
The Fortran 2003 Handbook

Jeanne C. Adams · Walter S. Brainerd ·
Richard A. Hendrickson · Richard E. Maine ·
Jeanne T. Martin · Brian T. Smith

The Fortran 2003 Handbook

The Complete Syntax, Features and Procedures

123

Jeanne C. Adams
National Center for Atmospheric Research

Walter S. Brainerd
The Fortran Company
Tucson, Arizona, USA

Richard A. Hendrickson
Spackman & Hendrickson, Inc.
Minneapolis, Minnesota, USA

Richard E. Maine
NASA Dryden, Edwards AFB

Jeanne T. Martin,
Retired: Lawrence Livermore National
Security, California, USA

Brian T. Smith
University of New Mexico
Albuquerque, New Mexico, USA

ISBN: 978-1-84628-378-9 e-ISBN: 978-1-84628-746-6
DOI: 10.1007/978-1-84628-746-6

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

© Jeanne C. Adams, Walter S. Brainerd, Richard A. Hendrickson, Richard E. Maine, Jeanne T. Martin and Brian T. Smith 2009

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright,
Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with
the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of
licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the
publishers.
The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that
such names are exempt from the relevant laws and regulations and therefore free for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book
and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

Printed on acid-free paper

Springer Science+Business Media
springer.com

Boulder, Colorado, USA

California, USA

Library of Congress Control Number: 2008934286

Contents

Preface xi

1 Introduction 1
1.1 History 1

1.2 The Fortran 2003 Language Standard 4

1.3 Notation Used in this Book 6

1.4 Approximations to Real and Complex Values 8

1.5 References 8

2 Fortran Concepts and Terms 11
2.1 Program Organization 12

2.2 Data Environment 17

2.3 Program Execution 22

2.4 Terms 24

2.5 High-Level Syntax Forms 30

2.6 Ordering Requirements 39

2.7 Example Fortran Program 40

3 Language Elements and Source Form 43
3.1 The Processor Character Set 44

3.2 Lexical Tokens 47

3.3 Source Form 50

3.4 The INCLUDE Line 58

4 Data Types 61
4.1 Data Type Selection 62

4.2 What Is Meant by “Type” in Fortran? 66

4.3 Intrinsic Types 68

4.4 Derived Types 80

4.5 Array Constructors 111

vi Contents

4.6 Enumerations 113

5 Declarations 115
5.1 Type Declaration Statements 118

5.2 Polymorphism 120

5.3 Implicit Typing 122

5.4 Array Properties 124

5.5 The ALLOCATABLE Attribute 130

5.6 Pointer Properties 131

5.7 Value Definition Properties 133

5.8 Module Entity Properties 144

5.9 Dummy Argument Properties 149

5.10 Procedure Properties 154

5.11 The Procedure Declaration Statement 157

5.12 Attribute Compatibility 159

5.13 The NAMELIST Statement 161

5.14 Storage Association 162

6 Using Data 171
6.1 Constants and Variables 173

6.2 Designators 173

6.3 Type Parameter Inquiry 175

6.4 Substrings 176

6.5 Structure Components 178

6.6 Arrays 180

6.7 Pointers and Allocatable Variables 187

7 Expressions and Assignment 199
7.1 Formation of Expressions 200

7.2 Interpretation of Expressions 206

7.3 Evaluation of Expressions 219

7.4 Special Expressions 223

7.5 Assignment 231

Contents vii

8 Block Constructs and Execution Control 257
8.1 Blocks and Construct Names 258

8.2 The ASSOCIATE Construct 259

8.3 Controlling Execution 261

8.4 The IF Construct and the IF Statement 262

8.5 The CASE Construct 264

8.6 The SELECT TYPE Construct 267

8.7 The DO Construct 271

8.8 Branching 280

8.9 The STOP Statement 284

9 Input and Output Processing 285
9.1 Basic Input/Output Concepts 286

9.2 Input/Output Statement Specifier Lists 299

9.3 The OPEN Statement 309

9.4 Data Transfer Statements 316

9.5 Execution Model for Data Transfer Statements 326

9.6 Error and Other Conditions in Input/Output Statements 340

9.7 The WAIT Statement 343

9.8 The CLOSE Statement 344

9.9 The INQUIRE Statement 346

9.10 File Positioning Statements 357

9.11 The FLUSH Statement 362

9.12 Restrictions on Input/Output Specifiers, List Items, and Statements 363

10 Input and Output Editing 367
10.1 Explicit Formatting 369

10.2 Format Specifications 371

10.3 Formatted Data Transfer 374

10.4 File Positioning by Format Control 379

10.5 Numeric Editing 379

10.6 Logical Editing 392

viii Contents

10.7 Character Editing 393

10.8 Defined Editing 395

10.9 Control Edit Descriptors 395

10.10 List-Directed Formatting 404

10.11 Namelist Formatting 411

11 Program Units 419
11.1 Overview 419

11.2 Fortran Main Program 422

11.3 Modules 423

11.4 External Subprograms 434

11.5 Block Data Program Units 434

12 Using Procedures 437
12.1 Subroutines 438

12.2 Functions 442

12.3 RETURN Statement 447

12.4 Procedure Definition 448

12.5 Procedure Declaration 455

12.6 Argument Association 472

12.7 Special Categories of Procedures 489

12.8 Resolving Procedure References 493

12.9 Procedure Properties 496

13 Intrinsic Procedures and Modules 497
13.1 Properties of Intrinsic Procedures 498

13.2 Representation Models 500

13.3 Intrinsic Procedures 502

13.4 Specific Names for Generic Intrinsic Procedures 512

13.5 Alphabetical List of All Intrinsic Procedures 514

13.6 Standard Intrinsic Modules 514

14 IEEE Exceptions and Arithmetic 521
14.1 Terms and Concepts 522

Contents ix

14.2 IEEE Arithmetic and Exceptions—an Introduction 527

14.3 Descriptions of the Three Intrinsic Modules 534

14.4 Initial and Final Status Requirements Entering and Leaving Any Procedure 551

14.5 Interoperability Issues for IEEE Arithmetic and Exceptions 553

14.6 A Summary of the Optional Features 553

14.7 Examples of the Use of IEEE Features, Arithmetic, and Exceptions Modules 556

15 Interoperability with C 561
15.1 Companion Processors 562

15.2 Binding Labels 562

15.3 The ISO_C_BINDING Intrinsic Module 563

15.4 Interoperability of Types 563

15.5 Interoperation of Data 567

15.6 Interoperation of Procedures 573

15.7 Examples of Interoperation 577

16 Scope, Association, and Definition 581
16.1 Scope 581

16.2 Association 588

16.3 Definition 599

A Standard Intrinsic Procedures 605

B IEEE Module Procedures 667

C Language Evolution 683
C.1 New Features 683

C.2 Obsolescent Features 684

C.3 Deleted Features 685

C.4 Other Compatibility Issues 686

Index of Examples 687

Index 691

Preface

Fortran has been the premier language for scientific computing since its introduction in
1957. Fortran originally was designed to allow programmers to evaluate formu-
las—FORmula TRANslation—easily on large computers. Fortran compilers are now
available on all sizes of machines, from small desktop computers to huge multi-proces-
sors.

The Fortran 2003 Handbook is a definitive and comprehensive guide to Fortran 2003.
Fortran 2003, the latest standard version of Fortran, has many modern features that
will assist the programmer in writing efficient, portable, and maintainable programs
that are useful for everything from “hard science” to text processing.

The Fortran 2003 Handbook is an informal description of Fortran 2003, developed to
provide not only a readable explanation of features, but also some rationale for the in-
clusion of features and their use. In addition, “models” give the reader better insight as
to why the language is the way it is.

Target Audience
This handbook is intended for anyone who wants a comprehensive survey of Fortran
2003, including those familiar with programming language concepts but unfamiliar
with Fortran. Experienced Fortran 95 programmers will be able to use this volume to
assimilate quickly those features in Fortran 2003 that are not in Fortran 95 (Fortran
2003 contains all of the features of Fortran 95).

Although the handbook is written for use in conjunction with the standard, it is
also designed as a practical stand-alone description of Fortran 2003. The syntax rules
have been recast into more readable form. On the other hand, in places where the stan-
dard is not completely clear, a reasonable interpretation is often given, together with
ways to implement and program that will avoid potential problems. Of course, if infor-
mation is being sought to understand a fine point of compiler implementation, settle a
bet, resolve a court case, or determine the answer to a Fortran trivia question, the stan-
dard itself should be considered the final authority.

Organization
Chapters 1–16 correspond to Sections 1–16 in the standard. (The standard is the com-
plete official description of the language, but it is written in a legally airtight, formal
style without tutorial material and can be difficult to understand in places.) The hand-
book and the standard can be read in parallel for insights into the Fortran language.
This makes it feasible to use this handbook to “decipher” the standard, and this is an
ideal use of this book.

xii Preface

Specific information can be found in the following places:

• A brief list of references can be found at the end of Chapter 1.

• Each chapter begins with a summary of the main terms and concepts described in
the chapter.

• Each of the standard intrinsic procedures is described in detail in Appendix A; a
general discussion of the intrinsic functions is in Chapter 13.

• The IEEE module procedures are described in detail in Appendix B and Chapter
14.

• Appendix C contains a listing of the new, obsolescent, and deleted features.

• The index is unusually comprehensive.

Style of the Programming Examples
In order to illustrate many features of the language and as many uses of these features
as possible, no single particular style has been used when writing the examples. In
many cases, the style illustrated is not necessarily one that the authors recommend.

Jeanne Adams
It is with deep regret that we acknowledge the passing in 2007 April of Jeanne Ad-
ams—our coauthor and longtime colleague and friend. Among her many contributions
to computing and Fortran standardization, she is best known for her chairmanship of
the committee that developed Fortran 90.

Walter S. Brainerd

Richard A. Hendrickson

Richard E. Maine

Jeanne T. Martin

Brian T. Smith

USA, 2008 May

1 Introduction

For a programming language, Fortran has been around a long time. It was one of the
first widely used “high-level” languages, as well as the first programming language to
be standardized. Although Fortran has been enhanced many times, the enhancements
almost always have been upward compatible; old programs continue to work with new
compilers. It is still the premier language for scientific and engineering computing ap-
plications.

The purpose of this handbook is to describe the latest version of this language,
Fortran 2003. This chapter sets the stage by providing relevant background and de-
scribing the notation used to specify the syntax of Fortran 2003.

1.1 History

1.1.1 Initial Development of Fortran

In 1954 a project was begun under the leadership of John Backus at IBM to develop an
“automatic programming” system that would convert programs written in a mathe-
matical notation to machine instructions for the IBM 704 computer. Many were skepti-
cal that the project would be successful because, at the time, computer memories were
so small and expensive and execution time so valuable that it was believed necessary
for the compiled program to be almost as good as that produced by an assembly lan-
guage programmer.

This project produced the first Fortran compiler, which was delivered to a custom-
er in 1957. It was a great success by any reasonable criterion. The efficiency of the code
generated by the compiler surprised even some of its authors. A more important
achievement, but one that took longer to realize, was that programmers could express
their computations in a much more natural way. This increased productivity and per-
mitted the programmer to write a program that could be maintained and enhanced
much more easily than an assembly language program.

About one year after the introduction of the first Fortran compiler, IBM introduced
Fortran II. One of the most important changes in Fortran II was the addition of subrou-
tines that could be compiled independently. Thus, Fortran changed substantially even
during its first year; it has been changing continually ever since.

1.1.2 Standardization

By the early 1960s, many computer vendors had implemented a Fortran compiler. They
all included special features not found in the original IBM compiler. These features
usually were included to meet needs and requests of the users and thus provide an in-
ducement for the customer to buy computer systems from the vendor providing the
best features. Because the language was very young, a special added feature could be

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_1, © Springer-Verlag London Limited 2009

2 Chapter 1

tested to see if it was a good long-term addition to the language. Unfortunately, the
profusion of dialects of Fortran prevented programs written for one computer from be-
ing transported to a different computer system.

1.1.2.1 Fortran 66

At about this time, the American Standards Association (ASA), which became the
American National Standards Institute (ANSI) and is now the National Committee for
Information Technology Standards (NCITS), began a project of standardizing many as-
pects of data processing. Someone had the daring idea of standardizing programming
languages. A committee, which became X3J3, then J3, and was renamed INCITS/PL22.3
in 2007, was formed to develop a standard for Fortran. This standard was adopted in
1966 [3]; after the adoption of Fortran 77, it became known as Fortran 66 to distinguish
the two versions.

1.1.2.2 Fortran 77

The language continued to develop after 1966, along with general knowledge in the ar-
eas of programming, language design, and computer design. Work on a revision of
Fortran 66 was completed in 1977 (hence the name Fortran 77) and officially published
in 1978 [4]. The most significant features introduced in this version were the character
data type, the IF-THEN-ELSE construct, and many new input/output facilities, such as
direct access files and the OPEN statement. Except for the character data type, most of
these features had been implemented in many compilers or preprocessors. During this
revision, Hollerith data was removed because the character data type is a far superior
facility. Although this idea of removing features did not seem very controversial when
Fortran 77 was introduced, it proved to be controversial later—so much so that no
Fortran 77 features were removed in Fortran 90.

Fortran 77, developed by X3J3, was an ANSI standard—an American National
Standard. At about this time the International Standards Organization (ISO) began to
mature in the computing language area and adopted Fortran 77 as an international
standard; the ISO standard was identical to the ANSI standard, and in fact consisted of
one page that referenced the ANSI standard.

1.1.2.3 Fortran 90

As soon as the technical development of Fortran 77 was completed, X3J3 and its ISO
counterpart Working Group 5 (SC22/WG5) teamed up for the next revision, which was
called Fortran 90. Fortran 90 was an ISO standard first [11], which the US adopted,
word for word, as an ANSI standard. Although X3J3 did the technical work on
Fortran 90, and produced the standard document, the torch had been passed as to the
“owner” of the Fortran standard; that “owner”, for Fortran 90 and for the foreseeable
future, is ISO.

Fortran 90 was a major advance over Fortran 77. It included: a greatly liberalized
source form, a complete set of iteration and selection control structures, enhanced nu-
meric facilities (e.g., the environmental intrinsic functions), a comprehensive data-par-
allel array language, data structures (including dynamic structures), user-defined types
and operators, procedure extensions (e.g., recursion, internal procedures, explicit pro-

Introduction 3

cedure interfaces, user-defined generic procedures), module encapsulation (with pow-
erful data hiding features), kind type parameters (e.g., to regularize the different
“kinds” of reals, provide the corresponding kinds of complex, accommodate different
kinds of character, and to resolve overloads in a simple way), dynamic objects (e.g., al-
locatable arrays and pointers), and some I/O extensions (e.g., NAMELIST and non-ad-
vancing I/O). The concept of “obsolescent” features was introduced, and a handful of
Fortran 77 features were so identified. But removal of significant numbers of archaic
features was controversial and so no features were actually removed. A standard-con-
forming Fortran 77 program is a standard-conforming Fortran 90 program with the
same interpretation.

1.1.2.4 Fortran 95

Fortran 95 [10], specified by WG5 and produced by X3J3, represented a minor revision
to Fortran 90. Most of the changes corrected and clarified what was in Fortran 90.
However, a few significant features, such as pure functions and the FORALL construct
and statement, were added because they were considered important contributions
from High Performance Fortran [17]. A few (quite insignificant) features designated as
obsolescent in Fortran 90 were removed from Fortran 95. These features are:

1. Real and double precision DO variables

2. Branching to an END IF from outside the block

3. PAUSE statement

4. ASSIGN statement, assigned GO TO statement, and related features

5. nH edit descriptor

1.1.2.5 Fortran 2003

Fortran 2003 [7], while not the major advance that Fortran 90 represented, still added
considerably more features than did Fortran 95, which was a minor revision of Fortran
90. The most important features introduced in Fortran 2003 are:

• interoperability with the C programming language [15], permitting easy portable
access to the low-level facilities of C from Fortran programs and the portable use of
Fortran libraries by programs written in C

• support for exceptions and IEEE arithmetic [13] in so far as it does not conflict with
existing Fortran arithmetic rules

• support for object-oriented programming, including inheritance (type extension),
polymorphism (dynamic typing), and type-bound procedures

• data-type enhancements, such as parameterized derived types, allocatable compo-
nents, and finalizers

4 Chapter 1

• input/output enhancements, such as user-defined derived-type input/output, asyn-
chronous input/output, stream input/output, and the FLUSH statement to empty
buffers

• support for international usage, including the ISO 10646 character set [16] and
choice of a comma or period for the decimal symbol in numeric formatted in-
put/output

• other features, such as procedure pointers, the PROTECTED and VOLATILE at-
tributes, the IMPORT statement, access to environment variables and command-
line arguments, better error handling, and better rounding control

1.2 The Fortran 2003 Language Standard

The Fortran 2003 standard [7] describes the syntax and semantics of the Fortran pro-
gramming language but only certain, not all, aspects of the Fortran processing system.
When specifications are not covered by the standard, the interpretation is processor de-
pendent; that is, the processor defines the interpretation, but the interpretation for any
two processors need not be the same. Programs that rely on processor-dependent inter-
pretations typically are not portable.

The specifications that are included in the standard are:

1. the syntax of Fortran statements and forms for Fortran programs

2. the semantics (meaning) of Fortran statements and the semantics of Fortran pro-
grams

3. interoperability requirements between Fortran and C programs

4. requirements for IEEE floating-point support

5. specifications for input data

6. appearance of output data

The specifications that are not defined in the standard are:

1. the way in which a Fortran compiler is written

2. operating system facilities defining the computing system

3. methods used to transfer data to and from peripheral storage devices and the na-
ture of the peripheral devices

4. behavior of extensions implemented by vendors

5. the size and complexity of a Fortran program and its data

6. the hardware or firmware used to run the program

Introduction 5

7. the way values are represented and the way numeric values are computed

8. the physical representation of data

9. the characteristics of disks and other storage media

1.2.1 Program Conformance to the Standard

A program conforms to the standard if the statements are all syntactically correct, exe-
cution of the program causes no violations of the standard (e.g., referencing an element
outside the bounds of an array), and the input data is all in the correct form. A pro-
gram that uses a vendor extension is not standard conforming and may not be porta-
ble. In particular, a program that uses intrinsic procedures or modules provided by the
vendor is not standard conforming.

1.2.2 Processor Conformance to the Standard

In the Fortran 2003 standard, the term “processor” means the combination of a Fortran
compiler and the computing system that executes the code. A processor conforms to
the standard if it correctly processes any standard-conforming program, provided the
Fortran program is not too large or complex for the computer system in question. Ex-
cept for certain restrictions in format specifications, the processor must be able to flag
any nonstandard syntax (described by the syntax rules and constraints) used in the
program. This includes the capability to flag any extensions available in the vendor
software (including deleted features) and used in the program. Note that the compiler
is not required to scan a character string used as a format. The standard also requires
that the processor detect, with appropriate explanation, the following:

1. obsolescent features (see C)

2. intrinsic type kind values not supported

3. characters not permitted by the processor

4. illegal source form

5. violations of the scope rules for names, labels, operators, and assignment symbols

The standard does not require the processor to detect nonstandard intrinsic mod-
ules, but most processors probably will detect their use.

Rules for the form of the output are less stringent than for other features of the lan-
guage in the sense that the processor may have some options about the format of the
output and the programmer may not have complete control over which of these op-
tions is used.

A processor may include extensions not in the standard; if it processes standard-
conforming programs according to the standard, it is considered to be a standard-con-
forming processor.

6 Chapter 1

1.2.3 Portability

One of the main purposes of a standard is to describe how to write portable programs.
However, there are some things that are standard conforming, but not portable. An ex-
ample is a program that computes a very large number. Certain computing systems
will not accommodate a number this large. Thus, such a number could be a part of a
standard-conforming program, but may not run on all systems and thus may not be
portable. Another example is a program that uses a deeper nesting of control con-
structs than is allowed by a particular compiler.

1.2.4 A Permissive Standard

The primary purpose of the Fortran standard is to describe a language with the prop-
erty that, if a programmer uses the language, the difficulties of porting programs from
one computer system to another will be minimized. But to handle the somewhat con-
tradictory goal of permitting experimentation and development of the language, the
standard is permissive; that is, a processor can conform to the standard even if it allows
features that are not described in the standard. This has its good and bad aspects.

On the positive side, it allows implementors to experiment with features not in the
standard; if they are successful and prove useful, they can become candidates for stan-
dardization during the next revision. Thus, a vendor of a compiler may choose to add
some features not found in the standard and still conform to the standard by correctly
processing all of the features that are described in the standard.

On the negative side, the burden is on the programmer to know about and avoid
these extra features when the program is to be ported to a different computer system.
The programmer is given some help with this problem in that a Fortran processor is re-
quired to recognize and warn the programmer about syntactic constructs in a program
that do not conform to the standard. A good Fortran programmer’s manual also will
point out nonstandard features with some technique, such as shading on the page. But
there is no real substitute for knowledge of the standard language itself. This hand-
book provides this knowledge.

1.3 Notation Used in this Book

When a word or words are in bold font, this indicates that the term is being defined.
Fortran keywords, such as CALL and IF, are capitalized when discussed in text.
Examples in a monospaced font should be compilable when incorporated into a

complete program unit.
Braces { } are used in Appendices A and B to indicate optional intrinsic procedure

arguments.
In this book, a simplified form (compared to that used in the standard) is used to

describe the syntax of Fortran 2003 programs. The forms consist of program text in the
same font used to display program examples (such as END DO) and syntactic terms that
must be replaced with correct Fortran source for those terms, which are printed using
a sans serif font (such as input-item-list). Optional items are enclosed in brackets; items
enclosed in brackets followed by ellipses (...) may occur any number (including zero)

Introduction 7

of times. The ampersand (&) is used to continue a line, just as it is used to continue a
line in a Fortran 2003 program. Use of one of the syntactic forms always produces a
syntactically correct part of a Fortran 2003 program. These syntactic forms indicate
how to construct most of the correct Fortran 2003 statements, but in some cases are in-
complete in that they do not describe all of the possible forms. For example, specifiers
in some input/output statements are listed in order, but may be written in any order.

The following syntax form occurs in 9. It describes one form that can be used to
construct a direct access formatted WRITE statement. The general syntax for the
WRITE statement is quite complex and gives no hint as to which options are allowed
for direct access formatting. On the other hand, this rule is overly restrictive in that it
indicates a particular order for the options, which is not required by the standard.
Nevertheless, using this form always will produce a correct WRITE statement.

WRITE([UNIT=]scalar-integer-expression&

 ,[FMT=]format&

 ,REC=scalar-integer-expression&

 [,IOSTAT=scalar-default-integer-variable]&
 [,ERR=label]&
)[output-item-list]

Another property of the syntactic forms is that the terms used are informal. They
are not necessarily defined precisely anywhere in the book and are not always the
same as those in the standard; they are often longer and more descriptive. If you need
to know the precise syntax allowed, refer to Fortran 2003 standard [7].

A general restriction on all syntax rules is that, for forms with lists of keywords,
any particular keyword may appear at most once. For example, there may be at most
one IOSTAT in a WRITE statement.

In the text near many syntax rules is a reference, such as (Rnnn). This indicates that
the syntax rule is related to syntax rule nnn of the Fortran 2003 standard.

The syntax rules use abbreviations for some common forms. These are listed in
Table 1-1.

An occurrence of abc-list is shorthand for a list of one or more things of form abc,
separated by comma; that is

Table 1-1 Syntax form abbreviations

char character

dtio derived-type input/output

expr expression

id identifier

io input/output

spec specification

8 Chapter 1

abc [, abc]

The standard categorizes some restrictions as constraints. The difference between
constraints and the other restrictions is that the compiler must be able to detect viola-
tions of the constraints during compilation. In this book, there is no distinction be-
tween restrictions that the compiler must detect and those it need not detect and also
between compile-time and run-time restrictions.

1.4 Approximations to Real and Complex Values

Most real (and hence complex) values cannot be represented exactly in a computer. For
example, when

X = 1.23

is executed, the value stored for X might not be exactly 1.23, but the nearest approxi-
mation that can be represented in the computer, which usually will be a binary repre-
sentation.

Whenever real and complex values and operations are discussed in this book, it is
to be understood that the values will be approximate when represented in the comput-
er. For examples, when this book indicates that the symbol “+” represents addition, it
really means that it represents an approximation to the sum of two values.

1.5 References

1. Adams, Jeanne C., Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith, and Jerrold
L. Wagener, The Fortran 90 Handbook, McGraw-Hill, 1992.

2. Adams, Jeanne C., Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith, and Jerrold
L. Wagener, The Fortran 95 Handbook, MIT Press, 1997.

3. American National Standard FORTRAN, X3.9-1966, United States of America Stan-
dards Institute, 1966 (Fortran 66).

4. American National Standards Institute, American National Standard Programming
Language FORTRAN, ANSI X3.9-1978, New York, 1978 (Fortran 77).

5. Brainerd, Walter S., Ed., Fortran 77, Communications of the ACM, Vol. 21, No. 10, Oc-
tober 1978, pp. 806–820.

6. Greenfield, Martin H., History of FORTRAN standardization, Proceedings of the
1982 National Computer Conference, AFIPS Press, Arlington, VA, 1982.

7. International Standards Organization, ISO/IEC 1539-1 : 2004, Information technolo-
gy—Programming languages—Fortran—Part 1: Base language, Geneva, 2004 (Fortran
2003).

Introduction 9

8. International Standards Organization, ISO/IEC 1539-2 : 1994, Information technolo-
gy—Programming languages—Fortran—Part 2: Varying length character strings, Gene-
va, 1994.

9. International Standards Organization, ISO/IEC 1539-3 : 1998, Information technolo-
gy—Programming languages—Fortran—Part 3: Conditional compilation, Geneva, 1998.

10. International Standards Organization, ISO/IEC 1539-1 : 1997, Information technolo-
gy—Programming languages—Fortran—Part 1: Base language: Geneva, 1997 (Fortran
95).

11. International Standards Organization, ISO/IEC 1539 : 1991, Information technolo-
gy—Programming languages—Fortran, Geneva, 1991 (Fortran 90).

12. International Standards Organization, ISO/IEC 646:1991. Information technolo-
gy—ISO 7-bit coded character set for information interchange. ASCII.

13. International Standards Organization, IEC 60559 (1989-01), Binary floating-point
arithmetic for microprocessor systems. The original was IEEE 754-1985 and is often
called the floating-point standard.

14. International Standards Organization, ISO 8601:1988, Data elements and interchange
formats—Information interchange—Representation of dates and times.

15. International Standards Organization, ISO/IEC 9989:1999, Information technolo-
gy—Programming languages—C. The C standard.

16. International Standards Organization, ISO/IEC 10646-1:2000, Information technolo-
gy—Universal multiple-octet coded character set (UCS)—Part 1: Architecture and basic
multilingual plane.

17. Koelbel, Charles H., David B. Loveman, Robert S. Schreiber, Guy L. Steel Jr., and
Mary E. Sisal, High Performance Fortran Handbook, MIT Press, Cambridge, MA, 1993.

2 Fortran Concepts and Terms

• A Program is an organized collection of program units. There must be exactly one
main program, and in addition there may be modules, external subprograms, and
block data units. Elements described by means other than Fortran may be included.

• A Module provides a means of packaging related data and procedures, and hiding
information not needed outside the module. There are several intrinsic modules.

• The Data Environment consists of the data objects upon which operations will be
performed to create desired results or values. These objects may have declared and
dynamic types; they may have type parameters, and they may possess attributes
such as dimensionality. They need not exist for the whole execution of the program.
Allocatable objects and pointer targets may be created when needed and released
when no longer needed.

• Program Execution begins with the first executable construct in the main program
and continues with successive constructs unless there is a change in the flow of con-
trol. When a procedure is invoked, its execution begins with its first executable con-
struct. On normal return, execution continues where it left off. Execution may occur
simultaneously with input/output processes.

• The Definition Status of a variable indicates whether or not the variable has a
value; the value may change during execution. Most variables are initially unde-
fined and become defined when they acquire a value. The status also may become
undefined during execution. Pointers have both an association status and a defini-
tion status. Allocatable objects have both an allocation status and a definition status.

• Scope and Association determine where and by what names various entities are
known and accessible in a program. These concepts form the information backbone
of the language.

This chapter introduces the basic concepts and fundamental terms needed to un-
derstand Fortran. Some terms are defined implicitly by the syntax rules. Others, such as
“associated” or “present” are ordinary English words, but they have a specific Fortran
meaning.

One of the major concepts involves the organization of a program. A program con-
sists of program units; program units consist of Fortran statements. Some statements
are executable; some are not. In general, the nonexecutable statements define the data
environment, and the executable statements specify the actions taken. This chapter pre-
sents the high-level syntax rules for a Fortran program. It also describes the order in
which constructs and statements may appear in a program and concludes with an ex-
ample of a short, but complete, Fortran program.

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_2, © Springer-Verlag London Limited 2009

12 Chapter 2

While there is some discussion of language features here to help explain various
terms and concepts, Chapters 3–16 contain the complete description of all language
features.

2.1 Program Organization

A collection of program units constitutes an executable program. A Fortran program
must have one main program and may have any number of the other program units.
Program units may serve as hosts for smaller scoping units. Information may be hid-
den within part of a program or communicated to other parts of a program by various
means. The programmer may control the parts of a program in which information is
accessible.

With the introduction of C interoperability in Fortran 2003, it is possible to include,
with much greater ease and portability, external procedures and other entities defined
by a means other than Fortran. A processor has one or more companion processors. A
companion processor is a processor-dependent mechanism by which global data and
procedures may be referenced or defined. It may be the Fortran processor itself, or it
may be another Fortran processor. If a procedure is defined by means of a companion
processor that is not the Fortran processor itself, the standard refers to the C function
that defines the procedure. Although the procedure need not be defined by means of
the C programming language, the interoperability mechanisms are designed to mesh
well with C.

2.1.1 Program Units

A Fortran program unit is one of the following:

main program
module
external subprogram
block data

A Fortran program may consist of only a main program, although usually there are
also modules and/or external subprograms which may be subroutine or function sub-
programs. These program units contain constructs and statements that define the data
environment and the steps necessary to perform calculations. Each program unit has
an END statement to terminate the program unit. Each has a special initial statement as
well, but the initial statement for a main program is optional. For example, a program
might contain a main program, a module, and a subroutine:

program task
 . . .
 call calc (z)
 . . .
end program task

Fortran Concepts and Terms 13

module info
 . . .
end module info

subroutine calc(x)
 use info
 . . .
end subroutine calc

An ideal Fortran program would consist of a main program and several modules;
that is, there would be no external subprograms. This is the best model for packaging
and encapsulation (2.2.5). Subroutine and function subprograms are a fundamental
part of the language. They may be module, internal, or external subprograms.

The interface of a procedure supplies information about the name and type (if a
function) of the procedure, as well as information about its arguments. A program is
more robust if the interfaces of procedures are known when the procedures are in-
voked. This is inherently the case for internal procedures, module procedures, and all
of the intrinsic procedures. In addition, the interfaces of procedures defined in other
languages must be described to the Fortran system as C function interfaces (15.6).

The main program could be defined in a language other than Fortran, but it is usu-
ally the language of the main program that determines the program’s primary nature.
For example, a Fortran main program with some elements specified in another lan-
guage is still a Fortran program; whereas, if the main program is specified in C but
there is access to Fortran elements, the program is generally considered to be a C pro-
gram. Interlanguage communication is described in 15.

Because all except the most trivial of programs will make use of subroutines and
functions in some form, it might be expected that subroutines and functions would be
described earlier, but that is not the case. Chapter 12 describes them in detail. Chapter
11 describes all program units—the main program, modules, external subprograms,
and block data program units.

Internal procedures and module procedures gain access to information in their
hosts by host association. A USE statement specifying a module can appear in a main
program, a subprogram, a module, an interface body, or a block data subprogram to
gain access to the module’s public information. This method of access is called use as-
sociation. Association is described in 16.

Figure 2-1 illustrates the organization of a sample Fortran program. The lines with
thin arrows represent internal and external subprogram references with the arrow
pointing to the subprogram. The thick solid arrows represent access by use association
with the arrow pointing to the position of a USE statement.

2.1.1.1 Main Program

The main program is required; if there are other program units, the main program acts
as a controller; that is, it takes charge of the program and controls the order in which
procedures are executed.

14 Chapter 2

2.1.1.2 Module

A module contains definitions that can be made accessible to other program units by
use association. These definitions include data definitions, type definitions, definitions
of procedures known as module procedures, and specifications of procedure interfaces.
A module procedure may be invoked by another module procedure in the module or
by other program units that access the module. Fortran 2003 introduced intrinsic mod-
ules; there were no intrinsic modules in earlier standards. These are the
ISO_FORTRAN_ENV module (13.6.1) that provides public entities relating to the envi-
ronment such as input/output units and storage sizes, the ISO_C_BINDING module
(15.3) that provides access to named constants representing kind values that are com-
patible with C types, and three IEEE modules (14.3) that provide support for excep-
tions and IEEE arithmetic.

Main program Module

Public data
entities

Private data
entities

Internal procedure

Function

Subroutine

Internal procedure

Internal procedure

Subroutine Function

Internal
procedure

Internal
procedure

Function Subroutine

Figure 2-1 Example of program packaging. The thick arrows represent use
association; the thin arrows represent procedure references.

Program

Internal procedure

Fortran Concepts and Terms 15

2.1.1.3 External Subprogram

An external subprogram (a function or a subroutine) may be used to perform a task or
calculation on entities available to the external subprogram. These entities may be the
arguments to the subprogram that are provided in the reference, entities defined in the
subprogram, or entities accessible from modules or common blocks. A CALL statement
is used to invoke a subroutine. A function is invoked when its value is needed in an
expression. The computational process that is specified by a function or subroutine
subprogram is called a procedure. An external subprogram provides one way to define a
procedure. It may be invoked from other program units of the Fortran program. Unless
it is a pure procedure, a subroutine or function may change the program state by
changing the values of data objects accessible to the procedure.

2.1.1.4 Block Data Program Unit

A block data program unit (11.5) contains data definitions only and is used to specify
initial values for a restricted set of data objects.

2.1.1.5 Compilation

Prior to the introduction of modules into Fortran, program units could be compiled in-
dependently with no need for information from any other program unit. Any informa-
tion needed in more than one program unit had to be replicated wherever it was
needed. The compiled program unit could be used in a number of applications without
the necessity of recompiling; this is called independent compilation.

If a program unit contains a USE statement, the referenced module must be avail-
able in some form when that program unit is compiled.

There are many ways to implement modules; however, most implementations re-
quire compilation of modules prior to compilation of any program units that use the
modules. The compilation often produces a file containing encoded or summarized in-
formation about the module, which is accessed when a program using the module is
compiled.

The situation regarding the availability of include files is somewhat similar, but be-
cause include files are simply inserted as text in a program, they are not usually pre-
processed in any way.

2.1.2 Procedures

A procedure specifies a task or a calculation, usually one that can be separated out from
the main flow or one that is needed in different parts of the program. A procedure may
take the form of a subroutine or a function. Every procedure has an interface that must
be unique in some way, A set of generic procedures may be identified by the same name
or symbol, but made unique by their arguments. A procedure may be defined by means
other than the Fortran language.

2.1.2.1 Internal Procedures

Main programs, module subprograms, and external subprograms may contain internal
subprograms, which may be either subroutines or functions. The procedures they de-

16 Chapter 2

fine are called internal procedures. Internal subprograms must not themselves contain
internal subprograms, however. The main program, external subprogram, or module
subprogram that contains an internal subprogram is referred to as the internal subpro-
gram’s host. Entities known in a host are available to an internal procedure by host as-
sociation. Internal procedures may be invoked within their host or within other
internal procedures in the same host. Internal procedures are described in 12.

There is also an obsolescent feature, the statement function (12.4.4), which specifies
a function by a single statement.

2.1.2.2 Procedure Interfaces

An interface provides the procedure name, the number of arguments, their types, at-
tributes, names, and the type and attributes of a function result. This information is re-
quired in some cases, such as for a dummy argument, which assumes the shape of its
actual argument (12.5.1.2). The information also allows the processor to check the va-
lidity of an invocation.

If a procedure interface is not inherently available, it may be specified in an interface
block. All program units, except block data, may contain procedure interface blocks. A
procedure interface block contains one or more interface bodies that are used to de-
scribe the interfaces of procedures that would otherwise be unknown. Interface blocks
are used for external procedures, dummy procedures, procedure pointers, abstract pro-
cedures, or type-bound procedures. An interface block with a generic specification
may be used to describe generic procedures or user-defined operators, assignment, or
input/output. Procedure interfaces are described in 12.

2.1.2.3 Generic Procedures

Fortran has the concept of a generic procedure, that is, one that can accept arguments
that have different types in different invocations. If the procedure is a function, in most
cases the type of the result is the same as that of the arguments. An example is the in-
trinsic SIN (the sine function), which can accept a real, double precision, or complex ar-
gument. A user-defined procedure also can be generic. A user defines several specific
procedures, and either collects their interfaces in an interface block with a generic
specification or lists them in a GENERIC statement in the type definition. The identifier
that appears in the generic specification or the GENERIC statement may be used to
reference the specific procedure whose arguments match those of the reference.

2.1.2.4 Procedures Defined by Other Languages

Chapter 15 describes how procedures defined by means of the C programming lan-
guage can be accessed from Fortran and how procedures defined in Fortran can be ac-
cessed from C programs. Other languages may be accommodated by these same
mechanisms. The mechanisms are not limited to C, but are described in terms of C
protocols. Some of the additions to Fortran 2003 to facilitate this process are useful in
themselves to strictly Fortran programs, such as the VALUE attribute for dummy argu-
ments (5.9.2), enumerations (4.6), and stream input/output (9.1.5.3).

Fortran Concepts and Terms 17

2.2 Data Environment

Before a calculation can be performed, its data environment must be established. The
data environment consists of data objects that possess properties, attributes, and val-
ues. The steps in a computational process generally specify operations that are per-
formed on operands (or objects) to create desired results or values. Operands may be
constants, variables, constructors, function references, or more complicated expressions
made up of these items; each operand has a data type (which may be dynamic); it may
have type parameters; and, if it is defined, it has a value. A data object has attributes in
addition to type. Chapter 4 discusses data type in detail; Chapter 5 discusses how pro-
gram entities and their attributes are declared; and Chapters 6 and 7 describe how data
objects may be used.

2.2.1 Data Type

The Fortran language provides five intrinsic data types—real, integer, complex, logical,
and character—and allows users to define additional types. Sometimes it is natural to
organize data in combinations consisting of several components of different types. Be-
cause the data describe one object, it is convenient to have a means to refer to this ag-
gregation of data by a single name. In Fortran, an aggregation of such data values is
called a structure. To use a structure, a programmer must first define the type of the
structure. Once the new type is defined, any number of structures (or objects) of that
type may be declared.

