

Abstract Vector Spaces. The three-dimensional concepts of vectors
and dyadic operators discussed in the preceding sections may be gen-
eralized by considering vectors and dyadic operators in abstract spaces
which may have many dimeusions, often a denumerably infinite number
of dimensions. This generalization has become one of the most powerful
of modern mathematical tools, particularly because it permits a syn-
thesis and a clearer understanding of a great many results taken from
widely varying fields. We shall discuss this generalization briefly here,
illustrating with some examples drawn from physics.

One of the simplest examples of the use of an abstract vector space
oceurs when normal coordinates are used to describe the motion of
coupled oscillators. The number of normal coordinates, 7.e., the number
of dimensions of the corresponding space, equals the number of degrees
of freedom of the oscillator. The configuration or state of the system
is described by a vector in this space. The principal axes of the space
refer to particularly “elementary” states of motion, the most general
motion being just a linear superposition of these “elementary’” states.

These motions can be clarified by consideration of the system illus-
trated in Fig. 1.25. The “elementary’” motions are two in number:
(1) The masses oscillate in the same direction, 7.c., move together.
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(2) The masses oscillate in opposite directions, ¢.e., move toward each
other and then away from each other. These motions are called ele-
mentary because there is a definite single frequency for each type of
motion. The most general motion of the system is a linear super-
position of the ‘““elementary” states of motion and, as a result, has no
definite frequency.

Let us now set up the two-dimensional space we require for the
description of this system. We may plot, for example, x4, the displace-
ment of one of the masses along one of the axes, and z,, the displacement

AN

TR

s
AN

o

Fig. 1.26 Two coupled oscillators.

of the other along a perpendicular axis. If we let e; be a unit vector
in the one direction and e, a unit vector in the two direction, then a
general vector in this space is e;2; + €522 = T.
The equations of motion are

m(d2z1/de?) = — (k1 + ko)x1 + kowo; m(dPxs/dt?) = — (k1 + ko)ze + kazs
or vectorwise

m(d’r/di?) = —A-r
where 9 is the dyadic e; A1, + ejdises + €241 + €242085, and

A= (kl + kz); Ay =k = Azl; Agp = (]Cl + kz)

The ““elementary’ modes of motion R have a definite angular frequency
w; therefore they satisfy the relation d?R/di? = —w’R, and the equation
of motion for R becomes

A11 — 77’Lw2 ‘421

Alg ‘422 — mw2

Again, quoting the results given earlier, there are two elementary solu-
tions R; and R, which are orthogonal to each other. Moreover, it is
again clear that one may use these directions as new coordinate axes
and that any vector in this two-dimensional space (i.e., any possible
motion) may be expressed as a linear superposition of the two elementary
states of motion. The square of the cosine of the angle between a
vector F and the R; axis gives the relative fraction of the state desig-
nated by F which is of the R, type, the remainder being of the R, type,
since the sum of the cosine square terms is unity. In other words, the



78 Types of Fields [cn. 1

square of this cosine gives the fraction of the total encrgy of the system
which is of the R, type.

Returning to the equations of motion, we now see that one may
consider the motion of the system as a series of successive infinitesimal
rotations produced by the operator %. the time scale being determined
by the equation. The elementary solutions R; huve the important
property of not rotating with time, for the operator U operating on R;
just gives R; back again. The Ry’s thus are stationary states of motion.

It is now possible, of course, to generalize the above discussion for
the case of N masses connected by a series of springs. Indeed such a
system would serve as a one-dimensional model of a erystal. For this
system, we require a space of N dimensions. There would he N ele-
mentary states of motion which define a set of fixed mutually orthogonal
directions in abstract vector space.

Eigenvectors and Eigenvalues. The geometric character of these
abstract spaces is completely determined by the operator 9. The prin-
cipal axes of the operator in the direction e, (we shall use the symbol e,
to represenl unit vectors in an abstract space as opposed to a, for the
unit vector in ordinary three-dimensional space) are determined by the
etgenvalue equation

A-e, = AL, (1.6.31)

where A, is a number called an eigenvalue of A. The vectors e,, called
eigenvectors of A, are mutually orthogonal and serve to determine the
coordinate axes of the space. Any vector in this space is then a lincar
combination of the eigenvectors. This suggests rather naturally that
it might be worth while to classify the various types of operators which
occur in physics and discuss the character of the corresponding abstract
vector spaces. A fairly good coverage is obtained if we limit ourselves
to the operators which occur in quantum mechanies.

Operators in Quantum Theory. The abstract formulation of quan-
tum mechanies as given by Dirac and by von Neumann leans rather
heavily on the concepts which arose in the discussion of coupled oscilla-
tors above. The state of a system is described by means of a vector in an
abstract space, usually of an infinite number of dimensions. It is some-
what difficult to define the term state as uscd here; it connotes a relation-
ship between the kind of system we are discussing (numbers of particles,
kinds of forces, etc.), the initial conditions of position or velocity, ete.,
and the methods used to observe the system, which will become clear
as the discussion progresses. It is one of the fundamental postulates
of quantum {heory that observation of a system disturbs (i.e., changes)
the state of the system. In abstract vector space this would mean that
the vector representing the state of the system would be rotated by an
observation of the position of a particle or its energy for instance. Since
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a rotation may be accomplished by means of a dyadic operator in abstract
space, we are led to the conclusion that an observation is to be represented
by an operator. Thus, the mechanical quantities energy, position,
momentum, ete., are to be represented by operators. (One should say
that observation of these quantities is to be represented by operators,
but it 1s more convenient to use the more concise way of describing the
operators used in the preceding sentence.)

Since the measurement of energy, etc., changes the state of a system,
how are these mechanical quantities to be accurately determined? Our
previous discussion suggests that only for certain special states will this
be possible, <.e., only in those states corresponding to the eigenvectors
(principal axes in the ordinary space notation) of the operators in ques-
tion. For example, the eigenvectors of the energy operator G satisfy
the equation

@ c €y, = Enen

This equation states that for the eigenvectors e, (i.e., for certain par-
ticular states represented by directions e, in the vector space) a measure-
ment of the energy does not change the state of the system. Only then
can one be certain that the observation results in an aceurate value of
the energy.

What then is the meaning of the constant E, in this equation? Tt is
usually assumed that it is possible to normalize operator G in such a
way that the eigenvalue F, is actually the energy of the state represented
by e,.. This is, of course, automatic in ordinary three-dimensionsal cases
discussed earlier. For example, the eigenvalues of the moment of
inertia dyadic are just the three principal moments of inertia, and the
eigenvalues of the stress dyadic are the principal stresses.

It is immediately clear that two quantities, such as energy and
momentum, will be simultaneously measurable (or observable as Dirac
puts it) if the eigenvectors for the energy operator are also the eigen-
vectors for the momentum operator. The necessary and sufficient con-
dition that two quantities be simultancously measurable is that their cor-
responding operators commute. The necessity follows from the fact that,
if a vector e, is an eigenvector for both € and p, then Gpe, = pGe..
Since any vector is a linear superposition (another assumption) of e,’s,
we find that Gpe = pEe where e is any state vector.

The sufficiency of our statement in italics is somewhat more difficult
to prove. Consider an eigenvector e, of € Assume commutability
G(pe.) = E.(pe.). From this, it follows that pe, s an eigenvector for €
with eigenvalue E,. If there is only one eigenvector with eigenvalue E,,
1t immediately follows that p - e, must be proportional to e,, yvielding the
required theorem. If on the other hand there are several eigenvectors
€. With eigenvalue E, (referred to as a degeuneracy), it follows that
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P € = zp,,,,-e,,,,,. We may now, in this subspace for which all the
m

eigenvectors have cigenvalue E,, find the principul axes, i.e., eigen-
vectors, of the operator p and thus find states in which both p and €
are simultaneously measurable.

It is an obvious but important corollary that, if two operators do
not commute, they are not simultaneously measurable.

An important example of operators which do not all commuie are
the operators represeniing postiion (1.9,3) and the corresponding com-
pouents of the momentum (b..p,.0.), that is,

Iy =, ete.; pr — . = h/i
Py = Dy, ete.: p) = np,, efe.

(1.6.32)

where % is Planck’s constant A divided by 2x.  These are the fundamental
equations of quantum theory. They will be discussed in more detail
in Chap. 2.

Direction Cosines and Probabilities. What can be said about the
state e which is not an eigenvector of the energy operator € hut rather
is a lincar combination of the e, cigenveectors? Using the analogy with
the abstract space of the coupled oxcillator, one takes the square of the
cosine of the angle between the state veclior € and an eigenvector e, as
being that relative fraction of e which is “in the state e,.”” To say it in
more physical language, if one measures the energy of a number of
identical svstems in state e, the fractional number of measurements in
which the energy will be E, is equal to the square of the cosine of the
angle between e aud e, in the abstract vector space for the system. For
many quanium mechanical operators this cosine i1s a complex number
(thus permitting interference hetween eigenveetors with arbitrary phases).
In such a case the square of the absolute value of the cosine is used. The
changes in the mathemalties of abstract vector space which accompany
the introdhuction of complex cosines will be discussed helow.

Probabilities and Uncertainties. Referring the results of our dis-
cussion to a single measurement, we may iuterpret the square of the
absolute value of the cosine as the probability that a state e will have
an encrgy E. The average value of the energy for state e is then
2 E.(e.-e)?or K., = (eGe). Thisis correct only if the cosines are real:
n
the proper generalizations for complex cosines will be given below.

These results euable us to discuss the results of measurements of two
quantities which are not simultaneously measurable. For example.
suppose that e(x) were a state vector for which the position 2 was known
preeisely.  What is the probability that this system will have a momen-
tum p,, the eigenvector for thisx momentum being f(p.)? This is given
in the present formalism by |e(z) - f(p,)|2. The average value of the
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momentum is epe. One may then also express the mean-square devia-
tion of a measurcment of p, from its average:

(Apo)2 = e(p. — po)e

Only when e is an eigenvector for p, will p; be known precisely for state e,
for then Ap, = 0. The quantity Ap, is known as the uncertainty in
the measurement of p..

Complex Vector Space. We need now to generalize our notions of
vector space so as to include the possibility of complex cosines. In such
a case the length of a veetor ean no longer be specified by the sum of the
squares of its components over the coordinate axes, for this square is no
louger positive definite as is required by onr usual understanding of a
length. It is clear that the only way positive definite quantities can
be obtained is by using the sum of the squares of the absolute values of
the components for the definition of length. A simple way to make this
resull part of our formalism is Lo introduce a second space which is * con-
plex conjugate” to the first and of the same number of dimensions. If
the unii. veetors in the first space are €5, e, the corresponding unit
vectors in ithe complex conjugate space will be labeled ef, ef,

To every vector e = 2 Ase, having the components .1; in space 1, there
5

will be a corresponding vector in the complex conjugate space e* =
\ efd; having A; as components (where A; is the complex conjugate of
L

4;). The scalar produet (1he essential operation in defining a length) is
now redefined as follows:
0; 1#7

*' ’ = R
€’ - e) 8 1 4 =3

The dot produet hetween €; and €; will not he detined, nor will it be needed.
It is now clear that the lenglh of vector e will now be taken as

(e*-e) = ZLL2>0

a positive delinite quantity. The *‘length” of e (written |e]) will be
taken as 1/e* - e.

Once we have made these definitions, a number of important con-
sequences may be derived. It follows, for example, from them that,
if e*-e = 0, then |e| = 0. It may he casily verilied that, if e and f are
two vectors,

e*.-f=f*.¢e

\ectors in ordinary space have the propertiy that their dot product
is never larger than the product of their amplitudes:

AB>A.B
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This is called the Schwarz inequality; it must also be true in abstract
vector space, in generalized form, since it follows from the fact that the
square of the “length” of a vector is never less than zero, 7.e., is positive
definite. For instance, if e and f are two vectors and ¢ and b two com-
plex numbers,

(@e* — bf*) - (ae — bf) > 0

By setting a = /(f*-f)(e*-f) and b = 1/(e* - e)(f* - €) this can be
reduced to

V(EF e f) > A/ (fF-e)e*-f) or el -|fl > |f*-e] (1.6.33)

which is the generalized form of the Schwarz inequality we have been
seeking. This inequality will be used later in deriving the Heisenberg
uncertainty principle.

Another inequality which has its analogue in ordinary vector space is
the Bessel inequalify, which states in essence that the sum of thelengths
of two sides of a triangle 1s never less than the length of the third side:

le| + [f| > [(e + £)] (1.6.34)

Generalized Dyadics. We now turn to the discussion of operators in
complex vector spaces. We consider first the linear transformation
which rotates the axes of the space into another set of orthogonal axes:

4
e, = z €0Yni
n

where € is a unit vector along the 7th axis of the new coordinate system
and e, are the unit vectors in the original system. The relation between
e/ and () * must be the same as that for any two vectors in the unprimed
system so that

(e)* = z’?nief

We can devise a dyadic operator which when operating on the vector
e, converts it into the new vector €. This dyadic is

© = z € Yui* € (1.6.35)
so that Ge; = 2 €, Yni = €,

n

The form of the dyadic implies the convention that we shall always place
unstarred vectors to the right of an operator and starred vectors to the
left. A useful property of the dyadic operator is that

(e*®)f = e*(OGf)
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so that no parentheses are actually needed and we shall usually write it
e*Of.

Our generalizations have been carried out so that, as with ordinary
dyadics, products of operators are also operators:

G- = (nz €nyni€] ) . (;; e\jrer ) = ;cen (2 'ynj)\jk)e;’f

so that the (n,k) component of the operator (& - ) is

(O = [z ’Ynj)\ﬂc]

J

Returning now to the rotation operator & defined in Eq. (1.6.33), we
note that ef® does not give (e})*. The proper operator to rotate e}
shall be written ®* and defined so that

erG* = (e
The operator @* is therefore related to the operator @ by the equation
(Ge;)* = eF@*

An operator ®* which is related to an operator & according to this
equation is called the Hermitian adjoint of ®. Writing out both sides
of the equation we obtain

ze:‘:m = 2 (v*)ane
n

n

s0 that Vai = (’Y*)‘in (1'6'36)

Thig equation states that the (¢,n) component of the Hermitian adjoint
dyadic &* 1s obtained by taking the complex conjugate of the (n,7)
component of ®. The notion of adjoint is the generalization of the
conjugate dyadic defined on page 55. The Hermitian adjoint of a
product of two operators ®% is (OQ)* = 2*@*. The Hermitian adjoint
of & complex number times an operator is the complex conjugate of the
number times the adjoint of the operator.
Hermitian Operators. An operator which is self-adjoint, so that

(Sj = ®* o  Yam = 'imn

is called a Hermitian operator. All classical symmetric dyadic operators
are Hermitian, since their components are all real numbers. The
operators in quantum mechanics which correspond to measurable quanti-
ties must also be Hermitian, for their eigenvalues must be real (after
all, the results of actual measurements are real numbers). To prove
this we note that, if the eigenvalues a, of an operator U are real, then
e*Aeisreal for any e. For e can be expanded in terms of the eigenvectors
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e, giving a series of real numbers for e*e. Let e =f 4 bg; then
b(g*f) + b(f*Ag) is real. But this is possible only if (g*Uf) is the
complex conjugate of (f*¥g), that is, is (g*A*). Consequently g*(¥ —
A*)f = 0 for any f or g; therefore A = A*.

The rotation operator ® defined in Eq. (1.6.35) is still more narrowly
specialized. The components vy.., are direction cosines, so that one would
expect the operator to have a ‘“unit amplitude” somehow. Since a
rotation of coordinates in vector space should not change the value of a
scalar product, we should have

(e*®*) - (Of) = e* - f
for e and f arbitrary state vectors. Therefore, it must be that
G*® =g

where & 1s the idemfactor z ene’r. This implies that the adjoint of ®
n
is also its Inverse:

G* = G

Such an operator, having ‘“‘unit amplitude’ as defined by these equations,
is called a wnitary operator. The rotation operator defined in Eq.
(1.6.35) 1s a unitary operator [see also Eq. (1.6.12)].

Most of the operators encountered in quantum mechanics are Her-
mitian; their eigenvalues are real, but their effect on state vectors is
both to rotate and to change in size. There are in addition several
useful operators which are unitary; their eigenvalues will not all be real,
but their effect on state vectors is to rotate without change of size.

Examples of Unitary Operators. Important examples of unitary
operators oceur In wave propagation, quantum mechanics, and kinetic
theory. For example, the description of the manner in which a junction
between two wave guides (say of different cross section) reflects waves
traveling in the ducts may be made by using a reflectance dyadie. This
operator rotates, in the related abstract space, the eigenvector cor-
responding to the incident wave into a vector corresponding to the
reflected wave. The unitary condition corresponds essentially to the
requirement that the process be a conservative one. The equation
®* = O ! may be related to the reciprocity theorem, 7.e., to the reversi-
bility between source and detector. We shall, of course, go into these
matters in greater detail in later chapters.

A unitary operator may be constructed from an ordinary Hermitian
operator & as follows:

®=04+8)/0 -

The adjoint of ® is (1 — 29/ + ¥ so that ®®* is § and O is unitary.
If © is the reflectance dyadie, then the above equation yields the relation
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which exists between the reflection coefficients constituting & and the
impedance coefficients constituting the impedance dyadic £

Another construction using a Hermitian operator & to obtain a
unitary operator ® is

© = (1.6.37)

where ¢® is defined by its power series 1 + 48 + $(R) + -
For example, for ® = (1 4+ #®)/(1 — %), we have & = &8, where
@ = 2tan—' 2. In terms of the physical example above, this last trans-
formation corresponds to using the shift in phase upon reflection to
describe the reflected wave rather than the reflection coefficient itself.
Often a vector is a function of a parameter (we shall take time { as the
typical parameter), the vector rotating as the parameter changes its
value. The unitary operator corresponding to this rotation is useful in
many problems. [Its general form is not difficult to derive. We can
call it ©D(f). Then by our definition

D(t)e(to) = ety + o)
where #; and o are specific values of the parameter {. Moreover,

D)D) e(ts) = e(ts + o + i) = D(ts + t2)e(to)
80 that D) D)1 = Dt + £2)

For this equation to hold for all ¢ and £, D must be an exponential
function of £. Since it must be unitary, it must be of the form

D = ot

where § is some unknown Hermitian operator.

To determine the equation of rotational motion for vector e we apply
D to e(f), changing ¢ by an infinitesimal amount df. Then D =1 +
29 df so that

(14 Hdyelt) = et +dt) or De(t) = %%i: (1.6.38)

We must, of course, find $ from the physics of the problem. For
example, in quantum mechanics and where ¢ is the time, © is propor-
tional to the Hamiltonian function with the usual classical variables of
momentum and position replaced by their corresponding operators.

Transformation of Operators. In the preceding discussion we have
dealt with the rotation of a vector as a parameter changes upon which 1t
depends. It is also possible to simulate the effects of the changes in the
parameter by keeping the vector fixed and rotate ““space,” .., to ascribe
the appropriate parametric dependence to all the operators which occur.
In other words, we change the meaning of the operators as the parameter
changes, keeping the vectors fixed. We must find how this is to be done
s0 as to give results equivalent to the first picture m which the vectors
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rotated but the operators were fixed. ILet the rotation of the vectors
be given by the unitary operator (&:

Ge = e'; Of =f; ete.

The appropriate equivalent change in € to € is found by requiring
that the relation between %€’ and £’ (first picture e and f change, & does
not) be the same as the relation between ¥'e and f (second picture e and
f do not change, £ transforms to £'). Analytically we write

f'*. .. =f*.-.¢

Inserting the relation between £’ and f and recalling that &* = @, we
find
f*. g =f*- (OY) e or ¥ =0E1G (1.6.39)

We now investigate the effects of this unitary (sometimes called
canonical) transformation on the properties of £.  For example, we shall
first show that the eigenvalues of € and € are the same. ILet

e = L'e
Hence (&) e = L'e

Multiplying through by & we obtain
2(Ge) = L' (Ge)

In words if e is an eigenvector of & with eigenvalue L/, then e is an
eigenvalue of € with the same eigenvalue. This preservation of eigen-
value is sometimes a very useful property, for if € is a difficult operator
to manipulate, it may be possible to find a transformation & which
yields a simpler operator £ whose eigenvalues are the same as those of L.

Because of the relation between an operator and its Hermitian
adjoint, we can write

(G R@)* = G*FPF(EH* = O~L*©

Hence a Hermitian operator remains Hermitian after a unitary trans-
formation.

The relationship between operators is not changed by a unitary
transformation. For example, if

Lt =N

then GTROG MG = NG or Y =N

Two unitary transformations applied, one after the other, cor-
respond to a transformation which is also unitary. If the two unitary
operators are §®, then

(FO)*FO = (O*FITE = §

proving the point in question.
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Finally we may consider the changes in an operator € under trans-
formation by the unitary operator D(f) defined in Eq. (1.6.38). This
will enable us to calculate the change in an operator due to a change in a
parameter {. The transformed operator is

OIS = ¢

1t is clearly convenient to introduce the notation (f) for ¥, calling
£ = £(0), so that
L) = e 19R(0)erSt

The rate of change of € with ¢ can be obtained by considering the differ-
ence L + dt) — (1) = e *0URe*®% 5o that

1068

T O — O (1.6.40)

Of course © depends on the physics of the problem. For example,
in many quantum mechanical problems © is the Hamiltonian operator
and f is time; the resulting equation is called the Heisenberg equation of
motion. The equation has wide application; for an operator § which is
related to a rotation parameter ¢ for state vectors of the form given in
Eq. (1.6.38), the rate of change of any other operator £ related to the
same system is proportional to the commutator 8 — 29.

Quantum Mechanical Operators. Let ns now apply some of these
results to the operators occurring in quantum mechanics. We recall
that the average result of measurements of a quantity (energy, momen-
tum, etec.) represented by the operator p on a system in a state repre-
sented by the state vector e is p., = (e*pe). Likewise, we point out
again that the probability that a system in a state represented by the
state vector e (in state e, for short) turns out to be also in state e’ is
given by the square of the absolute magnitude of the cosine between the
state vectors, |(e* - e')[|%

Last section’s discussion makes it possible to restate this last sentence
in terms of unitary operators. Suppose that we find a unitary operator
g which transforms an eigenvector e(a,) for operator % with eigenvalue
a. to an eigenvector €’(b,) for operator B with eigenvalue bn:

g(a,b)e(an) = €'(bn)

Then, using Eq. (1.6.35), we see that the probability that a measurement of
B gives the value b, when A has the value a, is

le*(a.) - € (bu)|? = |e*(ang(ab)e(@n)|? = lynala,D)[*  (1.6:41)

At this point we can utilize the Schwarz inequality [Eq. (1.6.33)]
to show the relation between the quantum equations (1.6.32) and the
Heisenberg uncertainty principle. We have already shown that, if two
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operators do not commute, they cannot be simultaneously measurable;
if one is measured accurately, the other cannot also be known accurately.
From the physical point of view there is something inherent in the
measurement of one which destroys our simultaneous accurate knowledge
of the other. From the mathematical point of view, there is a reciprocal
relationship between their uncertainties. As mentioned before, the
uncertainty in measurement AA of an operator ¥ is the root-mean-square
deviation defined by the equations

(AA)? = e*[A — a]’e; o = e*Ue

for the state denoted by the vector e.
To apply these general statements to the quantum relations (1.6.32),
we define the operators

APy =Pz — Pz; Px = (e*nxe); Ar =1 —=%; == (e*ge)

so that the rms value of the operator Ar is the uncertainty in measure-
ment of x in state e. By use of some of Eqgs. (1.6.32), we can show that

Ap. Ax — Ar Ap = h/i
Taking the average value of this for state e, we have
(Ap.e)* - (Are) — (Are)* - (Apse) = /i

The right-hand side of this equation is just twice the imaginary part of
(Ap.e)* - (Are), so that we can conclude that

[(Ap.e)* - (Are)| = Fi/2

But the Schwarz inequality (1.6.33) says that the product of the ampli-
tudes is never smaller than the amplitude of the dot product. Therefore,
we finally obtain

(Ap:)(Ax) 2 /2

which is the famous Heisenberg uncertainty principle. It states that
simultaneous accurate measurement of position and momentum (in the
same coordinate) is not possible, and that if simultaneous measurement is
attempted, the resultant uncertainties in the results are limited by the
Heisenberg principle.

Spin Operators. The statements made in the previous section were
exceedingly general, and there is need for an example to clarify some of
the concepts. An example which will be useful in later discussions is
that of electron spin. It is experimentally observed that there are only
two allowed values of the component of magnetic moment of the electron
in any given direction, which leads us to expect that the angular momen-
tum of the electron is similarly limited in allowed values. The angular
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momentum I of a particle about the origin of coordinates is given in
terms of its position from the origin and its momentum P as follows:

S-Dez = nng - ?5%1/; g'Ry = &SB:C - I‘Bz; WEZ = ISBZJ - t)SBx

We next compute the commutator for the components of I, utilizing
the quantum equations (1.6.32):

WEIWE!/ - WEUWEI = (SBE& - 8%2) (ISBIJ - I}‘Bz) = lhm}.z;

MM, — DL, = ahD.; DD, — VLD, = hI, (1.6.42)

These equations indicate that we cannot know accurately all three com-
ponents of the electron spin; in fact if we know the value of M, accurately,
we cannot know the values of M, and M,

By utilizing these equations in pairs we can show that

or DM, + D) = (P + a0,) (M. + A) (1.6.43)
and DM, — ) = (P — DD — A)

Starting with a state vector a, corresponding to a knowledge that
the value of I, is m# (that is, a,, 18 an eigenvector for I, with eigenvalue
mh), we see that the vector (I, + 9,)a., is an eigenvector for M, with
eigenvalue (m + 1)% unless (Pt + 19,)a,, is zero and that (M, — ¢IMNy)an
is an eigenvector for M, with eigenvalue (m — 1)% unless (P, — ) a.
is zero, for from Egs. (1.6.43),

P + i0)an = (D, -+ DI + Ba.l
= (m -+ DA, + iM)a.];  ete.

In the special case of electron spin, we will call the angular momentum
@ instead of M. In order to have only two allowed values of m, differing
by % (as the above equations require) and to have these values symmetric
with respect to direction along z, we must have the allowed values of
@, be +3# (with eigenvector a;) and —3% (with eigenvector a_), and
that

&, +iG)a, =0 and G, —©&)a_ =0

Consequently the rules of operation of the spin operators on the two
eigenvectors and the rules of multiplication of the spin operators are

Sa, = (h/2)a.; Sa, = (h/2a; Sa, = (h/2)a,
Ga_ = (h/2)a,; Ba. = —(h/2a,; Sa = —(f/2)a (1.6.44)
€.8, = (th/2)8. = —G,&,; B, = (1h/2)6, = -E&.5, o
S.C; = (h/2)8, = —€.6,; (&.) = (&) = (&,)% = (h/2)*

We have here a fairly simple generalization of the concept of operators.
The “spin space” is a two-dimensional space, one direction corresponding
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to a state in which the z component of spin is certainly 7/2 and the per-
pendicular direction corresponding to a state where &, is certainly
—(#/2) (it should be clear by now that state space is a useful mathe-
matical fiction which has nothing to do with ““real” space). A unit
state vector in an intermediate direction corresponds to a state where
we will find &, sometimes positive and sometimes negative, the relative
frequency of the two results depending on the square of the costne of the
angle between the unit vector and the two principal axes for S,.

The operator 2€,/# reflects any state vector in the 45° line, i.e.,
interchanges plus and minus components. Therefore, the eigenvectors
for ©, would be (1/4/2)(a; + a_), corresponding to a rotation by 45°
of principal axes in spin space for a rotation of 90° of the quantizing
direction in actual space (corresponding to changing the direction of the
magnetic field which orients the electron from the z to the z axis, for
instance). Therefore, if we know that &, is #i/2, there is an even chance
that &, will have the value #/2 or —(%/2).

On the other hand, the two eigenvectors for &, are (1/4/2)(a, +
ia_), corresponding to an imaginary rotation in spin space (the square
of the magnitude of a complex vector of this sort, we remember, is the
scalar product of the complex conjugate of the vector with the vector
itself).