Some applications require related objects, such as a basic line plus a line of a cer-
tain style (dotted or dashed), or of a certain color, or both style and color. A base type
may be defined and then extended by adding different components. When a type is
defined, it is not necessary to specify that it may be extended. Generic procedures may
be defined (such as DRAW or ADD_TO_FIGURE) that accept as an actual argument an
object of the base type or any extension of it. Such an argument that may be of any of
these types is polymorphic.

2.2.2 Type Parameters

Both intrinsic and user-defined types may have parameters. For the intrinsic types, a
kind type parameter specifies a particular representation. In addition, the character type
has a length parameter.

Each of the intrinsic types may have more than one representation (specified by a
KIND parameter). The Fortran standard requires at least two different representations
for each of the real and complex types that correspond to “single precision” and “dou-
ble precision”, and permits more.

A type parameter for a user-defined type is also either a kind type parameter or a
length type parameter. Type parameters for user-defined types are specified in the type
definition.

Portable mechanisms for specifying precision are provided so that numerical algo-
rithms that depend on a minimum numeric precision can be programmed to produce
reliable results regardless of the processor’s characteristics. Fortran permits more than
one representation for the integer, logical, and character types as well. Alternative rep-

18 Chapter 2

resentations for the integer type permit different ranges of integers. Alternative repre-
sentations for the logical type might include a “packed logical” type to conserve
memory space and an “unpacked logical” type to increase speed of access. The large
number of characters required for ideographic languages, such as those used in Asia
with thousands of different graphical symbols, cannot be represented as concisely as
alphabetic characters and require “more precision”. For international usage Fortran
2003 encourages support of the ISO 10646 character set (1.5).

A kind type parameter value must be known at compile time and may be used to
resolve generic procedure references. A length type parameter value need not be
known at compile time; it may be used for character lengths, array dimensions, or other
sizes. If it is a deferred type parameter, indicated by a colon (:), it may change during
execution. If it is an assumed type parameter, indicated by an asterisk (*), it assumes its
value from another entity, such as an actual argument.

Examples of type declarations with parameters are:

complex (kind = HIGH) x
integer (kind = SHORT) days_of_week
character (kind = ISO_10646, len = 500) HAIKU
type MY_ARRAY (pick_kind, rows, cols) ! Type definition
 integer, kind :: pick_kind
 integer, len :: rows, cols
 real (pick_kind) :: VALUES (rows, cols)
end type MY_ARRAY
type(MY_ARRAY) AA(HIGH, i, j)

where HIGH, SHORT, and ISO_10646 are named integer constants given appropriate
values by the programmer. The length parameter for the character string HAIKU has
the value 500. AA is of type MY_ARRAY; its single component, VALUES, is a real array
of kind HIGH and dimension (i, j), where i and j are specification expressions.

2.2.3 Dimensionality

Single objects, whether intrinsic or user-defined, are scalar. Even though a structure
has components, it is technically a scalar. A set of scalar objects, all of the same type,
may be arranged in patterns involving columns, rows, planes, and higher-dimensioned
configurations to form arrays. It is possible to have arrays of structures. An array may
have up to seven dimensions. The number of dimensions is called the rank of the array.
It is declared when the array is declared and cannot change. The size of the array is the
total number of elements and is equal to the product of the extents in each dimension.
The shape of an array is the list of its extents. Two arrays that have the same shape are
said to be conformable. A scalar is conformable with any array. Examples of array dec-
larations are:

real :: coordinates (100, 100)
integer :: distances (50)
type(line) :: mondrian(10)

Fortran Concepts and Terms 19

An array is an object and may appear in an expression or be returned as a function re-
sult. Intrinsic operations involving arrays of the same shape are performed element-by-
element to produce an array result of the same shape. There is no implied order in
which the element-by-element operations are performed.

A portion of an array, such as an element or section, may be referenced as a data
object. An array element is a single element of the array and is scalar. An array section
is a subset of the elements of the array and is itself an array.

2.2.4 Dynamic Data

Data objects may be dynamic in size, shape, type, or length type parameters, but not
rank or kind type parameters. The dynamic data objects are:

polymorphic objects
pointers
allocatable objects
automatic objects

The type of a polymorphic object (5.2) may change during program execution.
Objects that may have both a dynamic type as well as a dynamic size and shape are data
pointers, allocatable variables, and dummy arguments. Automatic objects appear in
subprograms and come into existence when the subprogram is invoked.

Dynamic type was introduced in Fortran 2003. An entity that is not polymorphic
has both a declared and a dynamic type, but they are the same. The dynamic type of a
polymorphic object that is not allocated (6.7.1) or associated (7.5.5.1) is its declared
type. The CLASS keyword is used to declare polymorphic entities. An object declared
with CLASS (*) is an unlimited polymorphic object with no declared type.

Procedures and data objects in Fortran may be declared to have the POINTER at-
tribute. A procedure pointer must be a procedure entity. A data pointer must be associ-
ated with a target before it can be used in any calculation. This is accomplished by
allocation (6.7.1.2) of the space for the target or by assignment of the pointer to an ex-
isting target (7.5.5.1). A pointer assignment statement is provided to associate a pointer
with a target (declared or allocated). It makes use of the symbol pair => rather than the
single character =; otherwise, it is executed in the same way that an ordinary assign-
ment statement is executed, except that instead of assigning a value it associates a
pointer with a target. For example,

real, target :: VECTOR(100)
real, pointer :: ODDS(:)
 . . .
ODDS => VECTOR(1:100:2)

The pointer assignment statement associates ODDS with the odd elements of VECTOR.
The assignment statement

ODDS=1.5

20 Chapter 2

defines each odd element of VECTOR with the value 1.5. Later in the execution se-
quence, the pointer ODDS could become associated with a different target by pointer
assignment or allocation, as long as the target is a one-dimensional, default real array.
Chapter 7 describes the pointer assignment statement.

If a pointer object is declared to be an array, its size and shape may change dynam-
ically, but its rank is fixed by the declaration. If a pointer target is polymorphic, the
pointer must be of a type that is compatible with the target, or both the pointer and tar-
get must be declared unlimited polymorphic. An example of pointer array declaration
and allocation is:

real, pointer :: lengths (:)
allocate (lengths (200))

A variable may be declared to have the ALLOCATABLE attribute. Space must be
allocated for the variable before it can be used in any calculation. The variable may be
deallocated and reallocated with a different type, length type parameters, and shape as
the program executes. As with a pointer, the rank is fixed by the declaration. An allo-
catable variable cannot be made to point to an existing named object; the object always
must be created by an ALLOCATE statement. An example of allocatable array declara-
tion and allocation is:

real, allocatable :: lengths (:)
allocate (lengths (200))

The similarities of these examples reflect the similarity of some of the uses of allocat-
able arrays and pointers, but there are differences. Pointers may be used to create dy-
namic data structures, such as linked lists and trees. The target of a pointer can be
changed by reallocation or pointer assignment; the new target must be of the same
rank but may have different extents in each dimension. The attributes of an allocatable
variable can be changed only by deallocating and reallocating the variable. There is a
MOVE_ALLOC intrinsic function that can be used if the values of the elements of an
allocatable array are to be preserved when its size is changed. Use of allocatable vari-
ables generally leads to more efficient execution than use of the more flexible pointers.

Only pointers and allocatable objects may be allocated or deallocated. It is possible
to inquire whether an object is currently allocated. Chapter 5 describes the declaration
of pointers and allocatable objects; Chapter 6 covers the ALLOCATE and DEALLO-
CATE statements; Chapter 13 and Appendix A describe the ASSOCIATED intrinsic in-
quiry function for pointers and the ALLOCATED intrinsic inquiry function for
allocatable variables. Chapter 15 describes dynamic interoperable objects.

Automatic data objects, either arrays or character strings (or both), may be de-
clared in a subprogram. These local data objects are created on entry to the subpro-
gram and disappear when the execution of the subprogram completes. These are
useful in subprograms for temporary arrays and characters strings whose sizes are dif-
ferent for each reference to the subprogram. An example of a subprogram unit with an
automatic array TEMP is:

Fortran Concepts and Terms 21

subroutine SWAP_ARRAYS (A, B)
real, dimension (:) :: A, B
real, dimension (size (A)) :: TEMP

TEMP = A
A = B
B = TEMP

end subroutine SWAP_ARRAYS

A and B are assumed-shape array arguments; that is, they take on the shape of the ac-
tual arguments. TEMP is an automatic array that is created the same size as A on entry
to subroutine SWAP_ARRAYS. SIZE is an intrinsic function.

2.2.5 Packaging and Encapsulation

The packaging of a fair-sized program is an important design consideration when a
new Fortran application is planned. The most important benefit of packaging is infor-
mation hiding. Entities can be kept inaccessible except where they are actually needed.
This provides some protection against inadvertent misuse or corruption, thereby im-
proving program reliability. Packaging can make the logical structure of a program
more apparent by hiding complex details at lower levels. Programs are therefore easier
to comprehend and less costly to maintain. The Fortran features that provide these
benefits are

• user-defined types

• internal procedures

• modules

 The accessibility of a user-defined type in a module may be public, private, or
protected. In addition, even if the type is public, it may have private components. A
type definition has a type-bound procedure part in which the procedures bound to that
type are specified.

Internal procedures may appear in main programs, module subprograms, and ex-
ternal subprograms; they are known only within their host. The name of an internal
procedure must not be passed as an argument. The Fortran standard further restricts
internal procedures in that an internal procedure must not itself be the host of another
internal procedure. However, statement functions may appear within an internal pro-
cedure.

Modules provide the most comprehensive opportunities to apply packaging con-
cepts including several levels of organization and hiding (5.8). The entities specified in
a module (types, data objects, procedures, interfaces, etc.) may be made available to
other scoping units; may be made available, but protected from corruption outside the
module; or may be kept private to the module. Thus modules provide flexible encapsu-
lation facilities for entities in an object-oriented application. The procedures, men-
tioned in a type definition (4.4.2) and referred to as type-bound procedures (4.4.11),
generally appear as module procedures in the module that contains the type definition.

22 Chapter 2

In addition to the usual capabilities of procedures, these type-bound procedures may
specify

• defined operators

• defined assignment

• defined input/output

• finalization

Finalization is accomplished by a final procedure that is invoked automatically just be-
fore an object of the type is destroyed by deallocation, the execution of a RETURN or
END statement, or some other means.

Of course, more than one type definition may appear in a module, so if there is a
need for communication among separate but related objects, the module provides the
appropriate means for permitting and controlling access to information.

2.3 Program Execution

During program execution, constructs and statements are executed in a prescribed or-
der. Variables become defined with values and may be redefined later in the execution
sequence. Procedures are invoked, perhaps recursively. Space may be allocated and lat-
er deallocated. The targets of pointers may change. The types of polymorphic variables
may change.

2.3.1 Execution Sequence

Program execution begins with the first executable construct in the main program. An
executable construct is an instruction to perform one or more of the computational ac-
tions that determine the behavior of the program or control the flow of the execution of
the program. These actions include performing arithmetic, comparing values, branch-
ing to another construct or statement in the program, invoking a procedure, or reading
from or writing to a file or device. Examples of executable statements are:

read (5, *) z, y
x = (4.0 * z) + base
if (x > y) go to 100
call calculate (x)

100 y = y + 1

When a procedure is invoked, its execution begins with the first executable con-
struct after the entry point in the procedure. On normal return from a procedure invo-
cation, execution continues where it left off in the invoking procedure.

Unless a control statement or construct that alters the flow of execution is encoun-
tered, program statements are executed in the order in which they appear in a program
unit until a STOP, RETURN, or END statement is executed. Branch statements specify
a change in the execution sequence and consist of the various forms of GO TO state-
ments, a procedure reference with alternative return specifiers, EXIT and CYCLE state-

Fortran Concepts and Terms 23

ments in DO constructs, and input/output statements with branch label specifiers, such
as ERR, END, and EOR specifiers. The control constructs (IF, CASE, DO, and SELECT
TYPE) can cause internal branching implicitly within the structure of the construct. The
SELECT TYPE construct chooses a block of code based on the dynamic type of its poly-
morphic selector. Chapter 8 discusses in detail control flow within a program.

Another feature of Fortran 2003 is asynchronous input/output. It allows computa-
tion to occur in parallel with an input/output process if the processor supports parallel
processing. A WAIT statement may be used to synchronize the processes. This and oth-
er new input/output features are described in 9.

Normal termination of execution occurs if the END statement of a main program
or a STOP statement is executed. Normal termination of execution also may occur in a
procedure defined by means other than Fortran. If a Fortran program includes proce-
dures executed by a companion processor, the normal termination process will include
the effect of executing the C exit function.

2.3.2 Definition and Undefinition

Unless initialized, variables have no value initially; uninitialized variables are consid-
ered to be undefined. Variables may be initialized in type declaration statements, type
declarations, DATA statements, or by means other than Fortran; initialized variables are
considered to be defined. Some variables initialized by default initialization, such as
that specified in a type definition, are initialized when the variables come into existence,
whereas other variables such as those initialized in a DATA statement are initialized
when execution begins.

 A variable may acquire a value or change its current value, typically by the execu-
tion of an assignment statement or an input statement. Thus it may assume different
values at different times, and under some circumstances it may become undefined.
This is part of the dynamic behavior of program execution. Defined and undefined are
the Fortran terms that are used to specify the definition status of a variable. The events
that cause variables to become defined and undefined are described in 16.

A variable is considered to be defined only if all parts of it are defined. For exam-
ple, all the elements of an array, all the components of a structure, or all characters of a
character string must be defined; otherwise, the array, structure, or string is undefined.
Fortran permits zero-sized arrays and zero-length strings; these are always considered
to be defined.

Pointers have both a definition status and an association status. When execution
begins, the association status of all pointers is undefined, except for data or default ini-
tialized pointers given the disassociated status. During execution a pointer may be-
come disassociated, or it may become associated with a target. At some point the
association status may revert to undefined. Even when the association status of a point-
er is defined, the pointer is not considered to be defined unless the target with which it
is associated is defined. Pointer targets become defined in the same way that any other
variable becomes defined, typically by the execution of an assignment or input state-
ment.

Allocatable variables have a definition status and an allocation status. The allocation
status is never undefined.

24 Chapter 2

2.3.3 Scope

The scope of a program entity is the part of the program in which that entity is known,
is available, and can be used. A scoping unit is

1. a program unit or subprogram, excluding any scoping units in it

2. a derived-type definition

3. an interface body, excluding any scoping units in it

Some entities have scopes that are something other than a scoping unit. For exam-
ple, the scope of a name, such as a variable name, can be any of the following:

1. an executable program

2. a scoping unit

3. a construct

4. a statement or part of a statement

The scope of a label is a scoping unit. The scope of an input/output unit is a pro-
gram.

2.3.4 Association

Association is the concept that is used to describe how different entities in the same
scoping unit or different scoping units can share values and other properties. Argu-
ment association allows values to be shared between a procedure and the program that
calls it. Use association and host association allow entities described in one part of a
program to be used in another part of the program. Use association makes entities de-
fined in modules accessible, and host association makes entities in the containing envi-
ronment available to a contained procedure. The IMPORT statement (12.5.2),
introduced in Fortran 2003, makes entities in a host scoping unit available in an inter-
face body by host association.

Additional forms of association are inheritance association (between the entities in
an extended type and its parent), linkage association (between corresponding Fortran
and C entities), and construct association (relevant to the ASSOCIATE and SELECT
TYPE constructs). The complete description of association may be found in 16.

An old form of association, storage association, which allows two or more vari-
ables to share storage, can be set up by the use of EQUIVALENCE, COMMON, or
ENTRY statements. It is best avoided.

2.4 Terms

Frequently used Fortran terms are defined in this section. Definitions of less frequently
used terms may be found by referencing the index of this handbook or Annex A of the
Fortran 2003 standard.

Fortran Concepts and Terms 25

Entity This is the general term used to refer to any Fortran “thing”,
for example, a program unit, a procedure, a common block, a
variable, an expression value, a constant, a statement label, a
construct, an operator, an interface, a type, an input/output
unit, a namelist group, etc.

Name A name is used to identify many different entities of a program
such as a program unit, a named variable, a named constant, a
common block, a construct, a formal argument of a subpro-
gram (dummy argument), or a user-defined type (derived
type). The rules for constructing names are given in 3.

Named entity A named entity is referenced by a name without any qualifica-
tion such as an appended subscript list or substring range.

Data object A data object is a constant, a variable, or a subobject of a con-
stant. It may be a scalar or an array. It may be of intrinsic or
derived type.

Constant A constant is a data object whose value cannot be changed. A
named entity with the PARAMETER attribute is called a
named constant. A constant without a name is called a literal
constant. A constant may be a scalar or an array.

Variable A variable is a data object whose value can be defined and re-
defined. A variable may be a scalar or an array.

Local variable A variable that is in a main program, module, or subprogram
and is not associated by being: a dummy argument, in COM-
MON, a BIND(C) variable, or accessed via host or USE associa-
tion. A subobject of a local variable is also a local variable.

Subobject of a constant A subobject of a constant is a portion of a constant. The portion
referenced may depend on the value of a variable, in which
case it is neither a constant nor a variable.

Data entity A data entity is a data object or the result of the evaluation of
an expression. A data entity has a type, possibly type parame-
ters, and a rank (a scalar has rank zero). It may have a value.

Expression An expression may be a simple data reference or it may specify
a computation and thus be made up of operands, operators, and
parentheses. The type, type parameters, value, and rank of an
expression result are determined by the rules in 7.

Function reference A function reference invokes a function. It is made up of the
name of a function followed by a parenthesized list of
arguments, which may be empty. The type, type parameters,

26 Chapter 2

and rank of the result are determined by the interface of the
function and the reference.

Data type A data type provides a means for categorizing data. Each in-
trinsic and user-defined data type has—a name, a set of values,
a set of operators, and a means to represent values of the type
in a program. For each data type there is a type specifier that is
used to declare objects of the type.

Type parameter There are two categories of type parameters for types: kind and
length. For intrinsic types a kind type parameter indicates the
range for the integer type, the decimal precision and exponent
range for the real type and parts of the complex type, and the
machine representation method for the character and logical
types. The length type parameter indicates a length for the
intrinsic character type. For a derived type, the type parameters
are defined in its type definition.

Derived type A derived type (or user-defined type) is a type that is not in-
trinsic; it requires a type definition to name the type and speci-
fy its parameters and components. The components may be of
intrinsic or user-defined types. An object of derived type is
called a structure. For each derived type, a structure construc-
tor is available to specify values. Operations on objects of de-
rived type must be defined by a function. Assignment for
derived-type objects is defined intrinsically, but may be rede-
fined by a subroutine. Finalizers may be specified for derived-
type objects. Data entities of derived type may be used as pro-
cedure arguments and function results, and may appear in in-
put/output lists and other places. Derived types may be
extended by inheritance.

Ultimate component The ultimate components of a derived type entity are the low-
est-level components that have storage in the entity. They are a)
any components that are of an intrinsic type, b) any compo-
nents that have the ALLOCATABLE or POINTER attribute (the
entity has storage for the pointer or allocation descriptor, but
the object or target does not, itself, have storage in the entity),
and c) the ultimate components of any derived type compo-
nents that have neither the ALLOCATABLE nor POINTER at-
tribute. The ultimate components are subject to, for example,
storage association rules.

There is a distinction between a component of derived type
and an allocatable or pointer component of the same type. In
the first case, the elements of the derived type component are

Fortran Concepts and Terms 27

ultimate components; in the other cases only the descriptor or
pointer is an ultimate component

Inheritance Inheritance is the process of automatically acquiring entities
(parameters, components, or procedure bindings) from a parent.

Polymorphism Polymorphism is the ability to change type during program ex-
ecution. Dummy arguments, pointers, and allocatable objects
may be polymorphic.

Scalar A scalar is a single object of any intrinsic or derived type. A
structure is scalar even if it has a component that is an array.
The rank of a scalar is zero.

Array An array is an object with the dimension attribute. It is a col-
lected set of scalar data, all of the same type and type parame-
ters. The rank of an array is at least one and at most seven. An
array of any rank may be of zero size. An array of size zero or
one is not a scalar. Data entities that are arrays may be used as
expression operands, procedure arguments, and function re-
sults, and may appear in input/output lists, as well as other
places.

Subobject A subobject is a portion of a data object. Portions of a data ob-
ject may be referenced and defined (if the object is a variable)
separately from other portions of the object. Array elements
and array section are portions of arrays. Substrings are por-
tions of character strings. Structure components are portions of
structures. Portions of complex objects are the real and imagi-
nary parts. Subobjects are referenced by designators or intrin-
sic functions and are considered to be data objects themselves.

Designator Sometimes it is convenient to reference only part of an object,
such as an element or section of an array, a substring of a char-
acter string, or a component of a structure. This requires the
use of a designator which is the name of the object followed by
zero or more selectors that select a part of the object.

Selector This term is used in several different ways. A selector may des-
ignate part of an object (array element, array section, substring,
or structure component) or the set of values for which a CASE
block is executed, or the dynamic type for which a SELECT
TYPE block is executed, or the object associated with the name
in an ASSOCIATE construct.

Declaration A declaration is a nonexecutable statement that specifies the at-
tributes of a program element. For example, it may be used to
specify the type of a variable or function or the shape of an ar-

28 Chapter 2

ray. It may indicate that an entity is a data pointer or a proce-
dure pointer. Attributes that were introduced in Fortran 2003
are: ASYNCHRONOUS, which indicates that the value of the
variable may change outside the execution flow due to a
possibly simultaneous input/output process; BIND (C), which is
used to indicate data and functions that interoperate with C;
PROTECTED, which prohibits any change to the value of the
variable or the association status of the pointer outside the
module in which it is declared; VALUE, which, when applied to
a dummy argument, specifies an argument passing mechanism
useful in C interoperability; and VOLATILE, which indicates
that the value of the variable may change by means other than
the normal execution sequence

Definition This term is used in several ways. A data object is said to be
defined when it has a valid or predictable value; otherwise it is
undefined. It may be given a valid value by execution of state-
ments such as assignment or input. Under certain circumstanc-
es described in 16, it may subsequently become undefined.

Procedures and derived types are said to be defined when their
descriptions have been supplied by the programmer and are
available in a program unit.

The association status of a pointer is defined when the pointer is
associated or disassociated; otherwise, it is undefined.

Statement keyword A statement keyword is part of the syntax of a statement. Each
statement, other than an assignment statement, pointer assign-
ment statement, or statement function definition, begins with a
statement keyword. Some statement keywords appear in
internal positions within statements. Examples of these key-
words are THEN, KIND, and INTEGER. Statement keywords
are not reserved; they may be used as names.

List keyword A list keyword is a name that is used to identify an item in a
list (rather than its position) such as an argument list, type pa-
rameter list, or structure constructor list. Keywords for the ar-
gument lists of all of the intrinsic procedures are specified by
the standard (A). Keywords for user-supplied external proce-
dures may be specified in a procedure interface block. Key-
words for structure constructors and user-defined type
parameters are specified in the type definition.

Sequence A sequence is a set ordered by a one-to-one correspondence
with the numbers 1, 2, through n. The number of elements in

Fortran Concepts and Terms 29

the sequence is n. A sequence may be empty, in which case it
contains no elements.

Operator An operator indicates a computation involving one or two op-
erands. Fortran defines a number of intrinsic operators; for ex-
ample, +, –, ∗, /, ∗∗ with numeric operands, and .NOT.,.AND., .OR. with logical operands. In addition, users may
define operators for use with operands of intrinsic or derived
types.

Construct A construct is a sequence of statements starting with an ASSO-
CIATE, DO, FORALL, IF, SELECT CASE, SELECT TYPE, or
WHERE statement and ending with the corresponding termi-
nal statement.

Executable construct An executable construct is an action statement (such as a
READ statement) or a construct (such as a DO or CASE con-
struct).

Procedure A procedure is defined by a sequence of statements that ex-
presses a computation that may be invoked as a subroutine or
function during program execution. It may be an intrinsic pro-
cedure, an external procedure, an internal procedure, a module
procedure, a dummy procedure, or a statement function. If a
subprogram contains an ENTRY statement, it defines more than
one procedure.

Procedure interface A procedure interface is a sequence of statements that specifies
the name and characteristics of a procedure, the name and at-
tributes of each dummy argument, and the generic specifier by
which it may be referenced, if any.

Reference A data object reference is the appearance of the object designa-
tor in a statement requiring the value of the object.

A procedure reference is the appearance of the procedure des-
ignator, operator symbol, or assignment symbol in an execut-
able program requiring execution of the procedure.

A module reference is the appearance of the module name in a
USE statement.

Intrinsic Anything that is defined by the Fortran processor is intrinsic.
There are intrinsic data types, procedures, modules, operators,
and assignment. These may be used freely in any scoping unit.
The Fortran programmer may define types, procedures, mod-
ules, operators, and assignment; these entities are not intrinsic.

30 Chapter 2

Companion processor A companion processor is a processor that provides mecha-
nisms by which global data and procedures may be referenced
or defined—perhaps by means other than Fortran, such as the
C programming language.

Scoping unit A scoping unit is a portion of a program in which a name has a
fixed meaning. A program unit or subprogram generally de-
fines a scoping unit. Type definitions and procedure interface
bodies also constitute scoping units. Scoping units are non-
overlapping, although one scoping unit may contain another in
the sense that it surrounds it. If a scoping unit contains another
scoping unit, the outer scoping unit is referred to as the host
scoping unit of the inner scoping unit.

Association In general, association permits an entity to be referenced by
different names in a scoping unit or by the same or different
names in different scoping units. There are several kinds of as-
sociation: the major ones are name association, pointer associa-
tion, inheritance association, and storage association. Name
association is argument association, use association, host
association, linkage association, and construct association.

Inheritance association Inheritance association occurs between the inherited entities of
an extended type and the corresponding entities of its parent.

Linkage association Linkage association occurs between a module variable with the
BIND(C) attribute and the relevant C variable or between a
Fortran common block and the relevant C variable. It has the
scope of the program.

Construct association Construct association occurs between the selector in an ASSO-
CIATE or SELECT TYPE construct and the associate name of
the construct. It has the scope of the construct.

2.5 High-Level Syntax Forms

The form of a program (R201) is:

program-unit
 [program-unit] . . .

The forms for Fortran program units are shown in the first section below. The con-
structs that may appear in a program unit are shown in the subsequent sections. All
program units may have a specification part. The main program and the three forms of
subprogram (module, external, and internal) may have an execution part.

The notation used in this chapter is the same as that used to show the syntax in all
the remaining chapters; it is described in 1.3 along with an assumed syntax rule and

Fortran Concepts and Terms 31

some frequently used abbreviations for syntax terms. This is not the complete set of
rules; many lower-level rules are missing. Many of these rules may be found in the fol-
lowing chapters. The Fortran 2003 standard [7] contains the complete syntax rules.

2.5.1 Fortran Program Units

The forms of a program unit (R202) are:

main-program
module
external-subprogram
block-data

The form of a main program (R1101) is:

[PROGRAM program-name]
 [specification-part]
 [execution-part]
[CONTAINS
 internal-subprogram
 [internal-subprogram] ...]
END [PROGRAM [program-name]]

The form of a module (R1104) is:

MODULE module-name
 [specification-part]
[CONTAINS
 module-subprogram
 [module-subprogram] ...]
END [MODULE [module-name]]

The form of a module subprogram (R1108) and an external subprogram (R203) is:

subprogram-heading
 [specification-part]
 [execution-part]
[CONTAINS
 internal-subprogram
 [internal-subprogram] ...]
subprogram-ending

The form of an internal subprogram (R211) is:

subprogram-heading
 [specification-part]
 [execution-part]
subprogram-ending

The forms of a subprogram heading (R1224, R1232) are:

32 Chapter 2

[prefix] [declaration-type-spec] FUNCTION function-name &

 ([dummy-argument-list]) [suffix]
 [prefix] SUBROUTINE subroutine-name [([dummy-argument-list])] [binding-spec]

A prefix (R1228) is any combination of the keywords:

RECURSIVE
PURE
ELEMENTAL

A suffix (R1229) is one of the forms:

 RESULT (result-name) [binding-spec]
 binding-spec [RESULT (result-name)]

A binding specification (R509) is:

 BIND (C [, NAME = scalar-char-initialization-expr])

The forms of a subprogram ending (R1230, R1234) are:

END [FUNCTION [function-name]]
END [SUBROUTINE [subroutine-name]]

The form of a block data program unit (R1116) is:

BLOCK DATA [block-data-name]
 [specification-part]
END [BLOCK DATA [block-data-name]]

2.5.2 The Specification Part

The form of the specification part (R204) is:

[use-statement] ...
IMPORT [[::] import-name-list]] ...
[implicit-part]
[declaration-construct] ...

The forms of a USE statement (R1109) are:

USE [[, module-nature] ::] module-name [, rename-list]
USE [[, module-nature] ::] module-name , ONLY : [only-list]

The form of the implicit part (R206) is:

[implicit-part-statement] ...
IMPLICIT implicit-spec-list

The forms of an implicit part statement (R205) are:

Fortran Concepts and Terms 33

IMPLICIT implicit-spec-list
PARAMETER (named-constant = initialization-expr &
 [, named-constant = initialization-expr] ...)
entry-statement
format-statement

The forms of an implicit specification (R550) are:

NONE

declaration-type-spec (letter-spec-list)

The forms of a declaration construct (R207) are:

declaration-type-spec [[, attribute-spec] ... ::] entity-declaration-list
specification-statement
derived-type-definition
interface-block
enumeration-definition
entry-statement
format-statement
statement-function-statement

The forms of a declaration type specification (R502) are:

INTEGER [kind-selector]
REAL [kind-selector]
DOUBLE PRECISION
COMPLEX [kind-selector]
CHARACTER [character-selector]
LOGICAL [kind-selector]
TYPE (derived-type-spec)
CLASS (derived-type-spec)
CLASS (*)

The form of a kind selector (R404) is:

([KIND =] kind-value)

The forms of a character selector (R424) are:

(length-value [, [KIND =] kind-value])
(LEN = length-value [, KIND = kind-value])
(KIND = kind-value [, LEN = length-value])
* character-length [,]

A length value (R402) has one of the forms:

scalar-integer-expression
*
:

34 Chapter 2

A kind value (R404) has the from:

scalar-integer-initialization-expr

A character length (R426) has one of the forms:

(length-value)
scalar-integer-literal-constant

A derived-type specification (R455) has the from:

type-name [(type-parameter-spec-list)]

A type parameter specification (R456) has the from:

[keyword =] length-value

The forms of an attribute specification (R503) are:

ALLOCATABLE
ASYNCHRONOUS

BIND (C [, NAME = scalar-char-initialization-expr])
DIMENSION (array-spec)
EXTERNAL
INTENT (intent-spec)
INTRINSIC
OPTIONAL
PARAMETER
POINTER
PRIVATE
PROTECTED
PUBLIC
SAVE
TARGET
VALUE
VOLATILE

The form of an entity declaration (R504) is:

object-name [(array-spec)] [* character-length] [initialization]

The forms of initialization (R506) are:

= initialization-expr
=> function-reference

The forms of specification statements (R212) are:

ALLOCATABLE [::] object-name [(deferred-shape-spec-list)] &
 [, object-name [(deferred-shape-spec-list)]] ...
ASYNCHRONOUS [[::] variable-name-list]
BIND (C [, NAME = scalar-char-initialization-expr]) [::] bind-entity-list

Fortran Concepts and Terms 35

COMMON [/ [common-block-name] /] common-block-object-list
DATA data-statement-object-list / data-value-list / &
 [[,] data-statement-object-list / data-value-list /]
DIMENSION [::] array-name (array-spec) [, array-name (array-spec)] ...
EQUIVALENCE equivalence-set-list
EXTERNAL [::] external-name-list
INTENT (intent-spec) [::] dummy-argument-name-list
INTRINSIC [::] intrinsic-procedure-name-list
NAMELIST / namelist-group-name / namelist-group-object-list
OPTIONAL [::] dummy-argument-name-list
POINTER [::] pointer-declaration-list
PARAMETER (named-constant = initialization-expr &
 [, named-constant = initialization-expr] ...)
PROCEDURE ([procedure-interface]) [[, procedure-attribute-spec] ... ::] &
 procedure-declaration-list
PROTECTED [::] entity-name-list
PUBLIC [[::] access-id-list]
PRIVATE [[::] access-id-list]
SAVE [[::] saved-entity-list]
TARGET [::] object-name [(array-spec)] [, object-name [(array-spec)]] ...
VALUE [::] dummy-argument-name-list
VOLATILE [::] variable-name-list

The forms of a procedure interface (R1212) are:

interface-name
declaration-type-spec

The forms of a procedure attribute specification (R1213) are:

BIND (C [, NAME = scalar-char-initialization-expr])
INTENT (intent-spec)
OPTIONAL
POINTER
PRIVATE
PUBLIC
SAVE

The form of a procedure declaration (R1214) is:

procedure-entity-name [=> function-reference]

The form of a derived-type definition (R429) is:

TYPE [[, type-attribute-list] ::] type-name [(type-parameter-name-list)]
 [type-parameter-definition-statement] ...
 [private-or-sequence-statement]
 [component-definition-statement] ...
[CONTAINS

36 Chapter 2

 [PRIVATE]
 procedure-binding-statement
 [procedure-binding-statement] ...]
END TYPE [type-name]

The forms of a type attribute (R431) are:

ABSTRACT

BIND (C)
EXTENDS (parent-type-name)
PRIVATE
PUBLIC

The form of a type parameter definition statement (R435) is:

INTEGER [kind-selector] , type-parameter-attribute-spec :: &
 type-parameter-declaration-list

The forms of a type parameter attribute specification (R437) are:

KIND
LEN

The form of a type parameter declaration (R436) is:

type-param-name [= scalar-integer-initialization-expr]

The forms of a component definition statement (R439) are:

declaration-type-spec [[, component-attribute-spec-list] ::] &
 component-declaration-list
PROCEDURE ([procedure-interface]) , procedure-component-attribute-spec-list :: &
 procedure-declaration-list

The forms of a component attribute specification (R441) are:

ALLOCATABLE

DIMENSION (component-array-spec)
POINTER
PRIVATE
PUBLIC

The form of a component declaration (R442) is:

component-name [(component-array-spec)] [* character-length] [initialization]

The forms of a procedure component attribute specification (R446) are:

NOPASS

PASS [(argument-name)]
POINTER
PRIVATE
PUBLIC

Fortran Concepts and Terms 37

The form of an interface block (R1201) is:

[ABSTRACT] INTERFACE [generic-spec]
 [subprogram-heading
 [specification-part]
 subprogram-ending] ...
 [[MODULE] PROCEDURE procedure-name-list] ...
END INTERFACE [generic-spec]

The forms of a generic specification (R1207) are:

generic-name
OPERATOR (defined-operator)
ASSIGNMENT (=)
derived-type-io-generic-spec

The form of an enumeration definition (R460) is:

ENUM , BIND (C)
 ENUMERATOR [::] enumerator-list
 [ENUMERATOR [::] enumerator-list] . . .
END ENUM

2.5.3 The Execution Part

The form of the execution part (R208) is:

execution-part-construct
 [execution-part-construct] ...

The forms of an execution part construct (R209) are:

executable-construct
entry-statement
format-statement

The forms of an executable construct (R213) are:

action-statement
associate-construct
case-construct
do-construct
forall-construct
if-construct
select-type-construct
where-construct

The forms of an action statement (R214) are:

variable = expression
data-pointer-object [(bounds-list)] => data-target
data-pointer-object (bounds-remap-list) => data-target

38 Chapter 2

procedure-pointer-object => procedure-target
ALLOCATE [declaration-type-spec ::] (allocation-list [, allocate-option-list])
BACKSPACE scalar-integer-expression
BACKSPACE (position-spec-list)
CALL subroutine-name [([actual-argument-spec-list])]
CLOSE (close-spec-list)
CONTINUE

CYCLE [do-construct-name]
DEALLOCATE (allocate-object-list [, deallocate-option-list])
ENDFILE scalar-integer-expression
ENDFILE (position-spec-list)
EXIT [do-construct-name]
FLUSH scalar-integer-expression
FLUSH (flush-spec-list)
FORALL (forall-triplet-specification-list [, scalar-logical-expression]) &
 forall-assignment-statement
GO TO label
GO TO (label-list) [,] scalar-integer-expression
IF (scalar-logical-expression) action-statement
IF (scalar-numeric-expression) label , label , label
INQUIRE (inquire-spec-list)
INQUIRE (IOLENGTH = scalar-integer-variable) output-item-list
NULLIFY (pointer-object-list)
OPEN (connection-spec-list)
PRINT format [, output-item-list]
READ (io-control-spec-list) [input-item-list]
READ format [, input-item-list]
RETURN [scalar-integer-expression]
REWIND scalar-integer-expression
REWIND (position-spec-list)
STOP [scalar-character-constant]
STOP digit [digit [digit [digit [digit]]]]
WAIT (wait-spec-list)
WHERE (logical-expression) where-assignment-statement
WRITE (io-control-spec-list) [output-item-list]

The form of the ASSOCIATE construct (R816) is:

[associate-construct-name :] ASSOCIATE (association-list)
 block
END ASSOCIATE [associate-construct-name]

The form of the CASE construct (R808) is:

[case-construct-name :] SELECT CASE (case-expression)
[CASE (case-value-range-list) [case-construct-name]
 block] ...

Fortran Concepts and Terms 39

[CASE DEFAULT [case-construct-name]
 block]
END SELECT [case-construct-name]

The form of the DO construct (R825) is:

[do-construct-name :] DO [label] [loop-control]
 block
[label] END DO [do-construct-name]

The form of the FORALL construct (R752) is:

[forall-construct-name :] &
 FORALL (forall-triplet-spec-list [, scalar-logical-expression])
 [forall-body-construct] ...
END FORALL [forall-construct-name]

The form of the IF construct (R802) is:

[if-construct-name :] IF (scalar-logical-expression) THEN
 block
[ELSE IF (scalar-logical-expression) THEN [if-construct-name]
 block] ...
[ELSE [if-construct-name]
 block]
END IF [if-construct-name]

The form of the SELECT TYPE construct (R821) is:

[select-construct-name :] SELECT TYPE ([associate-name =>] selector)
 [type-guard [select-construct-name]
 block] . . .
END SELECT [select-construct-name]

The form of the WHERE construct (R744) is:

[where-construct-name :] WHERE (logical-expression)
 [where-body-construct] ...
[ELSEWHERE (logical-expression) [where-construct-name]
 [where-body-construct] ...] ...
[ELSEWHERE [where-construct-name]
 [where-body-construct] ...]
END WHERE [where-construct-name]

2.6 Ordering Requirements

Within program units, subprograms, and interface bodies there are ordering require-
ments for statements and constructs. The syntax rules above do not fully describe the

40 Chapter 2

ordering requirements. Therefore, they are illustrated in Table 2-1. In general, data dec-
larations and specifications must precede executable constructs and statements, al-
though FORMAT, DATA, and ENTRY statements may appear among the executable
statements. Placing DATA statements among executable constructs is now an obsoles-
cent feature. USE statements, if any, must appear first. Internal or module subpro-
grams, if any, must appear last following a CONTAINS statement.