Quaternions. Viewed in the abstract, the operators i = 2&,/7h,
i = 2&,/ih, T = 2&,/ih, together with the unity operator &a = a and
a zero operator, exhibit a close formal relation to dyadic operators.
They act on a vector (in this case a vector in two-dimensional spin space)
to produce another vector. They can be added and multiplied to produce
other operators of the same class. The multiplication table for these
new operators is

-
™
I
—
™
I
-
™
If
|
[asy
-
=
I
-5
I
I
>—
—
—re

f=i=—ff; HR=j= —if
(1.6.45)

Curiously enough, operators with just these properties were studied
by Hamilton, long before the development of quantum mechanics, in
his efforts to generalize complex numbers. As was discussed on page 73,
the quantity ¢ = v/ —1 can be considered to correspond to the operation
of rotation by 90° in the complex plane. For this simple operator, the
only multiplication table is 42 = —1, where 1 is the unity operator.
Corresponding to any point (2,y) on the complex plane is a complex
number z = x + 7y, where the square of the distance from the origin is
22 =22 = (x —iy)(z +1y) = 2+ y> In order to reach the next
comparable formal generalization one must use the three quantities
i, {, and ¥ defined in Eqgs. (1.6.45) to produce a qualernion (see page 74)

p=a+bi+c¢+dt
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The square of the magnitude of this quantity is obtained by multiplying
p by its conjugate

p*=a— bt —cf —dt; o2 =pp* = a* + 0+ + @

Therefore, the only quaternion with zero magnitude is one where
a, b, ¢, and d are all zero. In addition, the reciprocal to any quaternion
is quickly found.
1/p = v*/|p|?

A quaternion can be related to the operation of rotation about an axis in
three-dimensional space; the direction cosines of the axis are propor-
tional to the constants b, ¢, and d, and the amount of the rotation is
determined by the ratio of a? to b2 4+ ¢ + d% Little further needs to
be said about these quantities beyond what has been given onpage 74,
et seq., for their interest is now chiefly historical. The spin operators
are, however, closely related to them.

Rotation Operators. Unitary operators of the type defined in Eq.
(1.6.37) are very closely related to the general angular momentum opera-~
tors (indeed, they are proportional). Discussing them will enable us to
use some more of the technique developed in the section on abstract
spaces and at the same time shed some more light on the properties of
angular momentum in quantum mechanics.

Suppose that a vector e in abstract space depends parametrically
upon the orientation of a vector r in ordinary space. If we should now
rotate r about the z axis through an angle 6., then e should rotate in
abstract space. The operator which must be applied to e to yield the
resultant vector is of the form given in Eq. (1.6.37). In the present
case we write

D, = DM

where now 0%, is an operator. Similarly, one may define a D, and a D, in
terms of a 6, and an 6,. For most cases, since a rotation about the
axis of the vector r does not commute with a rotation about the y axis
of this vector, D,D, # D,D,.

However, for an infinitesimal rotation of amounts (d6)z, (d6),, (d6).,
it is easy to see that the rotations do commute and that the corresponding
operator in abstract space is 1 -+ (¢/h) (M. d6. + I, d6, + M. d6.).
Since the effect of this infinitesimal operator on vector e cannot depend
upon the orientation of the z, y, z axes it follows that 9¢. d6. + I, d6,
+ M., db. must be invariant under a rotation. Since (d6.,d6,,df.) form
the three components of a space vector, it follows that (0,9, D) must
also form the three components of a vector M and must transform, for
example, as z, ¥, z in Eq. (1.3.8), for then the operator can be a simple
scalar product, which is invariant under a rotation.

Since M is a vector, it must transform like a vector. Specifically,
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if the space axes are rotated by an angle d6, about the z axis, the relation
between the unprimed and the primed components are

M, =M,; My, =do. D +Dy,; M, = DM, — do. M, (1.6.46)

However, I, is an operator related to a rotation in vector space, related
to the parameter 6, in a manner analogous to § and ¢ in Eq. (1.6.38).
To be specific, it is related to the rate of change of a state vector e by the
equation

1 1 de
7 ke =< o

Therefore, the rate of change of any other operator, related to the system,
with respect to 6, must be given by an equation of the form of (1.6.40).

For instance, the rate of change of the operator 9t, with respect to
the parameter 6, is given by the equation

1o, 1 3
;00 " T (DL, — DLDL)

]?ut from Eg. (1.6.46), 09,/06, = —IN,, we have
thit, = MO, — LI,

which is identical with the last of Eqgs. (1.6.42) for the angular momentum
operators.

The present derivation, however, has considered the operator vector
M to be the one related to an ufinitesimal rotafion of azes in ordinary
space. The results show that, as far as abstract vector space is con-
cerned, this operator is identical with the angular momentum operator
defined in Kqs. (1.6.42). The reason for the identity is, of course, that
a measurement of the angular momentum of a system usually results
in a space rotation of the system (unless the state corresponds to an
eigenvector for ) just as a measurement of linear momentum p usually
results in a change in position of the system.

In terms of the formalism of abstract vector space the operator

g = iMermbe

performs the necessary reorientation of state vectors corresponding to a
rotation of ordinary space by an amount 6, about the z axis. Since, by
Eqgs. (1.6.43) the eigenvalues of I, are m.fi, where m, is either an integer
or a half integer (depending on whether ordinary angular momentum
or spin is under study), when the operator acts on an eigenvector of I,
with eigenvalue m.f, it changes neither its direction nor its magnitude

QMg () = ¢imebg(m,)

This whole subject of quantum mechanics and operator calculus will
be discussed in more detail in the next chapter.
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1.7 The Loreniz Transformation, Four-vectors, Spinors

TUp to this point we have discussed vectors and other quantities in
three dimensions, and some of the formulas and statements we have made
regarding axial vectors, the curl operator, and vector multiplication are
only correct for three dimensions. Since a great deal of the material in
this volume deals only with the three space dimensions, such specializa-
tion is allowable, and the results are of considerable value. In many
cases, however, a fourth dimension intrudes, the time dimension. In
classical mechanies this added no further complication, for it was assumed
that no physically possible operation could rotate the time axis into the
space axis or vice versa, so that the time direction was supposed to be the
same for all observers. If this had turned out to be true, the only
realizable transformations would be in the three dimensions, time would
be added as an afterthought, and the three-dimensional analyses dis-
cussed heretofore would be the only ones applicable to physics.

Proper Time. Modern electrodynamics has indicated, however, and
the theory of relativity has demonstrated that there are physically
possible transformations which involve the time dimension and that,
when the relative velocity of two observers is comparable to the speed of
light, their time directions are measurably not parallel. This does not
mean that time is just another space dimension, for, in the formulas, it
differs from the three space dimensions by the imaginary factor ¢ =
4/ —1. Itis found that, when an object is moved in space by amounts
dz, dy, dz in a time df, with respect to observer A4, the time as measured
by observer B, moving with the object, is drs, where

(drg)? = di* — (1/¢?)(d=? + dy? + d2?) (1.7.1)

where ¢ is the velocity of light and dry is called the proper time for observer
B (dt = dra 1s, of course, the proper time for observer 4). As long as
the velocities dxz/dt, etc., are small compared with the velocity ¢, the
proper times dr,, drg differ little in value; but if the relative velocity
nearly equals ¢, the time intervals may differ considerably.

Equation (1.7.1) is analogous to the three-dimensional equation for
the total differential of distance along a path ds® = da? + dy? + d2?,
and the analogy may be made more obvious if Eq. (1.7.1) is written in
the form

(ic drg)? = da? + dy? + de? + (c df)?

The path followed by an object in space-time is called its world line,
and the distance along it measures its proper time. The equation
suggests that the proper times for two observers moving with respect to
each other are related by an imaginary rolation in space-time, the amount
of rotation being related to the relative velocity of the observers.
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The Lorentz Transformation. In order to begin the discussion as
simply as possible, we shall assume that the relative velocity of the two
observers is parallel to the x axis, which allows their y and z axes to
remain parallel. We shall also assume that their relative velocity u is
constant, so that their world lines are at a constant angle with respect to
each other and the transformation from one space-time system to another
is a simple (imaginary) rotation. Consideration of observers accelerating
with respect to each other would involve us in the intricacies of general
relativity, which will not be needed in the present book.

The transformation corresponding to a rotation in the (z,ict) plane
by an imaginary angle i« is

2 = 2’ cosh o + ¢t’ sinh &
y=1y; z2=2 (1.7.2)
¢t = x’ sinh @ + ¢t cosh &

where (x,y,2,f) are the space-time coordinates relative to observer 4 and
(@',y,2' ') those relative to B, moving at a relative velocity «, parallel
to the z axis. In order that the time axis for B moves with relative
velocity u with respect to A (or vice versa), we must have
L' cosh a = —;—_
V1= (u/e)¥ V1 — (u/c)?

Consequently, we can write the transformation in the more usual form:

% = c tanh o; sinh o =

.= * + ut’
V1 = (u/c)?
y=vy; #=2 (1.7.3)
_ (ux’/c?) +
V1 — (u/c)?

Incidentally this transformation also requires that, if observer B has
velocity « = ¢ tanh o with respect to A and observer C has velocity
v = ¢ tanh B with respect to B (in the same direction as %), then C has
velocity ¢ tanh (¢ + 8) = (v + v)/[1 4+ (uv/c?)] with respect to 4.

This set of equations, relating the space-time coordinates of two
observers moving with constant relative velocity, is called a Lorentz trans-
formation. Tt is a symmetrical transformation, in that the equations
for 2/, ' in terms of x, £ can be obtained from Egs. (1.7.3) by interchange
of primed and unprimed quantities and reversal of the sign of u. This
can be seen by solving for z’ and ¢ in terms of z and {. The Lorentz
transformation is a very specialized sort of a change of coordinates, for
it is a simple (imaginary) rotation in a space-time plane, but it will suffice
for most of our investigations into space-time in the volume.

The equations for the general Lorentz transformation corresponding
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to relative velocity « = ¢ tanh « in a direction given by the spherical
angles ¢, ¢ with respect to the z axis are

z = [1 + cos? ¢ sin? & (cosh a — 1)]z" + cos ¢ sin ¢ sin? ¥ (cosh ¢ — 1)y’
+ cos ¢ cos ¢ sin ¢ (cosh @ — 1)z’ + cos ¢ sin & (sinh a)ct’
y = cos g sin ¢ sin? ¥ (cosh e — 1)z’ 4 [1 +sin? ¢ sin? & (cosh o — 1)}y’
~+ sin ¢ cos & sin & (cosh @ — 1)2’ 4 sin ¢ sin ¢ (sinh «)ct’
z = c0s ¢ cos & sin ¢ (cosh @ — 1)2" + sin ¢ cos & sin & (cosh a — 1)y’
4+ [1 + eos? & (cosh @ — 1)}z’ + cos ¢ (sinh o)ct’
cos ¢ sin & (sinh @)z’ + sin ¢ sin ¢ (sinh o)y’
+ cos ¢ (sinh &)z’ + (cosh a)et’

ct’

When ¢ = 0° and ¢ = 90°, this reduces to the simple form given in
Eqgs. (1.7.2).

The scale factors h are all unity for this transformation, since it is a
rotation without change of scale. Of course, the scale factors here
involve the four dimensions

4
. LAY :
(hz)? = g ;o T1 Xy Xs, T = X, Y, 2, 10l

m=1

Since the #’s are all unity, there is no need to differentiate between con-
travariant, covariant, and ‘“true” vector components.

Four-dimensional Invariants. Just as with three dimensions, we
shall find it remunerative to search for quantities which do not change
when a Lorentz transformation is applied, 7.e., which give the same result
when measured by any observer traveling with any uniform velocity (less
than that of light). These are analogous to the scalar quantities which
we discussed earlier and should, in many cases, correspond to measurable
quantities, for according to the theory of relativity many physical
quantities should give the same result when measured by different
observers traveling at different velocities. Such quantities are said
to be Lorentz tnvartant.

The space-time length of a given portion of the world line of a non-
accelerated particle is a four-dimensional invariant. If its displace-
ment in space to observer B is 2’ and its duration in time to the same
observer is ¢, then the square of the proper lengths of its world line is

s = (ct')? — (z)?
To observer 4, according to Eqs. (1.6.3), the square of the proper length
is

AN
st = (cf)? —a? = 1= /ey éu‘ oL Ir(ct')2 + 2ua’t’ + (%)

- (@) — 2t — (-ut')'l] = (@) — (@)
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which is the same value. The square of the length of the same world
line to an observer traveling with the particle would be his proper time,
squared, multiplied by c¢? which would also have the same value.

Therefore, in relativity, the space-length of a line is nof an invariant.
nor is a time duration. The space-length of a line to observer A. moving
with the line, is the distance between points on two world lines measured
at the same time for observer 4 (x: — z1). To observer B moving at
velocity u the space length of the same line is determined by measuring
the distance between points on the world lines af the same time for B,
that is, for & = #. By Eqgs. (1.7.3) we have z; — z; = (2} — 2})/
V1 — (u/c)?, or the distance measured by observer B, moving with
respect to the line, is 25, — 2} = (x2 — 20)V/1 — (#/c)?, shorter than the
length measured by A by the factor v/1 — (u/c)?. Since the apparent
size of objects changes with the relative velocity of the observer, the
apparent density of matter is also not an invariant under a Lorentz
transformation.

Many other quantities which were scalars in three dimensions (i.e..
for very small relative velocities) turn out not to be invariants in space-
time. The mass of a body, for instance, is not a four-dimensional
invariant; the correct invariant is a combination of the mass and the
kinetic energy of the body, corresponding to the relativistic correspond-
ence between mass and energy. This will be proved after we have
discussed vectors in four dimensions.

Four-vectors. As might be expected from the foregoing discussion,
we also encounter a few surprises when we expand our concept of a vector
to four dimensions. As with a three-vector, a four-vector must have an
invariant length, only now this length must be a proper length in space
and time. The two points (25,y5,25,45) and (a},y1,21,¢1) as measured by
observer B define a four-vector F; = &y — 1, = el — ).
To observer 4, traveling with velocity u (in the x direction) with respect
to B, the components of this vector are

_ P+ (uFyee).
VT = @we)?

_ Wy c) + F

F — Wl Py = F Fy= W19 Tl
! ? ’ : : V1 — (u/c)?

50 that for this Lorentz trausformation, the direction cosiues are

Y1 = cosh a; Y22 = Y3z — 1: Y44 = cosh o Y14 = Y41 = sinh «
Yiz = Y2 = Yia = Y1 = Yz = Va2 = Y4 = Yar = vas = yaa = 0 (1.7.4)
tanh e = u ¢

This transformation of components is typical of four-vectors. We note
that the ‘““sum” of the squares of the four components F? = F2 + F%
+ F — F%is invariant, as it must be.

A very important vector is the four-dimensional generalization of
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the momentum of a particle which is traveling at a constant velocity % in
the x direction with respect to observer 4. To an observer B, traveling
with the particle, the mass of the particle is mq and the proper time is 7.
With respect to observer 4 the particle travels a distance dz in time dt,
where (dr)? = (dt)? — (dzx/c)®. The space component of the vector
momentum cannot be mo(dz/dt), for it would be difficult to find a cor-
responding time component such that the square of the resulting mag-
nitude would be invariant. On the other hand, if we choose it to be
mo(dz/dr), which transforms like dz, o that

» m dx molt © Dy = mee dt MC . dx
z = .= =, = o€ 5= 1 7. 75! = 57
N e YT dr T = (ujoy? dt

where 7 is the proper time for the particle under study (and, therefore,
for observer B), then the square of the magnitude of p is p2 — P =
—(moc)?, which is invariant.

With respect to observer C, traveling with velority # = ¢ tanh 8 in
the z direction compared with A, the vector momentum transforms
according to Eq. (1.7.4),

P, = P, cosh B + p, sinh B = mec sinh (a + B) = mow’ /N1 — (u'[c)?
P: = Pasinh B + p, cosh B = mee cosh (@ + B) = moc/~/1T — (W' /c)

where 4 = ¢ tanh « is the velocity of the particle with respect to A and
u’ = ¢ tanh (o 4+ B) is its velocity with respect to observer (. Thus
the definition of the momentum four-vector is consistent with the rule
of composition of velocities given earlier.

Therefore, the four-vector corresponding to the momentum as
measured by observer A, for a particle moving with speed u with respect
to 4, is

_ _ mo(dx/dt) D, = mo(dy/dtf) o = mo(dz/df)
VE=@/e) 7 NT= @l T T e

_ Mo ooz [AX\? dy\? dz\?
s () (@) ()

where z, y, 2, t are the coordinates of the particle according to observer A.
The time component of the momentum is proportional to the total
energy of the particle with respect to observer A,

(1.7.5)

Mmoc?
V1= (u/c)?

which is not invariant under a Lorentz transformation. This equation
also shows that the total energy can he separated into a rest energy and a
kinetic energy only when « is small compared with ¢.

E =cp, = = moc® + tme2 4 - . .

}’))



98 Types of Fields [em. 1

Another four-vector is the space-time gradient of some scalar func-
tion of (z,y,2,t), Oy (which may be called quad ¥), where

_ oY ) _ 1oy
(O¢): = 9% ete.; (O¥) ==+

¢ at
Since the scale factors h are all unity and the Christoffel symbols therefore
are all zero, these are also the components of the four-dimensional
covariant derivative of y. Consequently, the contracted second-order
derivative
_ o

T da?

+

2 dz2  ¢® ot

O% Py Lo Lo (1.7.6)

is Lorentz invariant. The operator 02 is called the d’Alembertian. 11
1s analogous, in a formal sense, to the three-dimensional Laplacian opera~
tor V2. However, because of the presence of the negative sign before
the time term, we shall see later that solutions of the Laplace equation
vy = 0 differ markedly from solutions of the equation O% = 0, which
is the wave equation for waves traveling with the velocity of light, c.

Stress-Energy Tensor. By analogy with the three-dimensional case,
dyadics or tensors may be set up in four dimensions, having transforma-
tion properties with respect to a Lorentz transformation which can easily
be determined by extending the discussion of the previous section. An
interesting and useful example of such a tensor is obtained by extending
the stress dyadic defined in Eq. (1.6.28) for an elastic medium to four
dimensions. The dimensions of the nine stress components 7'; are dynes
per square centimeter or grams per centimeter per second per second,
and they transform according to the rules for three dimensions. DBy
analogy from the previous discussion of the momentum vector for a
particle, we should expect that the time component of the four-tensor
might be proportional to the energy density of the medium. In other
words, this fourth component should be related to the total energy term
pc? (where p is the mass density of the medium), which has dimensions
grams per centimeter per second per second.

Therefore, we assume thal the stress-energy tensor I; at a point
(z,y,2,¢t) in a medium has the following components for an observer A
at rest with that part of the medium which s at (z,y,2,ct):

Py =T, ete.; Pryp= T, = Py = Ty, cte.
P14=P24=I)34=P41=P42=P43=0 (177)
Pus = c?pg
where po is the density of the medium at (z,y,2,f) as measured by observer
A.

If these quantities are to be components of a true four-tensor, then
an observer B traveling with velocity w in the z direction with respect



§1.7] The Loreniz Transformalion 99

to the medium at (z,y,z,ct) will measure the components of P to be those
given by the general transformation rules:

I r

P, = E ?fgm g% Py, & = § cosh a + £ sinh o
i 0&;

i

E,=%; & =1F; & =46 smha-+ fcosha; ctanha = u

The results of the transformation are:

Py, = T, cosh? @ + poc? sinh? @; P, = P}, = T,y cosh a

Pll:i = 'QI = T, cosh «; P,zz = Tyy; Plss =T.

2w = Pie = Tu; Pl = Piy = (Tse + poc?) cosh asinh o (1.7.8)
ta = Phy = Ty sinh a; Py, = Py = T,, sinh o

Py, = T.,sinh? o + pec® cosh? o

The space components (I’};, P5s, ete.) turn out to be the components of

stress which observer B would measure in the medium if we take into
account the finite velocity of light, and the component P}, turns out to
be ¢? times the effective density as measured by observer B. An
examination of component P}, shows that it can be considered to be
proportional to the momentum flow density of the medium parallel to
the z axis as measured by observer B. Correspondingly the com-
ponents P,, P}, must he proportional to momentum flows in the y and 2
directions as measured by observer B.

We therefore arrive at an interesting and important result, which
can be verified by further analysis or by experimeut, that relative motion
transforms a Stress into a momentum flow and vice versa. Moreover,
since we can verify, in the system at rest with respect to the medium
(observer A), that the contracted tensor equations

61)7"7} —
E(as) =0

or, in terms of the 7”s,

0T | 0Ty
dx + ay

0Tz, _ .0 _
+ 3 = 0, etc.; ¥ (cpo) = 0

are true, then these equations should also be true for observers moving
relative to the medium (or, what is the same thing, for a medium moving
with respect to the obscrver). For instance, if we define the momentum
vector A with respect to observer B as being the vector with space
components

M. = (1/¢)(poc® + T.2) cosh @ sinh a = P}, /c
My = Pi,/c; M, = Py/c
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and the density with respect to observer B as being
p = po cosh? o + (T../c?) sinh? & = Py,/c?

then one of the transformed equations would become

AN oM, | oM, | OM, | dp_
Z(ag;> =0 or Sty Y Ta= 0

n

where the primed coordinates are those suitable for observer B. This
equation is, of course, the equation of continuity for the medium, relating
momentum density (or mass flow) to change in mass density p. The
other three transformed equations turn out to be the equations of motion
for the medium.

Spin Space and Space-Time. One of the most interesting develop-
ments in modern theoretical physics is the demonstration that there is a
close connection between the two-dimensional “state space” connected
with the spin of the electron and the four-dimensional space-time describ-
ing the motion of the electron. In the previous section we have mitiated
the discussion of a spin space corresponding to the two possible states of
spin of the electron and there pointed out that a change of direction of
the spin in ordinary space by 180° (reversal of spin) corresponded to
change of the state vector in spin space by 90°. This is somewhat
analogous to the relation between the graphical representation of (—1)
and v/ —1 on the complex plane, and if one wished to become fanciful,
one might consider that the relation between ordinary space and spin
space was some sort of a ‘“square-root” relation. Actually, it can be
shown that the two-dimensional spin space is a ‘‘square-root space,”
not of three-dimensional space, but of four-dimensional space-time.
More specifically, we will find that the four components of a dyadic
in spin space could be identified with the components of a four-vector
in space-time.

In order to show this we must consider the components of vectors in
spin space, and even the unit vectors themselves, as complex quantities
with complex conjugates (@ and a for the components, which are numbers,
and e and e* for state vectors), so that a@ and e - e* are real positive
numbers. We start out with the two mutually perpendicular state
vectors e, and e, (with their complex conjugates ef and ef) representing
states where the electron spin is known to be pointed in a certain direc-
tion or known to be pointed in the opposite direction. For two complex
vectors to be called unit, orthogonal vectors, we must have that e; - e]
=eF.e, —e,-ef —ef-e;, =1 and that e -ef =ef-e, = e;-e€f
=e}f-e; = 0. The values of the complex quantities e1-ei, €1- €
e} - e¥, ete., are not required.
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Any vector in spin space can be expressed in terms of these two unit
vectors:
S = wme; + ae1; s* = a@.ef + a.ef

and any dyadic in spin space can be expressed in the form
e = cnele;‘ + Cl-ze]e; + Cglegeik + ngege;k (179)

A dyadice in spin space is called a spinor of second order. Ithasthe usual
properties of dyadies in that it can operate on a state vector in spin space
to produce another state vector:

©-s = (e + ca)aier + (12 + Cas)ases;
s*+ S = ailcu + cu)ef + aslca + caef

To give physical content to these definitions, we must relate the behavior
of the spinor components a; and the dyadic components c; under a
Lorentz transformation, with their behavior under a rotation of axes
in spin space. For example, a Lorentz invariant quantity should also
be an invariant to rotation in spin space. Following our preceding
remarks we shall require that the four second-order spinor components
¢;; transform like the components of a four-vector in ordinary space-time.
A dyadic in spin space is a vector in space-time; this is the consummation
of our desire to have spin space be a ‘“square-root space.”

Spinors and Four-vectors. We still have not worked out the specific
rules of transformation for spin space which will enable the ¢; com-
ponents of the spinor to transform like a four-vector. The most general
transformation is given as follows:

e} = anei + anes; el = anef + ane;

€, = a9€; + es; ey = asef + anel (1.7.10)
e, = €] — a1el; ef = anel — apel o

e, = —ane] + aney; ei = —anel’ + auney’

where, in order that the scale be the same in the new coordinates as in
the Old, Q11008 — Q1a0ip] = 1, T11b9g — Dpelioy = 1.

Under this transformation in spin space the general spinor components
undergo the following transformations:

Com = Ec;].aimajﬂ (1.7.11)
i

The safest way to carry on from here is to find a function of the ¢’s which
is invariant under transformation of the o’s in spin space, which can then
be made invariant under a Lorentz transformation. Utilizing the
multiplication properties of the o’s, we can soon show that one invariant
is the quantity c1ic2a — €15¢21 (it can be shown by substituting and mul-
tiplying out, utilizing the fact that ane — ersan =1, ete.). This
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quantity can also be made a Lorentz invariant if the c’s are related to
components F, of a four-vector in such a way that cii1€es — ¢12601 = ¢}
— F? — F% — F2, for such a combination of the F’s is invariant. There
are a number of ways in which this can be accomplished, but the most
straightforward way is as follows:

¢ =cFy +Fi; Fy= (1/2c)(c11 + co2)
Cap = cFy — F1; Fy = (’5/2)(612 — Cat)
c1e = Fq — iF:s; Fy = (1/2)(012 -+ 021)
e = Fy + iFs; F1= (1/2)(c11 — c22)

(1.7.12)

Lorentz Transformation of Spinors. For instance, for an observer B
(primed coordinate) moving with velocity « in the z direction with
respect to the electron, at rest with respect to A (unprimed coordinates),
the transformation for the F’s is c¢Fys = ¢F} cosh « + Fj sinh o, F; =
F! cosh @ + cF} sinh o, Fy = F}y, Fy = 4, u = ¢ tanh o. 'The transfor-
mation for the spinor components c is, therefore,

— A pa- _ . .
C11 = €}1€%; Ciz = Cpp; Ca1 = Cy;

oz = Choe ;€ = /(¢ + w)/(c — w) (1.7.13)

and that for the corresponding direction cosines for rotation of the unit
vectors in spin space is

w11 = 6"‘/2; Qg = e—"‘/“’; o1y = g1 = 0 (1714)

Therefore, any state vector in spin space, with respect to observer 4,
S = a1€; + ase;, becomes s = a1e¥%)| + ax"?€, with respect to
observer B, moving with velocity u = ¢ tanh & with respect to A.

The transformation equations for the ¢’s and ¢’s for a more general
Lorentz transformation will naturally be more complicated than those
given here, but they can be worked out by the same methods. Any pair
of complex quantities which satisfy the transformation requirements for
the components of a state vector in spin space is called a spinor of first
order; a quartet of quantities which satisfy the transformation require-
ments for the ¢’s of Egs. (1.7.9) and (1.7.11) is called a spinor of the
second order; and so on. Equations (1.7.12) give the relationship between
the spinor components and the components of a four-vector for this
simple Lorentz transformation.

Space Rotation of Spinors. As a further example of the “square-
root”’ relationship between spinor components and vector components,
we consider the case where the time coordinate is not altered but the
space coordinates are rotated in accordance with the Fulerian angles
discussed on page 28. Under this transformation the time component
of any four-vector will remain constant and, therefore, by Eq. (1.7.12),
c11 + c22 will stay constant. Transforming ci1 + ¢s2 in terms of the
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o’s, we see that for a purely space rotation, where ¢y + ce2 = ¢4y + ¢}y,
we must have
0; n#Zm

Q1701 + Qonllom = n1¢n1 + an‘zamZ = Bnm = |1; 7 = m} 'I'L, m = 1, 2
This result is not unexpected, for a consequence is that €/ -e¥ =1,
and we should expect that the “length” of a state-vector would be
unchanged by a space rotation. Adding together all the limitations on
the &’s, we see that

Q11 = @gg; O12 = —oa1; ete. (1715)

We write down the expressions for the transformation for the F’s for
a space rotation [modifying Eq. (1.3.8) and letting F, be F,, F, be F,,
and F3 be F,).

F}, = [cos @ cos 0 cos ¢ — sin & sin Y]Fy

+ [sin ® cos 8 cos ¢ 4 cos @ sin Y]Fy — sin @ cos ¢ Iy
—[cos @ cos 6 sin ¢ + sin ® cos Y|F,

— [sin ® cos 6 sin ¥ — cos ® cos ¢]Fs + sin 6 sin ¢ F
Fl=sin0cos®F:+sinfsin®Fy +cos8Fy; Fy=F,

o3
I

and we insert these into Eq. (1.7.12) both for the primed and unprimed
components to determine the transformation equations for the ¢’s:

¢ = — sin (0/2) cos (8/2)e¥(cuu — caz) + cos? (8/2)ei@+P¢y,
— sin? (0/2)e!¥ Py ete.

In terms of the direction cosines « this component is related to the
unprimed ¢’s by the equation

— 2 2
0'12 = ageci21C11 + QgeCle — Oig1C91 — Oo10igeCag

where we have inverted Eq. (1.7.11) and used Eq. (1.7.15).

Comparing these last two equations, we find that the direetion cosines
« for spin-space rotation corresponding to a space rotation given by the
Euler angles &, 6, , [see Eq. (1.3.8) and Fig. 1.6] are

ay = cos (6/2)e #9872, 4, = — sin (§/2)ei /2

agz = sin (0/2)e" 272 o, = cos (6/2)ciFHo/2 (1.7.16)

where we have again used Eq. (1.7.15) to help untangle the equations.
Therefore, under this rotation of the space coordinate system a state
vector in spin space s = g€} + a.e}, becomes

s = [a1 cos (0/2)e *¥? + a, sin (6/2)¢i%2e %,
+ [—a1sin (6/2)e %2 + a; cos (6/2)ei¥/ e/ %,

This last equation shows that rotation in spin space is governed by
one-half the angles of rotation in ordinary space. A rotation of 180°
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(6 =m &=y =0) changes s = a€| + asey into s = a.e; — a.es.
which 1s a rotation of 90° in spin space.

The transformations given by Eqgs. (1.7.14) and (1.7.16) are the
cases of usual interest. Any other case can be handled iu the same
manner, by use of Fgs. (1.7.12). Although we began this discussion
with a rather vague requirement to satisfy, we have developed the theory
of a quantity which has definite transformation properties under a general
rotation of coordinates (including a Lorentz rotation) and vet is not a
tensor, according to our earlier discussions. This came as quite a sur-
prise when spinors were first studied.

Spin Vectors and Tensors. A quartet of simple dyadics in spin space
can be found which behave like four unit vectors in space-time:

61 = eef + e.ef = J
é; = ejef + esef

6y = i(e.e¥ — esef)
8; = e,ef — e.ef

(1.7.17)

These quantities operate on the spin vectors e as follows:
Gi:-€,=2¢€,, 6,+-€ = €, 6y*€; = i€y, G3-€; = e;; etc.

Comparison with Egs. (1.6.44) shows that the quantities 61, 6;, 63 are
2/h times the spin operators for the electron. They are called the
Pauli spin operators. The quantity é; is, of course, the unity dyadic.
We see also that 76y, 165, —765 are just the Hamilton quaternion operators.

We now can rewrite the spinor dyadic given in Fq. (1.7.9) as a four-
vector, by using Eqgs. (1.7.12) and (1.7.17):

C") = CF464 + Fldl + Fzﬂz + F363 (17'8)

where the “unit vectors” ¢ are operators, operating on state vectors

spin space, but the componeuts F are ordinary numbers transforming like
components of an ordinary four-vector. Thus we finally sce how opera-
tors it spin space can act like vectors in space-time. The extension of
this discussion to the inversion transformation r' — —r and its correla-
tion with spin space requires that we consider €* and e as independent
quantities, so that transformations between them are possible. We
shall not go into this further, however, except to say that the vector é
transforms like an axial vector. (See Prob. 1.34.)

One can go on to form spinor forms which transform like dyadies in
space time. For instance a spinor of fourth order,

E 6,0.F = 6411 4 Fas + Fys + Faa) + 61(F1a + Fay 4 tF 33 — iF3g,)
'R

4+ 69(Fas 4 Fas 4 iF 31 — iF13) + 63(Fae + Fazs + tF12 — F1)

has components F,, which behave like components of a dyadie in space-
[Ty »
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time. A particularly important form is the contracted tensor formed by
multiplying one spinor vector by its conjugate:
(84cFs + 61F1 + 6oF's + 6:75) (84cFy — 6.y — 6,1y — 6;Fy)
= 6(c*F; —F; — F2 — F3) (1.7.19)

giving the square of the magnitude of the four-vector. This relation
will be of use when we come to discuss the Dirac theory of the electron.

Rotation Operator in Spinor Form. Refcrence to Hamilton’s
researches on quaternions (see puge 75) has suggested a most interesting
and useful spinor operator using the spin-vector direction cosines o as
components:

= 04119191l< + amexe;" + Oélee'ze’f + Oézzeze;c

1
= 2 R.é.. Ry = 5 (crz + an);

n

(1.7.20)

1 I 1
R, = 5; (a1s — @or); Ry = 3 (a1 — a); Ry= 5 (a1 + c90)

The s, according to Eq. (1.7.10), are the direction cosines relating the
primed and unprimed unit vectors e in spin space. If they have the
values given in Eq. (1.7.16), they correspond to a rotation of space
axes by the Euler angles 8, ¢, . As we have shown above, a spinor
operator of the form of 9 has the transformation propertics of a vector,
and this is emphasized by writing it in terms of its components I “along”
the unit spin vectors é.

However, vector (or spinor operator, whichever point of view you
wish to emphasize) N is a peculiar one in that its components

Ry = isin (6,2) sin [(® — ¢)/2]: Ky = i sin (6,'2) cos [(@ — ¢)/2]
Ry = i cos (6/2) sin [(® + ¢)/2]; R4 = cos (6/2) cos [(®@ + ¢)/2]

are themselves related to o particular transformation specified by the
angles 6, ¢, ®.  (This does not mean that the vector § cannot be expressed
in terms of any rotated coordinates for any angles; it just means that it
is especially related to one particular rotation for the angles 6, ¢, ®.)

As might be expected, the vector has a particular symmetry for this
rotation, for if the unit vectors e’ are related to the vectors e through
the same angles [see Eqs. (1.7.10) and (1.7.16)], then it turns out that 9
has the same form in terms of the primed vectors as it does for the
unprimed:

N = aneef + aneey +

- —_ - _ ! !
= [041104220122 — Q210901 — C1902189s + 042204210!21]819;‘
_ ~ ~ ~ =%
- [041104220112 — Q@ — Qiaoei@s + 04220421011119192
- 4 7 - 14
= anele] — apeled -

= aneiel’ + anelel’ +

as one can prove by utilizing the multiplication properties of the o’s.
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However, 9t is also a spin-vector operator. As a matter of fact it
operates on any spin vector to rotate it by just the amount which the
transformation e — €’ produces. According to Egs. (1.7.10),

N-e,=¢€; N¥-ef =e¥ (1.7.21)
where N* = ane’l“el —+ 5[2191"92 + C_Zl;ze;ke1 + &ne;‘ez
Another operator % 1 performs the inverse operation e’ — e. Refer-

ence to Eqgs. (1.7.10) indicates that the vector is

—1 * * * *
9\ 1 = 029€1€] — «21€1€9 — ©19€2€; + ®11€2€,
’ ’ sk Y
= ageiel — aneled — aperel’ + apeled

so that Nl-el, =e.; W H* el =ef
But since fws = an, &z = —az, cbe., we also can show that
e,r (NH* =e/ and e¥ RN =el
and that e -N*=e, and e€-N =¢e} (1.7.22)

which shows the close interrelation between the operator 9t and its inverse,
b) e

The particularly important property of the operators 9t is that, in
addition to causing a rotation of vectors in spin space, they can also
cause u related rotation of four-vectors in ordinary space. For instance,
the spinor

& = cpeef + cre1ed + caesef + C22€2€5

(where the ¢’s have any values) has the transformation propertics of a
four-vector [sce Eq. (1.7.18)], with components F, [sec Eqgs. (1.7.12)].
The vector formed by operating “fore-and-aft” on & by Ri:

R-S N1 = cnete? + crefel + caehel’ + coereld’

, , [T ol 1.7.23
— F1d, + Fsd, + Fud, + Fod) (1.7.23)

is one with the same components F,,, but these components are now with
respect to the primed unit vectors, rotated with respect to the unprimed
ones. Therefore, the fore-and-aft operation by 0 has effectively rotated
the vector © by an amount given by the angles 6, ¢ and ®. In keeping
with the “square-root” relation between spin space and space-time, we
operate on a spin vector once with 9 to produce a rotation, but we
must operate twice on a four-vector in order to rotate it by the related
amount.

We note that we have here been dealing with rotations by finite-sized
angles. If the rotation is an infinitesimal one, the Euler angles 6 and
(¢ + ¢) become small and the rotation can be represented by the
infinitesimal veetor Ao, its direction giving the axis of rotation and its
magnitude giving the angle of rotation in radians. Consideration of the
properties of the cross product shows that the operation of changing an
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ordinary three-dimensional vector A into another A’ by infinitesimal
rotation is given by the equation

A =A+AroXxA (1.7.24)

Inspection of the equations on page 103 for rotation in terms of the
Euler augle shows that, when 8 and (® + ¢) are small,

(Ae)1— —(@ +¢); (Ae)e— —0siny; (Ao)3— —0 cos ¢

Inspeetion of the equations for the components of 9N results in a related
set of equations:

Ro=1; Ri= —@/2@+¥); Ro= —(i/2)0sin y;
Ry = —(i/2)0 cos ¢

when 6 and (@ + ¢) are small.
Consequently, for an infinitesimal rotation represented by the vector
Ao, the rotation spinor operator is

These equations are sometimes useful in testing an unknown operator to
see whether its components satisfy the transformation rules for four-
vectors.

Problems for Chapter 1

L1 The surfaces given by the equation
@+ yDcoly + 2oty =02 0<y <7

for ¢ constant are equipotential surfaces. Express ¢ in terms of z, ¥, 2
and compute the direction cosines of the normal to the ¥ surface at the
point £, y, 2. Show that ¢ is a solution of Laplace’s equation. What
is the shape of the surface ¢ = constant? ¢ = 07?7 ¢ = 7?

1.2 The surfaces given hy the equation

Vel + 2 — P +22 =y —a% a<y¢y <
for ¢ constant, define a family of surfaces. What is the shape of the
surface? What is the shape for the limiting cases ¢ =0, ¢ = =?
Express ¢ in terms of «, ¥, z and compute the direction cosines of the

normal to the ¥ surface at z, ¥, 2. [s ¥ a solution of Laplace’s equation?
1.3 The three components of a vector field are

Fo,=2z; Fy=2z2y;, F,=0a°+2>—2?—y?
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Show that the equations for the flow lines may be integrated to obtain
the flow funetions ¢ and g, where

y 2442t al
Z = tan ¢; = coth p
v 20 N2t +y°

Show that a pseudopotential exists and is given by ¥, where

:C2 + y2 + 22 — a2
2az

= cot ¢

Show that the surfaces ¢, p, ¢ constant are mutually orthogonal.
1.4 The thirec components of a vector ficld are

F, =3xz; F,=3yz;, F,=22—."— y?

Integrate the equations for the flow lines to obtam the flow functions

S /) VY. il ol
¢ = lun (l> d T F 7+ 2

and show that the pscudopotential is

z

Is ¢ a solution of Laplace’s equation?

1.5 Compute the net outflow integral, for the force fields of Probs.
1.3 and 1.4, over a sphere of radius r with center at the origin and alwo
over the two hemispheres, one for z < 0, the other for 2 > 0 (plus the
plane surface at z = ). Compute the net outflow integral, over the same
three surfaces, for the vector field -

€ . F = Y .
Rty +G—aot Y T2t 4+ (2 - Y

zZ— a
F, =

FtyFe—oT

1.6 Compute the net ecirculation integral around the cirele, m the
x, y plane, of radius r, centered at the origin, for the field

F.=

(x—a)
(@ —a?ty

. Y ¥

I d I )
e e T et
F,=0

F, =

Compute the net circulation integral for the field of Prob. 1.3 for the
eircle defined by the equations ¢ = 0, p = constant.
1.7 Parabolic coordinates are defined by the following equations:

N=VVEFy t e te p=Vvaltytd—u
¢ = tan™! (y/%)
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Deseribe (or sketch) the coordinate surfaces. Calculate the scale
fuctors and the direction cosines for the system in terms of (z,,2).
Iixpress z, y, z in terms of A, p, ¢, and thence obtain the scale factors and
direetion cosines in terms of A\, p, ¢. Write out expressions for curl F,
vy, Caleulate, in terms of A, u, ¢, the A, 1, ¢ components of the
following vector field:

NTCAYP A2 WNEH P

z—{-\/:v?—{-y"’—l—z"’, v z+\/:v2+y‘3+z"”
1
If"zz———————
1/11:2_{_.‘2/2_{_22

In terms of A, u, ¢, calculate the divergence of F.

1.8 The flow functions ¢, p and the pseudopotential ¢, given in
Prob. 1.3, form the toroidal coordinate system. Deseribe (or sketch)
the surfaces. Caleulate the scale factors as funetions of x, y, 2z and
also of u, ¥, ¢. Write nut the expressions for curl F, div F, and v2U.
Express the vector F given in this problem in terms of components along
the toroidal coordinates, and calculate the direetion of its velocity lines.

1.9 One family of coordinate surfaces, which may be used for a
family of coordinates, is

F, =

In@2+9y?) —z=¢

for & constant. Show that an appropriate additional pair of families,
to make a three-dimensional system, is

7= 3(* +y?) + 2 ¢ =tan"' (y/x)

.., show that they are mutually orthogonal. These may he termed
exponential coordinates. Why? Compute the scale factors and direc-
tion cosines for transformation of vector components.

1.10 The bispherical coordinate system 1s defined by the equations

a sin § cos ¢ o sin & sin ¢ , a smh p
= —_— 4y = —— el = —m—
cosh u — cos &’ cosh p — cos &’ cosh u — cos &

Describe (or sketch) the surfaces, and give the effective range of u, &, ¢.
Calculate the seale factors and direction cosines. Write out the expres-
sions for the Laplacian and the gradient. Show that the curvature of
the u surfaces i1s a constant; .e., show that (1,hs)(da,,’88) = (1/hg) -
- (0a,/0¢) is independent of ¢ and ¢ and that therefore these surfaces
are spheres.

1.11  Write out the expressions for the components of directional
derivatives (as - V)A and (a4 - V)B in spherical coordinates and in the
spheroidal coordinates

X = acosh ucosd cos ¢; ¥ = acosh ucosdsin ¢; 2z = agsinh psin @
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1.12 A secalar function ¥(&1, £, &) in an orthogonal, curvilinear
coordinate system £, £, &5 may be made into a vector by multiplication
by the unit vector a,, normal to the & coordinate surfaces. Another
vector may be obtained by taking the curl A = curl (ay). Show that
A is tangential to the & surfaces. What equation must ¢ satisfy, and
what are the limitations on the scale factors hn in order that A satisfy
the equation

VA 4+ kA =0

1.13 By the use of the tensor notation, find the expression for
V X (wVv) in general orthogonal curvilinear coordinates.

1.14 We can define the curvature of the &, coordinate surfaces in
the & direction as the component along a,, of the rate of change of a,
with respect to distance in the an direction. Express the two curvatures
of the £, surface in terms of the Christoffel symbols.

1.16 Work out the expressions for the Christotfel symbols and for
the covariant derivative of the components f; = h;F; for the bispherical
coordinates given in Prob. 1.10 and the parabolic coordinates given by

@ =hucos ¢; ¥ =husing; z=30 —p)

1.16 Give explicit expressions for the components of the symmetric
dyadic (VA 4 AV) for the spheroidal coordinates given in Prob. 1.11
and for the elliptic eylinder coordinates given by

z=acosh\cos ¢; y=asinhrsin¢;, z==z

Also give expressions for the Laplacian of a vector in both of these
systems.
1.17 TFind the principal axis for the strain dyadie

® = —i(s + ay?i — i — Fer)i + Kk — axy( + i)
at the point (z,y,2). What are the elongations along each of these

axes (principal extensions)?
1.18 Separate the dyadic

9o = ii — 2jj + Kk + /262 — 1ij + V2 okj + B(Gk — kj)

into its symmetric and antisymmetric parts. Compute the rotation
vector of the antisymmetric dyadic and the divection of the principal
axes of the symmetric dyadic. What is the form of the dyadic after
transformation to these principal axes?

1.19 Transform the dyadic

D = z(ij — ji) — yki + 2kj

into eomponents in the cylindrical coordinates r = V2 + 3% ¢ =
tan—! (y/x), z. Then separate the dyadic into symmetric and anti-
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symmetric parts, and determine the rotation vector for the antisym-
metric and the principal axes of the symmetric parts.

1.20 The vector displacement s can be represented by a combina-
tion of the gradient of a scalar potential ¢ plus the curl of a vector
potential A. Set up the expression, in general orthogonal coordinates
&1, &9, s, of the strain dyadie

© =LVs+sV); s=ypgrad ¢+ curl A

in terms of ¢ and the components of A along &, &, & Write out these
expressions explicitly for cylindrical coordinates r, ¢, z and for spherical
coordinates r, ¢, ¢.

1.21 The displacement vector s for an elastic medium may, for
some cases, be represented by the expression s = curl (a.y), where ¢
is some function of the cylindrieal coordinates r, ¢, 2. Show that, when

= 12f(¢,2) + ¢(r,2), the diagonal terms in the dyadic are all three
equal to zero. Compute the strain dyadic and caleulate the principal
axes and the principal extensions for the case ¢ = zr? cos ¢.

1.22 Show that possible displacements of an elastic medium giving
zero diagonal terms in the strain tensor & expressed in the spherical
coordinates 7, ¢, ¢, may be expressed by a sum of two vectors, curl
[agr sin & g(¢)] and curl [asrf(#)]. Calculate the strain dyadic, the
principal axes and extensions for the two cases s = curl [agr sin ¢ cos ¢]
and s = curl [agr sin (29)].

1.23 Three coupled oscillators satisfy the simultaneous equations

2 2 2

dd;"gl dd;'/; + oy = Y1 + £%Ys; % + @’y = kY2
Express these equations in terms of abstract vector space and vector
operators; find the principal axes of the operator and thus the natural
frequencies of the system.

1.24 A system of N — 1 coupled oscillators hus the following equa-
tion of motion, in abstract vector representation:

(@/d)R + 'R = 11+ R

+ w1 = k%Y,

N
where R = z yn(t)en, with the boundary requirement that yo = y» = 0,
n=0
and where the operator 11, operating on the unit vectors e, (corresponding
to the amplitude of vibration y, of the nth oscillator), satisfies the follow-
ing equation:
11 €, = %en—l + %en—kl

Show that the principal axes for I are in the direction of the following
eigenvectors:

N
a, = C, sin<@ﬂ>en; m=123,...,N—1
nZO N
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in other words, that Il - a,, = u,a,. Find the values of the eigenvalues
. and thus the allowed frequencies of the system. Find the values of
the constants £, so that the new vectors a,, are unit vectors. Show that
the vectors a. are mutually orthogonal.

1.25 7Prove the Bessel inequality le| + f| > |e + f|.

1.26 A\ Hermitian operator i which satisfies the inequality (e*
9 -e) > 0 for all vectors e is called positive-definite. Show that, if %
is positive-definite,

le* - 9t f] < V{e* - R-e)f*- R0

1.27 a. Show that

i ((,,-xz-:;[(,_n@) — 1’{@_€i)\€91(,—ix€]
62 N o, . Ppp—— (= o
and a2 (el)\'\,\\)[,,~a\'z,-) = (2)2[®1[.@,Clx&,9{{,—m¢]l

where [G,3] = [E€TF — TZ] and |E|2.3]] = S|3,3] — [€,Z]S
b. From (a) derive the expansion

(z)\) - (m

eMEYe D = 9 + N[S,U] 3,2.9] + @<+ -

c¢. If p and q are two operators such that [b,a] = 7, show that

Mp(@DHbR g—bq — g—icbpup+bg

1.28 If e, and £, are two sets of orthogonal vectors (that is, e - f, =
0), then the projection operator P on set e, i1s defined by the equations
Pe, = e,; Pf, = 0. Show that

a. P2 =P

b. P* =P

c. I P2 =P, P* = P, and there exists a sct of veetors e, such that
Re, = e,, that P is the projeetion operator on this set.

d. If PB; and Py are projection operators on two different sets of
vectors the necessary and sufficient condition that $,8, he a projection
operator is that PP, — PP = 0

1.29 A four-dimensional coordinate system unalogous to spherical
coordinates is (7,a,8,¢), where

24(= ict) = cr cosh a; x = ier sinh o cos &

Yy = icr sinh o sin & cos ¢: 2 = icr sinh « sin 3 sin ¢

where a Lorentz transformation is any transformation which leaves the
scale of 7 invariant.  Caleulate the scale factors and the direction cosines,
and show that the equation 0% = 0 becomes
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1 af. ., o 1 o . .oy 1 9%
c*r? sinh? « [Ex (511111 “ Ex) * sin & 0¢ (bm J @) + sinz 9 0¢°

I af ;¢ _
P ( a_)] =0

Show that a solution of 1his equation is ¢ = (1,7%) cosh o Give the
x, y, z, t compments of the four-vector formed by taking the four-
gradient of . Show that this is a true four-vector.

1.30 A particle of rest mass mo, traveling with veloeity » in the z
direction, strikes another particle of equal rest mass originally at rest
(with respeet to observer .1). The two rebound, with no change in
total encrgy momentum, the striking particle gomg off at an angle 6
with respect to the x axis (with respect to the observer). Caleulate the
momentum energy four-vectors for bhoth particles, before and after
collision, both with respeet to ohserver .1 (at rest with the siruck particle
before it is struck) and to observer B, at rest with respeet to the center
of gravity of the pair, and explain the differences.

1.31 A fluid is under a uniform isotropic pressure p according to
ohserver A at rest with respeet to it.  Caleulate the density. momentum
density, and stress in the fluid, with respect to an observer B, moving
al 0.8 the velocity of light with respeet to the fluid.

1.32 Give the direction cosines a for the transformation of spin
vectors for a combined Lorentz transformation (along the x axis) plus a
space rotation.

1.33 An electron certainly has a spin in the positive @ dircetion
with respect to an observer at rest with respect to the electron. What are
the probabilities of spin in plus and minus ¢ directions for an observer B
moving with velocity w in the 2 direction with respect to the electron?
What is the probability that the eleetron has a spinin a direction at 15°
with respect to the positive x axis, with respect to observer A? For
obhserver B?

1.34 Let ¢ he a three-component veetor-spin operator with com-
ponents g1, o2, os.

a. Show that, if A is a vector,

(6-A)s = A+ (s X A)
é(6-A) =A —i(¢ XA
(6 X ¢) = 24

¢X (8 X A) =1 X A) —2A
b. Show that. if a is a unit veetor and X is a constant,
d*

d\?
and therefore exp (iAé-a) = cos A + i(¢-a) sin A

exp (INé-a) = —A%exp (A6 - a)
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Table of Useful Vector and Dyadic Equations

A-B=A.B.+ 4,B,+ AC.; AXB=i(4,B, — 4.B,)
+ j(Asz - AmBz) + k(Aﬂ:Bu - Asz)
AxXB)xC=MA-CB— B-0A
AXxXBXxC =@A-CB—(A-BC
A-BXC)=AXB).-C=(CxA).B=C-(AXB)
=B.(CxA)=BxC)-A
AxB):-(CxD)=A-C)B-D) —-(A-D)B-C)
(AXB)X (CxD)=[A-BxD)C—-[A-BxC)ID
=[A-(CxXxD)B—[B-(C x D)A
Vu=gradu; V-F=divF; VXF=curlF
V(w) = uVo + oVu; V- (wA) = (Vu)-A +uv-A
Vv X (uA) = (Vu) X A+ uV X A
V-(AXB)=B:-(VXA)—A.(VXB)
V-(WXF)=0; vX(Vu) =0; V.(Vu) = Vi
VX (VXF)=vWV.F)—VF
[If(¥v-F)de = [[F-dA; [[[(VXF)dv = —[JF x dA
[17(9%) - (V) dv = [fo(VY) - dA — [[foV* dv
where the triple integrals are over all the volume iuside the closed sur-

face A and the double integrals are over the surface of A (dA pointing
outward).

[[(V X F).-dA = [F.dr

where the double integral is over an area bounded by a closed contour
C, and the single integral is along (' in a clockwise direction when looking
in the direction of dA.

A vector field F(z,y,2) can be expressed in terms of a scalar potential ¢
and a vector potential A

F=grad¢y +curlA; divA =0

When F goes to zero at infinity, the expressions for ¢ and A in terms of F

divF@Ey'2) o ., curl F('L ,J e
/f/ B dx’ dy' d#'; dx’ dy’ de’

where B2 = (x — 2)2 4 (y — ¢)? 4+ (2 — 2)?

91=iAz+jAu+kAz; 2[*ziA:'i‘jA;,k‘*‘kA:‘=A21+ij+Azk
9 =i-A +i-A +k-A: () =iXA +jxA +kXA,
= 5(A: + AD)B: + (A, + AD)B, + 3(A. + A)B, — 3%) X B
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-8 = AB, + AB, + AYB,
Ui = AT B ATBy H AT B -9
vP-il +i g kT B =T S+ k- (v
grad (A-B) = A~ (VB) + B+ (VA) £ A x (¥ X B) + B X (¥ x &)
curl (A X B) = B+ (VA) — A - (VB) + A(V-B) — B(V- A)
v U = (0A,/0z) + (9A,/0y) + (0A./0z)

— i div (A%) + j div (A}) + k div (A%)
V.(VF) = V®F; V-(FV) =V(V-F)=VF +VXVXF
V-@-B) = (V-A)-B+ |- (VB)]

Table of Properties of Curvilinear Coordinates

For orthogonal, curvilinear coordinates §;, &, £ with unit vectors

ai, a, ag, line element ds? z hZ(dE.)?, and seale factors h,, where

RTEAY dy 9z dtn (agn ? aEN |
= |Ge) + Gy () |- 1Ge) + ) + G
the differential operators become

i}
grad¢=v¢=2 hl ai

n

. 1 d A,
le A =V-. A = mzagn (h1h2h3 hn>

1 a
curl A=V X A= ihahe z hiay [6—5;, (hoAn)y — dEn (b Am)]

I,m,n

Lmn=1230r23, 1or3,1,2

1 0 | hihshs O
div grad y = v = 1h2h325§n[ lh; sa—i]

VA = (VA), + (VA),; (vA),, = i(curl A) X §

(VA), = 2(VA + AV) — z [d‘; An 4 A grad (In hm)] a4,

m hy O
+3 [ et e

hn dgn m Em /n:l (aman + anam)

m<n

and the volume element is hihohg d€; dés dEs = dV.
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For cylindrical coordinates & = r, & = ¢, & = 2z, we have hy = 1.
he =1, hy = 1,dV = rdrd¢de.

. _ LW 1oy 9y
gla(lgb—a,~ar+a¢Ta¢+azaz

S 104, | 04,
(11VA-—;§(TA,)+——+ E

r d¢
can (88 () o (- 12)
VA =a [VZA’ B % - %%] + a [V2A¢ - ‘j—;’ +%%‘i’] +a.v24,
z(VA + AV) = a,%‘%’ar ag [%%ﬁ + —é—f] a; + azaa—izaz
+3 [T (%(%) + %%ﬁr] (a,ay + aga,) + 3 [6512 + 6117] (a.a. + a.a,)

0
dA 104,
+%[ 62¢+; 6¢] (aga. + a.ay)

For spherical coordinates & = r, 2 = ¢, & = ¢, we have h; = 1,
hy =1, hg = rsin 8. dV = r2dr sin ¢ dé de.