In Table 2-1 a vertical line separates statements and constructs that can be inter-
spersed; a horizontal line separates statements that must not be interspersed.

2.7 Example Fortran Program

Illustrated below is a very simple Fortran program consisting of one program unit, the
main program. Three data objects are declared: H, T, and U. These become the loop in-
dices in a triply-nested loop construct (8.7) containing a logical IF statement (8.4.2) that
conditionally executes an input/output statement (9.4).

Table 2-1 Requirements on statement ordering

PROGRAM, FUNCTION, SUBROUTINE, MODULE, or BLOCK DATA statement

USE statements

IMPORT statements3

FORMAT5

and
ENTRY4

statements

IMPLICIT NONE

PARAMETER statements IMPLICIT statements

PARAMETER and
DATA statements6

Derived-type definitions,
interface blocks,7

type declaration statements,
enumeration statements,
procedure statements,
statement function statements,2,5

and specification statements

DATA statements1 Executable constructs5

CONTAINS statement8

Internal subprograms or module subprograms

END statement

1. Placing DATA statements among executable constructs is obsolescent.
2. Statement function statements are obsolescent.
3. Can appear only in interface bodies.
4. Can appear only in modules and external procedures.
5. Cannot appear in module specification parts, interface bodies, and block data subprograms.
6. Cannot appear in interface bodies.
7. Cannot appear in block data subprograms.
8. Cannot appear in internal subprograms, interface bodies, and block data subprograms.

Fortran Concepts and Terms 41

program sum_of_cubes
! This program prints all 3-digit numbers that
! equal the sum of the cubes of their digits.
implicit none
integer :: H, T, U
do H = 1, 9

 do T = 0, 9
 do U = 0, 9

 if (100*H + 10*T + U == H**3 + T**3 + U**3) &
 print "(3I1)", H, T, U
 end do

 end do
end do
end program sum_of_cubes

This Fortran program is standard conforming and should be compilable and exe-
cutable on any standard Fortran computing system, producing the following output:

153
370
371

3 Language Elements and Source Form

• The Fortran Character Set consists of the uppercase letters and lowercase letters of
the English alphabet, the decimal digits, underscore, and special characters. Lower
case letters are considered the same as the corresponding upper case letters except
in character contexts and input/output records.

• Lexical Tokens are constructed from characters in the Fortran character set. They
include statement keywords, names, constants, and operators.

• The Processor Character Set consists of the Fortran character set plus additional
characters with or without graphics. (Control characters generally do not have
graphics.) A processor may support other character sets as well, such as Greek or
Japanese. Any of these characters may appear in character strings, comments, or
input/output.

• Free Source Form has no position restrictions. Lines may contain up to 132 charac-
ters. Blanks are significant and cannot be used within tokens, particularly names,
keywords, literal constants, and multicharacter operators. A semicolon may be used
to separate statements on the same line. Comments beginning with an exclamation
(!) may appear on a separate line or at the end of a line. Lines can be continued by
placing an ampersand at the end of the line to be continued.

• Fixed Source Form reserves positions 1 through 5 for labels, position 6 for continua-
tion, positions 7 through 72 for Fortran statements, and positions 73-80 are unused.
Comments are indicated by a C or asterisk in position 1. An exclamation may also
be used in position 1 or to indicate an end of line comment. A semicolon can be used
to separate statements on a line. Blanks are insignificant except in a character con-
text.

• An INCLUDE Line specifies the location of text to be included in the source in place
of the INCLUDE line.

• It is possible to prepare source so that it conforms to the rules for both free and fixed
source form. Text in this restricted form can be included in either free form or fixed
form source.

A program is made up of language elements consisting of lexical tokens that include
names, keywords, operators, and statement labels. There are rules for forming lexical
tokens from the characters in the Fortran character set. There are also rules (called
source form) for placing these tokens on a line.

A processor must have a character set that includes the Fortran character set, but
may permit other characters in certain contexts. The additional characters may include
control characters (which may have no graphic representation, such as escape or new

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_3, © Springer-Verlag London Limited 2009

44 Chapter 3

line) or may include characters with specified graphics such as those found in languag-
es, like Greek, Arabic, Chinese, or Japanese. These characters are not required to be
part of the character set for the default character type, but could be part of some op-
tional, nondefault character type, permitted by the standard and supplied by a partic-
ular implementation.

There are two source forms in Fortran. One is oriented towards terminal input of
source code. It is called free source form. The other is oriented towards the Hollerith
punched card common in the 1960s and is restricted to 80 positions. It is called fixed
source form. Fixed source form is an obsolescent feature. There is a convenient way to
place the same text in several places in a program; it makes use of an INCLUDE line.

3.1 The Processor Character Set

The processor character set contains:

• the Fortran character set of Table 3-1.

• as an extension, a processor-dependent set of control characters that have no
graphic representation, such as “new line” or “escape”

• as an extension, a set of characters with graphics (such as lowercase letters, Greek
letters, Japanese ideographs, or characters in the shape of a heart or a diamond)

It is recommended that the programmer consult the implementor’s documentation
describing the processor-dependent features of each particular Fortran implementa-
tion.

3.1.1 The Fortran Character Set

Characters in the Fortran character set are shown in Table 3-1.

Rules and restrictions:

1. Lowercase letters are considered the same as uppercase letters except within a
character constant, a quote or apostrophe edit descriptor, or input/output records,
where uppercase and lowercase letters are different data values in character data.
The following two statements are equivalent:

PRINT *, N
Print *, n

Whether uppercase and lowercase letters are distinguished in the FILE= or NAME=
specifier in an OPEN or an INQUIRE statement is processor dependent.

2. The digits are assumed to be decimal numbers when used to describe a numeric
value, except in binary, octal, and hexadecimal (BOZ) literal constants or input/out-
put records corresponding to B, O, or Z edit descriptors. For example, consider the
following DATA statement:

Language Elements and Source Form 45

DATA X, I, J / 4.89, B’1011’, Z’BAC91’ /

The digits of the first constant are decimal digits, those of the second constant are
binary digits, and those of the third are hexadecimal digits.

3. The underscore is used to make names more readable. For example, in the identifi-
er NUMBER_OF_CARS, each underscore is used to separate the obvious English
words. It is a significant character in any name. It cannot be used as the first char-
acter of a name; however, it may be the last character. An underscore is also used

Table 3-1 The Fortran character set

Alphanumeric characters

Letters A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z

Digits 0 1 2 3 4 5 6 7 8 9

Underscor
e

_

Special characters

Graphic Name of character Graphic Name of character

Blank ; Semicolon

= Equals ! Exclamation point

+ Plus ʺ Quotation mark or quote

- Minus % Percent

* Asterisk & Ampersand

/ Slash ~ Tilde

\ Backslash < Less than

(Left parenthesis > Greater than

) Right parenthesis ? Question mark

[Left square bracket ’ Apostrophe

] Right square bracket ’ Grave accent

{ Left curly bracket (brace) ^ Circumflex accent

} Right curly bracket (brace) | Vertical bar

, Comma $ Currency symbol

. Decimal point or period # Number sign

: Colon @ Commercial at

46 Chapter 3

to separate the kind value from the actual value of a literal constant (for example,
123_SHORT is a literal constant with value 123 and of integer type with kind
SHORT).

4. Except for the currency symbol ($), the graphic for each character must be the same
as in Table 3-1; however, any style, font, or printing convention may be used.

5. The special characters, \, {, }, ~, ?, ’, ^, |, $, #, and @, are used only in a character
context or a comment.

The special characters are used for operators like multiply and add, and as separa-
tors or delimiters in Fortran statements. Separators and delimiters make the form of a
statement unambiguous.

3.1.2 Other Characters

In addition to the Fortran character set, other characters may be included in the proces-
sor character set. These are either control characters with no graphics or additional
characters with graphics. The selection of the other characters and where they may be
used is processor dependent. However, wherever they are permitted, the other charac-
ters are restricted in use to character constants, quote and apostrophe edit descriptors,
comment lines, and input/output records. All characters of the Fortran character set
may be used in character constants, quote and apostrophe edit descriptors, comment
lines, and input/output records.

A processor is required to support the Fortran character set as part of a character
set referred to as the default character set. A processor is allowed to support more
than one character set, each set using a different kind value of the intrinsic character
type (4.3.5); each such character set is a nondefault character set. The choice of charac-
ters in such sets is processor dependent except that each such set must contain a char-
acter that can be used as a blank. This specially designated character is used where
blank padding is required.

The choice of the representable characters beyond the Fortran character set is ex-
pected to be dependent on the particular implementation. It is recommended that the
implementor’s documentation be consulted for specific details.

3.1.3 The Tab Character

The tab character is not in the Fortran character set and is an example of an optional
control character that may be permitted by the processor in the source forms and typi-
cally is used as a blank separator. When it appears as the first character in a fixed
source form line, it often represents at least six blank characters, so that the next char-
acter may begin the body of a statement that must appear in columns 7-72. However,
this is not standard and its use may make it difficult to port the program; therefore, its
use is not recommended.

This recommendation does not help the programmer who has code that uses tab
characters. To use a Fortran file containing tabs with a compiler that accepts only stan-
dard-conforming programs, replace the tab with a blank for free source form and with
six blanks for fixed source form. This conversion is not fool proof; replacing a tab in

Language Elements and Source Form 47

fixed source form may extend the line beyond position 72. In either form, a tab may be
used in character context for output format control; in this case, the modification may
lead to an undesirable layout of data in the output.

3.2 Lexical Tokens

A statement is constructed from low-level syntax. The low-level syntax describes the
basic language elements, called lexical tokens, in a Fortran statement. A lexical token
is the smallest meaningful unit of a Fortran statement and may consist of one or more
characters. Tokens are names, keywords, literal constants (except for complex literal
constants), labels, operator symbols, comma, =, =>, :, ::, ;, %, and delimiters. A complex
literal (4.3.3) consists of several tokens. Examples of operator symbols are + and //.

Delimiters in Fortran are pairs of symbols that enclose parts of a Fortran statement.
The delimiters are slashes (in pairs), left and right parentheses, left and right brackets,
and the symbol pairs (/ and /).

/ ... /
(...)
(/ ... /)
[...]

In the statements:

DATA X, Y/ 1.0, -10.2/
CALL PRINT_LIST (LIST, SIZE)
VECTOR = (/ 10, 20, 30, 40 /)

the slashes distinguish the value list from the object list in a DATA statement, the pa-
rentheses are delimiters marking the beginning and end of the argument list in the
CALL statement, and the pairs (/ and /) and [and] mark the beginning and end of the
elements of an array constructor.

3.2.1 Statement Keywords

Statement keywords appear in uppercase letters in the syntax rules. Some statement
keywords also identify the statement, such as in the DO statement:

DO I = 1, 10

where DO is a statement keyword identifying the DO statement. Other keywords de-
limit parts of a statement such as ONLY in a USE statement, or WHILE in one of the
forms of a DO construct, as, for example:

DO WHILE(.NOT. FOUND)

Others specify options in the statement such as IN, OUT, or INOUT in the INTENT
statement.

There are two statements in Fortran that have no statement keyword. They are the
assignment statement (7.5.1) and the statement function (12.4.4).

48 Chapter 3

Some sequences of capital letters in the formal syntax rules are not statement key-
words. For example, EQ in the lexical token .EQ. and EN as an edit descriptor are not
statement keywords.

A dummy argument keyword, a different sort of keyword, is discussed in 12.1.2.

3.2.2 Names

Variables, named constants, program units, common blocks, procedures, arguments,
constructs, derived types (types for structures), namelist groups, structure components,
dummy arguments, and function results are among the elements in a program that
have a name.

Rules and restrictions:

1. A name must begin with a letter and consist of letters, digits, and underscores.
Note that an underscore must not be the first character of a name.

2. Fortran permits up to 63 characters in a name.

Examples of names:

A
CAR_STOCK_NUMBER
A__BUTTERFLY
Z_28
TEMP_

3.2.3 Constants

A constant is a syntactic notation for a value. The value may be of any intrinsic type,
that is, a numeric (integer, real, or complex) value, a character value, or a logical value.

A value that does not have a name is a literal constant. Examples of literal con-
stants are:

1.23
400
(0.0, 1.0)
"ABC"
B’0110110’
.TRUE.

No literal constant can be array-valued or of derived type. The forms of literal con-
stants are given in more detail in 4.2.6.

A value that has a name is called a named constant and may be of any type, in-
cluding a derived type. A named constant may also be array-valued. Examples of
named constants are:

X_AXIS
MY_SPOUSE

where these names have been specified in a declaration statement as follows:

Language Elements and Source Form 49

REAL, DIMENSION(2), PARAMETER :: X_AXIS = (/0.0, 1.0/)
TYPE(PERSON), PARAMETER :: MY_SPOUSE = PERSON(39, ’PAT’)

Note, however, that the entity on the right of the equal sign is not itself a constant but
an initialization expression (7.4.1). The forms for defining named constants are de-
scribed in more detail in 5.7.1.

3.2.4 Operators

Operators are used with operands in expressions to produce other values. Examples of
language-supplied operators are:

The complete set of the intrinsic operators is given in 7.1.1.1.
Users may define operators (12.5.4.2) in addition to the intrinsic operators. User-

defined operators begin with a period (.), followed by a sequence of up to 63 letters,
and end with a period (.), except that the letter sequence must not be the same as any
intrinsic operator or either logical constant. Note that, unlike names, underscores and
digits are not allowed.

3.2.5 Statement Labels

A label may be used to identify a statement. A label consists of one to five decimal dig-
its, one of which must be nonzero. If a Fortran statement has a label, it is uniquely
identified and the label can be used in DO constructs, CALL statements, branching
statements, and input/output statements. In most cases, two statements in the same
program unit must not have the same label (there are exceptions because a program
unit may contain more than one scoping unit, for example, several internal proce-
dures). Leading zeros in a label are not significant so that the labels 020 and 20 are the
same label. This means that there are 99999 different labels and the processor must ac-
cept any of them, but may limit the total number of labels allowed in a program unit.

Any statement may have a label, but a label is used only:

1. to designate to target of a branch

2. to specify a FORMAT statement

3. to indicate the termination of some DO loops

* representing multiplication of numeric values

// representing concatenation of character values

== representing comparison for equality (same as .EQ.)

.OR. representing logical disjunction

.NOT. representing logical negation

50 Chapter 3

The cases in which duplicate labels can be used in the same program unit are ex-
plained in 16 as part of the general treatment of the scope of entities. Examples of state-
ments with labels are:

100 CONTINUE
21 X = X + 1.2
101 FORMAT (1X, 2F10.2)

The Fortran syntax does not permit a statement with no content, sometimes re-
ferred to as a blank statement in other programming languages. A label must have a
statement so each of the following lines is nonstandard Fortran:

10
X=0;101;

3.3 Source Form

A Fortran program is a sequence of one or more lines organized as Fortran statements,
comments, and INCLUDE lines; this collection of statements, comments, and lines is
called source text. A Fortran statement consists of one or more complete or partial lines
of source text and is constructed from low-level syntax. A complete or partial line is a
sequence of characters. The following examples illustrate how statements can be
formed from partial or complete lines:

! This example is written for one of the source forms, called free
! source form (3.3.1). It uses the & on the continued line to
! indicate continuation. A ! after an & indicates the beginning
! of a comment.
10 FORMAT(2X, I5) ! A statement on a complete line
13 FORMAT(2X, & ! A statement on two

I5) ! complete lines

X = 5; 10 FORMAT(2X, I5) ! Two statements, each as part of a line

X = 5 + & ! A statement consisting of a complete
Y; 10 FORMAT(2X, I5) ! line and a partial line

X = 5 + &
Y; 10 FORMAT(2X, & ! A statement made up of

I5); READ & ! two partial lines
(5, 10) A, B, C

The lines within a program unit (except comment lines) and the order of the lines
are in general significant (Table 2-1), except that the order of the subprograms follow-
ing a CONTAINS statement and before the END statement for the containing program
unit is insignificant.

There are two source forms for writing source text: free source form and fixed
source form, which is the traditional Fortran form. Programmers must use either fixed

Language Elements and Source Form 51

or free source form throughout a program unit, although different program units with-
in the program may use different source forms. Each Fortran processing system must
provide a way to indicate which source form is being used; for example, this might be
indicated with a compiler option, file suffix (e.g., .f or .f03), or compiler directive, or
the processor might assume one of the forms by default. Section 3.3.3 describes a way
to write Fortran statements so that the source text is acceptable to both free and fixed
source forms.

Characters that form the value of a character literal constant or a character string
edit descriptor (quote or apostrophe edit descriptor) are said to be in a character con-
text. Note that the characters in character context do not include the delimiters used to
indicate the beginning and end of the character constant or string. Also, the amper-
sands in free source form, used to indicate that a character string is being continued
and used to indicate the beginning of the character string on the continued line, are
never part of the character string value and thus are not in character context (3.3.1).

The rules that apply to characters in a character context are different from the rules
that apply to characters in other contexts. For example, blanks are always significant in
a character context, but are never significant in other parts of a program written using
fixed source form.

CHAR = CHAR1 // "Mary K. Williams"
! The blanks within the character string
! (within the double quotes) are significant.

! The next two statements are equivalent in fixed source form.
DO2I=1,N
DO 2 I = 1, N

Comments may contain any graphic character that is in the processor character set.
For fixed source form, comments may contain, in addition, certain control characters as
allowed by the processor—see the implementor’s manual for the specific control char-
acters allowed.

3.3.1 Free Source Form

In free source form, there are no restrictions limiting statements to specific positions on
a Fortran line. The blank character is significant and may be required to separate lexi-
cal tokens.

Rules and restrictions:

1. Blank characters are significant everywhere except that a sequence of blank charac-
ters outside a character context is treated as a single blank character. They may be
used freely between tokens and delimiters to improve the readability of the source
text. For example, the two statements:

SUM=SUM+A(I)
SUM = SUM + A (I)

are the same.

52 Chapter 3

2. Each line may contain from 0 to 132 characters, provided that they are of default
character kind. If any character is of a nondefault character kind, the processor
may limit the number of characters to fewer than 132 characters. For example, a
line such as

TEXT = GREEK_’This line has 132 characters and contains ’

may use exactly 132 graphic characters, but the implementation may require more
space to represent this source line than 132 Fortran characters. The processor may
thus limit how many graphic characters may be used on a line if any of them are of
nondefault character kind.

3. The exclamation mark (!), not in character context, is used to indicate the beginning
of a comment that ends with the end of the line. A line may contain nothing but a
comment. Comments, including the !, are ignored and do not alter the interpreta-
tion of Fortran statements in any way. There is no language limit on the number of
comments in a program unit, although the processor may impose such a limit. A
line whose first nonblank character is an exclamation mark is called a comment
line. An example of a Fortran statement with a trailing comment is:

ITER = ITER + 1 ! Begin the next iteration.

An example of a comment line is:

! Begin the next iteration.

A comment may appear before or after a program unit, but the standard does not
indicate which program unit it belongs to if it is between program units.

A line with only blank characters or with no characters is treated as a comment
line.

4. The ampersand (&) is used as the continuation symbol in free source form. If it is
the last nonblank character after any comments are deleted and it is not in a char-
acter context, the statement is continued on the next line that does not begin with a
comment. If the first nonblank character on the continuing line is an ampersand,
the statement continues after the ampersand; otherwise, the statement continues
with the first position of the line. The ampersand or ampersands used as the con-
tinuation symbols are not considered part of the statement. For example, the fol-
lowing statement takes two lines (one continuation line):

STOKES_LAW_VELOCITY = 2 * GRAVITY * RADIUS ** 2 * &
(DENSITY_1 - DENSITY_2) / (9*COEFF_OF_VISCOSITY)

The leading blanks on the continued line are included in the statement and are al-
lowed in this case because they are between lexical tokens.

No more than 255 continuation lines are allowed in a Fortran statement. No line
may contain an ampersand as the only nonblank character before an exclamation

α

Language Elements and Source Form 53

mark. Comment lines cannot be continued; that is, the ampersand as the last char-
acter in a comment is part of the comment and does not indicate continuation.

The double-ampersand convention must be used to continue a name, a character
constant, or a lexical token consisting of more than one character split across lines.
The following statement is the same statement as in the previous example:

STOKES_LAW_VELOCITY = 2 * GRAVITY * RADIUS * 2 * (DEN&
&SITY_1 - DENSITY_2) / (9 * COEFF_OF_VISCOSITY)

However, splitting names across lines makes the code difficult to read and is not
recommended.

Ampersands may be included in a character constant. Only the last ampersand on
the line is the continuation symbol, as illustrated in the following example:

LAWYERS = "Jones & Clay & &
 &Davis"

The value of this constant is ʺJones & Clay & Davisʺ. The first two ampersands are
in character context; they are part of the value of the character string.

5. More than one statement may appear on a line. The statement separator is the
semicolon (;), provided it is not in a character context; multiple successive semico-
lons on a line with or without blanks intervening are considered as a single separa-
tor. The end of a line is also a statement separator, and any number of semicolons
at the end of the line have no effect. For example:

! The semicolon is a statement separator.
X = 1.0; Y = 2.0

! However, the semicolon below at the end of a line
! is not treated as a separator and is ignored.
Z = 3.0;

! Also, consecutive semicolons are treated as one
! semicolon, even if blanks intervene.
Z = 3.0; ; W = 4.0

! Continuation lines and statement separators may be mixed.
A = &
B; C = D; E &
= D

A semicolon must not be the first nonblank character on a line. Thus, the following
is illegal:

A = B &
; C = D

but the following is legal:

54 Chapter 3

A = B &
&; C = D

This rule does not seem to make much sense, but that is what the standard says.

6. A label may appear before a statement, provided it is not part of another state-
ment, but it must be separated from the statement by at least one blank. For exam-
ple:

10 FORMAT(10X,2I5) ! 10 is a label.
IF (X == 0.0) 200 Y = SQRT(X) ! Label 200 is not allowed.

7. Any graphic character in the processor character set may be used in character liter-
al constants (4.3.5.5) and character string edit descriptors (10.2.3). Note that this ex-
cludes control characters; it is recommended that the implementor’s manual be
consulted for the specific details.

3.3.1.1 Blanks as Separators

Blanks in free source form may not appear within tokens, such as names or symbols
consisting of more than one character, except that blanks may be freely used in format
specifications. For instance, blanks may not appear between the characters of multi-
character operators such as ∗∗ and .NE. Format specifications are an exception be-
cause blanks may appear within edit descriptors such as BN, SS, or TR in format
specifications. On the other hand, a blank must be used to separate a statement key-
word, name, constant, or label from an adjacent name, constant, or label. For example,
the blanks in the following statements are required.

INTEGER SIZE
PRINT 10,N
DO I=1,N

Adjacent keywords require a blank separator in some cases (for example, CASE
DEFAULT) whereas in other cases two adjacent keywords may be written either with
or without intervening blanks (for example, BLOCK DATA); The following list gives
the situations where blank separators are optional.

BLOCK DATA
DOUBLE PRECISION
ELSE IF
ELSE WHERE
END ASSOCIATE
END BLOCK DATA
END DO
END ENUM
END FILE
END FORALL
END FUNCTION
END IF

Language Elements and Source Form 55

END INTERFACE
END MODULE
END PROGRAM
END SELECT
END SUBROUTINE
END TYPE
END WHERE
GO TO
IN OUT
SELECT CASE
SELECT TYPE

Thus both of the following statements are legal:

END IF
ENDIF

Despite these rules, blank separators between statement keywords make the source
text more readable and clarify the statements. In general, if common rules of English
text are followed, everything will be correct. For example, blank separators in the fol-
lowing statements make them quite readable, even though the blanks between the key-
words DOUBLE and PRECISION and between END and FUNCTION are not required.

RECURSIVE PURE FUNCTION F(X)
DOUBLE PRECISION X
END FUNCTION F

3.3.1.2 Sample Program, Free Source Form

A sample program in free source form is:

123456789.......

|PROGRAM LEFT_RIGHT
| REAL X(5), Y(5)
| ! Print arrays X and Y
| PRINT 100, X, Y
| 100 FORMAT (F10.1, F10.2, F10.3, F10.4, &
| F10.5)
| . . .
|END

3.3.2 Fixed Source Form

Fixed source form is position oriented on a line using the conventions for position that
were used historically for Fortran written on punched cards. Currently, most program-
mers use Fortran systems that permit a less stilted style of source form; this is similar
to or the same as the free source form described in the previous sections. Fixed source
form is now obsolescent.

56 Chapter 3

Rules and restrictions:

1. Fortran statements or parts of Fortran statements must be written between posi-
tions 7 and 72. Character positions 1 through 6 are reserved for special purposes.

2. Blanks are not significant in fixed source form except in a character context. For ex-
ample, the two statements:

D O 10 I = 1, L O O P E N D
DO 10 I = 1, LOOPEND

are the same.

A C or ∗ in position 1 identifies a comment. In this case, the entire line is a com-
ment and is called a comment line. A ! in any position except position 6 and not in
character context indicates that a comment follows to the end of the line. Com-
ments are not significant, and there is no language limit on the number of com-
ment lines. However, a processor may impose a limit. A comment line may appear
before or after a program unit, but the standard does not indicate which program
unit it belongs to if it is between program units.

3. A line with only blank characters or with no characters is treated as a comment
line.

4. Multiple statements on a line are separated by one or more semicolons; semicolons
may occur at the end of a line and have no effect. A semicolon must not be the first
nonblank character in positions 7 through 72.

5. Any character (including ! and ;) other than blank or zero in position 6 indicates
that the line is a continuation of the previous line. Such a line is called a continua-
tion line. The text on the continuation line begins in position 7. There must be no
more than 19 continuation lines for one statement in fixed source form. The first
line of a continued statement is called the initial line.

6. Statement labels may appear only in positions 1 through 5. Labels may appear only
on the first line of a continued statement. Thus, positions 1 through 5 of continua-
tion lines must contain blanks.

7. An END statement must not be continued. END also must not be an initial line of
a statement other than an END statement. For example, an assignment statement
for the variable ENDLESS may not be written as

END
+LESS = 3.0

because the initial line of this statement is identical to an END statement.

8. Any character from the processor character set (including graphic and control
characters) may be used in a character literal constant and character edit descrip-
tors, except that the processor is permitted to limit the use of some of the control

Language Elements and Source Form 57

characters in such character contexts. Consult the implementor’s documentation
for such limitations.

3.3.2.1 Sample Program, Fixed Source Form

A sample program in fixed source form is:

12345678901234567890123.....

| PROGRAM LEFT_RIGHT
| REAL X(5), Y(5)
|C Print arrays X and Y
| PRINT 100, X, Y
| 100 FORMAT (F10.1, F10.2, F10.3, F10.4,
| 1 F10.5)
| . . .
| END

3.3.3 Rules for Fixed/Free Source Form

For many purposes, such as an included file (3.4), it is desirable to use a form of the
source code that is valid and equivalent for either free source form or fixed source
form. Such a fixed/free source form can be written by obeying the following rules and
restrictions:

1. Limit labels to positions 1 through 5, and statements to positions 7 through 72.
These are the limits required in fixed source form.

2. Treat blanks as significant. Because blanks are ignored in fixed source form, using
the rules of free source form will not impact the requirements of fixed source form.

3. Use the exclamation mark (!) for a comment, but don’t place it in position 6, which
indicates continuation in fixed source form. Do not use the C or * forms for a com-
ment.

4. To continue statements, use the ampersand in both position 73 of the line to be con-
tinued, and in position 6 of the continuation line. Positions 74 to 80 must remain
blank or have only a comment there. Positions 1 through 5 of the continuation line
must be blank. The first ampersand continues the line after position 72 in free
source form and is ignored in fixed source form. The second ampersand indicates
a continuation line in fixed source form and in free source form indicates that the
text for the continuation of the previous line begins after the ampersand.

3.3.3.1 Sample Program, Use with Either Source Form

A sample program that is acceptable for either source form is:

58 Chapter 3

12345678901234567890123.... 73
--.....----
| PROGRAM LEFT_RIGHT
| REAL X(5), Y(5)
|! Print arrays X and Y
| PRINT 100, X, Y
| 100 FORMAT (F10.1, F10.2, F10.3, F10.4, &
| & F10.5)
| . . .
| END

3.4 The INCLUDE Line

Source text may be imported from another file and included within a program file dur-
ing processing. An INCLUDE line consists of the keyword INCLUDE followed by a
character literal constant. For example,

INCLUDE ’MY_COMMON_BLOCKS’

The specified text is substituted for the INCLUDE line before compilation and is treat-
ed as if it were part of the original program source text. The location of the included
text is specified by the value of the character constant in some processor-dependent
manner. A frequent convention is that the character literal constant is the name of a file
containing the text to be included. Use of the INCLUDE line provides a convenient
way to include source text that is the same in several program units. For example, the
specification of interface blocks or objects in common blocks may constitute a file that
is referenced in the INCLUDE line.

The form for an INCLUDE line is:

INCLUDE character-literal-constant

Rules and restrictions:

1. The character literal constant used must not have a kind parameter that is a named
constant.

2. The INCLUDE line is a directive to the compiler; it is not a Fortran statement.

3. The INCLUDE line is placed where the included text is to appear in the program.

4. The INCLUDE line must appear on one line with no other text except possibly a
trailing comment. There must be no statement label.

5. INCLUDE lines may be nested. That is, a second INCLUDE line may appear within
the text to be included. The permitted level of nesting is not specified and is pro-
cessor dependent. However, the text inclusion must not be recursive at any level;
for example, included text A must not include text B, which includes text A.

Language Elements and Source Form 59

6. A file intended to be referenced in an INCLUDE line must not begin or end with
an incomplete Fortran statement. This means that the line before the INCLUDE
line must not be continued and that the line after the INCLUDE line must not be a
continuation line.

An example of a program unit with an INCLUDE line follows:

PROGRAM MATH
REAL, DIMENSION (10,5,79) :: X, ZT
! Some arithmetic
INCLUDE ’FOURIER’
! More arithmetic

. . .
END

The Fortran source text in the file FOURIER in effect replaces the INCLUDE line.
The INCLUDE line behaves like a compiler directive.

4 Data Types

• A Type has a name, type parameters, a set of values, a set of operations and proce-
dures, and a means to represent constants of the type.

• Type Parameters allow a type to have a family of representations.

• A Type Specifier is used to specify a particular type and type parameter values.

• The Intrinsic Types are integer, real, complex, logical, and character.

• Derived Types are defined by a user.

• A Structure is an object of derived type.

• A Structure Constructor creates values of derived type.

• An Array Constructor creates array values.

• Operations on objects of derived type are defined by functions supplied by the user.

• Type Extension is a means of defining a new type by building on a previously
defined type. The new type inherits aspects of the previously defined one.

• A Procedure Binding is a relationship between a type and a procedure. It allows a
procedure to be selected based on the type of an object.

• An Enumeration is a set of named integer constants with a declaration form
intended to facilitate interoperation with C.

Data type is a fundamental concept in Fortran, as well as in many other program-
ming languages. Every piece of data in a Fortran program has a data type, which deter-
mines what kinds of values it can take and what can be done with it. This chapter
details what is meant by a type in Fortran. It then describes each of the types defined
by the standard, plus the facilities for user-defined types.

The standard defines intrinsic types corresponding to the broad categories of
computational tasks listed in Table 4-1. Additional types can be built of (or derived
from) the intrinsic types and thus are called derived types. Most derived types are
defined by the programmer using the facilities described in this chapter. A few derived
types are defined in the standard intrinsic modules (14.3, 15.3). The Fortran types are
categorized in Figure 4-1.

The type of a datum determines the operations that can be performed on it. Table
4-2 lists the intrinsically-defined operations. The user can define additional operations
for any type.

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_4, © Springer-Verlag London Limited 2009

62 Chapter 4

4.1 Data Type Selection

The appropriate intrinsic type for a data entity is often obvious. More careful thought is
likely to be required for the selection of suitable kind parameter values, derived types
and classes.

Table 4-1 Intrinsic types for computational tasks

Task Type of data

Calculating typical numeric results Real data

Calculating in the complex domain Complex data

Counting Integer data

Making decisions Logical data

Explaining Character data

Figure 4-1 Fortran data types

Table 4-2 Intrinsically-defined operations

Type of data Intrinsic operations

Real, complex, integer Addition, subtraction, multiplication, division, exponentiation,
negation, comparison, identity

Logical Negation, conjunction, disjunction, equivalence and nonequivalence

Character Concatenation, comparison

Derived None

Fortran data types

Derived typesIntrinsic types

Numeric types Nonnumeric types

Real ComplexInteger Logical Character

Data Types 63

4.1.1 Kinds of Intrinsic Types

Once the type is decided, it may be necessary for the programmer to consider which
“kind” of the type to use. “Kind” is a technical term in Fortran. Each of the intrinsic
types has a kind parameter that selects a processor-dependent representation of ob-
jects of that type and kind. Each compiler supports a particular set of representations
from which the programmer can select. If no kind parameter value is specified, the de-
fault kind is assumed.

Kinds are known to the processor as integer values, but if a program is to be porta-
ble, the actual numbers should not be used because the particular kind values for the
intrinsic types are processor dependent. For portability, appropriate kind values
should be determined using the procedures described in 4.3, 13.3.1.2, and 14.3.3.7 and
assigned to named constants, which are then used in type specifiers, literal constants,
and kind arguments of intrinsic functions. When named constants are used to desig-
nate kinds, only the value of the constant matters—not the names of the constant. If
two different named constants have the same numerical value and are used as kind pa-
rameters, then they will represent the same kind.

The intrinsics for determining kind values all return negative values when appro-
priate kinds are not available for the particular compiler. Negative values are guaran-
teed to cause compilation error diagnostics when used as kind values, thus ensuring
that programs will not accidentally be run with kinds that do not meet specified re-
quirements.

The Fortran kind parameters for each of the intrinsic types serve the following pur-
poses:

1. Real. The real kind parameter primarily selects the precision and range of the rep-
resentation. There may also be multiple representations for the same precision and
range, for example native and IEEE representations. The standard requires that
each compiler support at least two real kinds which must have different precisions.
The default real kind is the lower precision of these. Compilers may support addi-
tional real kinds to provide other precisions or other representations with the same
precisions.

Fortran 77 did not have kind parameters but did provide two kinds for the real
type: REAL and DOUBLE PRECISION. REAL is often referred to as single preci-
sion. It treated double precision real as a separate type. Fortran 90 and later ver-
sions, while remaining compatible, treat double precision as a separate kind of
real. That is, there are two ways to specify double precision real: one is with a
REAL specifier with the kind corresponding to double precision, and the other is
with a DOUBLE PRECISION specifier.

Programs with default REAL and DOUBLE PRECISION declarations are not nu-
merically portable across machine architectures with different word sizes. Each
compiler vendor chooses a representation for the real type that is efficient on the
host machine. For example, a representation that will fit into 32 bits might be cho-
sen on a 32-bit-word machine while a representation that fits into 64 bits might be
chosen for a 64-bit-word machine. If a 64-bit representation is required for the nu-

64 Chapter 4

merical stability of the algorithm, DOUBLE PRECISION declarations must be used
on the 32-bit machine. When the program is moved to the 64-bit machine, the
DOUBLE PRECISION declarations usually would be changed to REAL declara-
tions because a 128-bit representation is not needed and probably would degrade
the performance of the program. A programmer can use kind parameters in REAL
declarations to specify a required minimum precision of perhaps 12 decimal digits.
When the program is run on the 32-bit machine, it will use the kind corresponding
to double precision. When the same program (without change) is run on the 64-bit
machine, the kind corresponding to single precision will be used.

2. Complex. The kind parameter for complex selects the same representation as that
for real. Every real kind has a corresponding complex kind and vice versa.

3. Integer. The integer kind parameter primarily selects the range of integer values
that can be represented. Some representations might provide for a large range at
the cost of large storage size, while others might provide for small storage size at
the cost of correspondingly smaller range. In principle it is also possible for there
to be multiple representations for the same range, perhaps differing in byte order
or in the representation of negative values. Only one integer kind is required in a
standard-conforming processor, but more are permitted. The default integer kind is
represented in the same size as the default real kind.

4. Character. The character kind parameter selects a character set. The default charac-
ter type usually has an underlying machine representation of a single byte (8 bits).
This is adequate to represent or 256 different characters, which is more than
enough for alphabetic languages. However, ideographic languages, such as Japa-
nese and Chinese, have several thousand graphic symbols that require at least a
two-byte representation (16 bits). To accommodate this spectrum of users, Fortran
makes provision for (although it does not require implementation of) different
kinds of character data. Because these additional kinds of character data are not re-
quired for standard-conforming Fortran processors, many processors intended for
English-speaking Fortran users might not support ideographic languages. Never-
theless, the character kind mechanism allows an implementation to support an al-
phabetic language or an ideographic language or both simultaneously. The
standard makes particular provisions for the ASCII and ISO 10646 character sets, but
support for them is optional.

5. Logical. Because the logical type has only two values (true and false), it could be
represented in a single bit. Although efficient in terms of storage, single-bit repre-
sentations can be inefficient in computation time. For storage association, the de-
fault logical type is represented in the same size as the default real type, but
alternative representations of logical data are permitted; that is, a nondefault logi-
cal kind might be represented in a byte or in a bit for architectural efficiency or
application requirements.

28

Data Types 65

4.1.2 Derived Types

Sometimes it is easier to think about an essential element of a problem as several pieces
of related data. Arrays can be used to collect homogeneous data (all of the same type)
into a single variable. In contrast, a structure is a collection of possibly nonhomoge-
neous data in a single variable. To declare a structure, it is first necessary to define a
type that has components of the desired types. The structure is then declared as an ob-
ject of this user-defined (or derived) type. In the example below, first a type named PA-
TIENT is defined, then two structures JOHN_JONES and SALLY_SMITH are declared.

TYPE PATIENT
INTEGER PULSE_RATE
REAL TEMPERATURE
CHARACTER (LEN=300) PROGNOSIS

END TYPE PATIENT

TYPE (PATIENT) JOHN_JONES, SALLY_SMITH

Type PATIENT has three components, each of a different intrinsic type (integer, real,
and character). In practice, a type of this nature probably would have even more com-
ponents, such as the patient’s name and address, insurance company, room number in
the hospital, etc. For purposes of illustration, three components are sufficient.
JOHN_JONES and SALLY_SMITH are variables (or structures) of type PATIENT. A
type definition indicates names, types, and attributes for its components; it does not
declare any variables that have these components. Just as with the intrinsic types, a
type declaration is needed to declare variables of this type. There can be any number of
variables of type PATIENT; there can be subprogram arguments and function results of
type PATIENT; there can be arrays of type PATIENT; and operations, such as .appen-
dectomy., can be defined that manipulate objects of type PATIENT. Thus the derived-
type definition can be used as a way to specify a pattern for a particular collection of
related but nonhomogeneous data; but, because the user can define the pattern, a num-
ber of other capabilities are available.

4.1.3 Classes

Sometimes there are multiple derived types that share some components and opera-
tions, but have other components and operations that differ. It is desirable to take ad-
vantage of the commonalities in order to minimize code duplication and maintenance
problems. In that case, a class of related types can be defined in a tree structure. The
shared components and operations are defined for a base type. The other types are de-
fined as extension types of the base type.

For example, consider a program that has multiple linked lists, each with a differ-
ent type of object. Each of these linked lists has a corresponding node type. The basic
linked list operations and the node components needed to support those operations are
the same for all the linked lists. The object type and any operations related to it differ
among the lists. In this case, a base type can be defined for a linked list node with no
object. The types for the nodes are defined as extensions of the base type, each of
which adds different components to the base type.

66 Chapter 4

4.2 What Is Meant by “Type” in Fortran?

A data type provides a means to categorize data and thus determine which operations
may be applied to the data. For each type there is:

1. a type name

2. a set of type parameters

3. a set of values

4. a set of operations and procedures

5. a form for constants of the type

4.2.1 Type Names

Each of the intrinsic types has a name supplied by the standard. The names of derived
types must be supplied in type definitions. A derived-type name must not be DOU-
BLEPRECISION or the same as any of the intrinsic type names (INTEGER, REAL,
COMPLEX, LOGICAL, or CHARACTER), even if the intrinsic type is never used; this
is a rare exception to Fortranʹs general rule that the language has no reserved names.

4.2.2 Type Parameters

A type may have multiple representations, which are specified by type parameter val-
ues. Type parameters are classified as either kind or length type parameters. Each type
parameter is itself of type integer and has a type parameter name. The type parameter
names for the intrinsic types are specified by the standard. Any type parameters for
derived types must be defined by the derived-type definition.

Kind type parameter values need to be known at compile time; the compiler is like-
ly to need to generate different machine instructions for different kind type parameter
values. Thus, anywhere a kind parameter value is required, it must be specified by a
scalar integer initialization expression, which is described in 7.4.1. Each of the intrinsic
types has a kind type parameter named KIND, which is a default integer. The set of val-
id values for the intrinsic kind type parameters and the representations specified by
those kind values are defined by the compiler.

Invalid kind type parameter values for intrinsic types are guaranteed to give com-
piler error diagnostics. Examples in this book generally assume that the kind type pa-
rameter values used are valid.

Length type parameter values may, in some cases, be determined or change during
program execution. As the name suggests, they are most commonly used for lengths or
sizes, where a base representation form is repeated. The intrinsic character type has a
length parameter named LEN, which is an integer of a processor-dependent kind.

Data Types 67

4.2.3 Type Specifier

A type specifier is used in several contexts to specify a particular type and type param-
eter values. A type specifier (R401) is either an intrinsic type specifier or a derived-type
specifier. The syntax of type specifiers is detailed in 4.3 and 4.4.4. The following exam-
ples illustrate the use of type specifiers in type declaration statements, an array con-
structor, and an allocate statement.

integer :: i
type(patient) :: jane_doe
names = [character(16):: "Lisa", "Pam", "Julie"]
allocate (real_node_type:: node)

A type parameter value (R402) in a type specifier is either a kind value or a length
value. The form of a kind value is:

scalar-integer-initialization-expression

The form of a length value is one of:

scalar-integer-expression
*
:

An asterisk as a length value specifies that the type parameter is assumed, that is
its value is copied from the corresponding type parameter value of something else. An
assumed type parameter is allowed only in a type guard statement of a SELECT TYPE
construct, in the allocation of a dummy argument, or in the declaration of a dummy ar-
gument, named character constant, or character function result.

A colon as a length value specifies that the type parameter is deferred; the value of
the type parameter may be set and changed during execution. A deferred type param-
eter may be specified only in the declaration of a pointer or allocatable entity or com-
ponent.

4.2.4 Type Values

Each type has a set of valid values, which usually depend on the type parameter val-
ues.

4.2.5 Type Operations and Procedures

An operator has either one or two operands. The definition of an operator depends on
the types, type parameters, and ranks of the operands. For intrinsic types, a set of oper-
ations with corresponding operators is provided by the language as described in 7.

A user may specify new operators and define operations for the new operators.
The form of a new operator is an alphabetic name of the user’s choice delimited by pe-
riods. These new operators are analogous to intrinsic operators such as .GT., .AND.,
and .NEQV. For example, a user might specify and define the operations .PLUS., .RE-
MAINDER., and .REVERSE. In defining the operation, the types of allowable operands
must be specified. It is not possible to override the standardʹs definition of an intrinsic

68 Chapter 4

operation, but it is possible to define application of an intrinsic operator symbol to cases
that are not defined by the standard. For example, consider the expression A + B. If both
A and B are of numeric type, the operation is intrinsically defined. However, if either A
or B is of derived type or nonnumeric type, then the plus operation between A and B is
not intrinsically defined, and the user may provide a definition. The user defines an
operation using a function and an interface block as described in 12.5.4.2.

The definition of assignment depends on the types, type parameters, and ranks of
both the variable and the expression that provides the value. The language defines
assignment for several combinations of intrinsic types, as described in 7.5.2. The
language also defines assignment of a derived-type expression to a variable whose type
and type parameter values are the same or can be allocated to be the same. A user may
define assignment for cases not defined by the standard. A user also may override the
standardʹs definition of assignment for a derived type, but not for intrinsic types. The
user defines assignment using a subroutine and an interface block, as described in
12.5.4.3.

A user may define procedure bindings for derived types. These are discussed in
4.4.11.

4.2.6 Forms for Constants

A literal constant (R306) is one of:

integer-literal-constant
real-literal-constant
complex-literal-constant
logical-literal-constant
character-literal-constant
boz-literal-constant

Two aspects of this definition merit particular note. First is that it excludes the
signed forms of the integer and real literal constants (4.3.1.4, 4.3.2.4); a sign can be used
in most contexts, but it parses as an operator instead of as part of the constant. Second
is that it includes BOZ literal constants (4.3.1.4) even though the allowed contexts for
BOZ literal constants are so restricted that they might better be thought of as addition-
al forms allowed in those contexts rather than as literal constants.

The language specifies the syntactic forms for literal constants of each of the intrin-
sic types. The form of a constant indicates the type, type parameters, and value (Table
4-3). There are no literal constant forms for derived types. However, a comparable role
can be played by a structure constructor whose component values are all initialization
expressions. For example, if the derived type PATIENT is defined as described in 4.1.2,
patient(10.99.7,ʺRecoveringʺ) is such a constructor.

4.3 Intrinsic Types

Each of the intrinsic types is described below. The descriptions include simple exam-
ples to show how objects of these types may be declared. These simple examples do
not give the complete story. The complete forms for declarations are in 5.1.

Data Types 69

4.3.1 Integer Type

4.3.1.1 Name, Type Parameters, and Type Specifier

The name of the integer type is INTEGER. It has a single kind type parameter named
KIND. Only one kind of integer, referred to as default integer, is required by the stan-
dard, but a processor may provide more. The storage occupied by a default integer is
called a numeric storage unit (13.6.1, 16.2.3.1); a default real or logical must occupy the
same amount of storage as a default integer.

The form of the integer type specifier is:

INTEGER [([KIND =] kind-value)]

If the kind value is omitted, default integer kind is implied.
Examples of type declaration statements using integer type specifiers are:

INTEGER X
INTEGER (KIND=LONG) COUNT, K, TEMPORARY_COUNT
INTEGER (SHORT) PARTS
INTEGER, DIMENSION (0:9) :: SELECTORS, IX

where LONG and SHORT are named integer constants.

4.3.1.2 Values

The integer type has values that represent a subset of the mathematical integers. The
set of values varies from one processor to another. The intrinsic inquiry function
RANGE provides the decimal exponent range for integers of the kind of its argument.
The intrinsic function KIND can be used to determine the kind of its integer argument.

There is an intrinsic function SELECTED_INT_KIND that returns an integer kind
based on a range requirement. For example:

INTEGER (KIND=SELECTED_INT_KIND(5)) I, J

declares I and J to be integer objects with a representation method that permits at least
five decimal digits; that is, it includes at least all integers between and .

Table 4-3 Constant forms

Syntax
Type and
parameters Value

1 integer 1

103.1 or 1.031E2 real 103.1

(1.0, 1.0) complex 1+ι

.TRUE. logical true

ʺHelloʺ character(len=5) Hello

10– 5 105

70 Chapter 4

Every integer kind has a single zero value, which is considered neither positive nor
negative. If a processor has separate internal representations for positive and negative
zero integers of a kind, they are considered to have the same value.

4.3.1.3 Operators

There are both binary and unary intrinsic operators for the integer type. Binary opera-
tors have two operands and unary operators have one. The binary arithmetic opera-
tions for the integer type are: +, −, ∗, /, and ∗∗. The unary arithmetic operations are +
and –. The relational operations (all binary) are: <. <=, ==, /=, >=, and >. The result of an
intrinsic arithmetic operation on integer operands is an integer value; the result of an
intrinsic relational operation is a logical entity of default logical kind.

4.3.1.4 Form for Constant Values

An integer constant is a string of decimal digits, optionally followed by an underscore
and a kind parameter.

The form of an integer literal constant (R406) is:

digit-string [_ kind-parameter]

where the kind parameter is one of:

digit-string
scalar-integer-constant-name

This syntax for a kind parameter in a literal constant is considerably more restric-
tive than that of a kind value used in a type specifier and other places; however, the
kind parameter in a literal constant can be a named constant, which in turn can be de-
fined by an initialization expression, so the same functionality exists. If a kind parame-
ter is specified, the constant is of that kind; otherwise, it is of type default integer.

Examples of integer literal constants are:

42
9999999999999999999999_LONG

where LONG is a named integer constant.
A signed integer constant (R405) is an integer constant preceded by an optional sign,

which is either + or −. Contrary to what might be expected from the terminology, a
signed integer constant is not in general an integer constant. Signed integer constants are
used in only a few places in the language. In most contexts, a sign followed by an integer
constant parses as an operator and an unsigned integer constant rather than as a signed
integer constant. This distinction makes little difference in practice except in one special
case: on machines where the most negative integer is larger in magnitude than the most
positive one, overflow can result from trying to write a literal for the most negative inte-
ger in the obvious way.

Examples of signed integer constants are:

Data Types 71

+64
10000000
-255_SHORT

where SHORT is a named integer constant.
Integer constants are interpreted as decimal values. However, in limited contexts,

there are forms for unsigned binary, octal, or hexadecimal constants, collectively re-
ferred to as BOZ literal constants. These forms may be used only to initialize integer
variables in DATA statements or as actual arguments of the intrinsic functions CMPLX,
DBLE, INT, or REAL.

A binary constant (R412) has one of the forms:

B ’ digit [digit] ... ’

B " digit [digit] ... "

where a digit is restricted to 0 or 1.
An octal constant (R413) has one of the forms:

O ’ digit [digit] ... ’

O " digit [digit] ... "

where a digit is restricted to the values 0 through 7.
A hexadecimal constant (R414) has one of the forms:

Z ’ digit [digit] ... ’

Z " digit [digit] ... "

where a digit is 0 through 9 or one of the letters A through F (representing the decimal
values 10 through 15). Although these forms use quotes or apostrophes, they are not
character strings; lowercase letters are equivalent to uppercase in the hexadecimal
forms.

Although the standard refers to these forms as integer constants, their interpreta-
tion when used as actual arguments of CMPLX, DBLE, and REAL is as a bit pattern
rather than a numeric integer value. Where these constants are interpreted as numeric
values, the binary, octal, and hexadecimal digits are interpreted according to the bina-
ry, octal, and hexadecimal number systems; the result is represented with the integer
kind having the largest range supported by the compiler. Examples (all of which have
a value equal to the decimal value 10) are:

B"1010"
O’12’
Z"a"

4.3.2 Real Type

4.3.2.1 Name, Type Parameters, and Type Specifier

The name of the real type is REAL. It has a single kind type parameter named KIND.
A processor must provide at least two kinds for the real type. One of the kinds is for
the default real type and the other is for the double precision real type, which must

72 Chapter 4

have more precision than the default real type. The default real type must occupy the
same amount of storage as default integer; double precision real type must occupy
twice as much.

The forms of the real type specifier are:

REAL [([KIND =] kind-value)]
DOUBLE PRECISION

If the kind value is omitted from the form with the REAL keyword, default real kind is
implied. The form with the DOUBLE PRECISION keyword is an alternate form for
specifying a real with the kind for double precision.

Examples of type declaration statements using real type specifiers are:

REAL X, Y
REAL (KIND = HIGH), SAVE :: XY(10, 10)
REAL, POINTER :: A, B, C
DOUBLE PRECISION DD, DXY, N

where HIGH is a named integer constant.

4.3.2.2 Values

The values of the real data type approximate the mathematical real numbers. The set of
values varies from processor to processor.

Intrinsic functions are available to inquire about the representation methods pro-
vided on a processor. The intrinsic function KIND can be used to determine the kind of
its real argument. The intrinsic functions PRECISION and RANGE return the decimal
precision and exponent range of the approximation method used for the kind of the ar-
gument. The intrinsic function SELECTED_REAL_KIND returns a real kind value
based on precision and range requirements. For example:

REAL (SELECTED_REAL_KIND (5)) X

declares X to have at least five decimal digits of precision and no specified minimum
range.

REAL (SELECTED_REAL_KIND (8, 70)) Y

declares Y to have at least eight decimal digits of precision and a range that includes
values between and in magnitude.

Every real kind has a zero value. If a processor has separate internal representa-
tions for positive and negative zeros of a kind, those representations are both treated as
numerically equivalent to zero in the following contexts.

1. As operands of relational operators. For example, the logical expression x>=0.0
evaluates to true if x is zero, regardless of whether it is a positive or negative zero.

2. As actual arguments to intrinsic procedures, except where the intrinsic procedure
explicitly specifies that negative zero is distinguished. The SIGN intrinsic function

10 70– 1070

Data Types 73

is one that specifies special treatment of negative zero; it provides a means to dis-
tinguish positive from negative zeros for those cases where that is desired.

3. As the expression in an arithmetic if statement. Both positive and negative zero
values result in taking the zero branch.

In other contexts, it is processor dependent whether positive and negative zeros are
treated differently. For example, if x has the value negative zero, it is processor-depen-
dent whether the expression 2.0∗x yields a positive or negative zero as a result.

4.3.2.3 Operators

The intrinsic binary arithmetic operators for the real type are: +, –, ∗, /, and ∗∗. The in-
trinsic unary arithmetic operators are: + and –. The relational operators are: <, <=, ==, /=,
>=, and >. The result of an intrinsic arithmetic operation on real operands is a real val-
ue. If one of the operands of an arithmetic operation is an integer, the result is still a
real value. The result of an intrinsic relational operation is a default logical value.

4.3.2.4 Forms for Constants

A real constant is distinguished from an integer constant by containing either a deci-
mal point, an exponent, or both. Forms for a real literal constant (R417) are:

digit-string exponent-letter exponent [_ kind-parameter]
whole-part . [fraction-part] [exponent-letter exponent] [_ kind-parameter]. fraction-part [exponent-letter exponent] [_ kind-parameter]

where the exponent letter (R419) is E or D, the whole part and fraction part are digit
strings (R409), and an exponent (R420) is a signed digit string (R408). If both a kind pa-
rameter and an exponent letter are present, the exponent letter must be E. If a kind pa-
rameter is specified, the real constant is of that kind; if a D exponent letter is specified,
the constant is of type double precision real; otherwise, the constant is of type default
real. A real constant may have more decimal digits than are significant for reals of its
kind. Examples of real literal constants are:

2.1
0.45_LOW
.123
3E4
2.718281828459045D0

where LOW is a named integer constant.
A signed real literal constant (R416) is a real literal constant preceded by an option-

al sign. As with signed integer literal constants, signed real literal constants are used in
only a few places in the language. Examples of signed real literal constants are:

-14.78
+1.6E3
1111111111.1111111
-16.E4_HIGH

74 Chapter 4

where HIGH is a named integer constant.

4.3.3 Complex Type

4.3.3.1 Name, Type Parameters, and Type Specifier

The name of the complex type is COMPLEX. It has a single kind type parameter
named KIND. The supported kind values for complex type are required to be the same
as those for real. The amount of storage occupied by a complex must be twice the
amount of storage occupied by a real of the same kind.

The form of the complex type specifier is:

COMPLEX [([KIND =] kind-value)]

If the kind value is omitted, the kind value for default real is implied.
Examples of type declaration statements using complex type specifiers are:

COMPLEX CC, DD
COMPLEX (KIND = QUAD), POINTER :: CTEMP (:)

where QUAD is a named integer constant.

4.3.3.2 Values

The complex type has values that approximate the mathematical complex numbers. A
complex value is represented as a pair of real values; the first is called the real part and
the second is called the imaginary part. Each approximation method used to represent
data entities of type real is available for entities of type complex with the same kind
parameter values. Therefore, there are at least two approximation methods for com-
plex, one of which corresponds to default real and one of which corresponds to double
precision real. There is no double precision complex keyword; a double precision com-
plex can be specified only by using the appropriate kind parameter value in the com-
plex type specifier. The intrinsic functions KIND, PRECISION, and RANGE can be
used with complex arguments and have the same interpretation as when they are ap-
plied to real arguments. Because the kind values and representations for complex cor-
respond to those of real, the SELECTED_REAL_KIND intrinsic function may be used
in a declaration of a complex object. For example:

COMPLEX (SELECTED_REAL_KIND (8, 70)) CX

CX must have at least eight decimal digits of precision and a range that includes values
between and in magnitude for the real and imaginary parts.

4.3.3.3 Operators

The intrinsic binary arithmetic operators for the complex type are: +, –, ∗, /, and ∗∗. The
intrinsic unary arithmetic operators are: + and –. The intrinsic relational operators are:
== and /=. The arithmetic operators specify complex arithmetic; the relational operators
compare operands to produce default logical results. The result of an intrinsic arith-
metic operation on complex operands is a complex entity. If one of the operands is an
integer or real entity, the result is still a complex entity.

10 70– 1070

Data Types 75

4.3.3.4 Form for Constants

A complex constant is written as two constants that are real or integer, separated by a
comma, and enclosed in parentheses. The form for a complex literal constant (R421) is:

(real-part , imaginary-part)

where the real part and imaginary part each may be either a signed integer literal con-
stant (R405) or a signed real literal constant (R416), or a named constant of type real or
integer.

Examples are:

(3.0, -3.0)
(6, -7.6E9)
(3.0_HIGH, 1.6E9_LOW)
(x_offset, y_offset)

where HIGH and LOW are named integer constants, and x_offset and y_offset are
named real or integer constants.

The types and kinds of the two parts of a complex literal constant need not be the
same. If both parts are real, the complex constant has the kind of one of the parts; it is
the part with greater precision unless the parts have the same precision, in which case
the choice of part is processor-dependent. If one part is real and the other integer, the
complex constant has the kind of the real part. If both parts are integer, the complex
constant has the kind of default real. In any case, the complex value is formed by con-
verting each part to a real of the same kind as the complex constant.

This form is only for complex constants. It is not a general constructor for complex
values that are not constants. If this form were allowed as such a general constructor,
there are contexts where it would cause syntactic ambiguity. The CMPLX intrinsic func-
tion serves the purpose of a general complex constructor which can be used with vari-
ables.

4.3.4 Logical Type

4.3.4.1 Name, Type Parameters, and Type Specifier

The name of the logical type is LOGICAL. It has a single kind type parameter named
KIND. Only one kind of logical, referred to as default logical, is required by the stan-
dard. The default logical type must occupy the same amount of storage as default inte-
ger.

The form of the logical type specifier is:

LOGICAL [([KIND =] kind-value)]

If the kind value is omitted, default logical kind is implied.
Examples of type declaration statements using logical type specifiers are:

LOGICAL IR, XT
LOGICAL (KIND = BIT), SAVE :: XMASK (3000)

76 Chapter 4

where BIT is a named integer constant.

4.3.4.2 Values

The logical type has two values that represent true and false. A processor is required to
provide one logical kind, but may provide other kinds to allow the packing of logical
values; for example, one value per bit or one per byte. The intrinsic function KIND
may be used to determine the kind of its logical argument. There is no intrinsic func-
tion to select a logical kind analogous to the functions SELECTED_INT_KIND,
SELECTED_ REAL_KIND, and SELECTED_CHAR_KIND; the only way to determine
the logical kinds supported by a compiler are from the compiler documentation or by
experimentation.

4.3.4.3 Operators

The intrinsic binary operators for the logical type are: conjunction (.AND.), inclusive
disjunction (.OR.), logical equivalence (.EQV.), and logical nonequivalence (or exclu-
sive disjunction) (.NEQV.). The intrinsic unary operation is negation (.NOT.).

4.3.4.4 Form for Constants

There are only two logical literal constants. Optionally, they may include a trailing un-
derscore and a kind parameter. The forms for logical literal constants (R428) are:

.TRUE. [_ kind-parameter].FALSE. [_ kind-parameter]

If a kind parameter is specified, the constant is of that kind; otherwise, it is of type de-
fault logical.

Examples are:

.FALSE..TRUE._BIT
4.3.5 Character Type

4.3.5.1 Name, Type Parameters, and Type Specifier

The name of the character type is CHARACTER. It has a single kind type parameter
named KIND and a single length type parameter named LEN (4.2.2). Only one kind of
character, referred to as default character, is required by the standard. The amount of
storage occupied by a default character is referred to as a character storage unit (13.6.1,
16.2.3.1) and is not necessarily (or usually) the same as a numeric storage unit.

The form of a character type specifier is more complicated than that of the specifi-
ers for the other intrinsic types. This is partly because of the multiple type parameters
and partly because of the need to support historical forms as well as newer, more flex-
ible forms. The complete form is:

CHARACTER [character-selector]

Data Types 77

where a character selector (R424) has one of the forms:

(length-value [, [KIND=] kind-value])
(LEN= length-value [, KIND= kind-value])
(KIND= kind-value [, LEN= length-value])
* character-length [,]

and a character length (R426) has one of the forms:

(length-value)
integer-literal-constant

Kind value and length value are described in 4.2.3. If the kind value is omitted, the kind
value for default character is implied. If the length is not explicitly specified, a length
of one is implied. If a length value is negative, it specifies a length of zero.

The * character-length form is obsolescent in a type specifier (but the similar form in
a component declaration or entity declaration is not).

Rules and restrictions:

1. The optional comma after * character-length is permitted only in a type declaration
statement that has no double colon separator.

2. The integer literal constant that specifies a character length must not include a kind
parameter.

3. A character length may optionally be specified in an entity declaration of a charac-
ter type declaration statement (5.1) or in a component declaration of a character
component definition statement. If so, the particular entity or component has that
length, overriding the length specified by the type specifier.

4. A length of * may be used only in the following ways:

a. It may be used to declare a dummy argument of a procedure, in which case the
dummy argument assumes the length of the associated actual argument when
the procedure is invoked.

b. It may be used to declare a named constant, in which case the length is that of
the constant value.

c. It may be used in the type-spec of an ALLOCATE statement in which each
allocate-object is a dummy argument of type character with an assumed
character length, in which case the length is that of the associated actual
argument.

d. It may be used to declare the result variable for an external function. Any
scoping unit that invokes the function must declare the function with a length
other than *, or it must access such a declaration by host or use association.
When the function is invoked, the length of the result is the value specified in
the program unit referencing the function. This use is obsolescent.

78 Chapter 4

Note that an implication of rule 4 is that a length of * must not appear in an IM-
PLICIT statement.

5. A function name may be declared with a length of * only if the function is an ex-
ternal or dummy function; it must not be an internal or module function. The
function must not be pure or recursive. The function result must not be an array or
a pointer.

6. The length of a character-valued statement function or statement function dummy
argument of type character must be an initialization expression.

Examples of type declaration statements using character type specifiers are:

CHARACTER answer
CHARACTER (80) LINE
CHARACTER (KIND=ASCII, LEN=20) GREETING
CHARACTER (LEN=30, KIND=CYRILLIC), DIMENSION(10) :: C1
character (len=*), parameter :: title=”Fortran 2003 Handbook”
character (len=:), allocatable :: job_title

where ASCII and CYRILLIC are named integer constants, ASCII possibly having been
defined using the SELECTED_CHAR_KIND intrinsic function.

4.3.5.2 Values

The character type has a set of values composed of character strings. A character string
is a sequence of characters, numbered from left to right 1, 2, ..., n, where n is the length
of (number of characters in) the string. A character string may have length 0. The max-
imum length permitted for character strings is processor-dependent.

A standard-conforming processor must support one character kind and may sup-
port more. The intrinsic function KIND may be used to determine the kind of its char-
acter argument. The intrinsic function SELECTED_CHAR_KIND returns a character
kind value based on the name of a character type. The standard defines names for the
default, ASCII, and ISO_10646 character sets, but requires that only the default be sup-
ported.

 Each character kind must contain a character designated as a blank that can be
used as a padding character in character operations and input/output data transfer.
The characters in all processor-supported character kinds are considered to be repre-
sentable characters. The default character kind must include the characters that make
up the Fortran character set (3.1.1).

4.3.5.3 Collating Sequence

Each character kind has a collating sequence, which is used in the definition of com-
parison operators. A collating sequence assigns a unique nonnegative integer to each
character in the character set. The intrinsic functions CHAR and ICHAR provide con-
versions between the characters and these integers.

The standard specifies a partial collating sequence for the default character type so
that some character relational operations will be portable across different processors.

Data Types 79

The standard specifies properties of the collating sequence that are consistent with all
processor character sets in common use. Thus it tells the programmer what properties
can be counted on, while allowing most processors to use their native character sets.
The blank must precede both the alphabetic and numeric characters in the collating se-
quence. The alphabetic characters, whether uppercase or lowercase, must be in the nor-
mal alphabetic sequence. The numeric characters must be in the normal numeric
sequence, 0, 1, ..., 9. Numeric characters and alphabetic characters of each case must
not be interspersed. Other than blank, there are no constraints on the position of the
special characters and the underscore, nor is there any specified relationship between
the uppercase and lowercase alphabetic letters.

If the processor supports ASCII or ISO_10646 character kinds, those kinds are re-
quired to have the collating sequences specified by the corresponding character set
standards. The intrinsic functions ACHAR and IACHAR convert between characters of
any kind and positions in the ASCII collating sequence, provided that a corresponding
ASCII character exists. The intrinsic functions LGT, LGE, LLE, and LLT provide com-
parisons between default character strings based on the ASCII collating sequence,
whereas the relational operators, such as < and >, use the processor’s collating se-
quence, which might not be the ASCII sequence.

4.3.5.4 Operators

The binary operation concatenation (//) is the only intrinsic operation on character op-
erands that has a character value as a result. A number of intrinsic functions are pro-
vided that perform character operations. These are described in 13 and A. The intrinsic
relational operators on objects of type character are <, <=, ==, /=, >=, and >. The relation-
al operations may be used to compare character operands, but, because of possible pro-
cessor-dependent collating sequences, the intrinsic functions LGT, LGE, LLE, and LLT
provide more portable results. The relational operators and relational intrinsic functions
have default logical results.

4.3.5.5 Form for Constants

A character literal constant is written as a sequence of characters, enclosed either by
apostrophes or quotation marks. Forms for character literal constants (R427) are:

[kind-parameter _] ’ [representable-character] ... ’

[kind-parameter _] " [representable-character] ... "

where a representable character is any character in that character set kind that the pro-
cessor can represent. The use of control characters in character literal constants may be
restricted by the processor. Note that, unlike the other intrinsic types, the kind param-
eter for the character literal constant precedes the constant. If a kind is not specified,
the type of the constant is default character. If the string delimiter character (either an
apostrophe or quotation mark) is required as part of the constant, two consecutive such
characters with no intervening blanks serve to represent a single such character in the
string.

80 Chapter 4

Examples are:

GREEK_"πβφ"
GERMAN_"gemütlichkeit"
"DON’T"
’DON’’T’

The last two both have the value DON’T. A zero-length character constant is written as
two consecutive single or double quotes.

4.4 Derived Types

Unlike the intrinsic types that are defined by the language, derived types must be de-
fined by the programmer by means of a derived-type definition. It is intended that
these types have the same utility as the intrinsic types. For example, variables of these
types may be declared, passed as procedure arguments, and returned as function re-
sults.

Like an intrinsic type, a derived type has a name, a set of type parameters, a set of
values, a set of operations, and a means to represent constants of the type. Unlike with
intrinsic types, with derived types there are considerations of accessibility, compo-
nents, default initialization, procedure type bindings, type equivalence, and type ex-
tension.

4.4.1 A Simple Example of a Derived-Type Definition

The simplest derived-type definitions specify just a type name and some components.
For example, the following is a definition of type COLOR:

TYPE COLOR
INTEGER :: HUE, SHADE, INTENSITY
CHARACTER(LEN=30) :: NAME

END TYPE COLOR

The type has four components, integer components named HUE, SHADE, and INTEN-
SITY, and a character component of length 30 named NAME. A variable of this type
could be declared with a type declaration statement such as

type(color) :: background

where color is the type specifier. This variable could be assigned a value with an assign-
ment statement such as

background = color(0, 0, 0, "black")

The four components of background can be individually referred to as back-
ground%hue, background%shade, background%intensity, and background%name.

Note that the initial statement of a type definition and the statement used to de-
clare objects of derived type both begin with the keyword TYPE. The initial statement
of a type definition is called a derived-type statement, and the statement used to de-

Data Types 81

clare objects of derived type is called a type declaration statement. The type name in a
derived-type statement is not enclosed in parentheses, whereas the type name in a type
declaration statement is.

4.4.2 Derived-Type Definition Overview

The general form of a type definition (R429) is:

TYPE [[, type-attribute-list] ::] type-name [(type-parameter-name-list)]
 [type-parameter-definition-statement] ...
 [private-or-sequence-statement] ...
 [component-definition-statement] ...
 [procedure-binding-part]
END TYPE [type-name]

where the first statement in the definition is called the derived-type statement.

A type attribute (R431) is one of:

access-spec
EXTENDS (parent-type-name)
ABSTRACT
BIND (C)

where an access specification is either PRIVATE or PUBLIC and a private-sequence
statement is PRIVATE or SEQUENCE. Accessibility (PRIVATE and PUBLIC) and SE-
QUENCE are discussed in 4.4.5 and 4.4.10.

The same type attribute must not appear more than once in a given derived-type
statement. The same private or sequence statement must not appear more than once in
a given type definition.

The name of the type is type-name. If the END TYPE statement has a type name, it
must be the same as the one in the derived-type statement.

Type parameters are declared by the type parameter name list and type parameter
definition statements; components are defined by the component definition statements;
and procedure bindings are defined by the procedure binding part. The EXTENDS and
ABSTRACT type attributes relate to type extension and extended types (4.4.12). The
BIND attribute declares a derived type to be interoperable. Interoperable types are sub-
ject to additional restrictions described in 15.

Contrary to some expectations, the order of the component declaration statements
does not imply a storage order, except in the cases of sequence and bind types (4.4.10).

4.4.3 Type Parameters

A derived type is said to be parameterized if it has any type parameters. The parame-
ters of a derived type are specified by the type parameter name list in the derived-type
statement. For an extended type (4.4.12), the type parameters are those of the parent
type, followed by those specified by the type parameter name list of the extended type.

Additional information about a type parameter is specified by a type parameter
definition statement (R435), which has the form:

82 Chapter 4

INTEGER [([KIND=] kind-value)] , kind-or-len :: type-parameter-declaration-list

where kind-or-len is KIND or LEN, specifying whether the type parameters named in
the list are kind or length parameters. A type parameter declaration (R436) has the
form:

type-parameter-name [= scalar-integer-initialization-expression]

Each type parameter name in a type parameter declaration must be one of the type pa-
rameter names specified in the derived-type statement. Each type parameter name in
the derived-type statement must appear in exactly one type parameter declaration in
the type definition.

Each type parameter is of type integer and therefore has a kind type parameter,
which is specified by the kind value in the INTEGER type specifier of the type param-
eter definition statement. If no kind value appears, the type parameter is of type de-
fault integer. Discussion of the type parameter of a type parameter can be confusing;
fortunately, such discussion is not often needed.

If a type parameter declaration has a scalar integer initialization expression, the ex-
pression specifies a default value for the type parameter.

An example of a derived-type definition with some simple type parameter defini-
tion statements is:

type :: some_type(KIND, M, N)
 integer, len :: N, M
 integer, kind :: KIND
 . . .
end type some_type

This example has a kind parameter named KIND, which is likely to be a common style,
and also has two length parameters named M and N. A more complicated example is:

type :: matrix(M, N, KIND, K)
 integer, kind :: KIND = kind(0.0), K=kind(0)
 integer(K), len :: M, N
 real(KIND) :: body(M, N)
 . . .
end type matrix

In this example, KIND is a kind parameter with a default that is the kind value for de-
fault real. K is a kind parameter with a default that is the kind value for default integer.
M and N are length parameters and have kind K. The REAL statement in this example
is a component declaration statement (4.4.6). To help clarity of exposition, the above
examples use a convention that type parameter names are all upper case; attributes
and function names are all lower case.

Data Types 83

4.4.4 Type Specifier

The form of a derived-type specifier (R455) is a generalization of the forms of the in-
trinsic type specifiers. Its description is more complicated because it is expressed in
general terms which cover having an arbitrary number of type parameters. The form is
similar to that of an actual argument list. The general form is:

type-name [(type-parameter-spec-list)]

where a type-parameter-spec (R456) is:

[type-parameter-name =] type-parameter-value

Type parameter values are described in 4.2.3; the following rules and restrictions
apply in addition to those of that section.

Rules and restrictions:

1. The type-name must be an accessible name of a derived type.

2. Each type parameter name must be the name of a type parameter declared in the
type definition.

3. Each type parameter of the derived type may have no more than one correspond-
ing type parameter specification.

4. Each type parameter of the derived type must have a corresponding type parame-
ter specification unless that type parameter has a default value, as specified in its
type parameter definition statement.

5. If a type parameter specification specifies a type parameter name, all subsequent
type parameter specifications in the list must also specify a type parameter name.

6. A type parameter value for a kind type parameter must be a kind value (4.2.3); a
type parameter value for a length type parameter must be a length value (4.2.3).

7. If the type name is the name of an abstract type, the derived-type specifier can ap-
pear only in a CLASS declaration.

The correspondence between type parameters and type parameter specifications is
established as follows: a type parameter specification with a type parameter name cor-
responds to the type parameter with that name. The type parameter specifications
without type parameter names correspond to the type parameters in type parameter
order. The type parameter order of a nonextended type is the order of the type param-
eters in the derived-type statement for the type. The type parameter order of an ex-
tended type is the type parameter order of the parent type, followed by the type
parameters in the derived-type statement for the type in order.

If necessary, each specified type parameter value is converted to the kind of the
corresponding type parameter. A type parameter that is not in a particular type param-
eter specification list takes its default value.

84 Chapter 4

The following examples of type definition statements use type specifiers for the de-
rived-type matrix defined in 4.4.3.

type (matrix(n=10,m=10)) :: x
type (matrix(10,10,kind(0.0),kind(0)) :: y
type (matrix(20,10,kind(1.0D0)) :: z

In this example. x%body and y%body are default real with shape [10, 10], while
z%body is double precision with shape [20, 10].

4.4.5 Accessibility

For a derived type declared in the specification part of a module, it is possible to spec-
ify the accessibility of the derived-type name, its component names, and its procedure
bindings. The accessibility is either public or private. If an identifier has public accessi-
bility, then it is available for use outside of the module via USE statements. If an iden-
tifier has private accessibility, then it may be used only inside of the module where it is
defined. This definition of accessibility is inherently related to modules; it would be
meaningless to specify accessibility of something not declared in the specification part
of a module; therefore, that is not allowed.

It is important to understand that accessibility applies to identifiers (most com-
monly names, but also things such as operators, which do not have the form of names).
If, for example, a type name has private accessibility, that means only that the type
name may not be accessed via USE statements. It does not prevent objects of that type
from being used outside of the module, as long as that use does not involve the type
name.

The accessibility of a type name, its component names, and its procedure bindings
are orthogonal; all combinations are allowed and meaningful.

The accessibility of a type name may be specified either by an access specification
in the derived-type statement or by a separate accessibility statement (5.8.1). If the ac-
cessibility of the type name is not individually specified, then that type name has the
default accessibility for the module (5.8.1).

Having a private type name substantially restricts the allowable uses of the type
outside of the module. In particular, objects of the type cannot be declared outside of
the module. However, public objects of the type may be accessed.

The accessibility of a component name is specified by an access specification in the
component definition statement. If a component definition statement has no access
specification, then the accessibility of that component name is the default component
accessibility for the type. The default component accessibility for a type is private if the
type definition has a PRIVATE statement preceding the component definition state-
ments; otherwise, it is public. A default of public can be specified only by omission of
the PRIVATE statement; there is no explicit PUBLIC statement in a derived-type defini-
tion. The accessibility of a component is not influenced by the accessibility of the type
name or by the default accessibility of the module.

The accessibility of a procedure binding (4.4.11) is specified by an access specifica-
tion in the procedure binding statement. If a procedure binding statement has no ac-
cess specification, then the accessibility of that binding is the default binding

Data Types 85

accessibility for the type. The default binding accessibility for a type is private if there
is a PRIVATE statement in the procedure binding part of the type definition; otherwise,
it is public. The accessibility of a binding is not influenced by the accessibility of com-
ponents, the accessibility of the type name, or the default accessibility of the module.
Accessibility is not relevant for final bindings (4.4.11.3) because they do not have iden-
tifiers.

Accessibility cannot be specified for type parameters. Effectively they are always
public.

Example:

type, public :: some_type
 private
 real, public :: x
 integer :: i,j
end type some_type

The type name some_type is public, as is the component name x. The component
names i and j are private because of the PRIVATE statement. A scoping unit that uses
this module could have a declaration like

type(some_type) :: z

and could then refer to z%x. The only way to access the i and j components of z would
be by means of some procedure defined in the same module that defines the type.