_a W B, a ¥
grad ¢ = a, ar T rad  reno de
. la,, 1. 1 o4,
div & = 5 57 (A + g g9 (0 90 T T,
_ a, d - aA,g ag 1 ("AT 0
ourl & = o [@ (sin 94,) d—q:] T [sm—a}‘ dp  or (TA‘”)]

a,| o _ 04,

a0
, af , o 1 af. o 1 o
v = I s 4 - — lsin & -2 - —_r
4 77 or (r 6r> + 72 sin & d¢ (sm ¢ 60) + 72 sin? § de?

. ) 2 2 a ,. 2 04
VA = a [V_A’ Tt 4r = 72 sin & 8¢ (sin 845) — 72 8in ¢ (')go‘pjl
As 204, 2cos? 6A¢]
r2sin? ¢ = r? 09 r2 gin? J do
A, 2 04, , 2cos¢ a_A.,]
r2sin? ¢ = r?sin & d¢ r2sin? & do

+ as I:VZAJ -

+ a, [V2A¢ —
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L(VA + AV) = ar% a, + as [%%7 + ir] as
t oy [7‘ Siln 4 acfpw t A7T + 4, cot 0] B
#4355 e (5)] o b
R
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CHAPTER 2

Equations Governing Fields

The physical phenomena which can be represented by fields are
related from point to point and from time to time in ways which can
usually be expressed in terms of partial differential equations. A change
in the field at one point usually affects its value at nearby points, and
these changes affect the values still farther away, and so on, a stepwise
interrelation which is most naturally expressed in terms of space or time
derivatives. The field which corresponds to a particular physical situa-
tion is, therefore, usually a solution of some partial differential equation,
that particular solution which satisfies the particular set of ‘““boundary
conditions” appropriate to the situation.

The greater part of this book will concern itself with the finding of
particular solutions of specific partial differential equations which cor-
respond to given boundary and initial conditions. This chapter and the
next one, however, will be devoted to a discussion of the ways in which
differential equations are chosen to correspond to given physical situa-
tions. This process, of abstracting the most 1mportant interrelations
from the phenomena under study and expressing them in differential
form, is one of the more difficult tasks of the theoretical physicist.

We shall not try to discuss all the partial differential equations which
have been found useful in physics; to do this would require a complete
review of physics. Even with the equations which are here derived,
we shall assume that the physical situation is fairly familiar and that
the quantities mentioned do not need detailed explanation. Such
explanations can be found in other texts. What is of interest here is the
process of obtaining the differential equation from the physics.

We shall find that certain types of partial differential equations turn
up again and again in a wide variety of situations and that therefore
a detailed knowledge of the solutions of these relatively few equations
will enable us to solve problems in an astonishingly large number of

situations of physical interest.
119
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2.1 The Flexible Sitring

Before we take up more complicated situations, it is well to examine
a one-dimensional example in some detail so as to bring out some of the
procedures and concepts in their simplest form. The flexible string under
tension is & good choice, since it is easy to picture and is familiar to most
readers.

The physical prototype is a lower register piano string, which is a more
or less uniformly loaded wire stretched between two fairly rigid sup-
ports. Such a string has stiffness, but experiment can show that the
resistance to displacement of the string from its equilibrium shape is
in the main due to the tension in the string rather than to its stiffness.
Therefore, one simplification usuzlly made in obtaining the equation
governing the string’s shape is that stiffness can be neglected (several
books on vibration and sound analyze the effects of stiffness and show
when it can safely be neglected). Other simplifying assumptions are
that the mass of the string is uniformly distributed along its length,
that the tension is likewise uniform, and that the displacement of a
point of the string from equilibrium is always small compared with the
distance of this point from the closer end support. These last two
assumptions are not independent of each other.

The shape of such & string at any instant can be expressed in terms of
its displacement from equilibrium. More specifically, each point of the
string is labeled by its distance z from some origin point, measured when
the string has its equilibrium shape (a straight line between the sup-
ports). The displacement ¢(x) of point = from its equilibrium position
is a function of # (and sometimes of time). If we consider only motion
in one plane, the appropriate field for this example, ¢, is a scalar, one-
dimensional field.

Forces on an Element of String. Study of Fig. 2.1 shows that, as
long as the slope of the string d¢//dx 1s small, the net force Fr(x) dx acting
on that portion of the string between = and = + dx due to the tension T
in the string is

Fo(z) de = T(0Y/82) eyae — T(0¢/02), or Fg(z) = T(8%/8x?) (2.1.1)

having a direction approximately perpendicular to the equilibrium line.
This net force due to tension on an element of the string at x, which tends
to restore the string to equilibrium, is proportional to the rate of change
of the string’s slope at x. It tends to straighten each portion of the
string; if the curvature is positive, it is upward; wherever the curvature
is negative, it is downward. The force, therefore, depends only on the
shape of that part of the string immediately adjacent to z, and not on the
shape of the string as a whole. If the string is allowed to yield to this
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force, however, it will only come to equilibrium when every portion of the
string is straight. Thus the differential equation for the string, though
it deals only with the shape of each elementary portion of the string in
turn, places in the end & definite restriction on the over-all shape.

Other forces also act on an actual plano string—the force due to
the stiffness of the string (which we have already said we can ignore in
many cases) and the frictional reaction of the air through which it moves
among others.

The frictional force is also relatively small when the string moves
in air; and when we are interested in the motion over & short space of time

T

Fr
W (x+dx)

! |
i !
i i
i !
1Y(x) E
: E
: !

Equilibrium Line

X X+dx
Fig. 2.1 Net force on element of string stretched under
tension 7.

or when we are interested in the shape when the string is not moving, this
force may also be neglected. Other forces which may enter are the force
of gravity on each portion of the string (if it is stretched horizontally)
and the force due to a piano hammer or to a harpist’s finger or to & violin
bow. Which of these forces are important enough to include in the
equation for the shape of the string depends on the particular case under
study.

Poisson’s Equation. For instance, the string may be subjected to
steady, transverse forces distributed along its length, and we may be
interested in calculating the resulting equilibrium shape of the string
under the combined effect of this external force and that due to the
tension. In this cuse, the time dependence does not enter and the
differential equation for the shape is

dW/dx* = —f(x); f=F(z)/T (2.1.2)

where the transverse force applied to the element of string between z
and z + dx is F'(z) dx. Here this applied transverse force is balanced at
every point by the net transverse force due to the tension 7. Equation
(2.1.2) is a one-dimensional case of Poisson’s equation.

As an example of the cases which this equation represents, we can
consider the case of a horizontal string acted on by the force of gravity
due to its own weight. If each centimeter length of the string weighs
p gm, the force F(z) is just —pg, where ¢ is the acceleration of gravity.
The general solution of the resulting equation d%/dx? = pg/T is then
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¥ = a+ bz + (pg/2T)x?, where a and b are determined by ‘‘boundary
conditions.” When the string supports at the two ends are rigid (i.e.,
when their displacement can be neglected) and a distance L apart, these
boundary conditions are that ¢ = 0 when x = 0 when z = L. It is
not difficult to see that the quadratic expression in 2, which has a second-
order term (pg/27)x? and which goes to zero at * = 0 and x = L, is
¥ = (pg/2T)z(x —L). This, there-
fore, is the solution of the problem:
The shape is parabolic with con-
stant curvature pg/T and with
greatest displacement at the center

Force pg per Unit Length

- . of the string.
Fig. 2.2 Shape of string acted on trans- S 1int " al
versely by force of gravity, longitudinally oeveralinteresting general prop-
by tension. erties of solutions of Eq. (2.1.2)

may be deduced from the fact that
¢ enters into the equation to the first power. For mnstance, if ¢ is a
solution of Eq. (2.1.2) for a specified function f(z), then ay is a solution
of the equation d% /dx? = —af(x). This new solution often also satisfies
the same boundary “conditions as ¢ (it does for the string between fixed
supports, for instance). Similarly if ¢, is a solutionof d*/dx? = —f,and
Y2 15 a solution of d%/dxz? = —f; then ¢ = ¢; + ¢¥2 is a solution of

d2¢/dm2 = _'fl —_ f2 (21.3)

Both of these properties will be utilized many times in this volume.

Concentrated Force, Delta Function. In many cases of practical
interest the transverse force is applied to only a small portion of the string,.
This suggests a rather obvious ideslization, a force applied “at a point”
on the string. Mathematically speaking this idealization corresponds to
a consideration of the limiting case of a force

0; z < E—(A/2)
Fz) = F/A; & —(A/2) <z < £+ (A/2)
0; x> £+ (A/2)

when the length A of the portion of string acted on by the foree is allowed
to go to zero.

Similar idealizations of concentrated forces, electric charges, ete.,
will be of great utility in our subsequent discussions. They can all be
expressed in terms of a ““pathological function’ called the delta function,

0; x < —A/2
8(x) = im{ 1/A; —(A/2) <z < A/2 (2.1.4)
4201 o; x> A/2

It is called a ‘“pathological function” because it does not have the
“physically normal” properties of continuity and differentiability at
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z = 0. If we do not expect too much of the function, however, it will
turh out to be of considerable aid in later analysis of many problems.
Remembering the usual definition of integration as a limiting sum, one
can derive the following integral rules for the delta function:

f_: f(£)8(¢ — ) dE = f(z) (2.1.5)

A closely related function, one which illustrates the integral properties
of the delta function, is the unit step function:

(= _]10; 2<0
u(z) = f_w 8(%) d& = [ 1 2>0 (2.1.6)
This function is also pathological in that differentiation should be
attempted only with considerable caution.

Returning now to the problem of solving Eq. (2.1.2) for a force con-

centrated at the point * = £ we first work out the solution of
di/dx? = —8(x — &)

The solution ¢ satisfies the homogeneous equation d%/dx? = 0 at all
points for which  # £.  To obtain

its behavior at © = £, we integrate

both sides from xz = £ —etoz = & s

£ 4 ¢, where e is a vanishing small X'_O F _ xL
quantity. Using Eq. (2.1.6) we see Fig. 2.3 Shape of string acted on by

. . force concentrated at & = £.

that the solution must have a unit

change of slope at = = £ If the supports are rigid, the shape of the
string of length L for a force ' = T concentrated at © = £ must be

oL — §/L; 0 <z <E

Y = G|§) = [ HL — 2)/L. E<x <L (2.1.7)

This function is called the Green’s function for Eq. (2.1.2) for the point
x = £. We see that the solution for a string with force I concentrated at
z = £ is, therefore, (F/T)G(x|£) and that the solution for forces F1 con-
centrated at & and Fz at & is (F1/T)G(x|&) + (Fa/ T)G(2]£s).

Going from sum to integral and using Eq. (2.1.5) we see that the
steady-state shape of a string under tension 7' between rigid supports a
distance L apart, under the action of a steady transverse force F(x), is

v = [ IF®/meE a (21.8)

Thus the Green’s function, which is a solution for a concentrated force at
x = £, can be used to obtain a solution of Poisson’s equation for a force
of arbitrary form, distributed along the string.

This technique, of obtaining a solution for the general equation in
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terms of an integral involving the Green’s funetion, the solution of a
particularly simple form of the equation, will be disenssed in considerable
detail later in the book.

The Wave Equation. In connection with other problems we may be
less interested in the steadv-state shape of the string under the influence
of applied transverse forces than we are i the motion or the string after
applied forces have heen removed. The simplest case, and the one of
greatest interest, occars when all forces can be neglected except that due
to the tension 7' of the string. When the mass of the string is uniformly
distributed. being p gm per unit length, the cquation for transverse
motion is oblained by equating the mass times acceleration of each
element of length of the string, p dr(9%/a8(%), to the transverse force on
that element due to the tension, T dz(d*/dx?), as given in Eq. (2.1.1).
The resulting equation

O/ axt = (/) (oA/t?);, 2 =T/p (2.1.9)

is called the ware equation for reasons which will shortly become apparent.
It states that the transverse acceleration of any part of the string is
proportional to the curvafure of that part.

A wave may be roughly described as a configuration of the medium
(transverse shape of string, distribution of density of fluid, ete.) which
moves through the medium with a definite velocity. The velocity of
propagation of the wave is not necessarily related to the velocity of any
portion of the medium. In fact, for waves governed by the simple
equation (2.1.9) the wave velocity is completely independent of the
velocity of parts of the medium; or, in other words, as long as Eq. (2.1.9)
is valid, the veloeity of any wave on the string is the same, no matter
what shape the wave has.  The wave shape moves along the string with
velocity ¢, whereas a point on the string moves back and forth with a
velocity dy/0t determined by the shape of the wave as it goes by.

A wave of this sort can be represented by stating that the displace-
menl of the string from equilibrium is a function of (z — cf), for a wave
in the positive x direction, or of (¥ + ¢f) for & wave in the negative x
direction. To show that Eq. (2.1.9) requires such motion, we can
transform coordinates from x and {to £ = x — ctand 4y = & + ci:

0 _ 39k, 3am_ 3 , 8

dr  9tdr | dmor IE ' Iy
o’ a* 29% ik
6 = 38 T akan " ar

1o o o o
A OF 9ty | oy
Therefore, Eq. (2.1.9) hecomes
i
4 F
£ dm

=0

>
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A solution of this equation is ¢ = f(£) + F(y), where f and F are any
funetions which satisfy the requirements of continuity and small ampli-
tude that were assumed in the derivation of Eq. (2.1.9). As we shall
show later, this is the most general solution of Eq. (2.1.9), so that the
most general motion of the string always turns out ro be a superposition
of a wave traveling to the right and another 1o the left, each traveling
with constant veloeity and unchanged shape.

It is to be noted that, if ¢ were the velocity of light, the wave equation
would be invariant to a Lorentz transfor-
mation, for then the expression (8%,/02?%)
— (1/¢?)(0%/d%) is the sealar obtained (o) iC
by contraction of the second-order tensor  t=
3%, 0., dx,, and therefore is mvariant to
space-time rotations of the sort discussed
in the first chapter. Thelines f = x — ¢t 1=3
and n = & 4 cf represent the world lines
of zero proper length (c?2dt? — dz? = 0)
which represent rays of light.

Simple Harmonic Motion, Helmholtz IS N
- . ”*
Equation. Insome cases the wave motion § B
- . - - - - i
is sinusoidal in its time dependence, so that % \g
2

one can factor out (‘“separate off ”’ is the
phrase often used) a term depending only
on the time of the form e *! Since we
have agrecd Lo use only the real part of a
complex solution, this factor ensures sinus-
oidal dependence ou time. The constant
wis called the angular velocity of the oscil-

~
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Fig. 2.4 Wave
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motion on a

string, showing waves i opposite

directions.

lation, and the quantity » = w/2r is called the frequency of oseillation of

the wave.

Inserting the expression ¢ = y(xje ™! invo the wave equation (2.1.9)
results in an equation for the space part of ¢

(d*v/dx?) 4 (we)?y =0

which is called the Helmholtz cquation.

(2.1.10)

We shall show later i this book (but it wonld be u useful exercise
for the reader to show for himself now) that the Green’s funetion [see dis-
cussion of Eq. (2.1.7)] for this equation for a siring of infinite length,
corresponding to a forece Te* concentrated at the point x = 0. is

%f p—i(wlc)z; x <)
w
G0 = i
5= ei(w/c):c; Tz > ()
& W
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The general equation for any applied force having sinusoidal dependence
on time, with frequency w/2m, is obtained by an mtegral analogous to
Eq. (2.1.8).

Wave Energy. Since the waves in both directions are propagated
with constant velocity and unvarving shape, it is reasonable to expect
that the wave energy, once it is given to the string, is propagated without
loss. The total energy of the string is made up of the sum of the kinetic
energy of each element of the string,

KE = ip[(3¢/0t)? dv

integraied over the length of the string, plus the total potential energy of
the string.  If the shape of the string at. any time ¢ is ¥(x,1), the potential
energy may be obtained by imagining this shape being produced by
applying a trausverse distributed force of the proper amount so as to
move the string slowly from its equilibrium shape ¢ = 0 to its final shape
Y(x,t). The intermediate shape can be taken to be B¢, where 8 varies
hetween zero and unity as the string is moved. The applied force on an
element dx of string in order to have reached the intermediate shape
B is —TB(6%/8z?) dx, and the work done by this force to move this
element from By to (B + dB) is — Ty (8% /dx?) dx BdB. The tolal work
done in moving the string from equilibrium (8 = 0) to its final shape
Y(B = 1) 1s, therefore,

PE = —7T / (o202 d ﬁ) Y8dg = —3T f Y(0%y/ox?) du

The total energy possessed by that part of the string from = = a to
z = b is, therefore,

B[ /ar\2 )
W(ab) = KE + PE = 1p / [(%‘f ) (%f)] &z

b /a2 1\ 2 . b
[ v @O

where the final, symmetric form is obtained by integrating the potential
energy term by parts.

When ¢ and b represent the two ends of the string, which are held
rigid, ¢ is zero at a and b and the last term in the symmetric form is
zero. The energy of the whole string is, therefore, proportional to the
square of the velocity of each part plus ¢® times the square of the slope
of each part, integrated over the length of the string.

This expression for the energy of only a portion of a string is not
unigque, for the question of the energy of the *“ends” of the chosen portion
cannot be uniquely determined. The only unique quantity is the energy
of the entire string, including the supports, for only this energy is con-
served. This fact can be most vividly illustrated by computing the
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potential energy of part of the string by another method and showing
that this yields another answer. For example. beeause of the difference
in configuration ¥(x) from the equilibrinm configuration, the string will
be stretched. The corresponding stored energy due to stretching is
just the potential energy of the string, for it ix the work done by the
prineipal component. (the horizontal one) of the tension 7. The length
of a section dr of the string becomes /1 + (8¢/dz)? dz because of the
stretch. The potential energy due to the constant force T is, therefore,

b T /N2
PE = +'l’/ [\/1 + a—‘b) — 1] d
a dx

This to the second order, is

b £\ 2
DY oy
P = 4T /; (6.1:) dz

so that the energy 1W(a,b) is

b (/as\2 A\ 2
W(ab) = 1o / [(%‘—f) toe 3—‘5) ] &z 2.1.11)

Comparing this with our previous answer we see that the two differ by
the amovmnt. —L7T[Yd¢/dx]k, which involves only values at the two ends «
and b.  Each answer is equally good for the complete string, for when «
and b are the ends of the string (which are rigidly or freely supported so
that no energy is given to the supports), both results are the same.  This
is the only case which should give a unique answer. Since expression
(2.1.11) 1s simpler, we shall use it in our subsequent discussions.

Energy Flow. The rate of change of the encrgy of the portion of
string hetween a and b is obtained by differentiating IV (a,b) with respect
to the time:

d _ [Toav ey
5 Wab) —pﬁ [~ Y+

{ ot p 0x 3z ot
- [tlovoy | o o [P aTapay
‘lﬁ ot Tarana) ™= o a (Tz,m]""'

Therefore,

d - I 10 2 e -7 T A N ¥ )
Et 1 (a,b) =1 [E 5:Ia =1 (—B-i &)rﬁ 1 ('5? 6.7)1.,__.“ (2112)

These two terms represent energy [low into or out of the length of
string, across the two ends.  1f —T'(a¢/at)(d¢/dx) represents the average
energy flow in the positive a direction across the point x, then the first
term on the right-hand side represents encrgy flow into the string from
the far end of the portion (b > a) and the second term represents flow
into the portion from the left-hand end.
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It is not difficult to verify that —T'(8y/9dt)(d¢/dz) equals the flow
of energy along the string in the positive z direction, for —7'(0¢/dx)
equals the transverse force which the part of the string to the left of
exerts on the part of the string to the right to make it move and ay/ot
is the transverse velocity of the point z of the string. Force times
velocity, of course, equals power or rate of energy flow.

In this respect the term —7'(dy/dz) is analogous to a voltage across
a transmission line at some point, and d¢/d¢ is analogous to the current
past the same point: the product of the two equals the power transmitted.

Power and Wave Impedance. Moreover the analogy to a transmis-
sion line can be carried further. For alternating currents, the complex
ratio of voltage to current is called the impedance of the line. Often
this impedance?! is a function of the a-c frequency, but sometimes, when
the impedance is a pure resistance, it can be independent of frequency.

The analogue to the electrical impedance is the complex ratio of the
transverse driving force to the transverse velocity, which can be called
mechanical impedance. For the simple string, long enough so that
waves are not reflected back from the far end (which s taken to be at
x = ), the displacement of point x due to an alternating wave going in
the direction of increasing x can be represented by the expression ¢ =
A etwra@—ty - The force and velocity at point x are

—T(0y/0z) = —iT(w/c)Y; W/ = —iwy

Therefore, the power flow across z, the average product of the real parts
of these two terms, 1s

Power = 1pcw?|A. |2 = doclU.|2; T = pc?

for a sinusoidal wave in the positive x direction. The quantity U,
= —iwd, can be called the velocity amplitude of the string (not the wave)
for a sinusoidal wave.

The impedance at point « for this simple wave is

Zy = [—T(3¢/02)]/184/0i]) = pc (2.1.13)

This is called the wave ¢mpedance for the string. It is a constant, inde-
pendent of z and of frequency for the simple string for waves in one
direction. Indeed, we need not have dealt with so specialized a one-
directional wave as we did to obtain this value for wave impedance; for
any wave in the positive z direction, f(x — ¢f), the transverse force is

1 Since we shall be using the negative exponential for the time variation e~ the
signs of the reactance terms (imaginary parts of the impedances) will have the opposite
sign from that encountered in the usual electrical engineering notation. This is most
easily done by making the minus sign explicit before the 7. For instance, if
Z = R — X, then X will be the same reactance term as encountered in the electrical
engineering notation. In faect, the impedance formulas in this book ean be changed to
the engineering notation simply by changing every (—z) in the formulas to (47).
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—Tf'(x — ct) (where the prime indicates the derivative), the correspond-
ing transverse velocity is —¢f'(x — ct), and the ratio of force to velocity
is, therefore, T/c = pc, independent of = and ¢ and of the shape of the
wave.

Of course, if we have to deal with waves in both directions, the
impedance does depend on frequency and position. If ¢ = [A efowe +
A_e—ww/cle—iwt  then the average rate of flow of energy obtained by
averaging the expression (2.1.11) over a cycle is

Power = pcw?||A4]? — |A_|%]
and the impedance is

A+eiwn:/c — A__e~iwz/c

A+€iw1/c + A_e—-iwa:/c

Z(x) = pc

There will be many cases encountered in this chapter where the
analogy with voltage, current, power, and impedance can be usefully
applied and generalized. In wave motion of all sorts, for instance, one
can usually find two quantities derivable from the wave function such
that their product equals the rate of flow of energy in the wave and their
ratio can be taken as a generalized impedance. In most of these cases
when the wave is in only one direction, the impedance is a real constant,
independent of position and of frequency, in which case this constant
value can be called the wave impedance for the wave under study. The
more complicated expressions for the impedance, for more complicated
forms of waves, are most easily given in terms of this wave impedance
as a scale factor. For instance, for the string, the constant pc = T'/¢c =
A/pT is the scale factor in the general expression for the impedance.

Forced Motion of the String. As an example of the utility of the
generalized concept of impedance, we can consider the motion of a string
of length ! held at « = I under a tension 7 by a support which is not
completely rigid and driven at x = 0 by a transverse force. The ratio
between a sinusoidal transverse force on the support at £ = I, represented
by the real part of Fie=* and the transverse velocity of the support
Ut which is produced by the force, is called the transverse mechanical
impedance of the support, Z; = Fi/U;. This quantity usually depends
on the frequency w/2n but is independent of the amplitude of F; or (',
within certain limits.

The shape of the string must be representable by a combination of
a sinusoidal wave A eiwos—it going from source (z = 0) to support
(x = 1) and another wave A_e /97w yeflected from the support back
to the source:

¥ = [A eilraz 4 A_eiwde]giot — A cosh [((wx/€) + moo — imBole ™

where A, = Aenlo i, 4_ = Agmlor i)
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The transverse force exerted by the string on the support is, therefore,

Figot = —T(dy/ox) at z =1

—fwpcl A it — A _gitw/ot]e—iut
—twpcA sinh [{(wl/c) + way — twBje ¢
Z et = Z(—oy¢, dt) at o = |
—fwZy[ A i@t | 4 gmitwrel]piot

= —iwZ;d cosh [{(wl/c) + ray — aByle*!

I

|

1

where we have nsed the definition of the transverse mechanical impedance
of the support to obtain the last four forms.

From these equations, we can obtain the complex ratio betweeu the
wave amplitudes 4_, 4,, and also the constants o and Be in terms?! of
the impedance Z;:

A _ pC— Zn pRitasels
A+ ¢ + Z ’

oo — o = = tanh—" (Z-’> —i2 @11

T pC A
where A = ¢/v = 2xc¢/w is the wavelength of the waves on the string
The ratio .t /.1, is called the standing-warve ratio or, alternately, the
reflection cocflicient. If Ziis a pure imaginary, i.e., just reactive, [4_/ Ayl
= 1, 8o that the amplitudes of the reflected and incident waves are equal,
as they should be, though, of course, the phase of the reflected wave will
be different from that of the incident one. The relation hetween the
reflection coefficient and Z; given in (2.1.14) is an example of the relation
between the unitary reflection operator and the impedance operator
discussed in the section on abstract vector spaces. From (2.1.14) we
see thal the boundary condition at z = [ fixes the relative phases and
amplitudes of the incident and reflected waves. Once this is known
the rutio 7, between the applied foree and the velocity of the driving
point (x = 0), which is the driving-point impedance for the string, can
be oblained at once:

1 - 44y . _
ZQ = pC l—m = pC tanh [1['(0{0 lﬂu)] (2.1.10)

In other words, if the force is known, the string velocity at « = 0 can be
calculated and also the expression A4, .4, .1, and ¢. For instance, if the
driving force is f(w)e™™t, the expression for the wave is

flw)e™** cosh [i(wr, €) + mag — ]

Yont) = —iwly cosh [rag — 7B
= %" [(-oth (meo — o) €OS (?) + i sin (%)J (2.1.16)

1 See the footnote on page 128.
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Transient Response, Fourier Integral. Just as with the Poisson equa-
tion discussed on page 121, a solution for several different forces acting
simultaneously is the sum of the solutions for the forces acting separately.
For instance, if forces ot all frequencies are acting, as would be the case
when we could express the total transverse force acting on the z = 0
end of the string in the form of an mtegral

F@) = /_: fle)e ot do (2.1.17)

then the expression for the shape of the string as a function of x and ¢
would be

v = f_‘: Ylwa,t) de (2.1.18)

where y(w,z,t) is given in Eq. (2.1.16).

In Chap. | we shall show that a very wide variety of functions of ¢
can be expressed in terms of an integral of the type given in Eq. (2.1.17)
{which is called a Fowurier integral), and we shall show there how to com-
pute f(w) if F(£) 1s known. Therefore, the integral of Eq. (2.1.18) is a
general solution for the motion of the string under the action of nearly
any sort of physically realizable force applied transversely to its end.
This technique of solution is analogous to the Green’s function technique
touched on in the discussion of Eq. (2.1.18) and will also suggest similar
methods for solving other equations discussed later in this chapter.
One finds a solution for a particularly simple form of ‘“force,” which
involves a parameter (point of application for the Poisson equation,
frequency for the wave equation). A very general form of force can
then be built up by expressing it as an integral of the simple force over
this parancter; the resulting solution is a similar integral of the simple
solutions with respect to the same parameter. ‘This is the general prin-
ciple of the Green’s function technique to be discussed in Chap. 7 and
elsewhere in this hook.

Operator Equations for the String. Before leaving the problem of
wave motion in a simple string, it will be of interest to outline an alter-
native approach to the problem which is related to the discussions of
operators in abstract vector space given in Chap. | and later in this
chapter. We start out by considering the string to be an assemblage of
equal mass points connected by equal lengths of weightless string. At
first we consider that there are only a finite number NV of these masses
(obviously a poor approximation for a uniform string), and then we
approach the actual string by letting ¥ go to infinity. Thus we can
show the relation between the coupled oscillators discussed on page 77
and the flexible string.
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We approximate the string of uniform density stretched under tension
T between rigid supports a distance ! apart by N equally spaced mass
points, each of mass pl/ N a distance [/(N + 1) apart. A glance at Fig. 2.5

Fig. 2.6 Displacements of mass points on elastie string.

shows that, if the displacement from equilibrium of the nth mass is ¥,
the transverse foree on this mass due to the displacements of its neighhors
is

N+ DT rgr — Y2l (Yo — ya)/0} = (N + DT 1) (Ynza
+ Y1 — 24n)

(The last expression in parentheses is the analogue, for finite differences,
of the second derivative.) Therefore, our set of simultaneous equations
of motion for the N particles is

d*
de?
A2y,
e

+ 20k = iy

+ 20iyy = wi(y1 + ys)

2y (2.1.19)
H—tz'b + 2""3.’/" = c'~’?](.’/n~1 + Yus1)

d%, o
gzzﬂ + 208y = wiyna

where wf = N(N 4+ 1)(7'/pl?).