4.4.6 Data Component Definition

A component definition statement is either a data component definition statement or a
procedure component definition statement. The form of a data component definition
statement (R440) is

declaration-type-spec [[, component-attribute-spec-list] ::] &
 component-declaration-list

where a component attribute specification is one of

POINTER
ALLOCATABLE

DIMENSION (component-array-spec)
access-spec

A component declaration is

component-name [(component-array-spec)] [* character-length] [initialization]

and a component array specification is one of

explicit-shape-spec-list
deferred-shape-spec-list

86 Chapter 4

The form of a data component definition statement is similar to that of a type dec-
laration statement (5.1); both forms use several of the same terms, the definitions of
which are not duplicated here. Declaration type specification is defined in 5.1, explicit-
shape specification and deferred-shape specification are defined in 5.4.1, and
initialization is defined in 5.7.2. There are several other attributes that are allowed in a
type declaration statement, but not in a data component definition statement.

Rules and restrictions:

1. The declaration type specification must not specify the type being defined or a de-
rived type defined later in the same scoping unit unless the POINTER attribute is
specified.

2. A particular attribute specification may appear at most once in a given component
attribute specification list.

3. A component must not have both the POINTER and ALLOCATABLE attributes.

4. If CLASS appears in the declaration type specification (5.1), either the POINTER or
ALLOCATABLE attribute must be specified.

5. If either the POINTER or ALLOCATABLE attribute is specified in a data compo-
nent definition statement, then each component array specification in that state-
ment must be a deferred-shape specification list.

6. If neither the POINTER nor ALLOCATABLE attribute is specified in a data compo-
nent definition statement, then each component array specification in that state-
ment must be an explicit-shape specification list.

7. Each bound in an explicit-shape specification must either be an initialization ex-
pression or be a specification expression that contains neither variables nor refer-
ences to specification functions. Type parameters are not variables; they are
allowed in such specification expressions and are the only way for a component to
have nonconstant explicit bounds.

8. Each type parameter value in a component definition statement must be either a
colon, an initialization expression, or a specification expression that contains nei-
ther variables nor references to specification functions.

9. A * character-length is allowed only if the type specified is character.

10. If initialization appears, the double colon separator must appear.

11. If initialization appears, the ALLOCATABLE attribute must not appear.

A data component is an array if there is a component array specification in its com-
ponent declaration or in a DIMENSION component attribute specification in its com-
ponent definition statement. If it is specified in both places, the specification in the
component declaration overrides the one in the DIMENSION component attribute
specification. In the example

Data Types 87

type :: some_arrays
 real, dimension(2) :: x, y(10,10)
 integer, allocatable :: p(:)
end type some_arrays

the x component is a rank 1 array with dimension (2), the y component is a rank 2 ar-
ray with dimension (10,10), and the p component is an allocatable array of rank 1.

An example of a derived type with a pointer component is

type summary
 character(len=50) :: title
 integer :: no_of_pages
 character(len=:), pointer :: text
end type summary

The space for the target of the TEXT component may be allocated (6.7.1.2) during exe-
cution, or the pointer may be assigned (7.5.5) to point to existing space.

4.4.7 Procedure Component Definition

The form of a procedure component declaration statement (R445) is

PROCEDURE ([interface-spec]) , &
 procedure-component-attribute-spec-list :: procedure-component-declaration-list

where a procedure component attribute specification is one of

POINTER

PASS [(argument-name)]
NOPASS
access-spec

and a procedure component declaration is

procedure-component-name [initialization]

The form and interpretation of an interface specification is defined in 5.11. The
form of a procedure component declaration statement is similar to that of a procedure
declaration statement except for differences in the allowed attributes. The PASS and
NOPASS attributes are unique to derived types and are discussed in 4.4.8.

Rules and restrictions:

1. The POINTER attribute must always be specified.

2. A particular attribute specification may appear at most once in a given procedure
component attribute specification list.

88 Chapter 4

Example:

module proc_component_example
 type t
 real :: a
 procedure(print_me), pointer, nopass :: proc
 end_type t
contains
 subroutine print_me (arg, lun)
 type(t), intent(in) :: arg
 integer, intent(in) :: lun
 write (lun,*) arg%a
 end subroutine print_me
 subroutine print_my_square (arg, lun)
 type(t), intent(in) :: arg
 integer, intent(in) :: lun
 write (lun,*) arg%a**2
 end subroutine print_my_square
end module proc_component_example
program main
 use proc_component_example
 use iso_fortran_env, only :: output_unit
 type(t) :: x
 x%a = 2.71828
 x%proc => print_me
 call x%proc(x, output_unit)
 x%proc => print_my_square
 call x%proc(x, output_unit)
end program main

The proc component of type t is declared to be a procedure pointer to a procedure with
the same interface as print_me. Note that this does not imply that the target procedure
actually is print_me—just that it has the same interface as print_me; one could have al-
ternatively written an abstract interface (12.5.5) to use in defining the procedure com-
ponent, but it is simpler to just give the name of a procedure with the desired interface
if such a procedure is handy.

The main program assigns a value to the x%a component and then invokes both
print_me and print_my_square using the procedure component. In this simple case,
the same thing could have been achieved without procedure pointers at all. In more re-
alistic situations, there could be multiple variables of type t, different variables having
different targets for their procedure pointer component, and the procedure invocations
could be far removed from the pointer assignments.

For a description of the ISO_FORTRAN_ENV intrinsic module and its output_unit
constant, the details of which are peripheral to this example, see 13.6.1.

Data Types 89

4.4.8 The Passed-Object Dummy Argument

A procedure component or a procedure binding (4.4.11) may optionally be declared to
have a passed-object dummy argument. A passed-object dummy argument is associat-
ed with a special actual argument, which is not explicitly written in the actual argu-
ment list. In effect, the compiler automatically adds the appropriate actual argument to
the argument list.

The appropriate actual argument is inherent in the form of reference to the proce-
dure. A reference to a procedure component or procedure binding always involves the
general form x%p, where x is an object of derived type, and p is the name of a proce-
dure component or binding of the type. The object x is the actual argument associated
with the passed-object dummy argument.

The determination of the passed-object dummy argument depends on the PASS
and NOPASS attributes specified and on the interface of the procedure component or
procedure binding, as described below.

Rules and restrictions:

1. PASS and NOPASS must not both be specified for the same procedure component
or binding.

2. NOPASS must be specified if the procedure component or binding has an implicit
interface.

3. If NOPASS is specified, there is no passed object dummy argument.

4. If PASS (argument-name) is specified, then the dummy argument named argu-
ment-name is the passed-object dummy argument; there must be such a dummy
argument.

5. If PASS is specified without an argument name, or if neither PASS nor NOPASS is
specified, the first dummy argument is the passed-object dummy argument. There
must be at least one dummy argument in these cases.

6. The passed object dummy argument must be a scalar, nonpointer, nonallocatable
dummy data object. Its declared type must be the type in which the component or
binding appears. All of its length type parameters must be assumed. It must be
polymorphic (5.2) if and only if the type is extensible (4.4.12).

The following example illustrates the use of a passed object dummy argument. Ex-
cept for the passed object dummy argument, this example is the same as the procedure
component example above.

module passed_object_example
 type t
 real :: a
 procedure(print_me), pointer, pass(arg) :: proc
 end_type t
contains

90 Chapter 4

 subroutine print_me (arg, lun)
 type(t), intent(in) :: arg
 integer, intent(in) :: lun
 write (lun,*) arg%a
 end subroutine print_me
 subroutine print_my_square (arg, lun)
 type(t), intent(in) :: arg
 integer, intent(in) :: lun
 write (lun,*) arg%a**2
 end subroutine print_my_square
end module passed_object_example
program main
 use passed_object_example
 use iso_fortran_env, only :: output_unit
 type(t) :: x
 x%a = 2.71828
 x%proc => print_me
 call x%proc(output_unit)
 x%proc => print_my_square
 call x%proc(output_unit)
end program main

Other than the module name, the only difference between this module and the one in
the previous example is that the proc component is given the PASS attribute instead of
NOPASS. The attribute specification could have been omitted from the example because
PASS is the default. The pass(arg) makes it explicit which argument is the passed one,
although again, the specification just emphasizes what would have been the default
(the first argument).

In the main program, x is not included in the actual argument list; instead, it is
passed implicitly. It would be an error to put x in the actual argument list; that would
count as another actual argument rather than a confirmation of the automatically
passed one.

For all of its somewhat intimidating terminology, the effect of a passed object dum-
my argument is just to remove a redundancy in some procedure references. Without
the passed object dummy argument, it is necessary to specify x both in the form
x%proc and as an actual argument. That happens to be a very common type of redun-
dancy for procedure components. The redundancy is more of an issue if the object
name is longer than the short x of this example, or particularly if the object is some ex-
pression rather than a simple name.

Note that if print_me is referenced directly as in

call print_me(x, output_unit)

instead of being referenced via the procedure pointer component, the x actual argu-
ment must be provided explicitly. The passed object property affects only invocation
via the procedure pointer component; it does not change anything about the procedure
or unrelated invocations of it. The same procedure may even have different passed-ob-
ject dummy arguments in different contexts.

Data Types 91

4.4.9 Default Initialization

If a component declaration includes initialization (5.7.2), that component of the type is
said to have default initialization. For a pointer component, the only default initializa-
tion allowed is to a pointer association status of disassociated (nullified), which is spec-
ified by a reference to the intrinsic function NULL. For an allocatable component, user-
specified default initialization is not allowed, but the normal behavior of an allocatable
component is essentially equivalent to default initialization to an unallocated status.
For a nonpointer, nonallocatable data component, the initialization follows the same
rules as intrinsic assignment (7.5.2); the type and type parameters of the initialization
expression must be compatible with intrinsic assignment to the component, and the ex-
pression must either be scalar or have the same shape as the component.

Default initialization for a type applies whenever any object of the type is created.
This may be when program execution begins, when the object is allocated, or when a
procedure is invoked.

Example. A derived type may have a pointer component that is of the type being
defined. This is useful in creating linked lists and trees.

TYPE LINK
 REAL VALUE
 TYPE(LINK), POINTER :: PREVIOUS => NULL()
 TYPE(LINK), POINTER :: NEXT => NULL()
END TYPE LINK

TYPE (LINK), POINTER :: A_LINK
ALLOCATE (A_LINK)

When A_LINK is allocated, its PREVIOUS and NEXT pointers are nullified; its
VALUE component is undefined.

If initialization is specified at multiple levels, the highest level specification over-
rides. That is, explicit initialization of a variable overrides any default initialization
specified for the type of the variable; default initialization specified for a component of
a type overrides any default initialization specified for the type of the component.

Example:

TYPE TEMPERATURES
 REAL :: LOW = 0.0, HIGH = 100.0
END TYPE TEMPERATURES

TYPE (TEMPERATURES) :: WATER, &
 HEAVY_WATER = TEMPERATURES(3.82,101.2)

WATER is not initialized explicitly, so the default initialization specified in the type
definition for TEMPERATURES applies; the LOW component of WATER is initialized
to 0 and the HIGH component is initialized to 100. HEAVY_WATER (water with deute-
rium) is explicitly initialized with a structure constructor (4.4.15) to have a LOW com-
ponent of 3.82 and a HIGH component of 101.42; that explicit initialization overrides
the default initialization.

92 Chapter 4

4.4.10 Sequence Types and Type Equivalence

The question of whether two entities are of the same type arises in many contexts, such
as the association of actual and dummy arguments. There are two ways for entities to
be declared to be of the same type. The simplest way is for them to be declared with
reference to the same derived-type definition. If the two objects are in different scoping
units, the only ways to declare them with reference to the same derived-type definition
are by using host association (16.2.1.3) or use association (16.2.1.2). Except in some spe-
cial cases of sequence and bind types, each derived-type definition defines a distinct
type; if two entities are declared with reference to two distinct derived-type defini-
tions, those entities are of different type, even if the derived-type definitions are textu-
ally identical.

Example:

MODULE SHOP
 TYPE COMPONENT
 CHARACTER(LEN=20) NAME
 INTEGER CATALOG_NO
 REAL WEIGHT
 END TYPE COMPONENT
 TYPE(COMPONENT) PARTS(100)
CONTAINS
SUBROUTINE GET_PART(PART, NAME)
 TYPE(COMPONENT) PART
 CHARACTER(LEN=*) NAME
 DO I=1,100
 IF(NAME == PARTS(I)%NAME) THEN
 PART = PARTS(I)
 RETURN
 ENDIF
 ENDDO
 PRINT *, "Part not available"
 PART%NAME = "none"
 PART%CATALOG_NO = 0
 PART%WEIGHT = 0.0
 END SUBROUTINE GET_PART
 ...
END MODULE SHOP

PROGRAM BUILD_MACHINE
 USE SHOP
 TYPE(COMPONENT) MOTOR(20)
 TOTAL_WEIGHT = 0.0
 CALL GET_PART(MOTOR(1), "VALVE")
 TOTAL_WEIGHT = TOTAL_WEIGHT + MOTOR(1)%WEIGHT
 ...
END PROGRAM BUILD_MACHINE

Data Types 93

Module procedure GET_PART has access to the type COMPONENT because the
type definition appears in its host. Program BUILD_MACHINE has access to the same
type because it uses module SHOP. This allows a variable of the type, such as MO-
TOR(1), to be passed as an actual argument.

The other way to declare entities to be of the same derived type involves sequence
and bind types. A sequence type is a derived type whose type definition has a SE-
QUENCE statement. Details of bind types are in 15.4.4. Bind types share many of the
features of sequence types and might have been more clearly categorized as a special
case of sequence types, but the standard does not categorize them that way; as a result,
there are several places in the standard where material about sequence and bind types
is nearly identical.

Rules and restrictions:

1. A sequence type must not have the EXTENDS, ABSTRACT, or BIND attributes.

2. A sequence type is not extensible.

3. The type definition for a sequence type must not have a procedure binding part.

4. Each data component of a sequence type must be declared to be of an intrinsic or
sequence type.

Entities declared with reference to two distinct derived-type definitions are of the
same type if both type definitions specify SEQUENCE or both specify BIND; they spec-
ify the same type name; they have no PRIVATE components; and they have type pa-
rameters and components that agree in order, name, and attributes. The example for
program BUILD_MACHINE above is restated to illustrate the differences between the
two ways:

PROGRAM BUILD_MACHINE
 TYPE COMPONENT
 SEQUENCE
 CHARACTER(LEN=20) NAME
 INTEGER CATALOG_NO
 REAL WEIGHT
 END TYPE COMPONENT
 TYPE(COMPONENT) PARTS, MOTOR(20)
 COMMON /WAREHOUSE/ PARTS(100)
 TOTAL_WEIGHT=0.0
 CALL GET_PART(MOTOR(1), "VALVE")
 TOTAL_WEIGHT = TOTAL_WEIGH + MOTOR(1)%WEIGHT
 ...
END PROGRAM BUILD_MACHINE

94 Chapter 4

SUBROUTINE GET_PART(PART, NAME)
 TYPE COMPONENT
 SEQUENCE
 CHARACTER(LEN=20) NAME
 INTEGER CATALOG_NO
 REAL WEIGHT
 END TYPE COMPONENT
 TYPE(COMPONENT) PART, PARTS
 CHARACTER(LEN=*) NAME
 COMMON /WAREHOUSE/ PARTS(100)
 DO I = 1, 100
 IF (NAME .EQ. PARTS(I)%NAME) THEN
 PART = PARTS(I)
 RETURN
 END IF
 END DO
 PART%NAME = "none"
 PART%CATALOG_NO = 0
 PART%WEIGHT = 0.0
 PRINT *, "Part not available"
END SUBROUTINE GET_PART
 ...

In this example, type COMPONENT in program BUILD_MACHINE and type
COMPONENT in subroutine GET_PART are the same because they are sequence types
with the same name; have no private components; and have type parameters and com-
ponents that agree in order, name, and attributes. This example is less concise, particu-
larly if there are more procedures that need access to the type definition. The necessity
to replicate the type definition also introduces extra chances for errors, which might
not be caught by the compiler.

In addition to their role in type equivalence, sequence types also play a role in stor-
age association; a derived-type object in COMMON or EQUIVALENCE must be of a
sequence type. Additional forms of COMMON and EQUIVALENCE association are al-
lowed if the sequence type meets the extra conditions required to be a numeric se-
quence type or character sequence type, as follows:

1. A numeric or character sequence type must not have type parameters. It must not
have allocatable or pointer components.

2. Each component of a numeric sequence type must be of type default integer, de-
fault real, double precision real, default complex, default logical, or a numeric se-
quence type.

3. Each component of a character sequence type must be of type default character or
a character sequence type.

There is no way to explicitly declare that something is a numeric or character sequence
type; the terms just categorize sequence types that meet the extra conditions.

Data Types 95

Storage sequences for sequence types are described in 16.2.3.1. For numeric and
character sequence types, the allowed storage associations essentially require that the
components of objects of the type be stored in the specified order with no padding. For
other sequence types, although the standard does specify a sequence of storage units
for the components, this specification has no practical effect because it cannot be de-
tected by a standard-conforming program; therefore, the compiler is free in practice to
rearrange the internal storage of such types as long as it is done consistently so that the
rules of type equivalence still work. For nonsequence types, no internal storage order is
even implied by the standard.

4.4.11 Procedure Type Bindings

A procedure type binding connects a derived type and a procedure. A procedure that
has a binding to a type is often referred to as a type-bound procedure. This term is
somewhat misleading in that being type-bound is not a property of the procedure. A
given procedure may be bound to multiple types and may also be invoked in ways
having no connection with type binding. There is nothing about the type binding in the
code of the procedure. Type bindings are specified in the type binding part of the de-
rived-type definition.

The form of the procedure binding part (R448) of a derived-type definition is

CONTAINS

 [PRIVATE]
 procedure-binding-statement
 [procedure-binding-statement] ...

The optional PRIVATE statement is discussed in 4.4.5. Note that at least one procedure
binding statement is required in a procedure binding part, although the procedure
binding part as a whole is optional. The form of a procedure binding statement (R450)
is one of

specific-binding
generic-binding
final-binding

In the scope of the type definition, the procedure is identified by a binding name. It
may be the binding name of a specific binding or the generic name for a generic bind-
ing. A final binding, or a generic binding whose generic specification is not a name,
has no binding name.

4.4.11.1 Specific Bindings

A specific binding is either deferred or nondeferred. The form of a nondeferred specific
binding is

PROCEDURE [[, NON_OVERRIDABLE] [, binding-attribute-list] ::] &
 binding-name [=> procedure-name]

96 Chapter 4

The form of a deferred specific binding is

PROCEDURE (interface-name) , DEFERRED [, binding-attribute-list] :: binding-name

A binding attribute is one of

PASS [(argument-name)]
NOPASS
access-spec

Although these forms show the NON_OVERRIDABLE and DEFERRED attributes sep-
arately and preceding the other binding attributes above, this ordering is not required.
The PASS and NOPASS attributes are discussed in 4.4.8; access specifications are dis-
cussed in 4.4.5; the NON_OVERRIDABLE and DEFERRED attributes relate to inherit-
ance, which is further discussed in 4.4.12.

Rules and restrictions:

1. The same binding attribute must not be specified more than once in a given bind-
ing attribute list.

2. If the procedure name is omitted from a nondeferred specific binding, it is as
though it were specified to be the same as the binding name.

3. If the procedure name explicitly appears in a nondeferred specific binding, the
double colon separator must appear.

4. The procedure name in a nondeferred specific binding must be the name of an ac-
cessible module procedure or external procedure with an explicit interface.

Other rules about procedure type bindings apply only in the context of type inherit-
ance and are discussed in 4.4.12.

A specific procedure type binding has similarities, in both syntax and function, to
a procedure pointer component. Each involves referencing a procedure and the syntax
of each reference is identical. The difference is in how the particular procedure to be
referenced is determined. For a procedure pointer component with a particular compo-
nent name, every object of the type has a separate pointer; these pointers can, in gener-
al, point to different procedures just like the data components of different objects of the
type can have different values. For a procedure type binding with a particular binding
name, all objects of the same type use the same procedure. Procedure type bindings are
thus more restricted than procedure pointer components. In applications where the re-
striction fits, they are consequently less verbose and less error prone. However, proce-
dure type bindings are so restricted that, unless type inheritance is involved, they are
little more than an alternative syntax for an ordinary call to a procedure using its
name.

Example:

module procedure_binding_example
 type t
 real :: a

Data Types 97

 contains
 procedure, pass(arg) :: print_me
 procedure, pass(arg) :: print_my_square
 end_type t
contains
 subroutine print_me (arg, lun)
 type(t), intent(in) :: arg
 integer, intent(in) :: lun
 write (lun,*) arg%a
 end subroutine print_me
 subroutine print_my_square (arg, lun)
 type(t), intent(in) :: arg
 integer, intent(in) :: lun
 write (lun,*) arg%a**2
 end subroutine print_my_square
end module procedure_binding_example
program main
 use procedure_binding_example
 use iso_fortran_env, only :: output_unit
 type(t) :: x
 x%a = 2.71828
 call x%print_me(output_unit)
 call x%print_my_square(output_unit)
end program main

This example directly parallels our prior examples of procedure components and
passed object dummy arguments. It illustrates the similarities and differences. The ac-
tual subroutines in question are identical; only the means of invoking them differ. Type
bindings are defined for both print_me and print_my_square. The bindings are defined
in the type definition and cannot be changed subsequently, so there are two different
binding names for the two different procedures. For this example, the binding names
are the same as the subroutine names. The syntax difference between

call x%print_me(output_unit)

and

call print_me(x, output_unit)

seems like a pretty trivial result to be worth a special feature in the language. The pow-
er of the feature is only evident in conjunction with type extension and inheritance,
and in particular with polymorphism (5.2).

4.4.11.2 Generic Bindings

The form of a generic binding is

GENERIC [, access-spec] :: generic-spec => binding-name-list

Generic specifications are defined in 12.5.4.

98 Chapter 4

Rules and restrictions:

1. Each binding name must be the name of a specific binding of the type.

2. If the generic specification is for an operator, an assignment, or derived-type in-
put/output, each binding must have a passed-object dummy argument. The inter-
face of the binding must be as specified in 12.5.4.2, 12.5.4.3, or 9.5.1.4, respectively.

3. All generic bindings with the same generic specification in the same derived-type
definition must have the same accessibility.

4. The set of specific bindings for a particular generic specification must satisfy the
requirements of 12.5.4, which allow generic resolution. This set of specific bindings
includes any inherited ones for the same generic specification.

As an example of generic binding, the following could be procedure binding state-
ments in the definition of the matrix type shown in 4.4.3.

procedure :: invert_single
procedure :: invert_double
procedure :: invert_huge_single
procedure :: invert_huge_double
generic :: operator(.invert.) => invert_single, invert_double, &
 & invert_huge_single, invert_huge_double

The first four statements define specific bindings using procedures that are not shown
here. The last statement defines a generic binding built from the specific ones.

4.4.11.3 Final Bindings

The form of a final binding is

FINAL [::] final-subroutine-name-list

Rules and restrictions:

1. Each final subroutine name must be the name of a module procedure that has ex-
actly one dummy argument, which must be of the type being defined. That dum-
my argument must not be optional, pointer, allocatable, polymorphic, or INTENT
(OUT). Any length type parameters of the dummy argument must be assumed.

2. Any two final subroutines for a type must differ in the rank or kind type parame-
ters of the dummy argument. The same final subroutine may not be specified
twice.

A final binding is comparable to a destructor in some other languages.
A type is finalizable if it has any final subroutines or if it has any nonpointer, non-

allocatable components of a finalizable type. A data entity is finalizable if it is of a fi-
nalizable type and is not a pointer.

Data Types 99

Finalization is the process of executing the appropriate final subroutines for a data
entity and its components. It applies only to finalizable data entities. Finalization of an
entity consists of three steps in the following order:

1. The final subroutine for the data entity is called with the data entity as the actual
argument. The final subroutine for the data entity is one that is bound to the dy-
namic type of the data entity and is compatible with being called with the data en-
tity as an actual argument. This implies that the final subroutineʹs dummy
argument has the same kind type parameter values as the data entity. It also im-
plies that either the dummy argument has the same rank as the data entity or that
the subroutine is elemental. If there are both elemental and nonelemental compati-
ble final subroutines, the nonelemental one is called. If there are no compatible fi-
nal subroutines, nothing is called for this step.

2. Each finalizable component specified in the type definition is finalized. If the data
entity is an array, then this component finalization is done separately for each ele-
ment of the data entity. The order of the component finalizations is processor-de-
pendent.

3. If the data entity is of an extended type and the parent type is finalizable, then the
parent component is finalized.

Conceptually, finalization occurs when a finalizable data entity goes out of existence.
Specifically, it occurs for finalizable data entities in the following situations:

1. When a pointer is deallocated, its target is finalized. When an allocatable entity is
deallocated, it is finalized.

2. When an entity becomes undefined due to completion of execution of an instance
of a procedure (16.3.3(3)), it is finalized.

3. A function result or structure constructor referenced in an executable construct is
finalized after execution of the innermost executable construct containing the refer-
ence.

4. A function result or structure constructor referenced in a specification expression is
finalized before execution of the first executable statement in the scoping unit.

5. When a procedure is invoked, any nonpointer, nonallocatable actual argument as-
sociated with an INTENT (OUT) dummy is finalized.

6. When an intrinsic assignment statement is executed, the variable is finalized imme-
diately before it is defined, after the expression is evaluated.

7. If a target allocated through a pointer becomes unreachable by any pointer, it may
be finalized at any subsequent time, at the processorʹs option.

100 Chapter 4

If multiple entities are finalized as a consequence of a single event, the order of their fi-
nalization is processor-dependent. A final subroutine must not reference or define an
object that has already been finalized; this restriction effectively prohibits any depen-
dence between finalizations that are triggered by the same event.

As an example of finalization, consider the following type definition and final pro-
cedure.

module linked_list_module
 type linked_list_node_type
 real, allocatable :: data(:)
 type(linked_list_node_type), pointer :: next
 contains
 final :: finalize_node
 end type
contains
 recursive subroutine finalize_node (node)
 type(linked_list_node_type) :: node
 if (associated(node%next)) deallocate(node%next)
 end subroutine
 . . .
end module

If a node of this type is deallocated, the finalize_node procedure is automatically
invoked as a precursor to the actual deallocation. That procedure deallocates the next
node, if one exists. Deallocation of the next node causes it to be finalized, which results
in a recursive invocation of finalize_node. The procedure must be declared recursive
even though the recursive invocation is a result of finalization instead of an explicit
call. With this final procedure, deallocation of a single node causes recursive dealloca-
tion of the remainder of the list beginning with that node. Note that the allocatable
data component of a node is automatically deallocated when the node is deallocated
(6.7.3.1); the final procedure does not have to do this deallocation explicitly.

4.4.12 Type Extension and Inheritance

Type extension is a means of defining a new type by building on a previously defined
type. The new type starts with the previously defined one and can add type parame-
ters, components, and procedure bindings; the new type can also override procedure
bindings.

Any derived type that is neither a sequence nor a bind type is extensible. A type
definition with the EXTENDS type attribute defines an extended type. The parent type
specified in the EXTENDS attribute must be an extensible type. An extended type is
also extensible and may in turn be a parent of other extended types in a tree-like struc-
ture. An extensible type is an extension of itself and of any type below it in the tree (if
we think of parent types as being lower and the tree branching out upwards).

An extended type inherits all of the type parameters and components from its par-
ent type. It also inherits those specific and generic bindings that are not overridden.
These inherited entities retain all of the attributes that they had in the parent type. The
extended type has the type parameters and components specified in its type definition

Data Types 101

in addition to the inherited ones. The procedure bindings specified in the definition of
the extended type can either be additional bindings or overriding ones.

It is allowed for the number of type parameters, components, and bindings in a
type definition to be zero; although that is not the norm, there are cases where it can be
useful, particularly with type extension.

An extended type additionally has a special implicitly declared component called
the parent component. The parent component is scalar, nonpointer, and nonallocatable,
with the type and type parameters of the parent type. The name of the parent compo-
nent is the parent type name and it has the same accessibility as the parent type name.

The parent component provides a second way to refer to the inherited components.
If an object x has an inherited component named y, that component can be referred to
with the syntax x%y. If the parent type is named p, then the same inherited component
can also be referred to as x%p%y. In isolation, the longer form might seem pointless. Its
main benefit is in the ability to refer to all of the inherited components as the single ob-
ject x%p.

Type extension is most useful as an enabler for polymorphism (5.2). Type extension
can be used without polymorphism, but then it is little more than a syntax conve-
nience, allowing the shorter form of reference to the inherited components.

4.4.12.1 Type Extension Versus its Alternatives

In order to illustrate the role of type extension, consider a base type and some alterna-
tive ways to define new types based on it, but with additional components. The base
type for this illustration is

 type :: base_type
 real :: a
 integer :: i
 end type

It is desired to define two new types: one adding a character component, and the other
adding a logical component.

One way to define the new types is to declare them from scratch, taking no explicit
advantage of the previous declaration of the base type. The appropriate components
are added to each type definition, as in

 type :: new_type_from_scratch_c
 real :: a
 integer :: i
 character :: c
 end type

 type :: new_type_from_scratch_d
 real :: a
 integer :: i
 logical :: d
 end type

102 Chapter 4

Then with variables declared as

 type(base_type) :: x
 type(new_type_from_scratch_c) :: y
 type(new_type_from_scratch_d) :: z

the components of y are y%a, y%i, and y%c.
This approach has maintenance problems in keeping the three type definitions syn-

chronized if there are future changes to the base type. Also, because the three type def-
initions are independent, there is no simple way to write one procedure that will work
on the common components of x, y, or z. One either has to write three procedures or
copy the common components into a temporary and back.

Another approach is sometimes referred to as type embedding. In this approach
the new types are defined with an embedded component of type base_type as in

 type :: new_type_with_embedding_c
 type(base_type) :: base
 character :: c
 end type

 type :: new_type_with_embedding_d
 type(base_type) :: base
 character :: d
 end type

Then with variables declared as

 type(base_type) :: x
 type(new_type_with_embedding_c) :: y
 type(new_type_with_embedding_d) :: z

the components of y are y%c and y%base, with subcomponents y%base%a and
y%base%i.

With this approach, the maintenance problems are ameliorated because the com-
mon components are defined only once. Also, a single procedure can operate on x,
y%base, or z%base.

However, the syntax is a bit awkward with the ʺextraʺ %base thrown in. As multi-
ple levels of extension are added, the awkwardness gets worse. One is likely to be driv-
en to make temporary pointers or use the ASSOCIATE construct (8.2) solely to simplify
notation.

Using type extension for the same situation is illustrated by

 type, extends(base_type) :: new_type_c
 character :: c
 end type

 type, extends(base_type) :: new_type_d
 logical :: d
 end type

Data Types 103

Then with variables declared as

 type(base_type) :: x
 type(new_type_c) :: y
 type(new_type_d) :: z

the components of y are y%a, y%i, and y%c, much like with new types defined from
scratch. But y also has the parent component y%base_type, with its subcomponents
y%base_type%a and y%base_type%i. The parent component does not have physically
separate storage; it is just another view of the y%a and y%i components. The
y%base_type%a component is inheritance associated with y%a, and the
y%base_type%i component is inheritance associated with y%i.

As with type embedding, a single procedure can operate on x, y%base_type, or
z%base_type. Thus type inheritance has the maintenance benefits of type embedding
combined with the notational simplicity of new types declared from scratch.

 Although this example illustrates maintenance and notational benefits of type in-
heritance, these benefits alone would probably not be sufficient to justify the inclusion
of type inheritance in the language. Type extension is most useful as an enabler for poly-
morphism (5.2).

4.4.12.2 Overriding Procedure Bindings

If a specific binding in an extended type has the same binding name as a binding from
the parent type, then the binding in the extended type overrides that from the parent
type. This override blocks the inheritance of the binding from the parent.

When overriding bindings are used in conjunction with polymorphism, the com-
piler might not be able to determine at compile time which specific procedure is in-
voked by a particular reference in the code; the same reference might invoke different
procedures for different executions of it. Therefore, the parent binding and the overrid-
ing one must be similar enough that the same invoking code makes sense for both
bindings. The rules and restrictions to ensure that are:

1. Either both or neither must have passed-object dummy arguments, which must
correspond in name and position.

2. They must have the same number of dummy arguments. Dummy arguments that
correspond by position must have the same names and characteristics, except that
the passed-object dummy will differ in type.

3. Either both must be subroutines or both must be functions.

4. Either both or neither must be elemental.

5. If the parent binding is pure, then the overriding binding must be pure. (But the
overriding binding may be pure even when the parent is not.)

6. If the parent binding is public, then the overriding binding must be public. (But the
overriding binding may be public even when the parent is not.)

104 Chapter 4

An additional restriction is that a parent binding with the NON_OVERRIDABLE at-
tribute may not be overridden; this restriction is, in fact, the only effect of the
NON_OVERRIDABLE attribute.

Generic bindings are never overridden. Instead, a generic binding extends any in-
herited generic binding with the same generic specification.

Final bindings are neither inherited nor overridden. Instead, if an extended type
and its parent both have final bindings, then the subroutines specified by both bind-
ings will be called as described in 4.4.11.3.

4.4.12.3 Abstract Types and Deferred Procedure Bindings

An abstract type is one that has the ABSTRACT attribute. An abstract type can be used
to define a parent for type extension, but the restrictions on derived-type specifiers
make it impossible to create an object whose dynamic type (5.2) is abstract. One could
think of an abstract type as a placeholder in the type extension tree.

Similarly, a deferred procedure binding can be thought of as a placeholder for a
binding that can never be invoked, but may be overridden in a type extension.

Abstract types and deferred procedure bindings are never strictly necessary; one
could alternatively use nonabstract types and nondeferred bindings, but that would re-
quire writing stub procedures to bind to, even though the procedures would never be
invoked. The limitations on abstract types and deferred bindings allow compile-time
verification that a deferred binding will never be invoked, thus obviating the need for
a stub procedure.

Rules and restrictions:

1. An abstract type must be extensible.

2. A deferred binding, whether declared or inherited, is allowed only in an abstract
type. Thus, if an abstract type with a deferred binding is extended, and the extend-
ed type is not also abstract, then the extended type must override the deferred
binding with a nondeferred one.

3. A nondeferred binding may not be overridden with a deferred one.

4.4.12.4 Example of Inheriting and Overriding Bindings

The following example illustrates several of the features relating to inheritance of pro-
cedure type bindings. The first part of the example is a module that defines an abstract
type for a time history file (a file with time series data). A simple rewind procedure is
probably adequate for many possible formats and is provided. A general seek proce-
dure that uses the rewind and next_frame bindings is also provided. A general
next_frame procedure is not provided because that depends too strongly on the specif-
ic file format details. Therefore, the next_frame procedure is deferred. Next_frame is
specified to have the same interface as the rewind procedure; if a different interface
were appropriate, an abstract interface block could be used to define the necessary in-

Data Types 105

terface. Because there is a deferred binding, the type must be abstract. In order to cre-
ate an object in this class, it is necessary to extend the type and provide a nondeferred
binding in that extension. Other bindings and details are elided from the example.

module th_file_module

 private
 type, public, abstract :: th_file_type
 integer :: lun = 0
 logical :: frame_ok = .false.
 real :: frame_time
 . . .
 contains
 procedure :: rewind
 procedure(rewind), deferred :: next_frame
 procedure :: seek
 . . .
 end type

contains
 subroutine rewind (file)
 class(th_file_type) :: file

 rewind(file%lun)
 file%frame_ok = .false.
 return
 end subroutine rewind

 subroutine seek (file, time)
 class(th_file_type) :: file
 real, intent(in) :: time

 call file%rewind
 seek_loop: do
 call file%next_frame
 if (.not. file%frame_ok) return
 if (file%frame_time >= time) exit seek_loop
 end do seek_loop
 . . .
 return
 end subroutine seek
 . . .
end module th_file_module

The next part of the example extends the type to support a simple file format (the
details of which are elided in the example). A nondeferred binding is provided for
next_frame, but the inherited bindings are used for rewind and seek.

106 Chapter 4

module simple_1_file_module

 use th_file_module

 type, extends(th_file_type) :: simple_1_file_type
 contains
 procedure :: next_frame
 . . .
 end type

contains
 subroutine next_frame (file)
 type(simple_1_file_type) :: file
 . . .
 end subroutine next_frame
 . . .
end module simple_1_file_module

The final part of the example extends the type to support a different file format. In
this case, the file has an index to support positioning by a more efficient means that re-
winding and reading sequentially through the file. Therefore, the rewind and seek
bindings are overridden by ones tailored to this particular file format. The extended
type probably also has extra components needed to maintain the index information.

module indexed_1_file_module

 use th_file_module

 type, extends(th_file_type) :: indexed_1_file_type
 . . .
 contains
 procedure :: rewind
 procedure :: next_frame
 procedure :: seek
 . . .
 end type

contains
 subroutine rewind (file)
 type(indexed_1_file_type) :: file
 . . .
 end subroutine rewind
 subroutine next_frame (file)
 type(indexed_file_type) :: file
 . . .
 end subroutine next_frame

Data Types 107

 subroutine seek (file, time)
 type(indexed_file_type) :: file
 real, intent(in) :: time
 . . .
 end subroutine next_frame
 . . .
end module indexed_1_file_module

See 5.2 for an example of using this module.

4.4.13 Values

The set of values of a derived type consists of all combinations of the possibilities for
component values that are consistent with the components specified in the type defini-
tion.

The component value of a nonpointer, nonallocatable component is the value of the
component. The component value of a pointer component is its pointer association.
The pointer association includes the association status. If the pointer is associated, the
association also includes any array bounds of the pointer and the identification of the
target. The dynamic type and type parameters of a pointer are implicit in the identifica-
tion of its target. The value of the pointer target is not part of the component value. The
component value of an allocatable component is its allocation status, its dynamic type
and type parameters, its bounds, and its value.

4.4.14 Operators

Any operation on derived-type entities must be defined explicitly by a function with
an OPERATOR interface. Assignment, other than the intrinsic assignment provided for
entities of the same derived type, must be defined by a subroutine with an ASSIGN-
MENT interface. These are described in 12.5.4.3.

A simple example is provided. Suppose it is desirable to determine the number of
words and lines in a section of text. The information is available for each paragraph. A
type named PARAGRAPH is defined as follows:

TYPE PARAGRAPH
INTEGER NO_OF_WORDS, NO_OF_LINES
CHARACTER (LEN = 30) SUBJECT

END TYPE PARAGRAPH

It is now desirable to define an operator for adding the paragraphs. An OPERATOR in-
terface is required for the function that defines the addition operation for objects of
type PARAGRAPH.

INTERFACE OPERATOR (+)
MODULE PROCEDURE ADDP

END INTERFACE

This definition of addition for objects of type PARAGRAPH adds the words and lines,
and concatenates the trimmed subjects inserting “ and ”.

108 Chapter 4

TYPE (PARAGRAPH) FUNCTION ADDP (P1, P2)
TYPE (PARAGRAPH), INTENT (IN) :: P1, P2
ADDP % NO_OF_WORDS = &

 P1 % NO_OF_WORDS + P2 % NO_OF_WORDS
ADDP % NO_OF_LINES = &

 P1 % NO_OF_LINES + P2 % NO_OF_LINES
 ADDP%SUBJECT = trim(p1%subject) // " and " // trim(p2%subject)
END FUNCTION ADDP

If the following variables were declared:

TYPE (PARAGRAPH) BIRDS, BEES

the expression BIRDS + BEES would be defined and could be evaluated in the module
subprograms as well as any program unit accessing the module.

4.4.15 Structure Constructor

A structure constructor is used to construct a value of the type from component values.
When a derived type is defined, a structure constructor for that type is defined auto-
matically. Although there is no special form for derived-type constants, a structure
constructor whose component values are all initialization expressions serves as a
constant.

For a simple example, a value of type COLOR (defined in 4.4.1) may be construct-
ed with the following structure constructor:

COLOR (I, J, K, "MAGENTA")

The form for a structure constructor (R457) is:

derived-type-spec ([component-spec-list])

where a component-spec (R458) is

[component-name =] component-source

and a component source (R459) is one of

expression
data-target
procedure-target

Expression, data-targets, and procedure-targets are described in 7.1.2, 7.5.5.1, and
7.5.5.2, respectively.

Rules and restrictions:

1. The component name may be omitted from a component specification only if the
component name is also omitted from each preceding component specification in
the list. The component sources without explicit component names are assigned to

Data Types 109

the components of the type in component order. The component order of a type is
the component order of the parent type, followed by the order of the component
declarations in the type definition.

2. For each component of the type, a value must be specified, either explicitly in the
constructor or implicitly by default initialization. Specifying the value of the parent
component in an extended type is equivalent to specifying the values of all the in-
herited components; either is allowed.

3. No more than one value may be explicitly specified for a component.

4. The type name and each component name that is explicitly specified in a compo-
nent specification must be accessible in the scoping unit where the structure con-
structor appears.

5. A component source corresponding to a pointer component must be allowable as a
target for such a pointer in a pointer assignment statement (7.5.5). The component
value is the result of such a pointer assignment.

6. A component source corresponding to a nonpointer component must be allowable
as an expression in an intrinsic assignment statement for the component (7.5.2), ex-
cept that the component source for an allocatable component may be unallocated
or may be a reference to the intrinsic function NULL with no arguments. The com-
ponent value is the result of such an intrinsic assignment or, in the exceptional
case, is an unallocated allocatable.

7. A component that has no corresponding component source is defined as specified
by the default initialization for the type.

8. A structure constructor for a type must not appear before the type is defined.

One consequence of rule 2 above is that if a type has private components that do not
have default initialization, it is not possible to write a constructor for the type outside of
the module where the type is defined.

If all of the values in a structure constructor are initialization expressions, the
structure constructor may be used to define a named constant, for example, using types
defined earlier in this chapter:

PARAMETER (TEAL = COLOR (14, 7, 3, "TEAL"))
PARAMETER (NO_PART = COMPONENT ("none", 0, 0.0))

The form of a structure constructor has much in common with the form of a func-
tion reference (12.2.3). If there is an accessible generic function with the same name as
a derived type, any consequent ambiguity is resolved by first applying generic func-
tion resolution as described in 12.8. Only if the generic resolution fails is a form consid-
ered for interpretation as a structure constructor. This essentially allows a user to
override the interpretation of a structure constructor

Following are several examples of structure constructors.

110 Chapter 4

Example 1. A structure constructor for a type that has a derived type as a component
must provide a value for each of the components. A component may be of derived
type, in which case a structure constructor is required for the component. In the exam-
ple below, type RING has a component of type STONE. This example also illustrates the
use of default initialization and keywords in a constructor; the insurer in this example is
the default Lloyds.

TYPE STONE
REAL CARETS
INTEGER SHAPE
CHARACTER (30) NAME

END TYPE STONE

TYPE RING
REAL EST_VALUE
CHARACTER (30) INSURER = "Lloyds"
TYPE (STONE) JEWEL

END TYPE RING

If OVAL is an integer, a structure constructor for a value of type RING is:

RING (5000.00, jewel = STONE (2.5, OVAL, "emerald"))

Example 2. If a type is specified with an array component, the value that corresponds
to the array component in the expression list of the structure constructor must conform
with the specified shape. For example, type ORCHARD has an array component:

TYPE ORCHARD
INTEGER AGE, NO_OF_TREES
CHARACTER (LEN = 20) VARIETIES (10)

END TYPE

Given the declaration:

CHARACTER (LEN = 20) CATALOG (16, 12)

a structure constructor for a value of type ORCHARD is:

ORCHARD (5, ROWS * NO_PER_ROW, CATALOG (LEMON, 1:10))

Example 3. If a component of the type is a pointer, the corresponding structure con-
structor expression must evaluate to an entity that would be an allowable target for
such a pointer in a pointer assignment statement (7.5.5). If the variable SYNOPSIS is
declared:

CHARACTER(4000), TARGET :: SYNOPSIS

a value of the type SUMMARY (defined in 4.4.6) may be constructed:

SUMMARY("War and Peace", 1025, SYNOPSIS)

Data Types 111

Example 4. For an extended type, the component order includes the components of the
parent type, but does not include the parent component. This implies that the keyword
form must be used if the parent type is to be specified. Using the type definitions in
4.4.12.1, a constructor for new_type_c can be written in positional form using the com-
ponents of the parent type, as:

new_type_c(1.2, 7, 'Z')

But if bt is an object of type base_type, using it in a constructor for new_type_c re-
quires the keyword form as in:

new_type_c(base_type=bt, c='Z')

Example 5. The following constructor uses the type matrix defined in 4.4.3 and illus-
trates a constructor with type parameters.

matrix(2, 2)(reshape([7.0, 0.0, 0.0, 7.0], [2, 2])

The type parameters kind and k keep their default values in this example. The RE-
SHAPE intrinsic is used to construct the needed rank-2 array.

Example 6. A constructor for a type with allocatable components such as:

type item
 integer :: code
 character(:), allocatable :: description
end type

can have the allocatable components allocated or not, as in:

item(0, null())

item(1, 'Firewire 400 cable, 1 meter A-B')

4.5 Array Constructors

An array constructor is a mechanism that is used to construct a rank-one array from a
sequence of values. Syntactically, it is a sequence of scalar values, arrays, and implied-
do specifications enclosed in either square brackets or in parentheses and slashes. For
example:

REAL VECTOR_X(3), VECTOR_Y(2), RESULT(100)
. . .

RESULT (1:8) = [1.3, 5.6, VECTOR_X, 2.35, VECTOR_Y]

The value of the first eight elements of RESULT is constructed from the values of
VECTOR_X and VECTOR_Y and three real constants in the specified order. If an array
appears in the value list, the values of its elements are taken in array element order. If
it is necessary to construct an array of rank greater than one, the RESHAPE intrinsic
function may be applied to an array constructor.

112 Chapter 4

The form for an array constructor (R465) is one of:

[[type-spec ::] [ac-value-list]]
(/ [type-spec ::] [ac-value-list] /)

The outermost square brackets [] in the first syntax form are literal square brackets
rather than indications of optionality.

An ac-value is one of

expression
ac-implied-do

where the expression can be either a scalar or an array.
The form for an ac-implied-do (R470) is:

(ac-value-list , ac-do-variable = scalar-integer-expression , &

scalar-integer-expression [, scalar-integer-expression])

Rules and restrictions:

1. The type specifier and the ac-value list may not both be omitted.

2. If the type specification is omitted, each ac-value expression in the array construc-
tor must have the same type and type parameters, including length parameters; the
type and type parameters of the constructor are those of the expressions.

3. If the type specification is included, each ac-value expression must be of a type and
type parameters compatible with intrinsic assignment to the specified type. The
constructor has the specified type and type parameters.

4. An ac-do-variable must be a scalar integer named variable. This variable has the
scope of this ac-implied-do.

5. If an ac-implied-do is contained within another ac-implied-do, they must not have
the same ac-do-variable.

If an ac-value is an array expression, the values of the elements of the expression in
array element order (6.6.6) become the values of the array constructor.

If an ac-value is an implied-do specification, it is expanded to form a sequence of
values under control of the ac-do-variable as in the DO construct (8.7.2.1).

If every expression in an array constructor is an initialization expression, the array
constructor is an initialization expression as in the example above. Such an array con-
structor may be used to give a value to a named constant, for example:

REAL X(3), BIGGER_X(4)
PARAMETER (X = [(I, I = 2, 6, 2)])
PARAMETER (BIGGER_X = [0.0, X])

Following are several examples of array constructors.

Data Types 113

Example 1. To create a value for an array of rank greater than one, the RESHAPE in-
trinsic function must be used. With this function, a one-dimensional array may be re-
shaped into any allowable array shape.

Y = RESHAPE (SOURCE = [2.0, [4.5, 4.0], Z], SHAPE = [3, 2])

If Z has the value [1.2 3.5 1.1], Y is a 3 × 2 array with the elements:

2.0 1.2
4.5 3.5
4.0 1.1

Example 2. It may be necessary to construct an array value of derived type.

TYPE PERSON
INTEGER AGE
CHARACTER (LEN = 40) NAME

END TYPE PERSON

TYPE (PERSON) CAR_POOL (3)

CAR_POOL = [PERSON (35, "SCHMITT"), &
PERSON (57, "LOPEZ"), PERSON (26, "YUNG")]

Example 3. A type specifier in an array constructor can be used to coerce all elements
to the same type and type parameters, as in:

[real:: 42, 1.234, 57]
[character(16):: 'Tom', 'Dick', 'Harry']

It also provides a simple way to write a zero-sized constructor as in:

[integer::]

Without the type specifier, this form would be invalid because there would be no spec-
ification of the type of the array.

4.6 Enumerations

An enumeration is a set of named integer constants, each of which is called an enumer-
ator. Enumerations are designed primarily to facilitate C interoperability. Although an
enumeration can be used independently of C, it then provides little utility that could
not be achieved using other syntax. The main functionality of enumerations is in their
automatic selection of the appropriate integer kinds to be compatible with correspond-
ing C enums.

114 Chapter 4

The form of an enumeration is

ENUM, BIND(C)
 enumerator-definition-statement
 [enumerator-definition-statement] ...
END ENUM

The BIND(C) is mandatory. The form of an enumerator definition statement is

ENUMERATOR [::] enumerator-list

where the form of an enumerator is

named-constant [= scalar-integer-initialization-expression]

If any enumerator in a list includes the optional initialization expression, then the dou-
ble colon in that enumerator definition statement is required.

The enumeration declares all of its enumerators to be integer named constants with
values as described below. The kind of the named constants is automatically selected
so that they are interoperable with a C enumeration type that specified the same values
in the same order. Note that an enumeration does not define a distinct type; it just fa-
cilitates the selection of an appropriate integer kind. The effect of an enumeration is
identical to that of a corresponding set of integer parameter declarations.

The value of an enumerator is determined as follows:

1. If the enumerator definition has an initialization expression, that expression gives
the value.

2. If the enumerator definition does not have an initialization expression, the value is
1 greater than the value of the previous enumerator, or is 0 if it is the first enumer-
ator.

Example:

enum, bind(c)
 enumerator :: red=4, blue=9
 enumerator yellow
end enum

In this example, the named constant red will have the value 4, blue will be 9, and yel-
low will be 10. Note that the effect is the same whether the enumerators of an enumer-
ation are declared all in a single statement or in multiple ones.

Although the main functionality of an enumeration is to automatically select the
appropriate integer kind, the syntax provides no way to directly find what kind was
selected. The only way to find that is to use the KIND intrinsic on one of the resulting
named constants. For example, the following is a way to declare an integer variable of
the kind selected by the above enumeration.

integer(kind(red)) :: x

5 Declarations

• Declarations are used to specify the attributes and relationships of the entities in a
program.

• The declared Type of a variable, function, or named constant is specified explicitly
by a type declaration or implicitly by the first letter of the entity’s name. An
IMPLICIT statement associates a type with specific letters or disables implicit typ-
ing.

• A Polymorphic entity is one whose dynamic type can change during program exe-
cution. For a polymorphic entity, the dynamic type may be different from the
declared type. A nonpolymorphic entity also has a dynamic type, but it is always
the same as the declared type.

• The DIMENSION attribute specifies an array. The array may have explicit shape
(with all bounds specified), deferred shape (if it also has the ALLOCATABLE or
POINTER attribute), or assumed shape/size (if it is a dummy argument).

• The ALLOCATABLE or POINTER attribute specifies an entity that may be dynam-
ically allocated during program execution. Alternatively, a pointer variable may be
associated with an existing target. The TARGET attribute specifies that a variable
may be the target of a pointer.

• Initialization of a variable may be specified in a type declaration or in a DATA
statement. Pointers may be initially disassociated.

• The EXTERNAL or INTRINSIC attribute specifies the nature of a procedure.

• The INTENT, VALUE, or OPTIONAL attribute specifies properties of a dummy
argument.

• The PARAMETER attribute specifies a named constant.

• The PUBLIC, PRIVATE, or PROTECTED attribute allows a programmer to control
the accessibility and use of entities specified in modules.

• The BIND(C) attribute facilitates interoperation with C data and functions.

• The ASYNCHRONOUS or VOLATILE attribute specifies that a variableʹs value
might be referenced or redefined outside of the normal flow of program execution.

Declarations are used to specify the type and other attributes of program entities. The
attributes that an entity possesses determine how the entity may be used in a program.
Every variable and function has a type, which is the most important of the attributes;
type is discussed in 4. However, type is only one of a number of attributes that an en-
tity may possess. Attributes may be specified in type declaration or procedure declara-

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_5, © Springer-Verlag London Limited 2009

116 Chapter 5

tion statements (entity-oriented form), in separate attribute declaration statements
(attribute-oriented form), or in a mix of these forms. Attributes of a procedure may be
specified in an interface body, which is discussed in 12.5.2. Some entities, such as sub-
routines and namelist groups, do not have a type but may possess other attributes.

In addition, there are relationships among objects that can be specified by EQUIV-
ALENCE, COMMON, and NAMELIST statements. A NAMELIST statement specifies a
name for a list of objects that may be referenced in an input/output statement. The
EQUIVALENCE statement indicates that some variables share storage. The COMMON
statement specifies a name for a block of storage and the names of objects in the block;
this block can then be shared among different program units. COMMON and EQUIV-
ALENCE are provided primarily for compatibility with older versions of the language;
they are seldom needed in new programs, where modules can provide replacement
functionality in a more structured way.

In general, Fortran keywords are used to declare the attributes for an entity. The
following list summarizes these keywords:

Type INTEGER
REAL (and DOUBLE PRECISION)
COMPLEX
LOGICAL
CHARACTER
TYPE (user-defined name)

Array properties DIMENSION

Allocatable property ALLOCATABLE

Pointer properties POINTER
TARGET

Value definition properties DATA
PARAMETER
SAVE
ASYNCHRONOUS
VOLATILE

Module entity properties PUBLIC
PRIVATE
PROTECTED
BIND

Dummy argument properties INTENT
OPTIONAL
VALUE

Procedure properties EXTERNAL
INTRINSIC

Declarations 117

In earlier versions of the language, it was necessary to use a different statement for
each attribute given to a variable or a collection of variables, for example:

INTEGER A, B, C
SAVE A, B, C

In later versions, for objects that have a type, the other attributes may be included in
the type declaration statement. For example:

INTEGER, SAVE :: A, B, C

Collecting the attributes into a single statement is sometimes more convenient for read-
ers of programs. It eliminates searching through many declaration statements to locate
all the attributes of a particular object. Emphasis can be placed on an object and its at-
tributes (entity-oriented declaration) or on an attribute and the objects that possess the
attribute (attribute-oriented declaration), whichever is preferred by a programmer.

It is also allowed to use a mixed form, specifying some attributes for an entity to-
gether and some separately. The terms “entity-oriented” and “attribute-oriented” are
used here for expository purposes, but are not actually distinctions made by the stan-
dard. The attributes of an entity are collected from those specified for it by all forms of
specification. Unfortunately, there is no way within the language for the programmer
to specify enforcement of an entity-oriented form.

The same attribute must not be specified explicitly for an entity more than once, re-
gardless of the form of specification.

The following are examples of entity-oriented and attribute-oriented forms:

• entity-oriented declarations

REAL, DIMENSION(20), SAVE :: X

or

REAL, SAVE :: X(20)

• attribute-oriented declarations

REAL X
DIMENSION X(20)
SAVE X

or

REAL X (20)
SAVE X

Although most attributes are determined statically at compilation time, some at-
tributes can be specified to vary during program execution. A variable that has such a
varying attribute is called dynamic. The attributes that can be dynamic are the type,
length type parameters, and array bounds. There are four categories of dynamic vari-
ables: automatic, allocatable, pointer, and polymorphic. An automatic variable is one
whose dynamic attributes are automatically determined on entry to a procedure, but

118 Chapter 5

which is not a dummy argument or function result. The exception for dummy argu-
ments and function results is largely historical in that they predate dynamic allocation
and can be implemented without it, so the standard does not refer to them as dynamic.
Length type parameters and array bounds are the attributes that can be automatic. Al-
locatable, pointer, and polymorphic variables can have their dynamic attributes speci-
fied by executable statements and can be dummy arguments, function results, or other
variables.

5.1 Type Declaration Statements

A type declaration statement begins with a type specifier, optionally lists other at-
tributes, then ends with a list of entities that possess these attributes. In addition, a
type declaration statement may include an initial value for a variable or association sta-
tus for a pointer. The form of a type declaration statement (R501) is:

declaration-type-spec [[, attribute-spec] ... ::] entity-declaration-list

where a declaration type specification (R502) is one of:

intrinsic-type-spec
TYPE (derived-type-spec)
CLASS (derived-type-spec)
CLASS (*)

and where an attribute specification (R503) is one of:

ALLOCATABLE
ASYNCHRONOUS
BIND(C [, NAME= scalar-character-initialization-expression])
DIMENSION (array-spec)
EXTERNAL
INTENT (intent-spec)
INTRINSIC
OPTIONAL
PARAMETER
POINTER
PRIVATE
PROTECTED
PUBLIC
SAVE
TARGET
VALUE
VOLATILE

where an entity declaration (R504) has one of the forms:

object-name [(array-spec)] [* character-length] [initialization]
function-name [* character-length]

Declarations 119

Rules and restrictions:

1. Each expression used as a length type parameter value in a declaration type speci-
fication must be a specification expression. The same restriction applies to an ex-
pression used as a character length in an entity declaration, which is just an
alternate syntax for the same thing.

2. If an expression used as a length type parameter value in a declaration type speci-
fication is not an initialization expression, the declaration type specification must
be in the scoping unit of a subprogram or interface body. The same restriction ap-
plies to an expression used as a character length in an entity declaration.

3. A derived type specified with the CLASS keyword in a declaration type specifica-
tion must be an extensible type (4.4.12).

4. A derived type specified with the TYPE keyword in a declaration type specification
must not be an abstract type (4.4.12.3).

5. A type declaration statement with the TYPE keyword must not specify a derived
type that is defined later in the same scoping unit.

6. The same attribute specification must not appear more than once in a given type
declaration statement.

7. An entity must not be given the same attribute explicitly more than once in a scop-
ing unit.

8. The character length option may appear only if the type specified is CHARACTER.

9. If initialization appears in any entity declaration of the statement, the double colon
separator before the entity declaration list must be used.

10. A function name must be the name of an external function, an intrinsic function, a
function dummy procedure, a procedure pointer, or a statement function.

There are other rules and restrictions that pertain to particular attributes; these are
covered in the sections describing those attributes. Some attributes are incompatible
with others; a table of these incompatibilities is in 5.12.

 Item 5 above is a bit inconsistent in that it does not apply to type declaration state-
ments with the CLASS keyword and is more stringent than similar restrictions on com-
ponent declarations.

The form of entity declaration that has a function name applies only to declarations
outside of the function or interface body. Within a function or an interface body for it,
the function result variable is a data object, which can be declared using the form with
an object name. Elsewhere, the only cases where a function can be declared with a type
declaration statement are where it has an implicit interface or is intrinsic.

If an expression used as a length type parameter value in a declaration type speci-
fication is not an initialization expression, the expression is evaluated and establishes
the value of the length type parameter on each entry to the procedure in which it ap-

120 Chapter 5

pears. The value is not affected by any changes to the values of variables in the expres-
sion during execution of the procedure. A data object declared using such an
expression is an automatic variable unless it is a dummy argument or function result.
This also applies to an expression used as a character length in an entity declaration.
These issues do not apply to a specification that is an initialization expression; this is
because the value of an initialization expression does not depend on anything that can
change during execution.

Some example type declaration statements are:

REAL A(10)
LOGICAL, DIMENSION(5, 5) :: MASK_1, MASK_2
COMPLEX :: CUBE_ROOT = (-0.5, 0.867)
INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND(4)
INTEGER(SHORT) K ! Range of -9999 to 9999
REAL, ALLOCATABLE :: A1(:, :), A2(:, :, :)
TYPE(PERSON) CHAIRMAN
TYPE(NODE), POINTER :: HEAD_OF_CHAIN => NULL ()
REAL, INTENT(IN) :: ARG1
REAL, INTRINSIC :: SIN

5.2 Polymorphism

A polymorphic entity is one whose type can change during program execution. The
term refers to having many (poly) forms (morph). The CLASS keyword is used to de-
clare polymorphic entities.

With polymorphism comes a distinction between the declared and dynamic type of
an entity. The declared type of an entity is the type that it is declared to have, either ex-
plicitly or implicitly. The dynamic type is the type that it has at a particular time dur-
ing program execution. In general, when the type of an entity is used without
qualification in the standard or this book, it refers to the dynamic type.

A nonpolymorphic entity also has both a declared type and a dynamic type, but
they are always the same. The dynamic type of a polymorphic object that is not allocat-
ed or associated is the same as its declared type. The dynamic type of an allocated or
associated polymorphic object is the type that it was allocated with or the dynamic
type of the entity that it is associated with.

An object declared with CLASS(*) is an unlimited polymorphic object; it has no de-
clared type. It is not considered to have the same declared type as any other entity,
even another unlimited polymorphic entity.

The concept of type compatibility is used in several contexts; it is defined as fol-
lows. A nonpolymorphic entity is type compatible with entities of the same declared
type. A polymorphic entity that has a declared type is type compatible with entities
whose declared type is the same type or any extension of it. An unlimited polymorphic
entity is type compatible with all entities. An entity is type compatible with a type if it
is type compatible with entities declared to have that type.

Note that type compatibility is not symmetric. Two entities are type incompatible if
neither is type compatible with the other.

Declarations 121

Rules and restrictions:

1. An entity declared with the CLASS keyword must be a dummy argument, a point-
er, or an allocatable variable.

2. An allocatable object may be allocated only with a type with which it is type com-
patible.

3. A pointer or dummy argument may be associated only with a target or actual ar-
gument with which it is type compatible.

The following simple example of polymorphism uses the example modules from
4.4.12.4 and assumes that they have additional type bindings for open and close proce-
dures.

program read_file
 use simple_1_file_module
 use indexed_1_file_module
 class(th_file_type), allocatable :: th_file
 character :: file_name*128, file_type*16
 real :: start_time

 read(*,*) file_name, file_type, start_time
 select case(file_type)
 case ('simple_1')
 allocate(simple_1_file_type:: th_file)
 case ('indexed_1')
 allocate(indexed_1_file_type:: th_file)
 case default
 write (*,*) 'Unrecognized file type: ', file_type
 stop
 end select

 call th_file%open(file_name)
 call th_file%seek(start_time)
 do while (th_file%frame_ok)
 write (*,*) th_file%frame_time
 call th_file%next_frame
 end do
 call th_file%close
end program read_file

Based on the value that is read for the string file_type, the program allocates the
polymorphic variable th_file to be one of the two possible types. The corresponding
type-bound versions of the open, seek, next_frame, and close procedures are invoked
depending on the dynamic type given to th_file by the ALLOCATE statement.

122 Chapter 5

5.3 Implicit Typing

Implicit typing is a method of inferring a type and type parameter values based on the
first letter of the name of an entity. Implicit typing applies to each named variable,
named constant, or nonintrinsic specific function whose type is not otherwise speci-
fied.

In each scoping unit, there is a mapping of each of the letters A, B, ..., Z to a partic-
ular type and type parameter values or to no type. The mapping does not distinguish
between upper and lower case. The type and type parameters of an implicitly typed
entity are those of the mapping for the first letter of the entity name. If an entity would
be implicitly typed, but the applicable mapping is to no type, then the program is in-
valid.

If a scoping unit has no IMPLICIT statements, then its default mapping applies.
The default mapping for an internal or module procedure is the mapping from its host.
For other scoping units, the default mapping is as shown in Figure 5-1. That is, each
applicable entity whose name begins with any of the letters I, J, K, L, M, or N is of type
default integer and all others are of type default real. Note that although interface bod-
ies have a host scoping unit, their default mapping does not come from the host.

IMPLICIT statements can be used to specify a mapping different from the default.
The IMPLICIT statement (R549) has two forms:

IMPLICIT implicit-spec-list
IMPLICIT NONE

where an implicit specification (R550) is:

declaration-type-spec (letter-spec-list)

and a letter specification (R551) is:

letter [- letter]

An IMPLICIT NONE statement specifies that the mappings for all letters are to no
type, with the consequence that implicit typing cannot be used in that scoping
unit—type declaration statements must be used for all appropriate entities. The other
form of IMPLICIT statement specifies mappings from the specified letters to the type
and type parameter values specified by the declaration type specifiers; the letter−letter
form indicates a range of letters from the first to the last. If the mapping for a letter is
not specified by any IMPLICIT statements in a scoping unit, then the mapping for that
letter remains the same as in the default mapping for the scoping unit.

Integer Real

Figure 5-1 Default implicit mapping for a program unit

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Real

Declarations 123

Rules and restrictions:

1. If IMPLICIT NONE appears, it must precede any PARAMETER statements and
there must be no other IMPLICIT statements in the scoping unit.

2. If the letter–letter form appears in a letter specification, the second letter must not
precede the first alphabetically.

3. The same letter must not appear as a single letter or be included in a range of let-
ters more than once in all of the IMPLICIT statements in a scoping unit.

For example, the statement

IMPLICIT COMPLEX (A-C, Z)

indicates that all implicitly typed entities whose names begin with the letters A, B, C,
or Z are of type default complex. If this is the only IMPLICIT statement, implicitly
typed entities whose names begin with I-N are of type default integer; implicitly typed
entities whose names begin with D-H and O-Y are of type default real.

The statement

IMPLICIT NONE

indicates that there is no implicit typing in the scoping unit and that each named vari-
able, named constant, and nonintrinsic specific function used in the scoping unit and
not accessed by use or host association must be declared explicitly in a type declaration
statement.

It is generally recommended to use IMPLICIT NONE in new code. This facilitates
compiler detection of some common coding errors. With IMPLICIT NONE, inadvertent
misspellings are usually detected during compilation. Without IMPLICIT NONE, such
misspellings are often interpreted as implicitly declared variables, with the conse-
quence that the program compiles, but does not work as intended. An IMPLICIT state-
ment may specify a user-defined type. However, it is usually recommended to avoid
this; the error-proneness of implicit typing is exacerbated when applied to derived
types. This is because a derived-type name has local scope; the same name can mean
something completely different in a different scope. The following example shows one
resulting oddity.

program main
 implicit type(t) (a-z)
 type t
 . . .
 end type t
 call sub
contains
 subroutine sub
 integer :: t
 . . .
 end subroutine sub
end program main

124 Chapter 5

The IMPLICIT statement in this example causes all implicitly typed entities to have type
t. The INTEGER statement in the subroutine blocks host association of the type name t.
Thus nothing can be explicitly declared to be of type t in the subroutine. But the implicit
mapping to type t still holds. Thus variables in the subroutine can get type t implicitly,
but not explicitly. Fortunately, this odd state of affairs seems unlikely to arise in real
code.

The complexity that implicit typing causes in determining the scope of an unde-
clared variable in a nested scope is explained in 16.2.1.3.

Some examples of IMPLICIT statements are:

IMPLICIT INTEGER (A-G), LOGICAL (KIND = BIT) (M)
IMPLICIT CHARACTER *10 (P, Q)
IMPLICIT TYPE (COLOR) (X-Z)
IMPLICIT REAL (QUAD) (H-J, U-W, R)

5.4 Array Properties

An object with the dimension attribute is an array. An array specification specifies an
array’s rank and information about the bounds. The rank must be known at compile
time. The bounds may be dynamic in one of several ways.

5.4.1 Array Specifications

There are four forms that an array specification (R510) may take:

explicit-shape-spec-list
assumed-shape-spec-list
deferred-shape-spec-list
assumed-size-spec

The specified rank is the number of comma-separated items in the array specifica-
tion, which is one more than the number of commas. The maximum rank of an array
is 7.

5.4.1.1 Explicit-Shape Arrays

An explicit-shape array is one whose bounds are entirely determined from its array
specification, which is an explicit-shape specification list. Each dimension has an ex-
plicit-shape specification (R514), which has the form:

[lower-bound :] upper-bound

where the lower bound, if present, and the upper bound are specification expressions
(7.4.2).

Rules and restrictions:

1. If the lower bound is omitted, the default value is 1.

Declarations 125

2. If any of the bound expressions is not an initialization expression, then the array
specification must be in the scoping unit of a subprogram or interface body. The
expression is evaluated and establishes the bound on each entry to the procedure.
The bound is not affected by any changes to the values of variables in the expres-
sion during execution of the procedure. An array declared using such an expres-
sion is an automatic variable unless it is a dummy argument or function result.

The subscript range of the array in a given dimension is the set of integer values
between and including the lower and upper bounds, provided the upper bound is not
less than the lower bound. If the upper bound is less than the lower bound, the range
is empty, the extent in that dimension is 0, and the size of the array is 0.

Examples of explicit-shape arrays:

REAL Q (-10:10, -10:10, 2)

or in a subroutine

SUBROUTINE EX1 (Z, I, J)
REAL, DIMENSION (2:I + 1, J) :: Z

. . .

5.4.1.2 Assumed-Shape Arrays

An assumed-shape array is a dummy argument that takes the shape of the actual argu-
ment passed to it. Each dimension has an assumed-shape specification (R514), which
has the form:

[lower-bound] :

Rules and restrictions:

1. An assumed-shape array must be a dummy argument.

2. If the lower bound is omitted, the default value is 1. Note that the lower bound is
not assumed from the actual argument; only the shape (extents) is assumed.

3. If the lower bound is specified, it must be a specification expression and it is eval-
uated on entry to the procedure. The bound is not affected by any changes to the
values of variables in the expression during execution of the procedure.

4. The upper bound is the extent of the corresponding dimension of the associated ar-
ray plus the lower bound minus 1.

5. An assumed-shape array cannot have the POINTER or ALLOCATABLE attribute,
but this is more a matter of definition than a restriction. Pointer or allocatable dum-
my arrays are deferred shape, which has a similar syntax as described below.

126 Chapter 5

Examples of assumed-shape arrays:

SUBROUTINE EX2 (A, B, X)
 REAL, DIMENSION (2:, :) :: X
 REAL, INTENT(IN) :: A(:), B(0:)

Suppose EX2 is called by the statement

CALL EX2 (U, V, W (4:9, 2:6))

For the duration of the execution of subroutine EX2, the dummy argument X is an ar-
ray with bounds (2:7, 1:5). The lower bound of the first dimension is 2 because X is de-
clared to have a lower bound of 2. The upper bound is 7 because the dummy argument
takes its shape from the actual argument W.

5.4.1.3 Deferred-Shape Arrays

A deferred-shape array is one whose bounds may change at times other than entry to
a procedure. Each dimension has a deferred-shape specification (R515), which has the
form:

:

Rules and restrictions:

1. The array must have either the ALLOCATABLE or POINTER attribute. This is the
only form of array specification allowed for allocatables or pointers.

2. The size, bounds, and shape of a disassociated array pointer or unallocated allocat-
able array are undefined.

A deferred-shape array may or may not be a dummy argument. If a deferred-shape
array is a dummy argument, then on entry to the procedure the definition status and
values of the dummy argumentʹs bounds are those of the actual argument; this applies
to both the lower and upper bounds and is thus different from assumed-shape arrays,
which do not assume the lower bounds. Another important difference between as-
sumed-shape and deferred-shape dummy arguments is that a deferred-shape dummy
argument can change bounds during execution of the procedure it is in; such changes
propagate back to the actual argument on termination of the procedure. The bounds of
an assumed-shape dummy argument cannot change during execution of the proce-
dure. Details of argument association for deferred-shape dummy arrays are discussed
in 12.6.5 and 12.6.7.

The bounds of an allocatable array are determined when it is allocated. Allocation
of allocatable variables is discussed in 6.7.1.1. The bounds of a pointer array are deter-
mined when it is associated with a target, through allocation or other means, as dis-
cussed in 6.7.1.2, 7.5.5.1, and 12.6.5.

Examples of deferred-shape arrays:

REAL, POINTER :: D (:,:), P (:) ! pointer arrays
REAL, ALLOCATABLE :: E (:) ! allocatable array

Declarations 127

5.4.1.4 Assumed-Size Arrays

An assumed-size array is a dummy argument array whose size is assumed from that of
the associated actual argument. Only the size is assumed—the rank and bounds (ex-
cept for the upper bound and extent in the last dimension) are determined from its as-
sumed-size array specification (R516) which has the form:

[explicit-shape-spec-list ,] [lower-bound :] *

The form and interpretation of the array specification for an assumed-size dummy ar-
ray is identical to that of an explicit-shape array except for the replacement of the last
upper bound by an asterisk.

Rules and restrictions:

1. An assumed-size array must be a dummy argument.

2. If any lower bound is omitted, the default value is 1.

3. Each bound expression must be a specification expression and it is evaluated on
entry to the procedure. The bound is not affected by any changes to the values of
variables in the expression during execution of the procedure.

4. If an assumed-size array has the INTENT (OUT) attribute, the array must not be of
a type that has default initialization.

5. The name of an assumed-size array must not be used as a whole-array reference
except as an actual argument in a procedure reference for which the arrayʹs shape
is not required.

6. The upper bound and extent of the last dimension of an assumed-size array are not
defined.

7. In an array section (6.6.4) of an assumed-size array, the second subscript (upper
limit) must not be omitted from a subscript triplet in the last dimension.

Conceptually, the requirements on assumed-size arrays derive from the presump-
tion that the compiler will not necessarily “know” the actual array size. The array has
a size, as defined below, but this serves only as a definition of the limits that the pro-
grammer is required to adhere to. An assumed-size array cannot be used in a context
where the compiler would need knowledge of the size. For example, a statement such
as

write (*,*) x

requires that the compiler know the size of x in order to write out the appropriate
number of values; therefore, this statement is disallowed if x is an assumed-size array.

Similarly, because the extent and upper bound of the last dimension of an as-
sumed-size array are not defined, an array slice such as x(3,:) is disallowed. However,
a slice such as x(:,3) is allowed.

128 Chapter 5

The size of an assumed-size array is defined as follows:

1. If the actual argument associated with the assumed-size dummy argument is an ar-
ray of any type other than default character, the size is that of the actual array.

2. If the actual argument associated with the assumed-size dummy array is an array
element of any type other than default character with a subscript order value
(6.6.6) of v in an array of size x, the size of the dummy argument is x − v + 1.

3. If the actual argument is a default character array, default character array element,
or a default character array element substring (6.4), and if it begins at character
storage unit t of an array with c character storage units, the size of the dummy ar-
ray is

MAX (INT ((c − t + 1) / e), 0)

where e is the length of an element in the dummy character array.

This complicated-sounding definition can be stated simply in informal terms: the
assumed-size array is big enough to fill to the end of the array in the actual argument;
the filling is done by characters if the type is default character, and by elements other-
wise.

Some implementations track the actual size of assumed-size arrays in order to fa-
cilitate debugging, but the standard is written so as not to require this.

Examples of assumed-size arrays:

SUBROUTINE EX3 (N, S, Y)
REAL, DIMENSION (N, *) :: S
REAL Y (10, 5, *)

. . .

5.4.1.5 Limitations on Whole Arrays

There are some limitations on appearances in a program of whole arrays declared with
each of the four forms of array specification. Table 5-1 gives a partial summary of the
allowable appearances.

Table 5-1 Partial summary of allowable appearances of whole arrays declared
in each of the four ways

 An array declared with

May appear as a
Explicit
shape

Assumed
shape

Deferred
shape

Assumed
size

Primary in an expression Yes Yes Yes No

Vector subscript Yes Yes Yes No

Dummy argument Yes Yes Yes Yes

Declarations 129

5.4.2 The DIMENSION Attribute

An array specification can appear in several contexts. It can be in a DIMENSION at-
tribute specification or a DIMENSION statement. Alternatively, it can be in an entity
declaration in a type declaration statement or in parentheses following the variable
name in an ALLOCATABLE, POINTER, TARGET, or COMMON statement. As with
other attributes, the dimension attribute must not be specified more than once for a
given array. However, an array specification may appear in an entity declaration in a
type declaration statement that also has a DIMENSION attribute specification. In this
case, the array specification in the DIMENSION attribute specification does not apply
to that particular name; the array specification in the entity declaration applies instead.

The form of a DIMENSION statement (R526) is:

DIMENSION [::] array-name (array-spec) &

[, array-name (array-spec)] ...

Examples of specifying the DIMENSION attribute are:

• entity-oriented

INTEGER, DIMENSION (10), TARGET, SAVE :: INDICES
INTEGER, ALLOCATABLE, TARGET :: LG (:, :, :)

Actual argument Yes Yes Yes Yes

Equivalence object Yes No No No

Common object Yes No Yes No

Namelist object Yes Yes Yes No

Saved object Yes No Yes No

Data initialized object Yes No No No

I/O list item Yes Yes Yes No

Format Yes Yes Yes No

Internal file Yes Yes Yes No

Allocate object No No Yes No

Pointer object in pointer
assignment statement No No Yes No

Target object in pointer
assignment statement Yes Yes Yes No

Table 5-1 (Continued) Partial summary of allowable appearances of whole arrays declared
in each of the four ways

130 Chapter 5

• attribute-oriented

INTEGER INDICES, LG (:, :, :)
DIMENSION INDICES (10)
TARGET INDICES, LG
ALLOCATABLE LG
SAVE INDICES

• with the array specification in other statements

INTEGER INDICES, LG
TARGET INDICES (10), LG
ALLOCATABLE LG (:, :, :)
SAVE INDICES

• with the array specification in a COMMON statement

COMMON / UNIVERSAL / TIME (80), SPACE (20, 20, 20, 20)

5.5 The ALLOCATABLE Attribute

The ALLOCATABLE attribute signifies a variable whose space is allocated by execut-
able statements, in particular ALLOCATE or assignment statements. The details of al-
location and deallocation of allocatable variables are discussed in 6.7.