We now consider the displacements y, to be the components of a
vector y in an abstract vector space of N dimensions with unit vectors
e along the coordinate axes. The parts of the equations on the right-
hand side represent the operation of a dyadic wfll which transforms the
vector e, into a vector with components along e,; and e,.;. The
dyadic %1 can be called the unit shift operator. for it shifts the index n
by a unit up or down. It can be written in terms of the e’s in the form

U=ee:+eye;+e)+ - - +enfeny+e€ns) + + - - + eren
(2.1.20)
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Therefore, the equation for the vector y which represents the displace-
ments of all the particles,
N
- N
y= Yn€n
nél

can be written in the form
(d2y %) + 20y = il - y

Eigenvectors for the Unit Shift Operator. The solution of the dii-
ferential equation for y can he most easily cffected by using the eigen-
vectors u, of the operator 1.

11 U, = U,

where u,, is a unit vector along a prineipal axis of the operator 11.  Intro-
ducing u,, for y into the equation for y we obtain the equation determining
the time dependence of u,:

(d2u,/dt2) + (2 — g)u, = 0

so that the time dependence of u, is e~#vV2=mt  The space (“vector
space”’) dependence of u, may be determined by solving the eigenvalue
equation above.
Let u, be expressed in terms of e,, by the expansion
N
uﬂ = v —Yﬂﬂleﬂl

m=1

the v’s being the direction cosines of the transformation. Then the y's
satisfy the equation
Ya,m—1 — UnY¥n,m + Yn,m41 = 0 (2.121)

except for the first and last equations, for m = 1 and m = N, where the
quantities y.o and v,,xy1 are naturally omitted. FEven these two equa-
tions can be given this same form, however, if we just assume that the
quantities y,o and v, x4 are always zero.

The solution of Eqgs. (2.1.21) is obtained by the nse of the trigono-
metric formula

cos a sl (ma) = & sin [(im — Da] + 4 sin [(m 4+ el

for if we set yum = A sin [me,] (the time dependence being understood)
and 7, = 2 08 an, all of the equations are satisfied. One of the addi-
tional requirements, that v.o = 0, is likewise complied with, and the
remaining requirement, that v,y = 0, can be satisfied if we allow o,
to equal [ax/(N + 1)].

N
Since sin _mam s \ (ﬂ;l’w _ { 0; al ZEn
AV F )T\ LN +1); o =n

m=1
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we can choose the value of the constant 4 so that the v’s are properly
normalized direction cosines, and the u’s will be unit vectors if the e’s
are. The final results are

N
u —\/L e sim(M ex [—2' tQ'n<—mr— ]
"TANF1 m SN £ 1) S| T gy £ D)
m=1
U-u, = 2cos [nr/(N + 1)] u, (2.1.22)

Thus we have discovered an alternative set of N mutually orthogonal
unit vectors in abstract vector space which point along the principal
axes of the operator 1l (7.e., which are eigenvectors for 11).

In terms of this new coordinate system the solution of the equation
of motion for the vector y representing the N particles is straightforward:

N N N
;o 2 . mnm
2 YnCm =y = 2 U,u, = \fm 2 U.e. sin (N T 1)
n=1

m= n,m=1

eXp 2Zw()t SN ‘2 A rn
(‘ )
[ ] 1eY efOI e,

N
2 z : . mna . . nar
ym = Jm U’n. Sin (m) eXp l —2ngt SIn [m]}

n=1
(2.1.23)

The allowed frequencies are w,/2r, where w, = 2w sin [na/2(N + 1)].
The component motions u, are called normal modes of the motion.

If the particles are initially displaced by the amounts y; and initially
all have zero velocities, then the values of the U,’s can be obtained by
use of the last equation on page 133:

N
9
¥ oo = Un = \/ﬁl Z yS sin (ij:rl) (2.1.24)

m=1

Thus the- coefficients of the series for the y’s can be obtained in terms of
the initial values of the y’s and the direction cosines of the transformation.

Limiting Case of Continuous String. To go from a collection of M
particles to a continuous string we increase N to infinity, so that each
“point”” on the string is labeled by a different n. If the string were
actually continuous, this would require & to be nondenumerably infinite,
which would mean that the corresponding abstract vector space would
have a nondenumerable infinity of mutually perpendicular directions.
Such a vector space is rather difficult to imagine, though we may console
ourselves that such niceties in distinguishing of types of infinities are
rather academic here, since any actual string is only approximately
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continuous, and our present solutions are not valid for details of atomic
size or smaller. We can also reassure ourselves that only a small sub-
space of the ‘“supervector’” space corresponds to physics, for as the
distance between successive points goes to zero, continuity requires that
Y= approach y.,; in value.

At any rate, for the continuous string we can diseard the nondenum-
erable set of indices m and use the distance x of the point from one end
as the label, i.e., set 2 = ml/(N + 1). Moreover since N is =0 large,
the difference between N and N + 1 is negligible. The index n labeling
the different allowed modes of motion need not become infinite or con-
tinous, however, since we are usually interested in the lowest few (the
first hundred or so!) allowed frequencies. Therefore, n will be retained
as an integer and n/N will be a small quantity. To be specific, the
transition is as follows:

on—mmefl; ¢ =N/ T/o; en—e(@; ¥ =Y ye)e()

x

y— \/g 2 Y.u, = 2 Y.e(z) sin (’ﬂ');"_l‘) e tunt

n,x

ylz) = z Y, sin (n_v;x) g iwnt

n

The last equation is the usual Fourier series for the free oscilla-
tions of the uniform string between rigid supports. The function
sin (nwx/1) e, giving the shape of the nth normal mode, is the frans-
formation function, changing the denumerably infinite set of eigenvectors
u, for the operator U to the nondenumerably infinite set of unit vectors
e(x), each of which corresponds to a different point along the continuous
string. The summation over all the points is symbolized by the sum-

mation sign 2, though it could also be expressed in terms of an integral
X

over . The limiting case of Eq. (2.1.24) is best expressed in terms of
an integral, for instance. We have let Y, be the limiting value of
U.~2/N + 1, so that the equation for ¥, in terms of the initial values
of displacement 3¢ (when the initial velocity is zero) is

N
; 2 E : o o [(mum\| N
Y. = 131_)111 |N ¥y sin (T)} ; where m — -

The number of terms in the sum over m between x and z + dz is, there-
fore, (N/1) dz. Therefore, in the limit the sum for ¥, becomes the

mtegral .
2 ! nwT
Y, =75 / ¥°(x) sin (+~) dx
lJo l
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which is the usual integral for the Fourier series coefficients giving the
amplitudes of the various normal modes.

Finally, if the distance between supports is increased without limit
(we place the origin at the mid-point of the string), another series of
limiting calculations, which will be explained in detail in Chap. 4, brings
us to the general solution for the wave motion on an infinite string
originally held at a displacement 3°(z) and released at ¢ = 0:

y(z, t) = %T / gietzet) oy / Yo (E)e—iok dg (2.1.25)
where the real part of this expression gives the actual displacement of
point z at time ¢.

Finally it is of inverest to see what limiting form of the operator U1
takes on for the continuous string. To fit in with the equation for the
vector y, we ask for the limiting expression for the operator wi[ll — 2]

on the vector y = 2 Ymem— Y y(x)e(z). DBefore going to the limit, the
m X

operator has the following effect on the vector components y,,:

; NN +1)T
ot = 2y = YEEDT N 1 — ) — = g

=1

As the distance between particles gets smaller and smaller, the difference
(Yny1 — Yn) approaches the differential dy(z), the distance between
particles, I/(N -+ 1), being dx. Therefore, (N/1)(yns1 — yn) goes in the
limit to dy/dz and the expression above becomes

Wil — 2] -y — ¢ z TV 2 ’

z

g0 the equation of motion for y becomes in the limit

92 92 ')2
i 2 gtgx) o) = ¢ 2 ( gx(zx) el)

x

and therefore the equation for the transformation functions y(z) is
%y /ot = c*(d%y/dx?)

which is just the wave equation (2.1.9).

Thus we have come back again to the partial differential equation
for waves on the simple string via the roundabout route of abstract vector
space. This excursion has been taken because similar ones will have to be
taken later in this chapter for cases where alternative routes are not
quite so direct or so simple as is the case of the string.
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The Effect of Friction. So far we have neglected the reaction of the
surrounding medium (air or water) on the motion of the string. For
small-amplitude motions this reaction is opposed to the motion of each
element of length and is proportional to its velocity. The force on the
clement between z and z + da is proportional to the velocity d¢/dt of
this element and is opposed to this velocity. The proportionality con-
stant R is usually dependent on the frequency of oscillation of the string,
but when the viscosity of the medium is great enough, it isindependent of
frequency. This last case is the simplest and will be taken up first.

The equation of motion, when we take into account tension and
friction of the medium but not stiffness or internal friction, is

2. 2 ] 17
%;‘—5+2k%1'—f—02%= ; Ic=é%; c2=;
The effect of friction is, of course, to damp out the free vibrations. If
the string is held between two rigid supports a distance [ apart, the shapes
of the normal modes are not affected by the friction, being still sin (wnaz/1).
However, the individual oscillations are damped out in time, for a solu-
tion of this equation is

. TNRI . TNe
v = 2 Ap sin (T >e—’"—““"‘; wp =7 = k?
n

If & depends on frequency, it will have the value corresponding to w,
for the nth normal mode, so that the different modes will damp out at
different rates. )

On the other hand if the string is very long and is driven at one end
by a sinusoidal force Fe !, then the waves will be damped in space
rather than in time. A solution is

P = Aeiee®t o = (p?/T) + 1(Rew/T)

Therefore, o has a positive imaginary part, which produces damping in
the direction of wave motion.

Diffusion Equation. In one limiting case, the viscous forces may
completely predominate over the inertial effects, so that the equation
becomes

37}’; ~ Kzg—’f; 2 =17%, (2.1.26)

This equation will be encountered many times in this book. Since it also
represents the behavior of some solute diffusing through a solvent (where
¢ is the density of the solute), it is usually called the diffusion equation.
As with the wave equation «(2.1.9) the tendency is to straighten out
the curvature; however, here the velocity of any part of the string is
proportional to but opposite in sign to the curvature of the part, whereas
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in the wave equation it is the acceleration that is proportional and opposite
in sign to the curvature. In short, we are essentially dealing with an
equilibrium condition. In the wave equation a curved portion con-
tinually increases in velocity until it is straightened out and only then
starts slowing down, thus ensuring oscillatory motion. DBut with the
diffusion equation the velocity of any portion comes to zero when this
portion is finally straightened out, so there is no oscillatory motion.
One would expect this behavior of a string
of no mass in a viscous fluid, for the
damping is more than critical.
1=0 In the case of the wave equation the
general solution could be expressed as a
superposition of two waves in opposite
tel _,/\ direction, f(x + ¢f) + F(x — ct), due to
the symmetrical relation between z and ¢
in the equation. In the diffusion equa-
1=2 _,/\ tion this symmetry is not present, and
there is no simple form for the general
solution. Here also there is a difference
t:3 _//_\ between the positive and negative time
dircetion, due to the fact that the time
derivative is a first derivative whereas
-a there is a second derivative in the wave
-2 -1 0+l 42 43 43 equation.
. XAXIS . For instance, if the string has a sinus-
Fig. 2.6 Sequence giving solu- - s .
tions of diffusion equation after oidal .Shape Aetwr 5 then for th(? wave
initial shape as shown at top. equation the time dependence is also
sinusoidal, ¢, But for the diffusion
equation the time-dependent term is e~ which is not symmetrical
with respect to time. For positive time the sinusoidal shape damps out
exponentially, but, looking backward in time, we see that the wave
amplitude increases without limit as ¢ is made more and more negative.
The smaller the wavelength of the fluctuations (i.e., the larger o is),
the more rapidly are the functions damped out in positive time and the
more rapidly do they increase in negative time. As we shall show in
detail later, with the wave equation we can both predict future motion
and reconstruct past motion from present conditions. With the diffusion
equation prediction only is possible; attempts at reconstructing the past
result only in divergent expressions.

Klein-Gordon Equation. A type of equation of some interest in
quantum mechanics (it is used to describe a “scalar’” meson) can also be
exemplified by the flexible string with additional stiffness forces provided
by the medium surrounding the string. If the string is embedded in a
thin sheet of rubber, for instance (or if it is along the axis of a cylinder of

t



§2.1] The Flexible Siring 139

rubber whose outside surface is held fixed), then in addition to the
restoring force due to tension there will be a restoring force due to the
rubber on each portion of string. If the displacement of the element dx
of string at x is Y(z), this restoring force will be —Ky dx, where K is a
constant depending on the elastic properties and the geometrical dis-
tribution of the rubber.

Therefore, the equation of motion for the string is

2, 2,

%é%ti _ ‘;_;Z g =L o f}, (2.1.27)
where p is the linear density and T is the tension of the string. This
equation is called the Klein-Gordon equation when it occurs in quantum
mechanical problems. We note that, if ¢ is the velocity of light, this
equation is also invariant in form under a Lorentz transformation, as is
the wave equation, so that solutions of the equation behave properly with
regard to the space-time rotations of special relativity.

The reaction of this type of string to a unit, steady, transverse force,
applied at point & = §, differs from the reaction of a string with only
tension acting. The shape of the elastically braced string of infinite
length which corresponds to Eq. (2.1.7) is

(1/2u)er==9; & < & .
G(’CIE) = (1/2M)eu(£~z); x> ¢ (2128)

In the case of the usual string, with only tension, we had to con-
sider the string to be a finite length, for the end supports were the only
“anchors” to prevent the force from pushing the string by an indefinitely
large amount. In the present case, however, the elastic medium in which
the string is embedded absorbs nearly all of the thrust, and except for
distances small compared with 1/u from either end, the exact position
of the end supports are not important. Consequently we can write a
Green’s function which is independent of eud points (i.e., for an infinite
string) for this case. The formula shows that a portion of the medium,
spread out a distance of about 1/u from the point of application, supports
the majority of the force, and the displacement of the string beyond this
distance becomes quite small.

For applied transverse forces of arbitrary type distributed along the
string, the corresponding shape of the string is obtained in the form of an
integral over the Green’s function of Eq. (2.1.28) of the general form
given in Eq. (2.1.8).

If an elastically braced string is held under tension between rigid
supports a distance L apart, it can vibrate with a sequence of normal
modes of motion similar in shape but differing in frequency from the
normal modes of the string without elastic support.
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The Fourier series for the general free vibration is

¥ = E A, =m (?) gints k= ¢? [(n%)‘ + uz]
1

The allowed frequencies are all larger than those for the usual string
because of the quantity u? which-is proportional to the elastic constant K
of the medium surrounding the string. This result is not surprising, for
the added stiffness of the medium should increase the natural frequencies.

Forced Motion of the Elastically Braced String. A string embedded
in rubber driven from one end by a transverse alternating force also
exhibits certain characteristic differences of behavior compared with the
ordinary string.

The solution for a wave traveling to the right only, suitable for the
case of an infinitely long string, is

g = Aexpl—aVu? — (w/c)? — iul]; W < pk®=K/p (2.1.29)
Tl Adexp {1/ V1 — (ue/w)2 —ct]}; o> K/p o

At very high driving frequencies the wave motion is very similar to

Simple  String String With Friction String With Elastic Support
(k=3%) (=1)

t=2 -

y=u (t-x) y=u(t-x)e‘%f Iz M2F) y=u (1)L ¥ )

Fig. 2.7 Three sequences showing successive shapes of different strings when struck
laterally at one end at ¢ = 0.

the ordinary string, except that the wave velocity is always somewhat
larger than ¢, by a factor 1/4/1 — (uc/w)?. Here again the additional
elastic forces tend to “speed up” the waves. The wave number X! =
AV {w/€)? — 1 is no longer a linear function of the frequency. Thus
the string plus bracing will behave like a dispersive medium. A general
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wave shape composed of waves having different values of « will no longer
hold together but will diffuse from its original shape into a succession of
shapes more and more dispersed over the entire length of the string.
This behavior is, of course, strikingly different from the behavior of a
wave form on an ordinary string which is not braced, for then the medium
is not dispersive and the form will not change during propagation.

At low frequencies the effect of the elastic medium predominates over
the inertial effect of the mass of the string, and for frequencies less than
(1/2x) A/ K/p there is no true wave motion at all. the string moving back
and forth all in phase by an amount which is largest near the driving
force and which decreases rapidly farther from the driving end.

The wave impedance for this type of string is obtained in a manner
similar to that which obtained Eq. (2.1.13):

7. = i(T/w0) V2 — (/) o < puc (2.1.30)

pec /1 — (ue/w)?; w > pe

At high frequencies the wave impedance is real and nearly equal to the
value pc for the simple string.  As the frequency is diminished, however,
the wave impedance decreases and the wave velocity increases until, at
w = uc = \/K/p, the wave impedance is zero and the wave velocity is
infinite. This is the resonance frequency for the mass of the string and
the elasticity of the medium. Below this frequency the impedance is
imaginary, similar to a stiffness reactance, and there is no true wave
motion.

Recapitulation. We have discussed the motions of a flexible string in
detail for several reasons. In the first place our procedure in studying
the string is a simple example of what will be our discussion of other
equations for fields. We shall in each case discuss the various equations
which result when one force after another is allowed to become pre-
dominant; thus by the study of the various limiting cases we shall
arrive at & fairly complete understanding of the most general case.
Second, the motions of different sorts of strings are easily picturable
representations, in the simplest terms, of the solutions of a number of
important partial differential equations, which turn up in many, contexts
and which represent many physical phenomena. Many of the other
manifestations of the same equations correspond to physical situations
which are much harder to visualize. In the third place, the techniques
of solution which have been touched upon here and related to the physical
problem have useful application in many other cases, and reference to
the simple picture of the string will help our understanding of the others.

We shall now broaden the scope of our discussions and study a
number of typical physical phenomena of considerable interest and
importance in order to show what types of fields can be used for their
picturization and what partial differential equations they must satisfy.
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2.2 Waves in an Elastic Medium

For our first three-dimensional analysis of the interrelation between
physical phenomensa and differential equations for fields, we shall return
to the problem of the behavior of an elastic medium (which was begun
in Sec. 1.6) to take up the problem of wave motion in the medium.
As in the case of the string, we assume that the displacements of the
medium are small and that we are not concerned with translation or
rotation of the medium as a whole. The displacement s(x,y,z;f) of an
element dz dy dz of the medium at z, y, z and at time ¢ is small, and its
rotation due to the strain is also small. The inertial reaction of the
element to an acceleration of s is (9%s/dt%)p dx dy dz, where pis the density
of the medium.

In Sec 1.6 we defined the stress dyadic € = F.i+ F,j + Fk
= iF, + jF, 4+ KkF, by saying that the force across a surface element dA
of the medium is - dA. For instance, the force across the face dy dz
of the element, perpendicular to the x axis, is F, dy dz. Therefore, the
net force on the element dz dy dz due to the difference in F, from one
face dydz to the opposite face of the element is dx (8F./dz) dy dz,
and the net force due to forces acting on all faces of the element is thus
V -Z dx dy d=.

But in Eq. (1.6.28) we showed that the stress dyadic is related to
the strain dyadic © by the relation T = NS|S + 2u&, where p is the
shear modulus of the medium and (A + %u) 1s its compression modulus
(ratio of isotropic pressure to fractional rate of decrease of volume).
From Eq. (1.6.21) we have the relation between @ and the displacement s
given symbolically by & = (Vs 4+ sV). Putting all these equations
together we finally arrive at the equation of motion for the medium under
the influence of its own elastic restoring forces:

2
p %—; =V -[A§divs + «Vs + usV] = A + p) grad div s 4 pdiv grad s
= (A + 2u) grad divs — p curl curl s (2.2.1)

where we have used Eq. (1.5.12) to rearrange the vector operators.
Longitudinal Waves. The form of the equation of motion suggests
that at least part of the vector s may be expressed in terms of the gradient
of a scalar potential ¢, since the equation then simplifies considerably:
When s = grad ¢, the equation for y,
1o  , N+2

divgrad ¢y = Vi = — %

C% EYoR Ce P (222)

is just the wave equation for the scalar wave potential ¢, the three-dimen-
sional generalization of Eq. (2.1.9). The wave velocity ¢, is greater
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the larger are the moduli N and p (i.e., the stiffer is the medium) and is
smaller the larger p is (z.e. the more dense is the medium).

When the solution of Eq. (2.2.1) is a gradient of a scalar. the dyadic
operator © = V(Vy) is symmetric, rotation dyadic R is zero and D = &,
the pure strain dyadic. For such a solution there is no twisting of the
medium, only stretching and squeezing. Waves of this sort are called
longitudinal or compressional waves. They can be propagated even in
liquid and gaseous media, where the shear modulus u is zero.

But a gradient of a scalar potential is certainly not the most general
vector field possible for the strain displacement s, as was shown on
page 53. The most general vector field requires three scalar functions
of position to specify, one for each component, whereas the gradient of a
scalar is specified by a single function, the potential. Consequently,
two more scalar functions of position are needed to specify the most
general solution of Eq. (2.2.1).

Of course, we could set up equations for each of the rectangular com-
ponents of s, but this would result in three equations, each containing
the three components, which would have to be solved simultaneously-—a
cumbersome procedure.

Transverse Waves. It would be much better to utilize some of the
properties of the vector operator V to obtain the other solutions, as
we did for the gradient of the potential: since the curl of a gradient is
zero, one term in the equation dropped out and the wave equation for the
scalar potential resulted. This result [plus the results of Eq. (1.5.15)]
suggests that we try the curl of some vector, for the divergence of a curl
is zero and therefore the divergence term would drop out. Accordingly
we let another solution for s be curl A, and the resulting equation for
Ais

— curl curl A = c2(3?A/d?); ¢ = u/p (2.2.3)
which is also a wave equation, as we shall later demonstrate. The wave
velocity ¢, for this wave is smaller than the velocity for longitudinal
waves, being proportional to the square root of the shear modulus
instead of the combination X\ + 2u. It suggests that this part of the
solution is a shear wave, which indeed turns out to be the case. For
with this type of displacement the dilation § = div s [see Eq. (1.6.23)] is
zero, so there is no expansion or contraction, and therefore the strain
must be a type of shear. We shall usually call this type of wave the
transverse wave.

This separation of the general solution into a longitudinal part,
which is the gradient of a scalar potential y, plus a transverse part, which
is the curl of a vector potential A as suggested on page 53, is a neat one,
for these two waves travel at different speeds and any other separation
of the solution would result in waves of both velocities being part of
both solutions, certainly a more clumsy procedure.
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But at first sight the two solutions we have obtained appear to be
redundant. We mentioned earlier that only three independent funections
of position are needed to give the most general solution for the vector s,
but here we appear to have four: one for the scalar potential and three
for the components of the vector potential. This redundaney is only
apparent, however, for we do not use all the degrees of freedom of the
vector potential A. The process of taking the curl of A to obtain s
discards a part of A, namely, the part which can be expressed as a gradient
of a scalar, and nses only that part whicl has zero divergence. There-
fore, the part of A which is used to contribute to the general solution for s,
involves only two independent funtctions of position, and these, with the
scalar potential, make up the requisite three.

To put the whole argument in another form, any vector solution of
. (2.2.1) ean be split into two parts: a longitudinal part having zero
curl, which can always (sce page 33) be representied as the gradient of a
scalar potential, and a fransrerse part having zero divergence, which can
always (sce page 51) be represented as the curl of a vector potential.
Equation (2.2.2) shows that, if the solution starts out as a longitudinal
one, it will continue to be longitudinal or, if it starts out transverse, it
will remain transverse as long as the quantitics N and u have everywhere
the same values.  If X or u or both change abruptly at a boundary surface
or change continuously in a region of space, then wave reflection will oceur
and the longitudinal and transverse waves may become intermingled.

In the present ease the longitudinal part corresponds to wave motion
of one velocity and the transverse part corresponds to wave motion of
another, lesser velocity. Actually there are two independent transverse
parts. Oune of these mayv be taken to be the curl of some solution A of
Eq. (2.2.3) fincidentally the curl of a solution of Eqg. (2.2.3) is also a
solution of Kq. (2.2.3), as may be quickly verified]; this will be ealled 1the
first transeerse solution. The other transverse part may be taken to be
the curl of the first solution (which is proportional to the zero-divergence
part of A itsclf, as may be quickly verified); this will be called the second
transverse solulion of Eq. (2.2.1).

Wave Motion in Three Dimensions. Waves on a simple string are
only of two general types: ones which travel to the right, represented by
the gencral function F(x — ct), and ones which travel to the left, repre-
sented by f(x + ¢t). In thrce dimensions many more types of wave
motion are possible. Confining ourselves for the moment to the scalar
wave potential ¢, we, of course, can have a stmple generalization of the
one-dimensional wave,

¢ =fla-r — ct) (2.2.4)
wherer = a1 + yj 4+ zk and a is a unit vector in some arbitrary direction
given by the spherical angles 8 and ¢ (sce I'ig. 2.8). The wave motion
here is all in one direction, and the comments made in Sec. 2.1 concerning
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one-dimensional waves need no modification to apply here. Such waves
are called plane warves for reasons which will shortly become apparent.
Inherent in our thinking of three-limensional waves is the motion of a
ware front.  Crests and troughs of a wave often maintain their identity as
they move along, which can be represented by surfaces everywhere per-
pendicular to the direction of wave motion and which move with the
wave veloeity . These swrfaces are called surfaces of constant phase or
simply phase surfaces. For the simple plane wave form f(a-r — cf)

r r

———
€

[~

R,
/o N

Fig. 2.8 Unit propagation vector a and radius vector r.

the surfaces are the planes a -1 = constant, perpendicular to the unit
vector a, which gives the direction of wave motion. If the wave is a
sinusoidal one, represented hy the complex exponential term ¢ =
Aeitw/o@r—et) for gll points on one of the surfaces, the wave function bas
the same value of the phase angle of the complex exponential (which is
why the surfaces arc called phase surfaces).

We can ask whether there are other types of waves in three dimensions
having crests and {roughs which maintain their identity as the wave
moves along. .\ bit of investigation will suffice to convince one that only
plane waves of the form given in Eq. (2.2.4) maintain their shape and
size completely unchanged as they travel. It is possible to have waves,
other than plane, which keep their shape but not their size; these have the
form

= A@y)fle@yz) — el (2.2.5)

The function f provides for the motion of the wave, and the surfaces ¢ =
constant are the surfuces of coustant phase; the factor .1 provides for
the change in size of the wave from point to point.

Substituting this form into the wave equation V2 = (1/¢*)(9%/dl%)
results in the equation

fvrd + (1) div [4% grad o] + Af'lgrad®> ¢ — 11 =0

where the primes indieate differentiation of f with respect toits argument.
If fis to be any arbitrary funcetion of its argument (¢ — ct), the coefficients
of f, f/, and f must cach be equal to zero:

vl = 0; [grad o? = 1; div [.1* grad ¢] =0 2.2.6)

The last. equation is equivalent to stating that the vector .17 grad ¢ is
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equal to the curl of some vector, and the second equation states that
grad ¢ is a unit vector. These are stringent limitations on A and ¢,
and not many solutions can be found. In other words, not many types
of waves maintain their shape as they move through space.

One solution of these equations has spherical wave fronts, ¢ = r =
V2% + y* + 2% and has an amplitude .1 = B/r which varies inversely
with the distance r from the center of the wave (B is a constant). The
solution

Vv = (B/n)f(r — ct)

represents a spherical wave radiating out from the center r = 0. Natu-
rally there can also be an ingoing wave (D/r)F(r 4 cf).

Another way of analyzing the same general problem consists in
determining what curvilinear coordinate surfaces can be wave fronts.
If the wave equation in some coordinate system has solutions which are
functions of only one of the three coordinates, then a traveling-wave
solution can be formed from these solutions which will have one set of
the coordinate surfaces as its surfaces of constani phase.

Suppose that we choose an orthogonal, curvilinear coordinate system
£1, &3, £3, with scale factors hy, he, hs and unit vectors a,, as as.  According
to Eq. (1.5.11) the wave equation for ¢ in terms of these coordinates is

o 17 2 h]hzhg _61,{1 — l 92}1_/ (227)
hlhghg 657, hzl dfn 02 atz

n

To simplify matters we separate off the time dependence in the exponen-
tial factor e=**. If, in addition, we can separate the space part of ¢ into
three factors, each dependent on only one coordinate, the equation is
said to be separable aud one or another of the three families of coordinate
surfaces can be the family of phase surfaces of a wave. In other words,

if the equation
19 (hahy 0y o\,
Fahaha 3F; (hT E) + (*) v=0

will yield solutions which are functions of £, alone, then the wave equation
is separable for the coordinate &,.

If one solution of this equation can be found, two independent solu-
tions y(&) and Y (&) can be obtained (this will be proved in Chap. 5),
and the combination

y + ¥ = _I(El)ei(w/C)lP(fl)

will serve to give us an expression for a simple harmonic wave having the
coordinate surfaces £ = constant as the surfaces of constant phase of the
wave:

V= (y + i¥)e = A(fy)eerleo— (2.2.8)
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This form of wave is more specialized than that given in Eq. (2.2.3), since
we have contenied ourselves here with sinusoidal dependence on time.
In exchange for the simplification the limiting requirements ovn 4 and ¢
are not so stringent as in Eq. (2.2.6). For instance grad ¢ need not be a
unit vector, which corrcsponds to the statement that the surfaces of
constant phase do not travel with the velocity ¢ everywhere. The
funetions A and ¢ may depend on w, so that the shape of the wave may
differ for differing frequencies. Nevertheless we again find that a form
of wave front which allows wave propagation with reasonable per-
manence of wave'form is not at all common; as we shall see in Chap. 5,
only a few coordinate systems have a separable equation. The wave
equation, it turns out, is rather particular about the shape of the wave
fronts it allows.

Further discussion of these points is not profitable here. It has
been sufficient to point out that there is a close connection hetween the
property of a coordinate system of allowing separable solutions of the
wave equation (solutions consisting of factors, each functions of only
one coordinate) and the possibility for the corresponding coordinate
surfaces to be surfaces of comstant phase for some wave. In Chap. 5
we shall deal with the problem of separability in more detail.

Vector Waves. We must now return to the shear waves which cannot
be represented by a scalar wave function but which can be represented by
a divergenceless vector potential, satisfying the equation

curl curl A + (1/c)2(e*A/at%) = 0
These also can have plane wave solutions:
A=(Bxa)f(a-r—cf) (2.2.9)

where B is any constant vector and, therefore, (B X a)is a constant vector
perpendicular to the unit vector a, which determines the direction of
propagation of the wave. Since the magnitude of A is independent of
position along a line in the direction of A (i.e., since the gradient of f
is perpendicular to B X a), the divergence of A is zero, as was required.
The curl of A is a vector perpendicular both to A and to a,

curl A = (grad f) X B X a) = [B — a(a - B)lf’
and the curl of this vector is again parallel to A,
curl curl A = —(B x a)f"" = —(1/¢*)(0%A '8¢%)

as, of course, it must be in order to satisfy the vector wave equation
(2.2.3). The directions of A and curl A are both perpendicular to the
direction a of propagation of the wave, which is the reason for calling
these waves transverse.
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There is also a vector potential representing a spherical vertor wave,
analogous to the scalar spherical wave (B/r)ftr — ¢f) mentioned earlier.
If a, 1s a unit vector pointed along the racius r, a, a unit vector per-
pendicular to a, and to the axis of the spherical coordinates, and as =
a, X a, another unit veetor perpendicular to hoth, then the vector
A = (as/7)f(r £ ¢f) is a solution of the vector wave equation which is
satisfactory except along the spherical axis ¢ = 0. For the outgoing
wave, for instance, -

curl A = (a,/r)}f'(r — ¢f)
and curl curl A = —(ag/r)f""(r — et) = —(1/c®)(0%A '0t2)

It 1s obvious that the vector curl A is also a solution of the vector wave
equation, so that the most general outgoing spherical veelor wave is

(as/n)f(r — ct) + (a,/T)F(r — cl)

The more complex problem of the separability of the vector wave equa-
tion will be discussed later.

Integral Representations. More general types of waves can be con-
structed by adding up plane waves in different directions. .\s shown in
Fig. 2.8 the vector a(6,¢) is the unit propagation vector pointed in the
direction defined by the spherieal angles 6, ¢ and r is the radius vector
of length r, with direction defined by the angles 3 and ¢. The most
general sort of scalar wave can be represented by the integral

Y = [d¢f sin 0d6 fl¢, 0;1-a(6.¢) — i (2.2.10)

where f is a traveling wave of shape depending on the angles # and ¢.
The limits of integration arc usually from 0 to 27 for ¢ and from 0 to
7 for 6, but they may extend to imaginary or complex values [such as
from O to (w/2) + 70 for 6].

The most general vector wave funetion can be formed in a similar
manner:

A = [d¢f sin 6 dOF[¢, 0;1 - a(f,¢) — cf] (2.2.11)

where F(¢,0;2) 15 a veetor funetion of ¢ and 6 and z which is pointed in
a direction perpendicular to a(f,¢). Since every element in the integrand
is a transverse wave, the result must have zero divergence.

One can also express more specialized waves in this same manner. In
the very important case of simple harmounte waves, for instance, with
time factor e, the expression for the sealar wave hecomes

Y = [dofY(¢,0)cilw/adeos 8=ct) iy 6 (] (2.2.12)
where » cos © = r[cos § cos & + sin 6 sin d cos (¢ — )] = r-a(d,¢) and

Y (¢,0) is some function of the spherical angles. For the vector solution
Y is a vector perpendicular to a for every value of 6 and ¢. In future
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chapters we shall find it extremely valuable to express all the solutions
of the wave equation in such an integral form.

Stress and Strain. To return to physies after this incursion into
mathematies, it will be well to compute the siresses in the medium cor-
responding to the various types of wave motion. For a compressional
(longitudinal) wave traveling to the right along the z axis, the scalar
potential is ¢ = f(x — ei) and the displacement of the medium at point
z, Y, # at time ¢ is

s = grad ¢ = if'(x — «b); ['(§) = (d"dES(E) (2.2.13)

The strain dyadic is & = }|Vs + sV] = {if”"(x — «f), and the stress
dyadic 1s

T = A3 div s + w(Vs + 89) = [(A + 2u0)ii +Gj + KRl (@ — ob);
g = (@/de)f(e)  (2.2.14)

In other words the force aeross a unit area perpendicular to the z axisis in
the z direction and of magnitude (A + 2u)f"”, whereas the force across a
unit area parallel to the x axis is perpendicular to the arca and equal to
N". The motion is entirely in the x direction, and the tractile forces are
all normal; no shear is present.

For a shear (transverse) wave traveling to the right along the x
axis, with motion parallel to the z axis, the vector potential is A =
jF(z — ct) and the displacement of the medium at point «, y, z at time
tis

s =curl A = kF'(z — ct); ') = ([d/dEF(E) (2.2.15)
The strain dvadic is S = (ik + ki)l (x — cl), and the stress dyadic 15

T = u(Vs + sV) = ylik + ki]F"'(x — ¢t); F7(§) = (*/dEHF ()
(2.2.16)

ginee div sis zero.  In this case the force aeross a unit area perpendicular
to the . axis is in the z divection and of magnitude /" the force across
one perpendicular to the z axis is in the 2 direction and also equal to
wI'. There is no tractile force across a surface perpendicular to the y
axis. This stress is, of course, a simple shear in the z, z planc.

Wave Energy and Impedance. To find the potential energy stored
in a certain volume of medium when its strain dyadic is & = (Vs | sV)
and its stress dyadie is T = AJ|€, + 2uS. we first find the increase in
potential energy when the displacement s of the medinm at &, y. 2 is
increased by the small amount és. The work done by the siress forces
on the medium in the volume can be computed in terms of the scalar
product of the tractive force (T - dA) across cach element dA of the
surface of the volume and the displaccment és of the element:

dw = [[8s- (T -dA) = [[[[div (T - bs)] o
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where the first integral is over the swiface bounding the volume in
question and the second integral is over the volume itself. We have
made use of Gauss’s theorem, Eq. (1.4.7), to derive the second integral
from the first.

However, a juggling of components shows that, for any vector A and
dyadic B, the following formula holds:

div(B-A) = (V-B)-A+ B:(VA); where B:D = 2 BpnDyw = |8+ T

Therefore,
JIfdiv (T 88)dv = [[[[(V-Z)- s+ T:Vés)| de

Since (V- T) dv is the net foree on the volume element dv, which is zero
when the medium is in equilibrium (as it is when we measure potential
energy), the integrand of the potential-cnergy integral becomes

T:(Vés) = TH[(Vs + sV)] = TS
= [N&|[6&] + 2uZ 8] = §[3T:] = 5[4T - S|]
where, since T is symmetric, |T-Vs| = |T-sV|. This represents the

increase of potential energy due to the increment of displacement ss.
It is clear, therefore, that the total potential energy due to the displace-
ment field s is given by the volume integral

%/f (T:B)dv = éf/ NS + 2uS:€] dv
. 3s:\" Jsy z ds:\’
flf praivor 2 [ G2+ () + ()
9s: 4 9s,\" | (95, 0s.\' | [9s, , 0s.\" _
+u [(5@— + E) + (32' + 6?(') + <-6; + W) J} dv  (2.2.17)

The kinetic encrgy is, of course, the integral of $p(8s/8t)? over the
same volume. The total energy density in the medium 18, therefore,

14

I

w = 3p(0s/00)* + H|T-S|; W = [[fwdv (2.2.18)

For the plane compressional and shear waves given in Eqgs. (2.2.13)
and (2.2.15) the energy deusities turn out to be

w = 3ol 1 O 20U = O 2007 = Py o
and  w = 5[] + §ulF"]? = plF"(z — cd)]? o
The flow of energy across any given closed surface may be obtained by
finding the rate of change of the total energy inside the surface. . Using
Eq. (2.2.1) in the process, we find that



§2.3] Motion of Fluids 151

W) (%) + 23]
1G5zl V(jj)]d,‘
o [(8) <)o (2) <]

The last integral, being a surface integral, must equal the flow of energy
in through the surface to cause the inerease in W. With a minus sign in
front of it, it is the net outflow of energy across the closed surface.

Therefore, the vector representing the energy flow density in a
medium carrying elastic waves is

S = —(as/ot)- T (2.2.20)

This is not a surprising resnlt. The quantity ds/at is the velocity
of the particle of the medium at z, y, 2. The tractile foree across an
element of surface dA, perpendicular to ds/df is T - dA,, and the expres-
sion for power is force times velocity. Since the dimensions of T are
foree per unit area, the dimensions of S are power per unit area.

For the planc longitudinal wave given in Egs. (2.2.13) and (2.2.14)
the transmitted power 1s

S = i(A 4+ 2u)e[f" (@ — e)]? (2.2.21)
and for the transverse plane wave given in Egs. (2.2.15) and (2.2.16) it is
S = iue[F"(x — cd)]? (2.2.22)

The density of energy flow for a plane elastic wave is usually called the
intensily of the wave. We see in each case that the magnitude of the
intensity is the energy deusity times the wave velocity. 1In a plane wave
the energy moves along with the velocity of the wave.

In these cases we can consider the quantities ¢.f” and ¢.F"”’, the ampli-
tudes of velocity of the medium, as being analogous to an electric-current
density and the quantities (A + 2u)f” and ul”’, the amplitudes of the
tractile forces, as being analogous to voltages. The product of the two
gives power density. The ratio of the two would give a quantity which
could be called the impedance of the medium for waves of the type con-
sidered. For compressional waves the impedance is (A + 2u)/¢. = pce,
and for shear waves it 1s p/¢; = pcs.

2.3 Motion of Fluuds

A fluid differs from an elastic solid in that it yields to a shearing
stress. We cannot expect to relate the displacement of a fluid with the
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stress tensor, for if the displacement were kepl constant, the shearing
stress would vary with time, or if the shearing stress were kept constant,
the displacement would vary with time. [t requires a constant rafe of
shear to maintain a constant shearing force in a fluid.

This indicates (if it were not clear already!) that it is more convenient
to express the behavior of a fluid in terms of veloeitics rather than dis-
placements. Two types of description can be used; one which gives the
velocity of each particle of the fluid at each instant, of time and another
which gives the fluid velocity at each point in space at each instant of
time. In the first description the vector field follows the particles of
fluid us they move around; in the second case the field is attached to a
fixed coordinate system, the vector at a given point giving the velocity
of that part of the fluid which is al that point at the time.

The two types of description of the motion of a fluid correspond in a
distant way to the atomic and to the continuum picture of a flmd. An
actual fluid, of course, is a collection of molecules, each moving under
the influence of forees. Some of the forces are internal, due to other
molecules nearby; the nature of these forces determines the compressi-
bility of the fluid. Other forces are exfernal, due to bodies at some
distance, such as gravitational or electrical forces, which act move or
less equally on all molecules in a given small region.

In a thoroughgoing analysis of the first type of deseriplion we would
start by labeling cach molccule by its position in space at ¢ = 0. For a
detailed analysis we should also have to know the initial velority of each
molecule before we could expect to determine in detail thetr subsequent
motions. For many problems, however, it will suffice to know only the
average position and velocity of the molecules in each element of volume
(such as the one dx dy dz al xo, yo, 20) With dimensions large compared
with molecular size but small compared with the total extent of the fluid
considered.  When these averages are obtained, the internal forces
cancel out (cxcept in determining the relation between pressure and
density) and leave only the external forces acting on the portion of fluid
in the element. By this averaging procedure we ohtain equations for
the gross motions of the fluid which disregard its detailed discontinnities
and correspond to a continuous, nongranular approximation to the actual
fluid. The discussion in Sec. 2.4 will show how this transition, from
an overdetailed molecular picture to a smoothed-out, average picture for
the fluid, is performed.

The second type of deseription usually starts immediately from the
smoothed-out approximation. The average velocity of those fluid
particles which are close to the fixed point z, y, z at time tis computed as a
function of ¢, as though the fluid actually were continuous.

We shall choose the second method of representation, for il cor-
responds more closely to the types of fields studied in other parts of this
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chapter. 'The vector v(z,y,2,t) is the velocity of that portion of the fluid
which happens 1o be at z, y, z at time t. The expression div v is the net
outflow of fluid from the “region avound x, y, 2”7; that is, dx dy dz div v
is the net outflow of fluid from the element dx dy dz. If div v is every-
where zero, the fluid is then said to be incompressible. The vector w =
5 curl v represents the circulation of fluid “around the point z, y, 2”’; it
is called the vorticity vector of the fluid (sce page 42). If wis everywhere
zero, the flow of fluid is said to be érrotational (in which case the vector v
can be expressed as the gradient of a sealar velocity potential).

This brings us back to the diseussion of vector fields given in Sec. 1.2.
As a matter of fact we used there the example of fluid flow to help us
picture a vector field, and a number of terms, such as vorticity, How
lines, and net outflow, were chosen to further the analogy. We can
now return to this point of view to obtain quantitative measures for the
fluid motion.

For instance, the flow lines plot the average paths of the various
particles of fluid. The differential equation for these lines is dx/e, =
dy/vy = dz/v.. The number of flow lines crossing a given surface, which
is equal to the outflow integral [v - dA across the surface, is also equal to
the average {low of Auid across the surface, and so on. If there is no
vorticity (z.e., if curl v = 0) and a velocity potenrtial exists, the flow
lines are everywhere perpendicular to the equipotential surfaces and
constitute a natural coordinate system for the problem.

Equation of Continuity. Two general properties of the velocity field
for a fluid should be mentioned before we go into details.  One has to do
with the relation between net outflow and change of density of fluid.
If v 1s the fluid velocity and p is the fluid density at z, y, 2, ¢, then pv s
the vector representing the flow of mass per square centimeter and
dr dy dz div (pv) is then the net outflow of massfrom the volume element
dr dy dz. Since matter is neither created nor destroyed in most of the
cases considered, this net outflow of mass must equal the loss of mass
p dx dy dz of the luid in the element.  Tu other words

dp, 0t = — div (pv) (2.3.1)

This equation is called the equation of continuity for the fluid. From
this equation 1t is obvious that for a fluid of constant density p (incom-
pressible fluid) the net outflow div v must be zero.

In some problems it. will be convenient to assume that fluid is being
created (or destroyed) at some point or points.  Such a point is called o
source (or a sink) of {lud. Naturally the equation of continuity does
not hold there.

The other general property of the veloeity field is related to the
fact that the coordinate system for the vector field does not move with
the fluid. To find the rate of change of sume propervy Fir.t) of the fluid
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at or near a specified fluid particle (whose position is given by the radius
vector r at time t) we cannot just compute the rate of change oFF/at of F
at the point z, ¥, 2, for the particle does not usually stay at the one point.
The change in F' we are interested in is the difference between the value
F(r,t) at point z, y, 2, where the fluid particle is supposed to be at time
t, and the value F(r + vdt, { + dt) at point =z 4 v, dt, y + v, dt, z +
ve dt, which is where the particle i1s at time {4 dt. This differcence,
when expanded out and the first-order terms kept, turns out to be dF =
[(@F/0t) 4 v - VI di. The rate of change of the property F of the
Sluid, which 1s denoted by the total derivative sign, is therefore given
by the equation
L 2.3:2)
in terms of the time rate of change of ¥ at point z, y, z (given by the
partial derivative of F) and the space dependence of F near z, y, 2 (given
by the VF term).
For instance, the acceleration of the part of the fluid which is “at”
z, ¥, # at time ¢ is

dv _adv _dv Lo g
(—lt——&—i—v Vv—at—l—gv(v v) —vXcurlv
av o 5 q «
= Ve — v x W (233)

The second form of this expression is obtained by a reshuffling of vector
components, and the third form is obtained by substiluting the vorticity
vector w for 4 curl v. According to the discussion of page 41, the mag-
nitude of w cquals the angular velocity of the portion of fluid “near”
z, ¥, %, and the direction of w is that along which a right-hand screw would
move if it were turning with the fluid.

The rate of change of a scalar property of the fluid can also be com-
puted. The rate of change of Hensity of a given element of fluid, which
happens to be “at’ z, y, z at time ¢ as it travels along, may also be cal-
culated by the same method, with the following result:

dp dp
£ =T .« OTE 2_. .
b 6t+v grad p (2.3.4)
But the equation of continuity has that dp/di = — div (pv), so that
(dp/dt) = — div (pv) + v-grad p = —p divyv (2.3.5)

Solutions for Incompressible Fluids. When the fluid density p is
everywhere constant, the equation determining v is just div v = 0.
The most general solution of this can be expressed in terms of a scalar
and vector potential (as shown on page 53).

v=ocurl A+ grad y; V¥ =divgrady =0 (2.3.0)
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The vector A can be any well-behaved vector field which satisfies the
boundary conditions.

The equation for the velocity potential ¢ is called
Laplace’s equation.

It will be discussed at great length later in the book.
The flow lines, discussed on page 12, are, of course, perpendicular to
the surfaces of constant velocity potential,

When there is no vorticity, A = 0 and the velocity is completely
determined by the scalar potential. If, in addition, the flow lines lie in
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Fig. 2.9 Potential ¢ and flow @ lines for two-dimen-
sional flow of incompressible fluid. Circulation is pre-
sent, so there is a discontinuity in ¢ at ¢ = 0.

parallel planes, the velocity potential ean be made a function of only two
coordinates, and the motion is called two-dimensional flow. This special
case has numerous iinportant applications in acrodynamics. Ilere the

flow lines and the potential lines made an orthogonal set of curvilinear
coordinates in the two dimensions.

The equation for the flow lines is (see page 12)
dz/v, = dy/vy, or —u,dx+v.dy =0
Therefore if v, = — (0®/9x) and v, = 0%/dy, we have that

(a®/dx) dx + (6®/dy) dy = 0 or &(ry) = constant
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along a stream’ line. The function @ is called a stream function; it is
related to the velocity potential ¥ by the relations

ad/dy = dy/dx, 0®/dx = — (&Y dy)

which are called Cauchy-Riemann equations and which will be discussed in
much greater detail in Chap. 4 in connection with functions of a complex
variable.

We have mentioned earlier that the “density of flow lines” is a
measure of the total flow and therefore of the velocity of the fluid.  This
can be quickly shown in the two-dimensional case, for the outflow
integral [v-dA between two stream lines ®(x,y) = @2 and ®(x,y) = &
can be reduced to a line integral in the xy plane. The outflow integral
concerned is between two planes parallel to the x, y planc a unit distance
Y Y
Flow Lines ' _ Flow Lines

z Z
Fig. 2,10 Flow integral for two-dimensional flow.
apart, and the element of area dA can be a thin strip of unit length and
of width equal to ds, where ds is the clement of length along the path
from @, to ®; in the z, y planc.
The direction of dA is, of course, perpendicular to the direction of
ds; in fact dA = ds X k where, of course, ds is always perpendicular
to k. The flow integral is then

[2v-dA= [lzv-(dsxk)

flz(vxds)-k
[]2 (va dy — v, de) = flz dd = @y — &,

In other words the total flow of fluid along the region enclosed between
the planes z = 0 and z = 1 and the surfaces defined by the flow lines
1 and 2 is just the difference between the values ®; and @, of the flow
function.

The usual boundary conditions in fluid flow are that the velocity
is tangential to all bounding surfaces. When viscosity 1s important, we
must require that the fluid immediately next to the surface move with
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the surface; i.e., if the surface is at rest, even the tangential component
of the velocity must go to zero at the boundary. If viscosity is not
large, however, we may safely assume that the fluid may slip along the
surface without appreciable drag, so that a finite tangential component
next to the surface is allowed.

Examples. A few simple examples will perhaps elarify some of these
statcments and definitions. The scalar potential and related velocity
field, given by the equations

= —(Q/r); v =(Q/r)a, (2.3.7)

have been shown on page 17 to be due to a point source of fluid at the
origin (r = 0) in a fluid of infinite extent. As indicated in Eq. (1.2.9),

Z Z

\ X \ X

Y %
3

Fig. 2.11 Flow lines from a point source,

the total normal outflow from the source is 4a(), which is called the
strength of lhe source. Since no vector potential enters here, there is no

related vorticity vector w = § cwrl v

é:iyifzig 017;)3[) and the flow is said to ///////////’g{ggg;ﬁ’;///// ////////

Another case represents the shear-
ing flow which results when Awd is —_—
between two plane parallel surfaces

(z=0 and z =1 for instance) one 7777777,

of which moves with respect lo the ///// ////////ﬁ}//r/e/s//// ////////
other. If the surfacc at z = 0 is af
rest and the surface at z = 1is moving
in the & direction with wnit veloeity,
the fluid between is said to be subjected to a unit sheariug rate. The
velocity field, which is at rest with respect 1o both surfaces and uniformly
distributed between, is derivable from a veetor potential:

Fig. 2.12 Flow veloeity for flnid in
shear.

There is no normal outflow (div v = 0), but the vorticity vector w =
% curl v = }j is uniform over the region.
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Another example of velocity field, exhibiting both vector and scalar
potentials, is the following, expressed in cylindrical coordinates, r, ¢, 2:

- 1 2q -
v = {0, r<a, == gowrta,; r<a (2.3.9)

walp; r>a’ 0; r>a
where « is the angular velocity of the fluid inside the cylinder r = a.
The velocity vector is then

' wrady; r<a
(wa?/T)ay; > a
The vorticity vector w = § curl v is wa. (as is to be expected from its
definition on page 41) for r < a and is zero for r > a. We note that for
r > a the velocity field is that found outside a simple vortex line, as
given in Eq. (1.2.11). Here we have made the vortex motion finite in

Y4
2] Irrotational
nt Region
Vortek Regiol

Fig. 2.13 Flow velocity, flow lincs, and surface of zero pressure
(free surface) for simple vortex.

extent (r < a) rather than concentrated in an infinitely narrow line, as
was done in Chap. 1.

Stresses in a Fluid. Before we can go much further in this analysis,
we must study the internal stresses in the fluid. There is, of course, the
pressure, which may be due to gravitational or other forces on the fluid
or may be due to a compression of the fluid or both.

In addition, there are the frictional stresses due to rafe of change of
strain, proportional to the velocity vector v instead of the displacement
vector s, as was the case with elastic solids. We saw on page 67 that
the strain in an elastic solid could be represented by a symmetric dyadic
© = }(Vs + sV). The rate of change of this strain is also a dyadic

U =3(Vv+vv)
The expansion factor |ll| = div v is, by the equation of continuity, pro-
portional to the rate of change of density of the fluid (which is zero if

the fluid isincompressible). The “remainder” of 11, which can be repre-
sented by the dyadic

U, = 3(Vv +vV) =33 divy; I =0

corresponds to pure shearing rate and would represent the form of the
rate of change of strain dyadic for incompressible fluids.
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Now we must work out the form of the stress dyadic and how it
depends on the rate of strain. When the fluid is not in motion, the only
stress is the static pressure p, which is completely symmetrical;

L= —pg

so that the force across any element of area dA is —p dA (the negative
sign indicating pressure, negative tension). When the fluid is expanding
without shear (U1, = 0), it is possible that there is a frictional effect
to pure expansion and that the pressure is altered by the rate of expansion
(this turns out to be the case with all fluids except monatomic gases).
In such a case the stress would be

T=(—p+rdivwg

where N can be called the coefficient of expansive friction.

If, in addition, there is a rate of shear of the fluid, there will be a
proportional shearing stress, 2qll,, where 5 is called the coefficient of
viscosity. The total stress dyadic is therefore related to the pressure
and to the rate of strain by the following equation:

T = —p3 +A§U| + 29U, = —(@+ vdivv)§ + p(Vv + vv) (2.3.10)

where v = %7 — )\ can be called the second viscosity coefficient. This
equation is similar to Eq. (1.6.28) for the stresses in an elastic solid,
except that velocity v now enters where displacement s occurred before
(and, of course, the pressure term has been added). This difference is
not trivial, however, for a force proportional to a velocity is a dissipative
force whereas the stresses in Eq. (1.6.28) are conservative.

One might, of course, have assumed that the constants v and 5 were
dyadics rather than scalars, but we have less reason to expect such com-
plication here than we did in isotropic solids. We expect that a fluid is
1sotropic, and experimental results seem to bear this out.

Returning to our examples, we can use the expression for the dyadic
2(Vv 4 vV) in spherical coordinates, given on page 117, to calculate
the stress tensor,

g = (—p+2%?)3 —(%Qa,a, (2.3.11)
for the flow from a simple source given in Eg. (2.3.7). In other words,
the force across a surface element perpendicular to a radius vector is
a compressional one of magnitude p + (47Q/7%), whereas the com-
pressional force across any surface perpendicular to the former element is
P — (29Q/r*). When there is viscosity (3 > 0), therefore, the force on
an element of fluid is not 1sotropie, and for a large enough flow (Q large)
or a small enough radius, the force “ucross” a radial flow line becomes
a tension, whereas the force “along” the flow line is everywhere com-
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pressional. This sort of force is, of course, needed to change the shape
of an element of fluid as it travels out radially from the source, for the
element must spread out in all directions perpendicular to the radius
and must correspondingly become thinner radially. If the flmd is
viscous, il takes a nonisotropic force to produce such a deformation.
The constant v does not enter, for we are assuming that the Huid is
incompressible and div v = 0.
For the unit shear case given in Eq. (2.3.8), the stress tensor is

T = —p3 + ok + ik) (2.3.12)

Ilere the force on a unit area of stationary surface at z = 0 is just T-k
= —pk 4 5i. The component —pk normal to the surface is, of coursc,
the pressure (the minus sign indicating force info the surface). The
component 7i parallel to the motion of the upper surface (at z = 1) 1s
that due to the viscosity of the fluid; in fact we have set up just the
conditions corresponding to the fundamental definition of the cocfficient
of viscosity 7 of a fluid (y is the magnitude of the tangential force per
unit arca for a unit rate of shear).
In the last example, given in Eq. (2.3.9), we have for the stress

- | —p3; r<a 2.3.13
2 —p¥ — (dywa?/r®)(aa, + a,a.); > a (2:3.13)

In the portion of fluid for r < a the only stress is the isotropic pressure,
which is net surprising, for this portion of the fluid is rotating as a rigid
solid with angular velocity w.  Outside this vortex core, for r > a, there
is shear of the fluid, and the force on unit arca perpendicular to r has a
tangential component — (dwa?/r?)a,, representing the drag of the fluid
outside the eylinder of radius r on the fluid inside the cylinder (or viee
versa).