In some cases, either an automatic or allocatable variable could be used; the follow-
ing differences between automatic and allocatable variables are relevant to making the
choice. The syntax for using an automatic variable is simpler in that it involves only the
declaration, while an allocatable variable requires the declaration plus a separate exe-
cutable statement to do the allocation. The benefit of the allocatable alternative is in-
creased flexibility. The allocation of an allocatable variable is not restricted to being at
the beginning of the procedure; it may thus use values that are computed during exe-
cution of the procedure. It may even be allocated and deallocated multiple times dur-
ing execution of the procedure, or the allocation from one execution of the procedure
may be saved for subsequent executions. Also, ALLOCATE statements allow for user-
specified error handling for problems such as insufficient resources to successfully al-
locate the requested space.

In previous standards the ALLOCATABLE attribute was restricted to arrays. It is
now also allowed for scalars. Polymorphism and dynamic length type parameters (par-
ticularly for character type) are two examples of situations where allocatable scalar
variables can have dynamic attributes. It is also allowed for a scalar with no dynamic
attributes to be allocatable; although less common, this can conceivably be useful in
managing memory use if the scalar is of a derived type with large array components.

The ALLOCATABLE attribute can be specified in a type declaration statement or in
an ALLOCATABLE statement. The form of an ALLOCATABLE statement (R520) is:

ALLOCATABLE [::] object-name [(deferred-shape-spec-list)] &

 [, object-name [(deferred-shape-spec-list)]] ...

Declarations 131

An allocatable array must be deferred shape. Note that there is no similar restric-
tion on length type parameters; a declaration can specify a fixed length for an allocat-
able scalar string, but cannot specify a fixed size for an allocatable array of characters.

Examples of specifying the ALLOCATABLE attribute are:

• entity-oriented

REAL, ALLOCATABLE :: A (:, :)
LOGICAL, ALLOCATABLE, DIMENSION (:) :: MASK1
CHARACTER(LEN=:), ALLOCATABLE :: STRING, STRINGS(:)

• attribute-oriented

REAL A (:, :)
LOGICAL MASK1
DIMENSION MASK1 (:)
ALLOCATABLE A, MASK1

5.6 Pointer Properties

An entity with the POINTER attribute is referred to as a pointer. A pointer is either a
data pointer or a procedure pointer. A data pointer may be either a scalar or an array.

A pointer can be thought of as a dynamic alias. It does not stand on its own, but is
an additional name for some other data object or procedure. That other data object or
procedure is called the target of the pointer. At different times, a pointer may point to
different targets or possibly to no target.

The standardʹs technical terminology refers to a pointer as being associated with a
target; this means the same thing as the phrase “pointing to a target”, which is widely
used in less formal contexts. When a pointer has no target, the pointer is disassociated.

It is also possible for the association status of a pointer to be undefined, which is
quite different from being disassociated. When a pointer is disassociated, it is ʺknownʺ
to have no target. When the association status is undefined, it is not “known,” possibly
even to the compiler. There is no way to inquire whether a pointerʹs association status
is undefined or not; it is not a testable state. It is illegal to use the ASSOCIATED intrin-
sic on a pointer with undefined association status; doing so might cause the program
to abort or return a misleading value. The ASSOCIATED intrinsic can distinguish asso-
ciated from disassociated, but cannot be used to detect undefined association status.
Undefined status is the standardʹs way of describing situations where it is the pro-
grammerʹs responsibility to avoid using the pointer.

When a pointer is associated with a target, you can use the pointer like another
name for the target. There is no special syntax needed to indicate that you are referring
to the target instead of the pointer; the notion of a dynamic alias may be a more helpful
mental model than direct analogy to pointers in some other languages. In many ways,
a pointer is like a dummy argument. When a pointer is not associated with a target,
you are not allowed to reference or define the pointer.

A pointer can be initialized (5.7.2) to be disassociated; otherwise, its initial associa-
tion status is undefined.

132 Chapter 5

A pointer can become associated with an existing target in several different ways,
including pointer assignment statements, intrinsic assignment statements for derived
types, argument association, and the MOVE_ALLOC intrinsic procedure. All of these
ways share the general nature of pointing at existing data or procedures. Alternatively,
a data pointer can be associated with a newly allocated target using the ALLOCATE
statement.

In all cases, it is important to understand that a pointer and its target are distinct
entities; their association is temporary. A pointer does not uniquely “own” its target.
There may be multiple pointers associated with the same target. If any one of those as-
sociations is severed, that does not cause the target to stop existing; the other pointers
would still be associated with the target. This is often a source of confusion when the
ALLOCATE statement is used to allocate a new target. In that case, the newly allocated
target does not have its own name, but it still has its own existence. The effect of the
ALLOCATE statement is to create an anonymous target and then to associate the
pointer with that target. Even though the pointer is specified in the ALLOCATE state-
ment that creates such an anonymous target, the association between that pointer and
that target has no special standing. Other pointers may subsequently become associat-
ed with that target; that pointer may subsequently become associated with other tar-
gets.

Another way of thinking about a pointer is as a descriptor with space to contain in-
formation about the type, type parameters, rank, extents, and location of a target. Thus,
a pointer to a scalar object of type real would be quite different from a pointer to an ar-
ray of user-defined type. In fact, each of these pointers is considered to occupy a differ-
ent amount of storage. When an object with the POINTER attribute is declared to be in
a common block, it is likely to be the descriptor that occupies the storage. This is why
every declaration of a common block that contains a pointer must specify the same se-
quence of storage units.

5.6.1 The POINTER Attribute

The POINTER attribute can be specified in a type declaration statement or in a POINT-
ER statement. The POINTER attribute for a procedure pointer can alternatively be
specified in a procedure declaration statement (5.11).

The form of a POINTER statement (R540) is:

POINTER [::] pointer-declaration-list

where a pointer declaration (R541) is one of

object-name [(deferred-shape-spec-list)]
procedure-pointer-name

Rules and restrictions:

1. A pointer array must be deferred shape.

2. A procedure pointer must have the EXTERNAL attribute explicitly declared.

Declarations 133

3. A pointer must not be referenced or defined unless it is associated with a target
that may be referenced or defined.

Examples of specifying the POINTER attribute are:

• entity-oriented

TYPE (NODE), POINTER :: CURRENT
REAL, POINTER :: X (:, :), Y (:)
PROCEDURE (), POINTER :: HANDLER

• attribute-oriented

TYPE (NODE) CURRENT
REAL X (:, :), Y (:)
PROCEDURE () :: HANDLER
POINTER CURRENT, X, Y, HANDLER

5.6.2 The TARGET Attribute

An object with the TARGET attribute may become the target of a pointer during execu-
tion of a program. The main purpose of the TARGET attribute is to provide aid to a
compiler in the production of efficient code. If an object does not have the TARGET at-
tribute, no part of it can be accessed via a pointer. If an object has the TARGET at-
tribute, then so do all of its subobjects.

The TARGET attribute can be specified in a type declaration statement or in a TAR-
GET statement.

The form of the TARGET statement (R546) is:

TARGET [::] object-name [(array-spec)] &

[, object-name [(array-spec)]] ...

Examples of specifying the TARGET attribute are:

• entity-oriented

TYPE (NODE), TARGET :: HEAD_OF_LIST
REAL, TARGET, DIMENSION (100, 100) :: V, W (100)

• attribute-oriented

TYPE (NODE) HEAD_OF_LIST
REAL V, W (100)
DIMENSION V (100, 100)
TARGET HEAD_OF_LIST, V, W

5.7 Value Definition Properties

Several properties relate to the definition of data values. These include specification of
initial values and of the circumstances in which variable values can change.

134 Chapter 5

Named constant definition is specified in a type declaration statement or a PA-
RAMETER statement. It applies to the particular entities specified and can be used
with any type. Named constants are defined only once and cannot be redefined.

Default initialization is covered in 4.4.9. It applies only to derived types and is
specified in the derived-type definition. It applies to all objects of the type; it occurs
whenever such an object comes into existence.

Explicit initialization is specified in a type declaration statement or a DATA state-
ment. It applies to the particular entities specified and can be used with any type. Ex-
plicit initialization occurs exactly once for each explicitly initialized entity.

The SAVE attribute specifies that a variableʹs value will be saved between invoca-
tions of a procedure. The ASYNCHRONOUS and VOLATILE attributes specify that a
variableʹs value might be referenced or redefined outside of the normal flow of pro-
gram execution.

5.7.1 The PARAMETER Attribute

The PARAMETER attribute indicates a named constant. A named constant is defined
exactly once; it cannot be redefined. The value of a named constant is known at com-
pile time, which allows it to be used in several contexts where a variable is not al-
lowed. A named constant may be of any type.

A named constant is sometimes informally referred to as a parameter, after the
name of the attribute. However, the English word “parameter” has meanings that
could apply broadly to many things in a Fortran program. Technical uses of the term in
other programming languages often refer to something different, such as what are
called procedure arguments in Fortran. Therefore, it is important to clarify exactly
what is meant when someone uses the term informally in reference to Fortran.

The PARAMETER attribute can be specified in a type declaration statement or in a
PARAMETER statement. The form of a PARAMETER statement (R538) is:

PARAMETER (named-constant=initialization-expression &
 [, named-constant=initialization-expression] ...)

Rules and restrictions:

1. The PARAMETER attribute must not be specified for a dummy argument, func-
tion, or objects in a common block.

2. A named constant must have a corresponding initialization expression, specified
either in a type declaration statement or a PARAMETER statement.

3. The value of the initialization expression is converted, using the rules of intrinsic
assignment, to the type, type parameters, and shape of the named constant. The
value must be compatible with such a conversion.

4. A named constant defined by a PARAMETER statement may appear in a subse-
quent type declaration statement only if that declaration confirms the implicit type.

5. A named array constant must have its array properties established previously or in
the same statement as its initialization.

Declarations 135

6. A named constant must not be referenced prior to its definition.

Examples of named constant declarations:

• entity-oriented

INTEGER,PARAMETER::STATES=50
INTEGER,PARAMETER::M=MOD(28,3),&
 NUMBER_OF_SENATORS=2*STATES
character(1), parameter :: digits(0:9) = &
 ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

• attribute-oriented

INTEGER STATES, M, NUMBER_OF_SENATORS
PARAMETER (STATES=50)
PARAMETER (M=MOD(28,3), NUMBER_OF_SENATORS=2*STATES)
character*1 :: digits
dimension digits(0:9)
parameter (digits=['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'])

5.7.2 Explicit Initialization

Explicit initialization specifies that a nonpointer variable has an initial value or that a
pointer is initially disassociated. The initialization is done exactly once. In most imple-
mentations, the initialization happens when the program is loaded; this is probably the
simplest way to think of it. An alternative implementation is to perform the initializa-
tion on first entry to a scoping unit where the variable appears. If it is necessary to
reinitialize a variable on every entry, this can be accomplished with assignment state-
ments at the beginning of the executable code for the procedure.

Explicit initialization can be specified in a type declaration statement by including
initialization in an entity declaration. Initialization has one of the forms:

= initialization-expression
=> null-initialization

where null initialization is a reference to the intrinsic function NULL with no argu-
ments. In almost all cases, null initialization will have the form NULL(), but it is possi-
ble for the intrinsic to be referenced by a different name via a USE statement with
renaming.

Explicit initialization of a variable in a type declaration statement overrides any de-
fault initialization that would otherwise apply to the variable based on its type.

The same form for initialization is used for explicit initialization in a type declara-
tion statement, parameter definition in a type declaration statement, and default initial-
ization in a component definition statement in a derived-type definition. The following
rules and restrictions apply to all these uses:

1. The form with an initialization expression is allowed only for nonpointers.

2. The form with null initialization is allowed only for pointers.

136 Chapter 5

3. The value of the initialization expression is converted, using the rules of intrinsic
assignment, to the type, type parameters, and shape of the entity being initialized.
The value must be compatible with such a conversion.

The PARAMETER attribute may be used with initialization, but in this case the object
is a named constant instead of an explicitly initialized variable; named constants are
covered separately.

Explicit initialization also can be specified in a DATA statement. The form of a
DATA statement is complicated enough, and the issues involved are different enough,
that it is covered in a separate section.

The following rules apply to explicit initialization, whether specified in a type dec-
laration statement or a DATA statement.

1. An object, or the same part of an object, must not be explicitly initialized more than
once in a program.

2. None of the following may be explicitly initialized:

a. a dummy argument

b. an object made accessible by use or host association

c. a function result

d. an automatic object

e. an allocatable object

f. an object in a named common block, unless the initialization is in a block data
program unit

g. an object in a blank common block

3. If a variable is explicitly initialized, in whole or in part, that variable implicitly has
the SAVE attribute unless it is in common. The implicit SAVE attribute may be con-
firmed by explicit declaration.

The following are examples of explicit initialization in type definition statements:

CHARACTER(LEN=10)::NAME="John Doe"
INTEGER,DIMENSION(0:9)::METERS=0
TYPE (LINK), POINTER :: START => NULL()
TYPE(PERSON)::ME=PERSON(21,"John Smith"),&
YOU=PERSON(35,"Fred Brown")

REAL::SKEW(100,100)=RESHAPE([((1.0,K=1,J-1),&
(0.0,K=J,100),J=1,100)],[100,100])

In these examples, the character variable NAME is initialized with the value JOHN
DOE with padding on the right because the length of the constant is less than the
length of the variable. All ten elements of the integer array METERS are initialized to 0.
The pointer START is initially nullified. ME and YOU are structures declared using the

Declarations 137

user-defined type PERSON defined in 4.5. The two-dimensional array SKEW is initial-
ized so that the lower triangle is 0 and the strict upper triangle is 1.

5.7.3 The DATA Statement

The DATA statement is the attribute-oriented statement for specifying explicit initial-
ization. Unlike most of the attribute-oriented specification statements, the DATA state-
ment provides some extra functionality that is not available in the entity-oriented form
of declaration. In particular, the DATA statement allows explicit initialization of parts
of an object; explicit initialization in a type declaration statement is always for the en-
tire named object. Also, the repeat factor in the DATA statement allows some initializa-
tions to be written in substantially more compact form than that needed for the same
initialization in a type declaration statement.

The full description of the DATA statement form requires several special-case
rules, making it fairly complicated. The repeat factor is the root of most of the special-
case issues in that, for example, 2*3 gets interpreted as 2 repetitions of the value 3 in-
stead of a single expression with the value 6. The form of a DATA statement (R524) is:

DATA data-statement-object-list / data-value-list / &

[[,] data-statement-object-list / data-value-list /] ...

where a data statement object (R526) is one of:

variable
data-implied-do

and a data value (R530) is:

[repeat-factor *] data-constant

where a repeat factor (R531) is a scalar integer constant or a scalar integer constant su-
bobject, and a data constant (R532) is one of:

scalar-constant
scalar-constant-subobject
signed-integer-literal-constant
signed-real-literal-constant
null-initialization
structure-constructor

Two aspects of the use of scalar-constant in this form are worth special comment.
First, this is one of the very few contexts where a constant is allowed to be a BOZ liter-
al constant (4.3.1.4). The general definition of constant includes that form, but its use is
prohibited in almost all contexts. Second, the separate itemization of the signed integer
and real literal constants above is needed because those forms are not included in the
syntax term constant; in most contexts, this oddity of definition is invisible because a
sign before a numeric literal constant is allowed in an expression. Expressions are not
allowed here, so the signed cases are itemized separately.

The form of a data-implied do (R527) is:

138 Chapter 5

(data-implied-do-object-list , named-scalar-integer-variable = &

scalar-integer-expression , scalar-integer-expression &
[, scalar-integer-expression])

where a data-implied-do object (R528) is one of:

array-element
scalar-structure-component
data-implied-do

Rules and restrictions:

1. A data constant of null-initialization is allowed only for pointers.

2. Data constants other than null-initialization are allowed only for nonpointers.

3. A data constant, other than a BOZ literal constant, corresponding to a nonpointer
object must be one that could be assigned to the object using an intrinsic assign-
ment statement.

4. A BOZ literal constant used as a data constant in a DATA statement must corre-
spond to an integer variable. The BOZ literal constant is treated as if it were an in-
teger constant of the kind with the largest range supported by the processor.

5. An nonpointer object of derived type with default initialization must not be initial-
ized in a DATA statement. This is because of the complications relating to the pos-
sibility of partial initialization; initialization of such an object is allowed in a type
declaration statement, where partial initialization cannot happen.

6. A variable that appears in a DATA statement may appear in a subsequent type dec-
laration statement only if that declaration confirms the implicit declaration. An ar-
ray name, array section, or array element appearing in a DATA statement must
have had its array properties established previously.

7. An array element or structure component that is a data-implied-do object must be
a variable.

8. A DATA statement repeat factor must be positive or zero.

9. A structure constructor used as a data constant must be an initialization expres-
sion.

10. For a variable used as a data statement object in a DATA statement, each subscript,
section subscript, substring starting point, or substring ending point must be an
initialization expression.

11. For an array element or array structure component used as a data implied do ob-
ject, each subscript, section subscript, substring starting point, or substring ending
point must be an expression whose primaries are constants, subobjects of con-
stants, or implied-do variables; each operation must be intrinsic.

Declarations 139

12. A scalar integer expression in an implied-do must contain as operands only con-
stants, subobjects of constants, or DO variables; each operation in it must be an in-
trinsic operation.

The data statement object list is expanded to form a sequence of scalar variables.
An array or array section is equivalent to the sequence of its array elements in array el-
ement order. A data-implied-do is expanded to form a sequence of array elements, un-
der the control of the implied-do variable, as in the DO construct. A zero-sized array or
an implied-do with an iteration count of zero contributes no variables to the expanded
list, but a scalar character variable declared to have zero length does contribute a vari-
able to the list.

The data value list is expanded to form a sequence of scalar constant values. A
DATA statement repeat factor indicates the number of times the data constant after it is
to be included in the sequence. If the repeat factor is zero, the following data constant
is not included in the sequence.

Scalar variables and data constants of the expanded sequence are placed in one-to-
one correspondence. Each data constant specifies the initial value or status for the cor-
responding variable. The lengths of the two expanded sequences must be the same.
Each value is converted to the type and type parameters of the corresponding object; it
is the initial value for the object.

The following are examples of explicit initialization with DATA statements:

CHARACTER (LEN = 10) NAME
INTEGER METERS
DIMENSION METERS (0:9)
TYPE (LINK) START
POINTER START
DATA START / NULL() /
DATA NAME / "JOHN DOE" /, METERS / 10*0 /
TYPE (PERSON) ME, YOU
DATA ME / PERSON (21, "JOHN SMITH") /
DATA YOU % AGE, YOU % NAME / 35, "FRED BROWN" /

REAL SKEW (100, 100)
DATA ((SKEW (K, J), K = 1, J-1), J = 1, 100) / 4950 * 1.0 /
DATA ((SKEW (K,J), K=J,100), J=1,100) / 5050*0.0 /

The effect of these examples is identical to that of the previous examples of explicit
initialization in type definition statements. The following is an example of a nonzero-
sized array of zero-length characters:

character(len=0) :: empty_strings(3)
data empty_strings/ 3*""/

5.7.4 The SAVE Attribute

The SAVE attribute applies to local variables of a subprogram, module variables, and
common blocks. An entity with the SAVE attribute is often referred to as being saved.

140 Chapter 5

A local variable (2.4) with the SAVE attribute retains its value and its definition, as-
sociation, and allocation status after the subprogram in which it is declared completes
execution. When the subprogram is next invoked, that variable will have the same val-
ue and status. A local variable without the SAVE attribute becomes undefined when
the subprogram completes; if it is a pointer, its association status becomes undefined; if
it is allocatable, it is deallocated.

For a local variable in a recursive subprogram, the SAVE attribute has the addition-
al effect of causing all instances of the procedure to share the same variable. A local
variable without the SAVE attribute has a separate instance for each instance of the
procedure.

A module variable with the SAVE attribute likewise retains its value and status in
a situation where a module variable without the SAVE attribute does not. Modules are
not directly executed, so the situation in question is not the completion of execution of
the module. Instead, the situation is the completion of execution of all subprograms
that use the module. Note that a local variable in a module procedure is not a module
variable; the rules for local variables apply to it.

The SAVE attribute for a common block follows rules like those for a module vari-
able with two distinctions. First, having an instance of a common block accessible in a
subprogram plays the same role as using a module. Second, a common block is given
the SAVE attribute as a whole; the SAVE attribute may not be given to an individual
variable in the common block.

The SAVE attribute is most commonly implemented by allocation of static storage
such that the variables in question remain in memory throughout program execution.
However, such an implementation is not required by the standard. There have in the
past been implementations where the saved data was stored on disk and subsequently
reloaded. The difference between these implementation choices cannot be distin-
guished by a standard-conforming program.

Some implementations allocate most variables statically, with the result that they
act as though they were saved (except for variables that are allocatable or are local to a
recursive subprogram). However, code that assumes such behavior is nonstandard and
nonportable, particularly with newer compilers. For portability, the SAVE attribute
should always be specified where its behavior is needed, even if it appears to make no
difference on some implementations.

If a variable is explicitly initialized, in whole or in part, that variable implicitly has
the SAVE attribute unless it is in common. The implicit SAVE attribute may be con-
firmed by explicit declaration. This implied SAVE attribute is triggered only by explicit
initialization—not by default initialization. If a variable or common block has the BIND
attribute, it implicitly has the SAVE attribute, which may be confirmed by explicit dec-
laration.

The SAVE attribute can be specified in a type declaration statement or in a SAVE
statement. The SAVE statement is the only form for specifying the SAVE attribute for a
common block. It has the form (R524):

SAVE [[::] saved-entity-list]

Declarations 141

where a saved entity (R544) is one of:

object-name
procedure-pointer-name
/ common-block-name /

Rules and restrictions:

1. A SAVE statement without a saved entity list is treated as though it specified all
items that could be saved in the scoping unit. No other explicit SAVE statements or
attributes may appear in the scoping unit.

2. The SAVE attribute is allowed in a main program, but it has no effect.

3. Specifying a common block in a main program has the same effect as saving that
common block. Using a module in a main program has the same effect as saving
every allowable variable of the module.

4. The following data objects must not be saved:

a. function result

b. a dummy argument

c. an automatic data object

d. an object in a common block

5. If a common block is saved in one scoping unit of a program, it must be saved in
every scoping unit of the program in which it is defined (other than the main pro-
gram).

The following are examples of SAVE specifications:

• entity-oriented

CHARACTER(LEN=12), SAVE :: NAME

• attribute-oriented

CHARACTER(LEN=12) NAME
SAVE NAME

• saving objects and common blocks

SAVE A, B, /BLOCKA/, C, /BLOCKB/

5.7.5 The ASYNCHRONOUS Attribute

The ASYNCHRONOUS attribute specifies that a variable might be involved in asyn-
chronous input/output (9.4.3, 9.5.1.3). This information facilitates compiler optimiza-
tions. If a variable is involved in asynchronous input/output, its value can be changed
or referenced by an input/output process executing at the same time as the normal
flow of control. Some classic optimizations cannot be safely applied to such variables.

142 Chapter 5

The number of variables involved in asynchronous input/output is typically small. By
identifying those variables, we allow the compiler more freedom in applying optimiza-
tions to other variables.

A variable that is accessible in multiple scoping units may have the ASYNCHRO-
NOUS attribute in some scoping units, while not necessarily having it in others. This is
because the attribute is not fundamental to the variable in isolation, but is about the re-
lationship of the variable to currently executing code (the input/output). It is possible
for there to be a some scoping units that can be in execution during the asynchronous
input/output, and other scoping units that cannot be. The ASYNCHRONOUS attribute
is one of the few attributes that can vary among scoping units for the same variable.

If an object has the ASYNCHRONOUS attribute, then so do all of its subobjects.
The ASYNCHRONOUS attribute can be specified in a type declaration statement

or in an ASYNCHRONOUS statement. The form of an ASYNCHRONOUS statement
(R521) is:

ASYNCHRONOUS [[::] variable-name-list]

Rules and restrictions:

1. A variable must have the ASYNCHRONOUS attribute in a scoping unit if both of
the following conditions hold.

a. The variable appears in any executable statement or specification expression in
the scoping unit. This condition could be informally described as the variable
being used in the scoping unit, where mere declaration of the variable does not
count as usage.

b. Any statement in the scoping unit is executed while the variable is involved in
asynchronous input/output.

2. Using a variable in an asynchronous input/output statement in a scoping unit im-
plicitly confers the ASYNCHRONOUS attribute. This is a case which is evident to
the compiler without the help of explicit declaration, but such a confirming explicit
declaration is allowed.

Examples of specifying the ASYNCHRONOUS attribute are:

• entity-oriented

REAL, ASYNCHRONOUS :: BUFFER(2048)

• attribute-oriented

ASYNCHRONOUS :: INPUT_BUFFER, OUTPUT_BUFFER

5.7.6 The VOLATILE Attribute

The VOLATILE attribute specifies that a variable might be used or modified by means
not specified in the program. It is similar to the ASYNCHRONOUS attribute in that it
identifies variables that might be involved in processes not immediately evident. How-
ever, the VOLATILE attribute is not directly related to any other Fortran language fea-

Declarations 143

ture; it facilitates interaction with unspecified processes outside the scope of the
Fortran language.

If a pointer is volatile, then the possible modifications include the pointer associa-
tion status and array bounds in addition to the value of its target.

If an object has the VOLATILE attribute, then so do all of its subobjects.
The VOLATILE attribute can be specified in a type declaration statement or in a

VOLATILE statement. The form of a VOLATILE statement (R548) is:

VOLATILE [[::] variable-name-list]

Examples of specifying the VOLATILE attribute are:

• entity-oriented

REAL, VOLATILE :: SHARED_MEMORY_REGION(2048)

• attribute-oriented

VOLATILE :: SEMAPHORE

A typical application for the VOLATILE attribute is to identify a variable whose
memory is shared by a separate program or by a memory-mapped hardware device.
Establishing such shared memory areas is outside the scope of standard Fortran, but
the VOLATILE attribute provides a standard syntax for accommodating their exist-
ence.

If a variable is volatile, the processor is expected to fetch the value from memory
every time that the variable is referenced, even if a value was previously fetched and
there is no evident way for the value to have changed in the interim. A simple example
is:

subroutine wait_for_value(i)
 integer, intent(out), volatile :: i
 i = 0
 do
 if (i /= 0) return
 end do
end subroutine wait_for_value

Without the VOLATILE attribute, this subroutine would clearly never return and the
compiler would be justified in assuming as much. With the attribute, there is the possi-
bility that some independent process might cause the variable i to become nonzero.

Similarly, the processor is expected to store the value in memory every time that
the variable is defined, even if there is no evident reference to the value or if the same
value was previously stored. Independent processes might be monitoring or modifying
the same memory location.

144 Chapter 5

5.8 Module Entity Properties

Several attributes pertain specifically to entities in modules. The PUBLIC and PRIVATE
attributes control the accessibility of an identifier in a module. The PROTECTED at-
tribute controls how a module object may be used. The BIND attribute specifies in-
teroperability with C. The BIND attribute for common blocks is not specific to
modules, but it is covered here because it shares syntax with the BIND attribute for
variables, which is specific to modules.

5.8.1 PUBLIC and PRIVATE Accessibility

The PUBLIC and PRIVATE attributes are collectively referred to as accessibility at-
tributes. They control whether or not identifiers are accessible via use association. They
apply to identifiers known in the scoping unit of a module. An identifier with the PUB-
LIC attribute is available outside the module by use association. An identifier with the
PRIVATE attribute in a module cannot be accessed from that module by use associa-
tion, but can still be accessed within the module. The identifiers are most commonly
names, but can also include generic specifications, which do not have the same form as
names.

Accessibility applies only to a particular identifier rather than to the entity identi-
fied. There are several ways that an entity can be known via multiple identifiers. De-
claring an identifier of an entity to be PRIVATE does not inherently preclude access to
the same entity via some other identifier.

The accessibility attribute of an identifier can be specified in one of several ways. It
can be specified in a type declaration statement or a procedure declaration statement
(5.11). The accessibility of a derived-type name can be specified in the derived-type
statement (4.4.2). Accessibility of derived types involves several additional issues cov-
ered in 4.4.5. The PUBLIC and PRIVATE statements, collectively referred to as accessi-
bility statements, can specify the accessibility of some entities that cannot be specified
in any other way because they do not have a type or do not have a name; these are sub-
routines, generic specifiers, and namelist groups. Additionally, the accessibility state-
ments can be used to specify the default accessibility for identifiers in a module. Forms
for accessibility statements (R518) are:

PUBLIC [[::] access-id-list]
PRIVATE [[::] access-id-list]

where an access-id (R519) is one of:

use-name
generic-spec

A generic specification (R1207) is one of:

generic-name
OPERATOR (defined-operator
ASSIGNMENT (=)
dtio-generic-specification

Declarations 145

Generic specifications are explained in 12.5.4. Examples of accessibility statements
that might be used with generic specifications are:

PUBLIC HYPERBOLIC_COS, HYPERBOLIC_SIN ! generic names
PRIVATE HY_COS_RAT, HY_SIN_RAT ! specific names
PRIVATE HY_COS_INF_PREC ! specific name
PUBLIC :: OPERATOR(.MYOP.), OPERATOR(+), ASSIGNMENT(=)
PUBLIC :: read(formatted), write(formatted)

Rules and restrictions:

1. Accessibility attributes may be specified only in the specification part of a module
(the part above the CONTAINS).

2. A use name may be the name of a variable, procedure, derived type, named con-
stant, or namelist group.

3. Only one accessibility statement without an access-id list is permitted in the scop-
ing unit of a module.

4. A module may specify an accessibility attribute for an identifier that is accessed
from some other module via use association. This is an exception to the general
prohibition against respecifying attributes of identifiers accessed via use associa-
tion (11.3.8). To understand this exception, consider accessibility not so much as a
property of any entity, but more as controlling whether a particular module ex-
ports that entity. An entity might be accessible via some modules that use it, but
not via others; this does not change anything about the entity itself, which had to
have been PUBLIC in the module where it was declared in order for the situation
to arise.

If the accessibility of a particular module entity is not explicitly specified, the mod-
uleʹs default accessibility applies to that entity. The moduleʹs default accessibility is
specified by the accessibility statement without an access-id list; if there is no such
statement, the default accessibility is PUBLIC.

The following are examples of accessibility specifications:

• entity-oriented

REAL, PUBLIC :: GLOBAL_X
type, private :: local_data

logical :: flag
real, dimension (100) :: density

end type local_data

• attribute-oriented

REAL GLOBAL_X
PUBLIC GLOBAL_X

146 Chapter 5

TYPE LOCAL_DATA
LOGICAL FLAG
REAL DENSITY (100)

END TYPE LOCAL_DATA
PRIVATE LOCAL_DATA

• changing the default accessibility

MODULE M
PRIVATE
REAL R, K, TEMP (100) ! R, K, TEMP are private.
REAL, PUBLIC :: A(100), B(100) ! A, B are public.

. . .
END MODULE M

• accessibility via different names

module t
 private
 interface sqrt
 module procedure sqrt_for_my_type
 end interface sqrt
 interface assignment(=)
 module procedure assignment_for_my_type
 end interface assignment(=)
 public :: sqrt, assignment(=)
contains
 . . .
end module t

In this example, the names of the specific procedures sqrt_for_my_type and
assignment_for_my_type are private. However, the procedures can be accessed outside
of the module by the generic name sqrt or by assignment.

5.8.2 The PROTECTED Attribute

The PROTECTED attribute limits the ways in which a module variable may be modi-
fied. If a module variable has the PROTECTED attribute, that variable is not definable
outside of that module. One could think of PROTECTED as allowing read access, but
not writing. For a pointer, it is the pointer association that must not be modified.

Although the PROTECTED attribute has a surface similarity to the PRIVATE at-
tribute, there are some fundamental differences. The obvious difference is that PRO-
TECTED distinguishes between reading and modification. In some ways a more
fundamental difference is that the PRIVATE attribute applies only to an identifier,
while the PROTECTED attribute applies to the underlying entity. That is, if an entity
has the PROTECTED attribute, modification of that entity outside of the module is dis-
allowed regardless of how it is done.

A related difference is that, as with most attributes, the PROTECTED attribute for
an entity may be specified only in the module where it is declared; you cannot access
an entity from one module via use association in a second module and then give it the

Declarations 147

PROTECTED attribute in the second module. The PRIVATE attribute is an exception to
this general rule, but the PROTECTED attribute is not. This is because the PROTECT-
ED attribute is considered an attribute of the underlying entity.

The PROTECTED attribute can be specified in a type declaration statement or in a
PROTECTED statement. The form of a PROTECTED statement (R542) is:

PROTECTED [::] entity-name-list

Rules and restrictions:

1. The PROTECTED attribute may be specified only in the specification part of a
module.

2. The PROTECTED attribute is allowed only for a procedure pointer or a variable.

3. The PROTECTED attribute is not allowed for entities in a common block.

The following are examples of PROTECTED specifications:

• entity-oriented

REAL,PUBLIC,PROTECTED::GLOBAL_X

• attribute-oriented

REAL GLOBAL_X
PUBLIC GLOBAL_X
PROTECTED GLOBAL_X
PROCEDURE(), POINTER :: proc_ptr
PROTECTED :: proc_ptr

The following example illustrates the limitations established by the PROTECTED
attribute.

module m
 integer, protected :: i
 integer, pointer, protected :: ip
contains
 subroutine set_i (value)
 integer, intent(in) :: value
 i = value
 return
 end subroutine set_i
 subroutine set_arg (arg, value)
 integer, intent(out) :: arg
 integer, intent(in) :: value
 arg = value
 return
 end subroutine set_arg

148 Chapter 5

 subroutine point_ip (target)
 integer, target :: target
 ip => target
 return
 end subroutine set_arg
end module m

program main
 use m
 integer, target :: ip_target
 i = 1 !-- Invalid
 call set_i(2)
 call set_arg(i, 3) !-- Invalid
 ip => ip_target !-- Invalid
 call point_ip(ip_target)
 ip = 4
end program main

The i=1 statement is invalid because it defines i outside of the module. The call to
set_i shows a valid way to define i. The call to set_arg is invalid because the actual ar-
gument i is not definable, even though the assignment statement in set_arg is in the
module. Similarly, the ip=>ip_target statement is invalid pointer assignment. The call to
point_ip shows a valid way to achieve that effect. The ip=4 is allowed because the PRO-
TECTED attribute for a pointer restricts modification of the pointer association, not its
value.

The PROTECTED attribute has several useful applications, although they are not
illustrated by this simple example. It can be used to enforce validation and consistency
of assigned values, to protect against accidental changes, and for such things as count-
ing modifications.

5.8.3 The BIND Attribute

The BIND attribute pertains to interoperability with the C language. The BIND at-
tribute applies to variables, common blocks, types, procedures, and procedure interfac-
es. The syntax described in this section applies only to variables and common blocks.
The syntax for the BIND attribute for derived types is described in 4.4.2; the syntax for
the BIND attribute for procedures and interfaces is described in 5.11, 12.1.1, 12.2.1 and
12.4.5. Chapter 15 covers what the BIND attribute means and how to use it.

The BIND attribute for a variable is restricted to module variables. There is no such
restriction for the BIND attribute for common blocks, but the same statement can be
used to specify the BIND attribute for variables and common blocks, so we describe the
cases together.

The BIND attribute for a variable can be specified in a type declaration statement
or in a BIND statement. The BIND statement is the only form for specifying the SAVE
attribute for a common block. It has the form:

BIND (C [, NAME= scalar-character-initialization-expression]) [::] bind-entity-list

Declarations 149

where a bind entity (R523) is one of

variable-name
/ common-block-name /

1. The scalar character initialization expression in the NAME specifier of a BIND at-
tribute specification must be of default kind.

2. All leading and trailing blanks in the value of the expression in the NAME specifi-
er are ignored. After discarding them, the result must either have zero length or be
valid as an identifier for the C processor.

3. If an entity is given the BIND attribute by a type declaration statement, the entity
must be an interoperable variable. A variable named in a BIND statement must be
interoperable.

4. The BIND attribute for a variable may be specified only in the specification part of
a module.

5. If a common block has the BIND attribute, each variable in the COMMON block
must be interoperable.

6. If a common block has the bind attribute in one scoping unit, it must have the bind
attribute in every scoping unit where it is declared. The binding label (15.2) must
be the same in all the scoping units.

7. If a variable or common block has the BIND attribute, it implicitly has the SAVE at-
tribute. The implicit SAVE attribute may be confirmed by explicit declaration.

8. If a BIND attribute specification in a type declaration statement or BIND statement
has a NAME specifier, the entity declaration list or bind entity list must have exact-
ly one item. This is related to the restriction against multiple entities being associ-
ated with the same C variable with external linkage (15.2).

The following are examples of BIND specifications:

• entity-oriented

REAL, BIND(C) :: X
INTEGER, BIND(C, NAME='MixedCase') :: mono_case

• attribute-oriented

BIND(C) :: X, /COM/

5.9 Dummy Argument Properties

The INTENT, VALUE, and OPTIONAL attributes specify properties particular to dum-
my arguments.

150 Chapter 5

5.9.1 The INTENT Attribute

The INTENT attribute specifies the intended use of a dummy argument. If specified, it
can help detect errors, provide information for readers of the program, and give the
compiler information that can be used to make the code more efficient.

Some dummy arguments only provide input data for a subprogram; some are only
for output from the subprogram; others may be used for both input and output. IN-
TENT has three explicit forms: IN, OUT, and INOUT which correspond respectively to
the above three situations. A fourth case, where INTENT is not explicitly specified, is a
bit more complicated.

If the intent of an argument is IN, the argument must not be modified during the
execution of the subprogram. For a pointer dummy argument, it is the argumentʹs
pointer association that must not be modified; for a nonpointer dummy argument, it is
the argumentʹs value. These restrictions on INTENT (IN) arguments apply broadly,
having implications both at compile time and at run time. The run-time implication is
that the modification is prohibited even if it happens in some other lower-level proce-
dure; this is not in general detectable at compile time. The compile-time implication is
that an INTENT (IN) dummy argument must not appear in the subprogram in a con-
text that would cause the argument to be modified; this applies regardless of whether
or not the statement that it appears in would actually get executed for any particular
invocation. For nonpointers, the forbidden contexts are called variable definition con-
texts and are described in 16.3.1. For pointers, the forbidden contexts are:

1. A pointer object in a nullify statement.

2. The left-hand side of a pointer assignment statement.

3. An allocate object in an allocate or deallocate statement.

4. An actual argument corresponding to an INTENT (OUT) or INTENT (INOUT)
pointer dummy argument.

If the intent of an argument is OUT, the argument becomes undefined on invoca-
tion of the procedure. If the argument is a pointer, its association status becomes unde-
fined. If the argument is a nonpointer and is of a type that has default initialization, the
default initialization is applied. The actual argument associated with an INTENT
(OUT) dummy must be definable.