The force on an element of fluid at «, y, z is, as we have stated,
(Vv «T 4+ F)drdydz. This must equal the acceleration of the element
av/al times its mass p dx dy dz.  The resulting equation (which is obtained
by the use of the formulas on page 115)

p(dv/dt) + pv - Vv F4+Vv.-[—@®+1V-v)J+ 2(Yv 4+ vV)]
=TF — grad [p — (o + M) div v] + 5V (2.3.11)

=F — grad [p — (39 + N) divv] — g curl curl v

Il

where v = 27 — \, serves to calculate the pressure if the velocity is
known or enables the transient and oscillutory motions to be computed.
This equation, together with the equation of continuity, Iq. (2.3.1),
and the equation of state, relating the pressure and the ¢Ompression
of the fluid, is fundamental to all the multiform problems encountered
in fluid dynamics. The various forms are obtained by considering one
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term after another in this equation negligibly small and combiiting the
remaining terms. o ' ’
Bernouilli’s Equation. The simplest case is for the steady-state
motion of an incompressible fluid, for then dv 8¢ and div v are both zero.
In addition we assume that the external force F can be obtained from a
potential energy V', F = — grad 1", and we use the vector relation

Fgradv®  =v-Vv4+ v Xcurlv
We finally obtain
29 curl w — 20v X w = — grad U

U=V +p+4mw* w=4fcurlv (2.3.15)

The scalar quantity U can be considered to be the energy density of
the moving fluid. The first term is the potential energy of position due
to external forees; the second term is the kinetic encrgy density. If the
fluid motion is irrofotional, the vorticity vector w is zero and (7 is a con-
stant everywhere for a given flow pattern. In this case we determine
the fluid velocity, in terms of a velocity potential, from the boundary
conditions and then calculate the pressure from the equation

p=U—V — §ov? (2.3.16)

where U is a constant determined by the boundary conditions. This
is called Bernouilli’s equation for incompressible fluids (p = constant).

We note that it is possible for the solution to require a large enough
velocity, 1n certain regions, so that the pressure, computed from this
equation, would turn out to be negative. In principle this cannot
happen, for cavitation would result and the boundary conditions weuld
be modified.

A very lurge number of problems of practical interest can be computed
with fair accuracy by assuming that the flow can be represented by a
velocity polential (i.e., irrotational Aow) which is a solution of Laplace’s
equation. 'The pressure at any point can then be computed from Ber-
nouilli’s equation. Many problems even in aerodynamics can be cal-
culated in this manner, although air is far from being incompressible.
Only when the velocity of an important portion of the air approaches
the speed of sound does the approximation become invalid.  The more
complicated case of supersonic flow will be touched later in this section.

As an example of 1rrotational, incompressional fluid motion, we return
to the flow fromn a simple source, given in Kq. (2.3.7). If we neglect
the gravitational potential. the pressure as a function of r is p, —
(pQQ2/2r%), where p_ is the pressure an infinite distance from the source.
We see that, if the actual size of the source is too small (r too small),
the pressure will be negative and cavitation will result.

Finally we consider the case given in Eq. (2.3.9) of a vertical vortex
of radius a@. This time we shall take into account the gravitational
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potential V = pgz. For r > a the vorticity w is zero, so that U is a
constant. Suppose that the fluid has a free surface (p = 0) at 2 =0
when it is at rest. The constant value of U is therefore set so that
p =0isatz = 0and r = o« ; that is,

pgz + p + (p®at/2r?) = 0; 7> a

For r < a the vorticity w is not zerc but it has zero curl, so that grad U =
20V X W = 2pwira,. Integrating for U and adjusting the constant of
integration so that the pressure is continuous at » = a, we have

pgz + p + (p0?/2)(20* — 1) = 0; r<a
The equation for the free surface is the equation for the surface p = 0:

(2/29)(r* — 2a%); r<a

2= — (w?a?/2¢g7?) ; r>a

(2.3.17)

In both of these cases, the viscosity has had no effect on the pressure,
because the only term involving viscosity in the equation for the pressure
for steady-state motion of incompressible fluids is one involving the curl
of the vorticity w, and the examples have been simple enough so that
curl w was zero. Other exarples can be worked out for which curl w
is not zero and the viscosity does have an effect on the pressure, but the
most frequently encountered examples of this sort are cases where v
and p change with time.

The Wave Equation. The first examples to be considered of non-
steady motion will be for small-amplitude vibrations. In this case all
terms in Eq. (2.3.14) involving the squares of v can be neglected, and we
obtain the simpler equation

p(av/df) = —grad (p+ V) + (3% + M) grad div v — 5 eurl curl v
(2.3.18)
where we have again set F = — grad V and where we do not now assume

that the fluid is incompressible.

In order to get any further we must discuss the relation between the
pressure and the state of compression of the fluid. Flow of material out
of any volume element will reduce the pressure in a compressible fluid;
in fact for any elastic fluid, as long as the compression is small, the rate
of change of p is proportional to the divergence of v, dp/dt = —« div v.
The constant « is called the compressibility modulus for the fluid under
consideration. When the displacements are small, we can write this in
terms of displacement s: p = —« div s, 9s/0t = v.

We have seen on page 53 that every vector field can be separated
in a unique way into a part which is a gradient and a part which is a curl.
Here we utilize this fact twice, once by setting the unknown velocity v
equal to the gradient of a velocity potential ¥ plus the curl of a vector
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potential A. Inserting this into Eq. (2.3.18), we equate the gradients
and curls of each side separately. The equation for the curls is

p(0A/3f) = —x curl curl A (2.3.19)

This is not a vector wave equation, but a vector analogue of the diffusion
equation mentioned on page 137 and to be discussed in Sec. 2.4. Since
only the first time derivative of A occurs instead of the second derivative,
solutions of this equation are not true waves, propagating with definite
velocity and unchanged energy, but are critically damped disturbances,
dying out in time and attenuated in spatial motion. They will be dis-
cussed more fully in Chap. 12. We note that the pressure is not affected
by these waves. We note also that the equation for the vorticity

= 1 curl v is identical with that for A. Viscosity causes vorticity to
diffuse away, a not unexpected result.

Collecting the gradient terms on both sides of the equation derived
from Eq. (2.3.18) and differentiating both sides with respect to time
finally give us the equation for the longitudinal wave:

P vt L v (B o=

K W
e = ); . (2.3.20)

When the compressional viscosity 47 + A is small, ordinary com-
pressional waves are transmitted through the fluid with velocity ¢,
and all the remarks we have made concerning compressional waves in
elastic media are applicable here. If this is not zero a damping term
is introduced. For instance, for simple harmonic waves, with time
dependence given by the exponential e, the equation for the space
dependence of ¢ is

™

YWt e iaAnE Fay °

In other words the space dependence will have a complex exponential
factor, representing a space damping of the wave.

On the other hand if a standing wave has been set up, with space
part satisfying the equation V% + k% = 0, the equation for the time
dependence of y is

- 2,
Y2 (G + WG + ey = 0
which is the equation for damped oscillators in time.

Irrotational Flow of a Compressible Fluid. Our next example of
the different sorts of fluid motion represented by Eq. (2.3.14) is that
of the steady, irrotational flow of a fluid which is compressible. This is
the case of importance in aerodynamics when the fluid velocity approaches
the speed of compressional waves, ¢ = \/x/p, discussed in the previous
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subsection. Since the applications are nearly always to the flow of air,
we may as well specialize our expression for the compressibility « to the
case of a gas.

We cannot go far enough atield here to discass the thermodynamics
of a perfect gas in detail; many {exts on this subject are available for
reference. We need only to write down two equations relating the
pressure p, density p, and temperature 7' of & gas during adiabatic expan-
sion (expansion without loss of heat contained in the gas):

P'pe = (p/po)Y = (T/Ty)wtr=b (2.3.21)

where the indices zero designate the pressure, deusity, and temperature
at standard conditions (for instance, where the fluid is at rest). Another
way of writing this is to relate the pressure and density to the entropy S
of the gas:

plpY = de*¥

An adiabatie expaasion is one for constant entropy S. The constant
is the ratio of specific heals at constant pressure and econstant, volume
(its value for air is 1.405).

Taking the differential of this equation, for constant S, dp/p = vdp/p,
and using the equation of continuity, (2.3.3), we get. dp p = —v dt div v.
Comparing this result with the definition of the compressibility modulus
x we see that x = yp and that the speed of sound (comnpressional waves)
in a gas at pressure p and density p is

¢ = Vvpip = vdpsdp (2.3.22)

In flow of a compressible gas both pressure and density (and there-
fore the speed of sound) change from poinl to point in the fluid. The
relation between them 13 obtained from Egs. (2.3.15), where again we
start by consideriug irrotational, steady-state flow (w =0, av/dot = 0
we also neglect the potential 7). Since now p is not constani, the
integration of grad U = 0 is a little less simple than before. 13oth
pressure and density turn out to be functions ol the air speed r at any
point. The maximum pressure po and related density py and speed of
sound ¢y are for those points where ¢ = 0 (stagnation points). At any
other point ligs. (2.3.13) and (2.3.21) indicate that

v by Do 9 (v—Vry
-v2=~2/ (Lp=2p"—/ 1)“/7dp=—ﬂp—°[l—(p) ]
v—0 P po Jo ¥ — 1 po Po

This indicates that there 18 & maximum fluid veloeity

twax = V2vpo/po(y — 1),

for which the pressure is zero. This would be the velocity of flow into
a vacuum for instance. For air at 15°C at the stagnation points (7' =
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288) this limiting velocity is 75,700 c¢m per sec. At this limiting velocity
the speed of sound is zero (since the pressure is zero).  \t the stagnation
poini the air is at rest and the velocity of sound, \ vpy, po, is maximum.
Therefore as v goes from zero to vm.x, the dimensionless ratio U = »/¢
goes from zero to infinity. This ratio is called the .M ach number of the
air flow at the point. If it is smaller than unity, the flow is subsonie;
if it is larger than unity, the flow is supersonic.

The equations giving pressure, density, temperature, sound velocity,
and Mach number at a point in terms of the fluid velocity » at the point
and the pressure and density po and pe at a staguation point are

p = po[l — (U/'Umnx)z]"’/("_” = pu(C fcn)z'y/('y—l)
pill = (0/r) 21V = polcfeq) ¥V
Tl — (7 tw)?] = Tolcreo)?
\/%('Y - 1)(1‘|2uu - 1“2) (2323)

v 2 »?
M= = —
1= \/('r - 1) (lx - vz)

Vmax = V' 27P0/po(v — 1) = 75,700 em per see

P
T
Cc

€o = Vmax N (v — 1)/2 = \ ypo/po = 34,100 ¢m per sec

The velocity o, at which the Mach number ¥ is unity (fluid speed equals
sound speed) turns out to be equal to /(v — 1)/(v + 1) e = 31,100
cm per sec for air at 15°C (T, = 288) at stagnation points. At this
speed the pressure, density, ete., are p, = 0.528pg, p = 0.685p,, T =
0.83270 = 240°K = —33°C, ¢, = ;.

Subsonic and Supersonic Flow. Several examples will show the
importance of the region where 1 = | and will indicate that the phe-

Fluid mid [
o > A
Velocity Velocity P \\

\

Fig. 2.14 Propagation of a disturbanee through a fluid
traveling past small obstruction at P with velocity
smaller (left) and larger (right) than speed of sound.

nomena of gas flow for speeds above this (supersonie flow) are quite differ-
ent from the phenomena for speeds below this (subsonic flow).  Asa very
simple example, we suppose air to be flowing past a small object at rest
al point P in Fig. 2.14. The presence of the object continuously devel-
erates the air in front of it, which continuously produces a sound wave
in front of it. If the air velocity is less than that of sound, these waves
can travel upstream from the obstruction at P and warn the fluid of its
impending encounter, so to speak. But if the fluid is moving faster than
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sound, then no warning can be sent upstream and the expanding wave
fronts are carried downstream as shown in the right-hand sketch of
Fig. 2.14. The envelop of these waves is a “bow wave” of disturbance,
which is called a Mach line or Mach surface. The first intimation of the
presence of the obstruction at P occurs when the air strikes this line or
surface. Incidentally, it is not hard to see that the angle of inclination
of this line, the Mach angle, is given by the equation

a = sin™ (1/M) = sin™! (¢/v)

We shall come back to these Mach lines later.

As another example, consider air to flow along a tube of varying
cross section S(x), as in Fig. 2.15. In order that no air pile up anywhere
(i.e., that there be steady flow), the same mass @ of air must pass through

pressure p(x)

Ve\'/‘()Cx_)’_,i)t Total Moss Flow Q

density p (x)

X—
Fig. 2.16 Air flow in tube of varying cross section.
Lower plot shows three curves of possible variation of
M = v/e along tube.

each cross section. If the tube does not change too rapidly with change
of z, and if the inner surface of the tube is smooth, the density and
velocity will be nearly uniform across each cross section, and with fairly
good approximation, we can say that p and p and v are all functions of =
alone. Then, to this approximation, for steady flow
Q = B@)p@(@) = (Spo/vmuc T V) (o, — v7) Vg
or lnS=‘2 lnvm,—l—ln(g)—lnv—1ln(v§m—v2)
v —1 Po v —1
Differentiating this last equation with respect to z and using the
equation for ¢ given in Eq. (2.3.23), we obtain
1dS _1dv ., v
S%—Eﬁ(ﬁl_l)’ M "
Therefore if the flow is everywhere subsonic (M < 1), wherever S
decreases in size, the air speed v increases, and vice versa. On the other
hand if the flow is everywhere supersonic (M > 1), wherever S decreases,

(2.3.24)
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the air speed » decreases, and vice versa. In each case wherever S has a
maximum or minimum, there ¢ has a maximum or minimum. These
cases are shown in the lower plot of Fig. 2.15.

If, however, the pressure pq, total flow @, etc., are adjusted properly,
the Mach number M can be made to equal unity at a minimum of S.
In this case dv/dx need not be zero even though dS/dx is zero, and the
velocity can increase from subsonic to supersonic as it passes through
the constriction (or, of course, it could start supersonic and end up
subsonic). This case is shown by the center curve in the lower part of
Fig. 2.15.

Velocity Potential, Linear Approximation. We must now set up
the equation which will enable us to compute the vector velocity field
to satisfy any given boundary conditions. As with the irrotational flow
of incompressible fluids, we assume that this field can be obtained from a
scalar velocity potential field, v = grad ¢. The equation for ¢ comes
from the equation of continuity, Eq. (2.3.1) for dp/at = 0,

0 = div (pv) = div [(po/Vmax"™") (Vonx — %)V 771V]

or 0 = div [(#2,., + vV y]
Therefore, if v = grad v,
3
woy g S Lo v
V ‘b - J, J - E 62 axm axn -a:’l::a?" (2.325)
m,n=1

where x, = x, s = ¥, 73 = 2, and ¢® = (v — 1)(v2,. — |grad ¥|?).
For two-dimenstonal flow the equation becomes

%Y 1 (ap\'] | o 1 (v 2] 2 W W,
T[‘”(a‘)]*@[“‘(@) = Garojazay 3%

There is also a flow function ® which defines the lines of flow and which
measures the mass flow of ailr between two flow lines. We obtain
this from the equation of continuity for steady flow, div (pv) = 0, for
we can set

3‘!’_ Po E)CP. . _ﬂ_poc')@

Ta T el T pdw

and then div (pv) is automatically zero. Likewise, as we showed on
page 136, the total mass flow between two flow lines (per unit of extent
in 2) is equal to py times the difference between the values of ® for the
two flow lines. The equation for ® is similar to that for y:

@1_"“2_@24_@1_(@2@2
dx? pc) \3y EYE pc/ \az
2
_ _o(m) o2 svoe
- 2(pc) dx dy oz Ay (2.3.27)
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Equation (2.3.25) is, of course, a nonlinear equation for ¥, one quite
difficult to solve exactly. When J/ 1s small (subsonic flow), J may be
neglected to the first approximation, and the equation reduces to the
linear Laplace equation characteristic of incompressible fluids. When
the solution of Laplace’s equation, ¥, 1s found for the particular case
of interest, J, may be calculated for each point from ¥y by use of the
equation for J. Then a second approximation to the correct ¥ may be
obtained by solving the Poisson equation v = Jy, and so on.

If M is not small, however, such ilerative methods cannot be used
and other approximate methods must be used. One technique is useful
when the flow is not greatly different from uniform flow, v =v,, a
constant. In this case the direction of the unperturbed flow can he
taken along the x axis, and we can set

v=12,d+vy; ¢ =0vx+ Y

where v, is small compared with v,, though v, is not necessarily smuall
compared with ¢. To the first order in the small quantity vi/e, we have

o o1,

— A 2
d.? ( M)+ ay*? 9z*

~0 (2.3.28)
where /2 = [2/(yv — D2/ (2., — vD] = v2/c2 is the square of the Mach
mumber of the unperturbed flow.

This equation, being a linear one in ¥, can be solved to determine
the steady flow around irregularities in the boundary surfaces as long
as the irregularities do not produce large changes in air veloeity near
them,

Mach Lines and Shock Wavyes. FEquatipn (2.3.28) again shows the
escential difference m nature between subsonic and supersome flow.
The difference can be illustrated by a two-dimensional case, where the
equation is

0%,
('_)'.l.?.

o,
— T2 — ()
(=22 + 55 =0 (2.3.29)

When A, is less than unity, this equation can be changed into a Laplace
equation for ¢; by changing the scale of y to ¢ = y+/1 — 2, ¥’ = x.
Therefore the flow lines and potential surfaces are similar to those for
incompressible flow, except thatl the y axis is stretched by an amount
1/471 — M2,

However, if 3, is larger than unity, we can no longer transform
the equation into a Laplace cquation, for the % /dx® term changes
sign and the equation is more analogous to a wave equation (see page
124) with x analogous to time and the “wave velocity” ¢, = 1/A/M2 — 1.
Solutions of the resulting equation are

V1= fy — ) + Fly + cu2)
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As mentioned on page 166, any irregularity in the boundary shape (which
15, of course, here a plane parallel to the z, 2 plane) produces a “bow
wave”” which spreads out at an angle o = tan—! (¢,) = sin—! (t/M,) to
the z axis, the direction of unperturbed motion. This is the Mach
angle mentioned on page 166.

In two dimensions we have also an approximate equation for the
flow function @, discussed on page 167. We assume that & = (p/ po)vuy
+ &1, and inseriing in Eq. (2.3.27) and neglecting terms smaller than
the first order in ®; we have

02, "y
o -
which is similar to the approximate equation for the correction to the

velocity potential .
B ¥
A il 7 G Q D
L ~_ 7.
Linearized Solufion/\/"
Y —» */\L

(4 — M2) + (2.3.30)
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Fig. 2.16 Two-dimensional supersonic flow, linearized
solution. Vector diagrams show method of determnining
veloeity in B and C'; veloeity in regions A and D is n,.

As an example we can assume that air flows at supersonic velocity
past a surface which is, in the main, just the z, z plane. At a certain
point, however, a ridge of material, forming an irregularity parallel to
the z axis, occurs in the boundary, as shown in Fig. 2.16. If the height A
of the irregularity is small, the approximations of Egs. (2.3.29) and
(2.3.30) are valid and both the stream function ®; and the velocity
potential 5 are funetions of y — ¢ or of 2 — y /M2 — 1, which is the
same thing.  We do not need the function of y + ¢, in this case (why?).
Therefore the change in velocity »; is perpendicular to the Mach line.
i.c., 1s at an angle « to the y axis.

If the boundary surface is given by the equation y = B(z), where
B(x) is zero for & > x» and for & < 25, then the expression for the flow
function is

® =wy — Bx —y AL — 1)
The flow lines ® = constant are shown in the top part of Fig. 2.16.
We note that the flow lines are undisturbed in region 4 to the left of the
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Mach line (z,P), that they are again undisturbed in region D to the
right of Mach line (@), and that both these lines are inclined at the
Mach angle a = sin™! (1/31,) to the x axis.

The actual velocity v (to this approximation) in regions B and C' of
Fig. 2.16 can be obtained graphically by utilizing two obvious facts:
first, that v must be parallel to the flow lines, 7.c., must be at an angle 6
to the z axis, and second, that vy is perpendicular to the Mach line, i.e.,
must be at an angle a with respect to the y axis. The graphical con-
struction is shown in Fig. 2.16. Since vy is supposed to be much smaller
than v, we have for the air speed, density, Mach number, and mass
flow in the two regions the approximate expressions.

Region B: v~uv,(1 — 6 tan a)
p=p,(1 -+ ML tan o)
pv =~ pu[l + (M2 — 1)6 tan o]
M~ [1 Vst o tan;"]
v2, — 2
Region C: v=>~wv,(1 + & tan a)
p=~p.(l — M5 tan )
o0 =~ pu2 [l — (M2 — 1)6 tan a]
M~ M, [] + v?“;xﬁ tan 201]
)max - vu

The interesting point about the flow in region B is that, although
the air velocity » decreases, the mass flow per unit area pv increases.
The drawing for the strcam lines also shows this, for in Fig. 2.16 in
region B these stream lines are closer together, a concomitant of increased
mass flow, as the discussion on page 167 indicated. At the first Mach
line the air suddenly slows down and compresses; al the second it speeds
up and expands; at the third it slows down and compresses to its original
condition.

If the boundary were actually distorted as much as Fig. 2.16 indicates
(i.e., if 8 and & were actually as large as is shown), v, would not be very
small compared with v, and the first approximation would not be suffi--
cient to compute the motion. One difficulty which immediately arises
is that the Mach angle for the air in region B is appreciably different
from the Mach angle for air in region A whenever the speeds v differ
appreciably in the two regions. The question then arises: What should
be the angle between the x axis and the Mach line dividing regions A
and B, the angle a,, = sin™! (1/31,) appropriate for region .4 or the angle
appropriate for the air in region B (which is greater than a,)? Detailed
study of an exact solution indicates that the angle between the x axis
and the actual “shock front” is intermediate between the two discussed
in the previous sentence and that the air as it flows across this front,
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undergoes a practically instantaneous change of state to a new speed,
density, and pressure appropriate to region B.

As for the demarcation between regions B and € in the exact solution,
here the Mach lines appropriate for the two regions diverge (as shown by
dotted lines Oa, Ob in Fig. 2.17), leaving u region between for the air
to change continuously from the state appropriate to region B to thai
appropriate to region A. A plot of pressure along the flow line H is
also shown in Fig. 2.17; it shows thai change from a region of faster
to one of slower speed involves a discontinuous increase in pressure,

T
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[
o
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Fig. 2.17 Exact solution for two-dimensional supersonic
flow; flow lines and pressure distribution along H.

whereas the reverse change can be accomplished in a more continuous
manner.

A great deal more could be said here about supersonic aerodynamics,
but it would carry us still further from our course in this chapter. We
are here studying techuniques of deriving field equations, not primarily
discussing various parts of physics in an exhaustive manner.

2.1 Diffusion and Other Percolative Fluid Motion

In the previous sectioun we have tacitly assumed that the fluid under
consideration is the sole inhabitaut of space, that within the rigid bound-
aries specificd in the problem there is no other fiuid or solid which hinders
the fluid flow. Many problems of interest, however, involve the inter-
penetrative motion of a fluid through a porous solid (or another fluid)
which interacts at every poinl with the diffusing fluid. Examples
include the percolation of liquids through porous media and the motion
of special fluids, such us free eleetrons through a gas or of neutrons
through matter. A very important problem is the calculation of the
flow of heat through matter. Ileat is, of course, the internal energy of
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the matter itself, but it behaves in many respects as though it were a
fluid, with a measurable “density’” and rate of flow.

In all these cases we can still talk of an effective density p of the fluid
under consideration, an average mass per unit volume (or heat per unit
volume, etc.) at each point, even though each element of volume also
contains another fluid or solid. In many cases we cannot speak of an
average velocity (what is the velocity of the heat, for instance?) but
we can always speak of a mass flow (or total heat flow, etc.) per square
centimeter al each point. This quantity J is a vector and is equal to
ov when there is such a thing as a fluid velocity v.

In general the fluid under consideration is not, evanescent (although
when the fluid is a neutron gas some neutrous are lost by nnelear absorp-
tion), so that the equation of continuity usually holds:

dp/ot = — div J (2.L.1)

From this point on, however, the discussion depends on the particular
fluid which is studied.

Flow of Liquid through a Porous Solid. For instance, for a liquid
seeping through a porous solid we can usually neglect fluid expansion
and contraction, so we can set dp/0t = 0. We can also negleet viscosity
in comparizon with the friction of seepage. and we can neglect vorticity.
Therefore the mass flow J can be taken as the gradient of u scalar pot ential
v, which is a solution of Laplace’s equation div [grad ¢] = V& = 0. as
with any irrotational flow of any incompressible fluid. The difference
from other eases. considercd in the previous section, comes in the equation
of motion, which determines the pressure at any point. In the present
case it takes a force to make the liquid flow through the pores; to the
first approximation this foree is proportional to the flow.

Referring to Eq. (2.3.14), we see that the force equation for the
present case is

% 4+ R]=F —grad p (2.1.2)

where F is the external (gravitational, ete.) force per unit volume on
the liquid, p is the pressure, and R is the flow resistivety of the porous
material. When the porous material is equally resistant in all directions,
I can be taken to be a scalar; for nonisotropic materials it would he a
dyadic, operating on J. For steady-state conditions, when J = grad ¢
and when F is also the gradient of a potential energy V, this equation
reduces to

grad (1 — p) = R grad ¢

and gvhen R is constant it becomes simply p = 17 — Ry, which serves
to determine the pressure p at every point.
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Diffusion. A more interesting problem occurs when the fluid is com-
pressible and when we cannot talk about over-all “forces” on an ele-
meut of the fluid. This is the case with heat flow, with the diffusion of
one liquid through another, and with the diffusion of neutrons through
matter. In the case of heat flow the concept of force on the fluid has no
meaning; in the case of neutron diffusion the important forces are the
internal ones causing collisions between the neutrons and the particles
of matter.

In none of these cases doves the equation of motion given in Eqg.
(24.2) hold. The flow s not caused by external forces or by pressure
gradients but is simply due to concentration gradient. The fluid, for
one reason ot another, tends to flow from a place of higher density to a
place of lesser density, the flow being proportional to the gradient of
the density,

J = —a?grad p (2.4.3)

where the constant a is ecalled the diffusion constant. Combining this
with the cquation of continuity (2.4.1) gives us the diffusion equation

dp/0t = a*V?p (2.4.4)

which hag already been referred to on pages 137 and 163.

In the case of heat flow p is the **amount of heat” per unit volume,
which is proporiional to the temperature, p = C7, where C is the heat
capacity of the matevial per unit volume. Since the equation for heat
flowis J = —K grad T, where R 1s the heat conductivity of the material,
it will be seen that 7" must be a solution of the diffusion equation, with
ot = K/C.

The proof that a neutron gas, for instance, satisfies approximately the
flow equation (2.4.3) and the determination of the corresponding diffusion
constant will require a detailed examination of the mechanism of neutron
diffusion, which will be sketched later in this section. In such a case
the diffusion s due to random motion of the particles of the fluid, and
the diffusion constant is a measure of the hindrance offered to this motion
by the other matter present.

Diffusion equation (2.4.4) differs from the wave equation (2.2.2)
by having a first time derivative instead of a second. This corresponds
to the facl that diffusion is an rreversible process analogous to friction,
where energy 1s lost, (or entropy gained), whercas wave motion is revers-
ible and counservative. For oue space dimension the equation

dp L, 0%
ot a ox?

is the simplest form of the parabolic partial differential ecqualion. As
noted on page 138 the fluid density moves as though it were completely
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damped (as, of course, it is), tending always toward uniformity and
never ‘“overshooting the mark” to produce oscillations, as occurs with
wave and vibrational motion.

Phase Space and the Distribution Function. Before we can go any
further in the analysis of diffusion, we shall have to consider the detailed
motions of the particles of diffusing fluid, which means that we must for
the time being set aside the smoothed-out, eontinuum picture of a fluid
and look into its discontinuous, atomic structure. It is well to carry
out such an analysis once in this chapter, if only to show how it is possible
to describe the behavior of large numbers of atoms by means of con-
tinuous fields satisfying partial differential equations and to show how
one relates the properties of the individual atoms with the constants
occurring in the field equations.

The connection is, of course, made by meauns of the techniques of
kinetic theory. Our fluid is made up of N atoms (or molecules), each
of mass m. The “state” of the nth atom at any instant is given by its
position and velocity (for a molecule there are other internal motions
which need not be considered here). The position can be specified in
terms of the radius vector r = iz 4+ jy + kz to the atom {from some origin;
the velocity can be specified in terms of the momenfum vector p = mv
= ip, + jp, + kp.. Therefore the state of the atom (to the extent that
is useful here) can be specified by giving its location in six-dimensional
phase space, with coordinates =, y, 2, ps, Py, p-. The methods of kinetic
theory provide a means whereby we can go from the motions in phase
space of individual atoms, under the influence of external and internal
(interatomic) forces, to the average motions of swarms of atoms.

The transition is effected by means of the distribution function.
To define this function, we consider a particular fluid, cousisting of N
atoms, subject to given initial and boundary conditions of the usual sort.
At some instant the atoms of this fluid can be represented as a swarm of
N dots in phase space. At some regions in phase space there will be a
concentration of dots; other regions will be very sparsely populated. If
N is a large enough number, we shall find a tendency toward “smooth-
ness” in the consistency of the cloud. We can write down an average
density of dots at various regions of phase space, which density will
vary more or less smoothly from point to point. Now suppose that we
duplicate the initial and boundary conditions with a similar set of N
atoms and look at the distribution of these N dots in phase space at the
corresponding instant of time. Since the initial and boundary conditions
are large-scale conditions, affecting only the average positions of atoms,
the second swarm of dots will not exactly coincide, dot for dot, with the
first swarm. The average density of dots, however, will be more or less
equal in the two cases.

Suppose that we carry through the same experiment, not just twice,
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but a large number of times, starting out the N atoms under conditions
which are identical from a large-scale point of view. We can then obtain
a probability density f(x,y,2,p0,,P:t) = f(z,p,t) for each point of phase
space, such that fdx dy dz dp. dp, dp, gives the fraction of the experiments
for which a dot is found at time ¢ in the element of phase space, dx dy dz
dp. dp, dp. at the point 1, p. The function f is called the distribution
function. If we have sct up our experiment sensibly, we shall find that f
1s a reasonably continuous sort of funetion of r and p and ¢, and we can
expect that it will satisfy some sort of differential equation, which will
provide the link between small-scale interactions among the atoms of the
fluid and large-scale motions of the fluid as a whole.

We can obtain the large-scale fluid properties which we have been
discussing in the previous section in terms of integrals involving the
distribntion funetion. The volume element in phase space can be
written dV. dV,, where dV, = dz dy dz and dV, = dp. dp, dp.. Some-
times spherical coordinates r, 9, ¢ in ordinary space and p, 6, ¢ in momen-
tum space are useful; the corresponding forms for the volume element
are then dV, = 72 dr sin 9 dd dp and dV, = p?dp sin 0 d6 d¢.

In the first place the integral of f over all space inside the boundaries
must just equal the number of atoms in the fluid:

JIfIfif(xpt) dV.dV, = N (2.1.5)

The average number of particles per unit volume of ordinary space must
be the integral of f over momentum space; this number times m the mass
of an individual particle must be the density

o(zyzt) = mf[[fxp) AV, (2.4.6)

mentioned earlicr in this section. The total average momentum per
cubic centimeter

J@.y,zt) = [[p f(x,p.0) 4V, (2.4.7)

is the mass flow vector J mentioned earlier. The total kinetic energy
of the fluid is
U= Q72m)[[[p®flx,p,) dV,dV, (2.4.8)

If the forces between atoms are negligible, this is equal to the total
internal energy of the gas and is proportional to its temperature. These
integrals show that f must go to zero, for large values of p, decidedly
enough so that the integral for {7 does not diverge.

One differential property of f is of general validity and is related
to the equation of continuity (2.4.1). All the particles in a given element
of momentum space dV, are traveling with the same velocity p/m.
There are f(r,p,t) dV.dV, of them in element dV, al point r(x,y,2) at
time £ At time ¢ + dt they are at point r + (p/m) df. Therciore the
probability density f at point r at time ¢ must equal the density f at
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point r + (p/m) dt at time ¢ + dit, for the particles of momentum p;
fr + (p/m)dt, p, t + dt) = f(r,p,t). Expanding this in a series and
retaining only terms in the first power of dt, we obtain the equation of
continuity for the distribution function:

9 = — P ,
5 /@) = — -~ grad [J(r.p,0)] (2.4.9)

where the gradient operator operates on the space dependence of f.
This equation, combined with Egs. (2.4.6) and (2.4.7) gives immediately
the usual form of the equation of continuity (2.1.1). It will be modified
by other effects, to be discussed later.

Pressure and the Equation of State. A very simple example will
indicate how we can use the distribution funection to relate the smoothed-
out pressure, discussed in the previous section, to the motions of the
individual particles. Suppose that we have a container of volume V
with N gas atoms uniformly distributed inside. By ‘“uniformly dis-
tributed” we mean that f is independent of r inside V. TFor the gas to
remain uniformly distributed, f must be independent of ¢ and J must be
zero everywhere. The simplest assumption that will satisfy all these
requirements is that f = (N/1x V) (p), where ¢ 1s a function only of the
magnitude p of the particle momentum having the following propertics:

o l_ o0
/ ¥pdp =15 5 / V(p)p*dp = € (2.4.10)
0 m Jo

The first integral determines the arbitrary constant giving the magnitude
of ¥ (i.e., normalizes ) so that ¥p? dp is the probability that a gas par-
ticle has momentum magnitude between p and p + dp. The quantity e
1s then the average kinetic energy of a particle.

Substituting this expression for finto the integrals for the field quanti-
ties mentioned earlier, we obtain the equations

p=({ NmTV); J=0; U =Ne

It should be pommied vut that the statement that f is (A /4xV)W(p)
thereby imposes certain vestrictions on the nature of the boundary
walls around the volume V. In the first place, these walls must bounce
every impinging particle back into the voluine 1 and not let any escape;
otherwise V and f would not be independent of time.  In the second place
the walls must duplicate the momentum distribution given by y¥(p) in
their reflection of particles, so that a sample of particles just reflected
from a wall would be indistinguishable, as far as velocity distribution,
from a sample of unreflected particles. This is not to say that every
particle must bounce off as if from a perfectly clastic boundary; it does
say thal for every particle reflected with reduced energy there is one
reflected with increased energy. In any other case the distribution f



§2.1] Diffusion and Other Percolative Fluid Molion 177

would change as the boundary surface was approached. and f could not
he indeperident of 1.

Let us assume that all these slightlyv improbable requirements are
complied with, and let us examine the average behavior of those particles
close to a portion of the boundary wall. We shall assume that this
portion is plane and arrange the axes so that they coincide with the y, 2
plane, the portion for negative = being inside the gas and the portion
for positive  being inside the wall. Then for f at £ = 0, all the particles
having positive values of p. have not yet struck the wall and all having
negative values have just been rveflected from the wall.

We are now in a position to ask what property of the gas particles
produces a steady pressure on the boundary of the container.  Ohviously
it is the repulsive interaction between the wall and the particles which
strike 1he wall, the same interaction which reftects the particles back
into the gas when they strike. Since action equals reaction, we can say
that the force exerted by the gas per square centimeter on the surface
is the same as the force exerted by a square centimeter of surface on the
impinging particles to reflect them back into the gas.  Sinee force equals
rate of change of momentum, this reaction of the wall equals the average
change of momentum of all particlex which strike the wall in 1 sec. The
number of particles in momentnm element dV, at momentum p which
strike a unit area of y, z plane per second is equal to v (N, 17 W(p)dV,
= (N/teVm}¥(p)p*dp cosf sin §d6dé, where, for these impinging
particles, 0 < 8 < 7/2. The total average.change in momentum for
each of these particles is 2p, = 2p cos 6, so that the force exerted by the
square centimeter on the gas (and therefore the pressure) is normal to the
surface and of average value

N [* n/2 . e . 9Ne 2U
- A 0826 8 24 = = Ll = — e
T /0 d¢ —/; cos? @ sin 6 d6 /o pY(p)dp = P 31 37

by using Kq. (2.4.10).  We therefore obtain the equation relating pressure
P, volume V7, and internal kinetie envrgy U

PV =3U or P =%Ep (2.4.11)

which is ecalled the equation of state of the gas. The quantity £ = U/Nm
is the kinetic energy per unit mass of gas, and p = Nin/V is the average
densiiy of the gas.

We could go on to show that, when the volume of such a container
with reflecting walls is reduced (this corresponds to an adiabatic com-
pression, sce page 164), then £ changes, being proportional to the
(v — 1)th power of the density (where v is a constant for the gas under
study, being 1.4 for air); therefore the pressure for adiabatic compression
is proportional to the yth power of p. This will take us too far afield,
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however, and we must get on with our discussion of the relation between
internal forces in the fluid and the diffusive properties of the fluid.

Mean Free Path and Scattering Cross Section. In a gas the indi-
vidual particles, atoms or molecules, are far enough apart that most
of the time they move as free bodies, with constant momentum. Only
occasionally does one come near enough to another that its motion is
affected by the mutual force field. We can therefore separate the motion
of each particle into two parts: a free-flight portion, when the particle
is unaffected by other particles, and a shorter portion, when its momen-
tum is being changed by momentary proximity to another particle,
after which the particle sails off for another free flight. These momen-
tary encounters with other particles, during which the momentum of
each particle is radically changed, are, of course, called collisions. In the
case of a neutron gas in a solid, the collision is between neutron and a
nucleus of one of the atoms in the solid, but the same reasoning holds.

If thermodynamic equilibrium has been attained, these collisions
will, on the average, be conservative of energy and therefore elastic.
The law governing the average amount of deflection of path depends on
the law of force between the particle and the ‘“‘target,” the nucleus of
an atom for a neutron or another similar atom for a gas. The simplest
assumption is that the law of force is similar to that between two billiard
balls, zero force for a distance of separation larger than R and a very
large repulsive force for distances smaller than E; and such a simple
assumption corresponds closely to actuality in a gratifyingly large
number of cases. Billiard balls, if they collide at all, rebound with
equal frequency in all directions, and this result is observed in many
actual cases, particularly when the relative velocities are not very large.
When the mass of the target is the same order of magnitude as that of the
impinging particle, this uniform distribution in angle of scattering on
collision is with respect to coordinates moving with the center of gravity
of the colliding pair, and the analysis becomes somewhat complicated.

To avoid complexity we shall first analyze cases where the target
is much more massive than the particle, as is the case when neutrons are
the particles and heavy nuclei the targets or when photons are the
particles and fog particles the targets, for example. In these cases the
targets are considered to be at rest and to remain at rest, n; of them
distributed at random throughout each cubic centimeter. Each target
can be pictured as an elastic sphere of radius R, and the particles as
mass points. Thus we can neglect the collisions between particles and
concentrate on the collisions between a particle and a target.

The first question to answer is concerned with the relative frequency
of collisions between a particle and the various randomly placed targets.
The chance that the collision occurs after the particle has moved a
distance x and before it has moved a distance = + dx is proportional to
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the fraction of the area of the thin sheet of space of thickness dx, per-
pendicular to the path of the particle, which is filled up with targets.
The area of cross section of a target is @, = wR? and there are n,; dx
targets in the volume of space unit area in extent and dwx thick. The
fraction of the unit area blocked out by the targets is, therefore, 7R, dx
= @, dx, and the probability of collision between = and x + dx equals
this factor times the probability P(x) that the particle has gone a dis-
tance = without collision. We therefore have a differential equation
for P(x):

(d/dx)P(x) = —QmnP(x) or P(x) = ¢ om= (2.4.12)

where we have assumed (quite reasonably) that the probability P(0) of
going at least zero distance after the last collision without another
collision is unity (certainty).

We have thus obtained an expression for the probability of free flight
of length x between collisions, in terms of the density n; of targets and
of the cross section @, for collision between the particle and a target atom.
Detailed calculations concerning the details of the force field between
particle and target are thus needed only to determine the value of @,
when it comes to computing mean lengths of free flight between collisions.

The average length of path between collizions is

- 1
A = ﬁ P() dz = (7 (2.4.13)

where the length X is called the mean free path of the particle among the
cloud of targets.

In the case of an ordinary gas there is a mean free path of the particle
among others of its like, for here the targets are other gas molecules.
In the case of denser fluids, such as liquids, the mean free path is approxi-
mately the same size as the average distance R of approach of the par-
ticles, so here a particle is never long free from the influence of its neigh-
bors, but even here the expression for the probability P(x) is valid.
One might say that the particles of fluid make contact with the atoms
of matter (target atoms) through which they percolate only every mean
free path on the average.

The possibility of collisions provides another way whereby the dis-
tribution function is modified from point to point or from time to time.
For instance, during an instant di the particles in the momentum element
dV, with momentum p travel a distance dx = (p/m) dt and a fraction
(Q.np/m) di of them suffer collisions. Those which collide change direc-
tion of momentum and therefore vanish from the momentum element
dV,. Therefore there is a rate of loss of f due to collisions according to
the formula

dfx,p,t) = —(Qugp/m)f(x,p,l) dt (2.4.14)
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But there is also an increase of f due to collisions, for if some particles
vanish from dV, due to collisions, there are also particles, originally in
other momentum elements, which are scattered into dV, by collisions.
Assuming (as we have been so far) that particles are scattered with equal
probability in all directions and that there is no change in particle
velocity on scattering of any group of particles undergoing collision, a
fraction dw/4r will be scattered into directions of motion within the solid
angle dw. Referring to Fig. 2.18, if there are f(r,p’,t) dV, particles in
the momentum element dV’, = d¢’ sin &' d¢’ (p)* dp’, then in time di a
number (Qenp Harm)f(r,p',t) dV, d¢’ sin & d¢’ di are scattered info the
momentum element dV, = dé sin 6 d6 p? dp (p is equal to p’, as we have
been assuming so far). The total increase in f(r,p,t) due to scattering

Fig. 2.18 Momenta and angles before and after collision
between diffusing particle and target atom of medium.

into the final momentum element is the integral of this quantity over
all initial directions of motion, given by & and ¢;

Af(r,9.0,p.0,0.0) = (Qnp/am) [ [f(r.d,¢,p.6/,¢') sin & d6’ d¢’ di  (2.4.15)

Diffusion of Light, Integral Equation. A simple yet mstructive
example of the way these equations can be used concerns the diffusion of
light through a slab of milky glass (or of fog), where the illumination
is uniform over one surface (the y, 2 plane, for instance) of the slab, so
that f is independent. of y and z and only depends on z. This example
was first studied by Milne in conneetion with the flow of light in a stellar
atmosphere and is called Milnc’s problem. 'The ‘““particles’ are photons
all having the same momentum, and from symmetry the function f
depends on the angle 8 between p and the z axis and is independent of ¢.
Therefore we can write f as f(x,0,f). The rates of change of f given in
Eq. (2.4.9) due to variation of f with x and in Eqgs. (2.4.14) and (2.4.15)
due to collisions all cancel when steady-state conditions are reached,
and the resulting equation for fis

cos B%f(x,()) = —nQ:f(x.0) + $n0. f f(x.#) sin &' do’
0

where we have divided out the common factor p’/m. Solution of this
integrodifferential equation will enable one to determine any required
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property of the diffusing light. We have here included the possibility
that a photon mayv be absorbed by one of the scattering centers (fog
particles or whatever) as well as be scattered. For Q) is the sum of
the scattering cross section , and the absorption cross section (.
Naturally @, does not enter into the integral term, for this represents
photons scattered, after collision, info the direction denoted by 6, and
photons which are absorbed do not survive the collision.

If we measure distance in mean free paths, x = £/n,Q), = \¢, this
equation becomes

cos 0%1’(&9) = —f(§0) + 4« Lr J(&6) sin 6' dg’  (2.4.16)

where « = Q./Q, is the ratio of scattering to total cross section. The
term on the left side of the equation represents the tendency of f to
change due to motion of the particles. The first term on the right is
the change of f due to absorption and scattering, and the second term
is the change due to rescattering back into the original direction.

By change of normalization of f we can arrange it so that

p ﬁ) " cos 6 f(£,6) sin 0.d6 = J(£) V' (2.4.17)

is the mean flow of light energy per unit area per second in the positive x
direction at the point £ The constant ¢ is the velocity of light. Then
the integral

J,” #&.6) sin 6.d6 = p(p) (24.18)
is the mean density of light energy at £.

X=X,

I{8)
Fig. 2.19 Diffusion of light through a slab of scattering
material.  Incident intensity given by 1(8).

Now suppose that the slab of scattering material is between the
planes # = ¢ and r = o and that a flux J (8) is incident on the surface
% = 0, as shown in Fig. 2.19. The function I can vary in any arbitrary
manner with 6, in the range from 0 to = 2, but it must be zero for (w/2)
< 6 < =, for this range of ¢ corresponds to flow out of the slab and could
not correspond to incident flux. This flux distribution penetrates
into the slab, gradually disauppearing as its constituent photons strike
& target and get absorbed or scattered. For that part of the flux at an
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angle # with respect to the = axis, by the time it has penetrated a dis-
tance x = Af into the slab, it has traversed £ see 6 mean free paths inside
the material and, by Eq. (2.4.12) only e #=¢ of the original amount
remains. Therefore one part of f(£,6) is I(f)eE==?,

Another part comes from photons scattered at least once. The
number scattercd at distance ¢ free paths from the front of the slab
will be proportional to the density p(#), given in Eq. (2.4.18), and the
number of such photons arriving at depth ¢ at angle 6 will be propor-
tional to p(§)e & ¥€l=<f where # will be less than £ if 6 is less than =/2
and will be greater than £ for @ larger than #/2 (backward scattering).
Consequently it is reasonable to expect that the solution of Eq. (2.4.16)
for the distribulion function will have the general form

£
I(6)eEe==? 4 Lx sec 6 f elE—Duecb (&) /- 0 <6 < 3w
f(£,6) = . 0
K See 0[ g —Beecl (£ i ww<6Lnx
£

° (2.4.19)

Of course this is not yet a solution, for we have not yet calculated the
density p. However, p is a simpler function than is f, for it depends only
on £ and not on 6.

To show that Eq. (2.4.19) is the correct form for f, we transform
Eq. (2.4.16) into the following:

(3/0£)f(£,6) + sec 0 f(§,6) = xp(§) sec 6

Assuming that p is known, we find the solution of the linear inhomo-
genous equation, subject to the condition that f(0,6) = /(6), to be just
that given in Eq. (2.4.19) (we of course take into account the difference
between 6 less than 7/2 and 6 greater than n/2). 'To find the equation
which determines p we multiply Eq. (2.4.19) by sin 6 dé and integrate
over §:

&
p()) = po(8) + b [ EalE — EDe(&) d¥’
pol8) = [ e tmee 1(6) sin 0 do (2.4.20)

E(|§ —¥)) = flm e l(dy/y); y = sec @

This is an integral equation of standard type, which will be analyzed in
some detail later in this book. When &, is infinite, the equation is said
to be of the Weiner-Hopf type. The equation states that the value of p
at ¢ depends on the value of p within a mean free path of £.

Diffusion of Light, Differential Equation. Ilowever, we were setting
out to obtain & differential equation for p and J to relate to the diffusion
equation, so that further discussion of the integral equation will be post-



§2.4] Dffusion and Other Percolalive Fluid Molion 183

poned. Although it turns out that the integral equation is an exact
expression and the differential equation is only approximate, the differ-
ential equation is enough easier to solve to make it advisable to use its
solutions whenever they are valid.

A differential equation of the diffusion type is a good approximation
whenever the fractional change in p or J per mean free path is small. As
long as the absorption cross section @, is small compared with the elastic
cross section (), and as long as we do not require too much detail con-
cerning the behavior of p and J within a free path of the boundary,
this is possible, for then the distribution function J1s nearly independent
of the angle of direction of momentum 6 and the net flux J is considerably
smaller than the rms magnitude of o

This statement that flux J is small is equivalent to saying that the
distribution function can be approximately expressed by the form

F(§,6) >~ 3p(8) + 3 cos 6 J(£)/c (2.4.21)

wherever J /c is considerably smaller than p-  Referring to Fgs. (2.4.17)
and (2.4.18), the flux and density are just equal to the quantities p and
J in this expression. This is the simplest function of § which makes it
possible for values of p and J to be set independently.

Suppose we set up the equivalent to Eq. (2.4.16) with the time deriva-
tive still present. We take, as time scale, the mean free time for the
photons, A/c. Referring to Egs. (2.4.9), (2.4.14), and (2.4.13), we have

520 = = 008 0.2 1(6.07) — bapem
+ 3 A" [f(£,6',7) — f(£,6,7)] sin & d¢ (2.4.22)

where ¢ = (nQx), v = (nQuct), p/m =¢, a = Q/Q: =1~ «x. Sub-
stituting the approximate expression (2.4.21) for f in terms of p and J .
we obtain an integrodifferential equation of some complexity. The last
term, the integral over ¢, does simplify however. The parts of [f(¢,6',7)
— f(£,6,7)] involving p cancel out, and the square bracket becomes
$lcos 6 — cos 6)(1/c)J (&7), which integrates out to —(3/¢c)J(£7) cos 6.

We can separate the resulting equation into two equations by mul-
tiplying by sin 6 d¢ and integrating or else multiplving by cos 6 sin 6 dé
and integrating. These integrations remove the dependence on § and
result in two equations relating to p and J. The first,

b laJ

Rk (2.4.23)

is just the equation of continuity (2.4.1) for the present case, as expressed
i the dimensionless variables = and ¢ and including the loss of photons
due to absorption (the term ap). If there are, in addition, ¢ photons
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per mean free time per cubic mean free path added to the distribution,
the quantity ¢ will be added to the right-hand ~ide.
The second equation

1laJ 1 dp

¢ [5; +J } ~ T3 5
is related to the diffusion gradienl equation (2.4.3). It has an extra
term 8J /or giving the rate of change of J per mean frec time. For the
relatively slow changes involved in diffusion, this term is negligible
compared with J, so that, to the approximation considered here, the
second equation is
¢ dp
3 0¢

J >~ —

(2.4.24)

For diffusing photons, a gradient of photon density produces a drift
toward the region of lower density.
Combining Eqs. (2.4.23) and (2.4.24) results in the diffusion equation
for the fux density:
dp 1 9%

5 g am T o +gq (2.1.23

The diffusion constant for these units of distance and time is just Vi
(see Eq. 2.4.4).  \Wherever the source function gis large, there the density
o tends to increase rapidly; wherever the density is strongly concentrated
(9% /0¢* large and negative), there p tends to deerease rapidly. Since
only the first derivative in 7 enters, the solution is not reversible in time,
as is the wave equation.

The distribution function, to the same approximation, is given by the
following eqygation:

f(£,0) >~ Fo(§) — £(3p/0%) cos 6 (2.4.26)

in terms of the solution of Eq. (2.4.23). This is valid as long as dp, ¢
is small com pared with p.

For a typical solution of Eq. (2.1.25) we can return to the steady-
state solution for a slab of scattering material. We assume that the
beam incident on the surface & = 0 is of intensity / and is all directed
in the positive z direction; that is, I(6) = I3, where d = 5(1 — cos 8 isthe
delta function discussed on page 122. We also assume that the slab is
infinitely thick (£o = ). The part of the incident beam inside the
slab which has not yet collided with & scattering target obviously can
not be represented by the approximate formula (2.4.26), but we can
handle this part separately [call it f; = (I ¢)e %] and consider that
Eq. (2.1.23) applies only to photons which have had at least one col-
lision. As far as this part of the solution goes, the incident photons
appear iuside the slab at the point where they suffer their first collision,
as though there were a source distribution of strength ¢ = 1 — a)let/c
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inside the material (the factor 1 — a = « appears because only the
photons which are scattered. not absorbed. appear in the diffuse dis-
tribution). The diffuse density pqg is therefore a solution of

62Pd
ag?
which results from substitution into Eq. (2.4.23), with the time deriva-
tive set equal to zero (for steady state).
A solution of this equation is

pu z%ll—_—;& fexp[— vVBat+ (1 — V3a) Al —exp (—8)} (2.4.27)
where the constant A is to be adjusted to fit the boundary condition
at £ = 0.

Since «, the ratio between absorption and scattering per collision,
is supposed to be a small quantity, the first exponential diminishes with
increasing £ more slowly than the second exponential; at considerable
distance inside the slab the density is proportional to e~ V3« £ In other
words, the attenuation deep inside the slab is due only to the relatively
infrequent absorption of photons. The total distribution function is
then

— Bapy > — g (1 — a)let

760 ~fi+ BLL T {1 4+ V/Bacos 6] exp [~ \/Ba ¢
c 1l — 3a

+ (1 —V3Ba) Al — (1 + cox ) exp (—§)}  (2.4.28)

Within a mean frec path of the boundary £ = 0 the diffuse part of the
distribution function hecomes. to the first power in the small quantities
£ A, aud o

31 1 —a

55]+_\/3—;[(5+A) — (1 — &) cos 6]

and the corresponding part of the density becomes (3//¢)[(1 — a)/
(1 + v3a)l(¢ + A). These expansions show simply that any solution
of Eq. (2.4.25) i1s mvalid near the bouudary £ = 0 if the boundary
conditions are such as to require that A be smuall, for when (¢ 4+ A) is
not large compared with unity, the cos 8 term of fis no longer small com-
pared with the term independent of 6 and the approximation on which
Eq. (2.4.25) was built no longer holds.

Boundary Conditions. To see what value A should have and what
form f and p should have close to a boundary we must go back to the
exact equations for f and to the integral equation (2.1.20) for p, for
formula (2.4.26) or (2.4.28) is obviously inaccurate for f at the boundary
surface £ = 0, where there is no scattering material to the left. At this
point the only part of the distribution funetion having values of 8 less
than =, 2 (corresponding to photons coming in to the material from



186 Equations Governing Fields [cH. 2

outside) should be the incident beam. The diffuse part of the dis-
tribution should be zero for 6 from zero to =/2. Formula (2.4.26), of
course, cannot conform to this requirement, no matter what values p
and dp/df have. All that can be done is to satisfy the requirement on
the average, by making the average value of f(0,8) cos 8, over therange
0 <0< (7/2), to be zero. This requirement results in the approximate
boundary condition [see also Eq. (2.4.34)]

/2 w2 (5,
f pcos 6sin 8do — f (52) cos2 sin 8df =0 or
0 0 5

pzAg—Z; at £ =0. A~% (2.4.29)

which means that the constant A in Eqgs. (2.4.27) and (2.4.28) should be
set equal to § in order to fit the boundary conditions as well as this
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Fig. 2.20 Density of diffusion particles near surface of
medium : solid ine exact solution, dashed line approximate
solution, corresponding to use of diffusion equation.

approximation can do so. Even this formula is none too accurate, for
dp/0% is certainly not then small compared with p near £ = 0, so that
any use of the diffusion equation to compute p near a boundary is quite
a dubious proceeding.

Our only recourse is to go back to the integral equation (2.4.20)
to check the validity of these approximations. Unfortunately we are
not yet in a position to go through with the solution of Eq. (2.4.20), so
we shall just quote results here; the techniques of solving integral equa-
tions of this sort will be taken up in Chaps. 8 and 12.

It will be more clear-cut if we compare results for a simpler case,
the one considered by Milne for stellar atmospheres. Here photons are
created well below the surface of the layer and diffuse upward through
the outer scattering layer and radiate out from the surface. This outer
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layer is many mean free paths thick, so we can again consider z, to be

extremely large.

This time, however, there is no incident flux from

above onto the outer surface r = 0