For an INTENT (OUT) dummy, any previous value of the actual argument is irrel-
evant. If there is any situation in which you want to leave the previous value of the ac-
tual argument unchanged or reference that value in any way, then INTENT (OUT) is
the wrong choice. Even if no executable statement in the subroutine refers to the dum-
my argument, the actual argument does not retain its previous value; the actual argu-
ment will become undefined except for components that get default initialization.
Being undefined means that any program that references the value is nonstandard. Ac-
tual implementations might realistically leave the value unchanged, change it to ran-
dom garbage, or detect an error.

 If the intent is INOUT, the argument may be used to communicate information to
the subprogram and return information. As with INTENT (OUT), the corresponding

Declarations 151

actual argument is required to be definable. The difference between INTENT (OUT)
and INTENT (INOUT) is that an INTENT (INOUT) dummy acquires its starting defini-
tion status and value from that of the actual argument; it does not become undefined
or have default initialization applied.

An unspecified intent is similar to INTENT (INOUT), with just one subtle distinc-
tion. For INTENT (INOUT), the actual argument is required to be definable. For un-
specified intent, the actual argument is required to be definable if execution of the
procedure causes definition or undefinition of the dummy. This is a run-time require-
ment that applies independently to each invocation of the procedure. There can be
some invocations that trigger the requirement and other invocations of the same proce-
dure that do not. The following illustrates a trivial case of this:

program illustrate_unspecified
 real :: x

 call maybe_set(.false., 4.567)
 call maybe_set(.true., x)
end program

subroutine maybe_set (set, x)
 logical, intent(in) :: set
 real :: x

 if (set) x = 1.23
 print *, x
end subroutine

This is valid because the first call to the subroutine does not cause definition or un-
definition of the dummy x. The second call does cause such definition, but the actual
argument for that call is definable, so it is ok. Using unspecified intent makes it diffi-
cult for the compiler to diagnose some kinds of problems; it is usually recommended to
specify intent explicitly in new code and to regard unspecified intent as primarily a
compatibility feature for old codes.

The INTENT attribute can be specified in a type declaration statement or in a IN-
TENT statement. The form of a INTENT statement (R536) is:

INTENT (intent-spec) [::] dummy-argument-name-list

where an intent specification is IN, OUT, or INOUT.

Rules and restrictions:

1. The INTENT attribute may be specified only for a dummy argument.

2. An intent must not be specified for a procedure unless it is a procedure pointer.
This is because the concepts of definition and modification do not apply to proce-
dures other than procedure pointers.

The following are examples of INTENT specifications:

152 Chapter 5

• entity-oriented

SUBROUTINE MOVE (FROM, TO)
USE PERSON_MODULE
TYPE (PERSON), INTENT (IN) :: FROM
TYPE (PERSON), INTENT (OUT) :: TO

. . .
SUBROUTINE SUB (X, Y)

INTEGER, INTENT (INOUT) :: X, Y
. . .

• attribute-oriented

SUBROUTINE MOVE (FROM, TO)
USE PERSON_MODULE
TYPE (PERSON) FROM, TO
INTENT (IN) FROM
INTENT (OUT) TO

. . .
SUBROUTINE SUB (X, Y)

INTEGER X, Y
INTENT (INOUT) X, Y

. . .

5.9.2 The VALUE Attribute

The VALUE attribute specifies a form of argument association for a dummy argument.
The dummy argument is not associated with the actual argument itself, but rather with
an anonymous temporary variable. The initial value of this temporary variable is taken
from the value of the actual argument. The dummy argumentʹs value may be modified
during execution of the procedure (unless the dummy also has the INTENT (IN) at-
tribute), but such modifications affect only the temporary variable—not the actual ar-
gument.

Although C interoperability was a major motivation for the VALUE attribute, it has
utility independent of C in situations where there is a need to modify the dummy ar-
gumentʹs value without having such modifications change the actual argumentʹs value,
or even where it would not be allowed to change the actual argumentʹs value. Without
the VALUE attribute, such situations would require that the programmer explicitly
copy the dummy argument to a temporary variable. The VALUE attribute makes such
a copy automatic and transparent.

The VALUE attribute can be specified in a type declaration statement or in a VAL-
UE statement. The form of a VALUE statement (R547) is:

VALUE [::] dummy-argument-name-list

Rules and restrictions:

1. The VALUE attribute may be specified only for a dummy data argument.

Declarations 153

2. For a variable with the VALUE attribute, any length type parameter values must ei-
ther be specified by initialization expressions or be omitted (in which case they
would take their default values).

The following are examples of VALUE specifications:

• entity-oriented

subroutine sub(x)
 real, value :: x
 . . .

• attribute-oriented

subroutine sub(x)
 real :: x
 value :: x
 . . .

5.9.3 The OPTIONAL Attribute

The OPTIONAL attribute for a dummy argument specifies that a procedure reference
may omit the corresponding actual argument. The PRESENT intrinsic function can be
used to test whether the actual argument was or was not present in a particular invoca-
tion of the procedure.

The syntax for referencing a procedure with omitted optional arguments is pre-
sented in 12.6.2.

The OPTIONAL attribute can be specified in a type declaration statement or in an
OPTIONAL statement. The form of an OPTIONAL statement (R537) is:

OPTIONAL [::] dummy-argument-name-list

Rules and restrictions:

1. The OPTIONAL attribute may be specified only for dummy arguments.

The following are examples of OPTIONAL specifications:

• entity-oriented

INTEGER, INTENT (IN), OPTIONAL :: SIZEX
LOGICAL, INTENT (IN), OPTIONAL :: FAST

• attribute-oriented

OPTIONAL SIZEX, FAST

Argument optionality is useful in several situations. An argument might be irrele-
vant to some invocations of a procedure. A procedure might have several output argu-
ments, some of which are not needed from a particular invocation. Although there is
no direct mechanism for specifying a default value for an omitted argument, the effect

154 Chapter 5

of a default value can be achieved by using a local variable in the procedure, as in the
following example.

subroutine do_something(...other arguments..., tolerance)
 real, optional, intent(in) :: tolerance
 . . .
 real :: tolerance_local
 . . .
 if (present(tolerance)) then
 tolerance_local = tolerance
 else
 tolerance_local = 0.001
 end if
 . . .

Such default values allow a procedure to accommodate common simple situations with
simple references to the procedure, while still allowing detailed specification when
needed.

The presence of an optional argument can also be used like a logical input variable
to select an option in the code. This is most natural when applied to an argument that
has data needed for one option, but irrelevant to the other as illustrated in the follow-
ing example:

subroutine minimize(tolerance)
 real, optional, intent(in) :: tolerance
 if (present(tolerance)) then
 call full_method(tolerance)
 else
 call simple_method
 end if
 . . .

If an optional argument is not present for a particular invocation of a procedure,
that argument is subject to the restrictions detailed in 12.6.2.

5.10 Procedure Properties

The EXTERNAL and INTRINSIC attributes are particular to procedures. Procedures
can have other attributes; for example, a function can have a dimension.

5.10.1 The EXTERNAL Attribute

The EXTERNAL attribute specifies that an entity is an external procedure, dummy pro-
cedure, procedure pointer, or block data subprogram.

The terminology is historical and unfortunately misleading in that entities other
than external procedures also have the EXTERNAL attribute. For example, just because
a dummy procedure has the external attribute, that does not imply that it is an external
procedure or that the corresponding actual argument has to be one; the actual argu-
ment could be an intrinsic or module procedure as well.

Declarations 155

The simplest use for declaration of the EXTERNAL attribute is to distinguish an
EXTERNAL procedure from any possible intrinsic procedure of the same name. This is
the use where the terminology for the attribute makes most sense. If you attempt to
reference a procedure without declaring the EXTERNAL attribute, but there is an in-
trinsic procedure of the same name, the reference will be to the intrinsic procedure in-
stead. This can happen even for vendor-defined intrinsic procedures—not just the
standard ones. It can also happen if new versions of the standard add new intrinsic
procedures. Thus, referencing an external procedure without declaring the attribute is
a potential portability problem.

Declaring the EXTERNAL attribute for an external procedure or dummy procedure
allows it to be used in contexts where it would not otherwise be evident that it was a
procedure instead of a data object. Declaring the EXTERNAL attribute for a procedure
pointer is always required.

Declaring the EXTERNAL attribute for a block data subprogram does not directly
affect the interpretation of a Fortran program, but can be useful as a hint to the system
that the block data subprogram should be included as part of the program. There is no
other mechanism within the language to specify this because block data subprograms
are never referenced. However, the process of building a program is outside the scope
of the standard, so a processor is not required to make use of such a hint. In building a
program that makes use of block data, it is prudent to verify that one understands how
to ensure that the particular processor includes the block data in the program.

 The EXTERNAL attribute can be declared by several means. It can be declared by
a procedure declaration statement; that option can be used in all cases except for block
data, which is not a procedure. It can be declared by an EXTERNAL attribute in a type
declaration statement; that option can be used only with functions because subroutines
and block data subprograms do not have types. The form does not define an explicit
interface (12.5.1) and so cannot be used in situations where an explicit interface is re-
quired (12.5.1.2). The EXTERNAL statement (R1210) provides an attribute-oriented
form for declaring the attribute. It can be used for subroutines and block data program
units as well as functions. It also does not provide an explicit interface. It has the form:

EXTERNAL [::] external-name-list

Rules and restrictions:

1. If a dummy argument has the EXTERNAL attribute, it is a dummy procedure (and
possibly also a procedure pointer).

2. If a pointer has the EXTERNAL attribute, it is a procedure pointer (and possibly
also a dummy procedure).

3. If a procedure that is neither a dummy argument nor a pointer has the EXTERNAL
attribute, it is an external procedure or a block data subprogram.

4. If an external procedure or dummy procedure is used as an actual argument or as
a target in a procedure pointer assignment, then it must be explicitly declared to
have the EXTERNAL attribute.

156 Chapter 5

 In some cases, explicit declaration is needed to establish the interpretation of the
code, but the requirements mandate explicit declaration even in some cases where
there is no ambiguity. For example, the main program

program one
 external :: s
 call t(s)
end

would have a different meaning without the EXTERNAL statement; s would be an im-
plicitly declared real variable instead of a procedure. But in the program

program two
 external :: s
 call s
 call t(s)
end

the first call statement makes it unambiguous that s must be a subroutine; nonetheless,
the declaration is still required.

The rules for resolving procedure references, including the effects of the EXTER-
NAL attribute, are in 12.8.

The following are examples of EXTERNAL specifications using type declaration
statements and EXTERNAL statements:

• entity-oriented

SUBROUTINE SUB (FOCUS)
INTEGER, EXTERNAL :: FOCUS
LOGICAL, EXTERNAL :: SIN

• attribute-oriented

SUBROUTINE SUB (FOCUS)
INTEGER FOCUS
LOGICAL SIN

 EXTERNAL FOCUS, SIN

FOCUS is declared to be a dummy procedure. SIN is declared to be an external proce-
dure. Both are functions. The intrinsic function SIN is no longer available by that name
in subroutine SUB.

5.10.2 The INTRINSIC Attribute

The INTRINSIC attribute specifies that a name is the name of an intrinsic function. It
may be either a standard intrinsic or a vendor-defined intrinsic. Of course, a program
that uses a vendor-defined intrinsic might not be portable to other vendorʹs compilers.

Specifying the INTRINSIC attribute is required in order to use an intrinsic proce-
dure as an actual argument. Other specifications of the attribute are largely for docu-
mentation or for confirmation that a particular intrinsic exists.

Declarations 157

The INTRINSIC attribute can be declared in a type declaration statement; that op-
tion can be used only with functions because subroutines do not have types.

The INTRINSIC statement (R1216) provides an attribute-oriented form for specify-
ing the attribute. It can be used for both subroutines and functions. Its form is:

INTRINSIC [::] intrinsic-procedure-name-list

Rules and restrictions:

1. Each intrinsic procedure name must be the name of an intrinsic procedure.

2. If an intrinsic procedure is used as an actual argument, it must be specified to have
the INTRINSIC attribute. This is allowed only for the specific intrinsic names listed
in 13.4.

3. Specifying a type for a generic intrinsic function is allowed, but has no effect. It
does not remove the generic properties of the function name. The function can still
be referenced generically with any other types for which it is defined.

4. Specifying a type for a specific intrinsic function that has a name different from the
generic name is allowed as long as it confirms the type that the specific function
has anyway; it is never required.

The rules for resolving procedure references, including the effects of the INTRIN-
SIC attribute, are in 12.8.

The following are examples of INTRINSIC specifications:

• entity-oriented

REAL, INTRINSIC :: SIN, COS

• attribute-oriented

REAL SIN, COS
INTRINSIC SIN, COS

5.11 The Procedure Declaration Statement

The procedure declaration statement is an entity-oriented form for declaring proce-
dures. It can be used for procedure pointers, dummy procedures, and external proce-
dures. It is particularly convenient for declaring multiple procedures that have the
same abstract interface because it avoids the need to replicate the interface body.

The form of a procedure declaration statement (R1211) is:

PROCEDURE ([interface-spec]) [[, procedure-attribute-spec] ... ::] &
 procedure-declaration-list

158 Chapter 5

where an interface specification is one of:

interface-name
declaration-type-spec

a procedure attribute specification (R1213) is one of:

BIND (C [, NAME = scalar-character-initialization-expression])
INTENT (intent-spec)
OPTIONAL
POINTER
PRIVATE
PUBLIC
SAVE

and a procedure declaration (R1214) has the form:

procedure-entity-name [initialization]

The interface of the declared procedures is specified by the interface specification.
There are three possibilities

1. If the interface specification is omitted, the procedures are declared to have implic-
it interfaces; the statement does not specify whether they are subroutines or func-
tions.

2. If the interface specification is a declaration type specification, the procedures are
declared to be functions with implicit interfaces and with the specified type and
type parameters.

3. If the interface specification is an interface name, the procedures are declared to
have the specified explicit interface. The interface name must either be the name of
an abstract interface or of a procedure that has an explicit interface. If it is the
name of a procedure, the abstract interface of that procedure is used.

Except for the BIND attribute, the meanings of and restrictions on the procedure
attribute specifications are the same as those for attribute specifications in a type decla-
ration statement or attribute specification statement. The meaning of the BIND at-
tribute for procedures is discussed in 15.6.1.

Rules and restrictions:

1. A procedure name used as an interface name must not be declared in a subsequent
procedure declaration statement. This restriction avoids the circularity of declaring
a procedure x to have the same interface as y, while also declaring y to have the
same interface as x.

2. An intrinsic procedure name used as an interface name must be one of the specific
names not marked with an asterisk in 13.4.

Declarations 159

3. An elemental explicit interface may be specified only for external procedures; pro-
cedure pointers and dummy procedures must not be elemental.

4. If a procedure entity has initialization or the INTENT or SAVE attribute, it must be
a pointer.

5. The scalar character initialization expression in the NAME specifier of a BIND at-
tribute specification must be of default kind.

6. All leading and trailing blanks in the value of the expression in the NAME specifi-
er are ignored. After discarding them, the result must either have zero length or be
valid as an identifier for the C processor.

7. If the BIND attribute is specified, the procedure must have an interoperable explic-
it interface.

8. If there is a BIND attribute with a NAME specifier, the procedure declaration list
must consist of a single external procedure name.

The following example illustrates procedure declaration statements.

subroutine sub(arg)
 abstract interface
 function real_func (x)
 real, intent(in) :: x
 real :: real_func
 end function real_func
 end interface

 procedure(real_func) :: arg
 procedure(arg), pointer : p, q
 procedure(real) :: ext, sqrt

The dummy procedure arg is declared to have abstract interface real_func. The
procedure pointers p and q are declared to have the same abstract interface as arg. The
external procedures ext and sqrt are declared to be implicit interface functions return-
ing reals. The intrinsic function sqrt is no longer available by that name in this scope.

5.12 Attribute Compatibility

No single entity can possess all of the attributes because some attributes are incompat-
ible with others. For example, OPTIONAL is an attribute that can be applied only to
dummy arguments, and dummy arguments must not have the SAVE attribute. Table
5-2 shows which attributes may be used together to specify an entity.

Many of the incompatibilities indicated in the table are for attributes that apply
only to limited categories of entities. For example, the INTENT, OPTIONAL, and VAL-
UE attributes apply only to dummy arguments, while the PRIVATE, PROTECTED, and
PUBLIC attributes apply only to module entities. A dummy argument cannot be a
module entity, so those two sets of attributes are incompatible.

160 Chapter 5

Table 5-2 Attribute compatibility

init alloc async bind dim extern intent intrin opt param

init x ok ok ok ok x x x ok

allocatable x ok x ok ok ok x ok x

asynchronous ok ok ok ok x ok x ok x

bind ok x ok ok ok x x x x

dimension ok ok ok ok ok ok x ok ok

external ok ok x ok ok ok x ok x

intent x ok ok x ok ok x ok x

intrinsic x x x x x x x x x

optional x ok ok x ok ok ok x x

parameter ok x x x ok x x x x

pointer ok x ok x ok ok ok x ok x

private ok ok ok ok ok ok x ok x ok

protected ok ok ok ok ok ok x x x x

public ok ok ok ok ok ok x ok x ok

save ok ok ok ok ok ok x x x x

target ok ok ok ok ok x ok x ok x

value x x ok x ok x ok x ok x

volatile ok ok ok ok ok ok ok x ok x

ptr priv prot public save target value volat

init ok ok ok ok ok ok x ok

allocatable x ok ok ok ok ok x ok

asynchronous ok ok ok ok ok ok ok ok

bind x ok ok ok ok ok x ok

dimension ok ok ok ok ok ok ok ok

external ok ok ok ok ok x x ok

intent ok x x x x ok ok ok

intrinsic x ok x ok x x x x

optional ok x x x x ok ok ok

parameter x ok x ok x x x x

Declarations 161

The table shows attributes as incompatible only if there is no circumstance where
they can be used together. In some cases where attributes are shown as compatible,
there are limitations on the compatibility. This is particularly so for the EXTERNAL
and INTENT attributes because those two attributes have multiple possible meanings.

The EXTERNAL attribute can apply to an external procedure, a dummy procedure,
a procedure pointer, or block data. The initialization, PROTECTED, SAVE, and VOLA-
TILE attributes are compatible with a procedure pointer, but not with the other possi-
ble meanings of the EXTERNAL attribute. An additional subtlety of the EXTERNAL
attribute relates to the fact that there are several ways to specify it; two of those ways
are with an interface body or a procedure declaration statement, neither of which use
the EXTERNAL keyword. The ALLOCATABLE and DIMENSION attributes are com-
patible with the EXTERNAL attribute, but not with the EXTERNAL keyword because
they require explicit interfaces.

The INTENT attribute has the forms INTENT (IN), INTENT (OUT), and INTENT
(INOUT). The VALUE attribute is compatible with INTENT (IN), but not with the oth-
er two forms. Conversely, the VOLATILE attribute is compatible with INTENT (OUT)
and INTENT (INOUT), but not with INTENT (IN).

5.13 The NAMELIST Statement

A NAMELIST statement establishes the name for a collection of objects that can then
be referenced by the group name in input/output statements (9.4.2). The form of the
NAMELIST statement (R552) is:

NAMELIST / namelist-group-name / variable-name-list &

[[,] / namelist-group-name / variable-name-list] ...

Rules and restrictions:

1. A variable in the variable name list must not be an assumed-size array.

pointer ok ok ok ok x x ok

private ok ok x ok ok x ok

protected ok ok ok ok ok x ok

public ok x ok ok ok x ok

save ok ok ok ok ok x ok

target x ok ok ok ok ok ok

value x x x x x ok x

volatile ok ok ok ok ok ok x

Table 5-2 Attribute compatibility

init alloc async bind dim extern intent intrin opt param

162 Chapter 5

2. If a namelist group name has the PUBLIC attribute, no item in the namelist group
object list may have the PRIVATE attribute.

3. The order in which the variables are specified in the NAMELIST statement deter-
mines the order in which the values appear on output. Multiple specifications of
the same variable are allowed, in which case its value will appear multiple times.

4. A namelist group name may occur in more than one NAMELIST statement in a
scoping unit. The variable list following each successive appearance of the same
namelist group name in a scoping unit is treated as a continuation of the list for
that namelist group name.

5. A variable may be a member of more than one namelist group.

6. A variable that is not accessed by use or host association must have its type, type
parameters, and shape specified previously in the same scoping unit, or must be
determined by implicit typing rules. If a variable is typed by the implicit typing
rules, its appearance in any subsequent type declaration statement must confirm
this implicit type and type parameters.

Examples of NAMELIST statements are:

NAMELIST / N_LIST / A, B, C
NAMELIST / S_LIST / A, V, W, X, Y, Z

5.14 Storage Association

In general, the physical storage and storage order for data objects are not specified.
However, the COMMON, EQUIVALENCE, and SEQUENCE statements and the BIND
attribute provide sufficient control over the order and layout of storage units to permit
data to share storage units.

Prior to Fortran 90, storage association was a fundamental feature for sharing data
and managing storage. Almost all large programs, as well as many small ones, made
extensive use of storage association.

In modern Fortran, modules and dynamic allocation provide tools for sharing data
and managing storage. These tools are often more effective and have fewer subtleties
and complications than storage association. However there remain situations where
storage association is still a useful concept.

The concept of storage association involves storage units and storage sequence.
These concepts are used to explain how the COMMON and EQUIVALENCE mecha-
nisms work. This description does not imply that any particular memory allocation
scheme is required by a Fortran system, but the system must function as though stor-
age were actually managed according to these descriptions.

Storage association is based on sequences of storage units. These concepts are dis-
cussed in 16.2.3.

Declarations 163

5.14.1 The EQUIVALENCE Statement

To indicate that two or more variables are to share storage, they may be placed in an
equivalence set in an EQUIVALENCE statement. If the objects in an equivalence set
have different types or type parameters, no conversion or mathematical relationship is
implied. If a scalar and an array are equivalenced, the scalar does not have array prop-
erties and the array does not have the properties of a scalar. The form of the EQUIVA-
LENCE statement (R554) is:

EQUIVALENCE equivalence-set-list

where an equivalence set (R555) is:

(equivalence-object , equivalence-object-list)

and an equivalence object (R556) is one of:

variable-name
array-element
substring

Rules and restrictions:

1. An equivalence object must not be a designator with a base object (6.2) that is:

a dummy argument
a pointer
an allocatable variable
a nonsequence structure
a structure with an allocatable ultimate component
a structure with a pointer at any level
an automatic object
a function name, result name, or entry name
a variable with the BIND attribute
a variable in a common block with the BIND attribute
a named constant
accessed by use association

2. An equivalence object must not be a designator with more than one part reference.

3. Any subscript or substring range must be an integer initialization expression.

4. If an equivalence object is of type default integer, default real, double precision re-
al, default complex, default logical, or numeric sequence type, all of the objects in
the set must be of one of these types.

5. If an equivalence object is of default character or character sequence type, all of the
objects in the set must be of these types. The lengths do not need to be the same.

164 Chapter 5

6. If an equivalence object is of sequence type other than numeric or character se-
quence type, all of the objects in the set must be of the same type with the same
type parameter values.

7. If an equivalence object is of intrinsic type other than default integer, default real,
double precision real, default complex, default logical, or default character, all of
the objects in the set must be of the same type with the same kind type parameter
value.

8. If an equivalence object has the PROTECTED attribute, all of the objects in the set
must have the PROTECTED attribute.

9. An EQUIVALENCE statement must not specify that the same storage unit is to oc-
cur more than once in a storage sequence or that consecutive storage units are to be
nonconsecutive. For example, the following is illegal because it would indicate that
storage for X(2) and X(3) is shared.

EQUIVALENCE (A, X (2)), (A, X (3))

10. An equivalence object must not have the TARGET attribute.

11. A substring must not be zero length.

An EQUIVALENCE statement specifies that the storage sequences of the data ob-
jects in an equivalence set have storage sequences (16.2.3.1) with the same initial point.
This causes storage association of the objects in the set and may cause storage associa-
tion of other data objects.

Note that the effect of equivalencing a zero-sized array with two nonzero-sized ob-
jects is to equivalence the two nonzero-sized objects. For example,

INTEGER A(5), B(0), X
EQUIVALENCE (B, A(2)), (B, X)

causes X and A(2) to share the same storage unit.
The restriction in item 1 against nonsequence structures seems anomalous in that it

disallows structures with the BIND attribute. As discussed in 4.4.10, sequence and
BIND types share many of the same properties. Most contexts that allow sequence
types also allow BIND types. This is one of the rare exceptions. This exception is par-
ticularly anomalous because BIND types are allowed in COMMON. COMMON and
EQUIVALENCE are closely related in that both establish sequence association. It is
possible to use COMMON in a roundabout way to get the effect of equivalencing
BIND types.

As an example of equivalence:

CHARACTER (LEN = 4) :: A, B
CHARACTER (LEN = 3) :: C (2)
EQUIVALENCE (A, C (1)), (B, C (2))

Declarations 165

causes the alignment illustrated below:

As a result, the fourth character of A, the first character of B, and the first character of
C(2) all share the same character storage unit.

REAL, DIMENSION (6) :: X, Y
EQUIVALENCE (X (5), Y(3))

causes the alignment illustrated below:

The statements

character :: string*8
character :: array(8)
equivalence (string,array)

illustrate equivalencing a character string and a character array.
For rules on the interaction of equivalence and default initialization, see 16.2.3.2.

5.14.2 The COMMON Statement

The COMMON statement establishes blocks of storage called common blocks and
specifies objects that are contained in the blocks. Two or more program units may
share this space and thus share the values of variables stored in the space. Thus, the
COMMON statement provides a global data facility based on storage association. A
common block may be named, in which case it is called a named common block, or
may be unnamed, in which case it is called blank common.

A common block may contain a mixture of storage units and may contain unspeci-
fied storage units; however, if a common block contains a mixture of storage units, ev-
ery declaration of the common block in the program must contain the same sequence
of storage units. The form of the COMMON statement (R557) is:

COMMON [/ [common-block-name] /] common-block-object-list &
[[,] / [common-block-name] / common-block-object-list] ...

A(1:1) A(2:2) A(3:3) A(4:4)

B(2:2) B(3:3) B(4:4)

C(1)(1:1) C(1)(2:2) C(1)(3:3) C(2)(1:1) C(2)(2:2) C(2)(3:3)

B(1:1)

X(1) X(2) X(3) X(4) X(5) X(6)

Y(1) Y(2) Y(3) Y(4) Y(5) Y(6)

166 Chapter 5

where a common block object (R558) is one of:

variable-name [(explicit-shape-spec-list)]
procedure-pointer-name

Rules and restrictions:

1. A common block object must not be:

a dummy argument
an allocatable variable
a structure with an allocatable ultimate component
an automatic object
a function name, result name, or entry name
a variable with the BIND attribute
accessed by use association

2. If a common block object is of derived type, the type must either be a sequence
type or a type with the BIND attribute. In either case, the type must have no de-
fault initialization.

3. The object list following a common block name declares objects in the common
block of that name. The object list following two slashes with no common block
name between them or an object list with no preceding slashes declares objects in
blank common.

4. A common block name or an indication of blank common may appear more than
once in one or more COMMON statements in the same scoping unit. The object list
following each successive block name or blank common indication is treated as a
continuation of the previous object list.

5. An object may appear in only one common block within a scoping unit.

6. The DIMENSION attribute for an array can be declared by an explicit-shape speci-
fication list in a COMMON statement. Alternatively, the DIMENSION attribute for
a variable in common may be specified by other statements as described in 5.4.2.
Pointer arrays are allowed in common, but because they must have a deferred
shape, their DIMENSION attribute must be specified by other statements. (The rea-
son for this restriction is not clear; it might be accidental.) Because automatic ob-
jects are not allowed in common, each bound in the explicit-shape specification list
must be an initialization expression.

7. A nonpointer object of type default integer, default real, double precision real, de-
fault complex, default logical, or numeric sequence type must become associated
only with nonpointer objects of these types.

8. A nonpointer object of type default character or character sequence must become
associated only with nonpointer objects of these types.

Declarations 167

9. A nonpointer object of a type and kind not listed in the previous two rules must
become associated only with nonpointer objects of the same type and type param-
eter values.

10. A pointer must become storage associated only with pointers of the same type,
type parameters, and rank.

11. An object with the TARGET attribute must become storage associated only with
objects that have the TARGET attribute and the same type and type parameters.

For each common block, a common block storage sequence is formed. It consists of
the sequence of storage units of all the variables listed for the common block in the or-
der of their appearance in the common block list. The storage sequence may be extend-
ed on the end to include the storage units of any variable equivalenced to a variable in
the common block. Similar extension at the beginning is not allowed. Data objects that
are storage associated with a variable in a common block are considered to be in that
common block.

The following examples illustrate the distinction between extension at the end and the
beginning.

COMMON A(5)
REAL B(5)
EQUIVALENCE (A(2), B(1))

is legal and results in the following alignment::

On the other hand, the following is not legal:

EQUIVALENCE (A(1), B(2))

because it would place B(1) ahead of A(1) as in the following alignment:

and a common block must not be extended from the beginning of the block.
Equivalence association must not cause two different common blocks to become as-

sociated.

A(1) A(2) A(3) A(4) A(5)

B(1) B(2) B(3) B(4) B(5)

A(1) A(2) A(3) A(4) A(5)

B(1) B(2) B(3) B(4) B(5)

168 Chapter 5

The size of a common block is the size of its storage sequence including any exten-
sions of the sequence resulting from equivalence association.

Zero-sized common blocks are permitted. Frequently a program is written with ar-
ray extents and character lengths specified by named constants. When there is a need
for a different-sized data configuration, the values of the named constants can be
changed and the program recompiled. Allowing extents and lengths to be specified to
have the value zero, and thus possibly specifying zero-length common blocks, permits
the maximum generality.

Within a program, all named common blocks with the same name must have the
same size. If that size is zero, the common blocks with that name are associated with
one another. If that size is nonzero, the storage sequences of the common blocks with
that name all have the same first storage unit. Note that the storage sequence
association does not depend on the variable names.

Corresponding rules apply to blank common blocks except that they may be of dif-
ferent sizes. Thus, it is possible for a zero-sized blank common block in one scoping
unit to be associated with the first storage unit of a nonzero-sized blank common block
in another scoping unit.

A blank common block has the same properties as a named common block except
for the following:

1. Variables with explicit initialization are allowed in named common in a block data
program unit. Variables with explicit initialization are never allowed in blank com-
mon.

2. Blank common is, in effect, always saved, even though it cannot be specified in a
SAVE statement and the standard does not use that terminology. A named com-
mon block is not saved unless it is mentioned in a SAVE statement.

3. Named common blocks of the same name must be the same size in all scoping
units of a program. Blank common blocks may be of different sizes.

The following is an example of common block usage:

SUBROUTINE FIRST

INTEGER, PARAMETER :: SHORT = 2
REAL B(2)
COMPLEX C
LOGICAL FLAG
TYPE COORDINATES

SEQUENCE
REAL X, Y
LOGICAL Z_O

END TYPE COORDINATES
TYPE (COORDINATES) P
COMMON / REUSE / B, C, FLAG, P

Declarations 169

REAL MY_VALUES (100)
CHARACTER (LEN = 20) EXPLANATION
COMMON / SHARE / MY_VALUES, EXPLANATION
SAVE / SHARE /

REAL, POINTER :: W (:, :)
REAL, TARGET, DIMENSION (100, 100) :: EITHER, OR
INTEGER (SHORT) :: M (2000)
COMMON / MIXED / W, EITHER, OR, M

. . .

SUBROUTINE SECOND

INTEGER, PARAMETER :: SHORT = 2
INTEGER I(8)
COMMON / REUSE / I

REAL MY_VALUES (100)
CHARACTER (LEN = 20) EXPLANATION
COMMON / SHARE / MY_VALUES, EXPLANATION
SAVE / SHARE /

REAL, POINTER :: V (:)
REAL, TARGET, DIMENSION (10000) :: ONE, ANOTHER
INTEGER (SHORT) :: M (2000)
COMMON / MIXED / V, ONE, ANOTHER, M ! ILLEGAL

. . .

Common block REUSE has a storage sequence of 8 numeric storage units. It is be-
ing used to conserve storage. The storage referenced in subroutine FIRST is associated
with the storage referenced in subroutine SECOND as shown below:

There is no guarantee that the storage is actually retained and reused because, in
the absence of a SAVE attribute for REUSE, some processors may release the storage
when either of the subroutines completes execution.

Common block SHARE contains both numeric and character storage units and is
being used to share data between subroutines FIRST and SECOND.

The declaration of common block MIXED in subroutine SECOND is illegal because
it does not have the same sequence of storage units as the declaration of MIXED in
subroutine FIRST. The array pointer in FIRST has two dimensions; the array pointer in
SECOND has only one. Pointers must match in type, kind and rank in order to have
the same storage units.

B(1) B(2) C FLAG X Y Z_O

I(1) I(2) I(3) I(4) I(5) I(6) I(7) I(8)

6 Using Data

• A Data Object may be a variable, a constant, or a subobject of a constant. It may be
a scalar or an array. A subobject of a data object is also a data object.

• The value and properties of a Variable may change during program execution.

• A Constant has a specified value and cannot be changed. It may be a literal constant
or a named constant.

• A Scalar has a rank of zero. A scalar object that is defined has a single value from
the set of values permitted for its type.

• A Structure is an object of derived type. Although it consists of parts specified by
the components of the type definition, a defined scalar structure has a single value
made up of its component values.

• An Array is a set of scalar elements of the same type and type parameters. The rank
is the number of dimensions and may be between one and seven.

• A Designator is used to identify a data object. It may identify a whole object or a
part of an object, such as a substring, structure component, array element, or array
section.

• A Substring is a contiguous portion of a character string that has a starting point
and an ending point within the string.

• A Structure Component is part of an object of derived type.

• An Array Element is one of the scalar elements that make up an array. The element
is selected by a subscript list.

• An Array Section is a selected set of elements of an array. The elements are selected
by a section subscript list that consists of subscripts, triplet subscripts, or vector sub-
scripts. The subscript list must contain one or more triplet or vector subscripts.

• The ALLOCATE Statement may be used to create space for allocatable variables
and pointer targets.

• The NULLIFY Statement or the NULL Intrinsic Function may be used to disassoci-
ate a pointer from any target.

• The DEALLOCATE Statement releases the space allocated for an allocatable vari-
able or a pointer target and nullifies the pointer.

Chapter 5 explains how data objects and their attributes are specified. Chapter 6 goes
further and explains how these objects can be used. A designator is used to identify a
data object. The appearance of the designator where its value is required is a reference
J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_6, © Springer-Verlag London Limited 2009

172 Chapter 6

to the object. When an object is referenced, it must be defined; that is, it must have a
value. The reference makes use of the value. For example:

A = 1.0
B = A + 4.0

In the first statement, the constant value 1.0 is assigned to the variable A. It does not
matter whether A was previously defined with a value or not; it now has a value and
can be referenced in an executable statement. In the second statement, A is referenced;
its value is obtained and added to the value 4.0 to obtain a value that is then assigned
to the variable B. The appearances of A in the first statement and B in the second state-
ment are not references because their values are not required. The appearance of A in
the second statement is a reference.

A data object may be a constant or a variable. If it is a constant, either a literal or a
named constant, its value cannot change. If it is a variable, it may take on different val-
ues as program execution proceeds. Variables and constants may be scalar objects
(with a single value) or arrays (with a number of values, all of the same type).

Objects may have type parameters. The value of a type parameter of an object of in-
trinsic or user-defined type is returned by a type parameter inquiry.

Variables generally have storage space set aside for them by the compiler. If, how-
ever, the variable is a pointer or an allocatable object, the compiler does not set aside
any space for its value. The programmer must allocate space or, in the case of a pointer,
the programmer might assign existing space.

Variables are dynamic if their size, parameters, or location, may change. The
declared rank of an array variable may not change, but the extents of its dimensions may.
Automatic variables are discussed in 2.2.4; they are created on entry to a procedure
and their size and location are determined at that time. The dynamic properties of
allocatable and pointer objects may change with each allocation or pointer assignment.

Sometimes it is desirable to reallocate an array to a different size while retaining
some of its values. An intrinsic function, MOVE_ALLOC, and assignment (7.5) aid in
resizing allocatable arrays.

If a variable or constant is a portion of another object, it is called a subobject. A
subobject that may be identified by a designator is one of:

a substring
a structure component
an array element
an array section

The real and imaginary parts of a complex object are also subobjects; they may be
accessed by intrinsic functions. Each subobject has a parent and is a portion of that par-
ent. Each of the subobjects in the list above is described in this chapter; first, substrings
and structure components, and then array subobjects (array elements and array sec-
tions) along with the use of subscripts, subscript triplets, and vector subscripts. A
number of additional aspects of arrays are covered: array terminology, use of whole ar-
rays, and array element order.

Using Data 173

Finally, this chapter explains how pointers and allocatable objects can be allocated
and deallocated. It describes the ALLOCATE and DEALLOCATE statements and how
pointers can be disassociated from any target object by using the NULLIFY statement
or pointer assignment with the intrinsic function NULL (13.3.3.1).

6.1 Constants and Variables

A constant has a value that cannot change. A reference to a constant is always
permitted, but a constant cannot be redefined.

A constant (R305) has one of the forms:

literal-constant
named-constant

As explained in 4, each of the intrinsic types has a form that specifies the type, type
parameters, and value of a literal constant of the type. For user-defined types, there is
a structure constructor to specify values of the type. Array constructors are used to
form array values of any intrinsic or user-defined type.

Variables may be of any type, but there are contexts in which a variable must be of
a certain type. In most of these cases, terms such as logical-variable, character-variable,
or default-character-variable, provide precise limitations.

A subobject with a constant parent is not a variable and might not be a constant. It
is classified as a subobject of a constant.

6.2 Designators

A data object may have a designator such as A or B(I). A designator (R603) is one of
the following:

object-name
array-element
array-section
structure-component
substring

A single object of any type is a scalar. A set of scalar objects, all of the same type
and type parameters, may be arranged in a pattern involving columns, rows, planes,
and higher-dimensioned configurations to form arrays. An array has a rank between
one and seven. A scalar has rank zero. An array element is one of the elements of an
array and is a scalar. An array section is a selected subset of the elements and is itself
an array. A structure component is one of the components of an object of derived type;
it may be a scalar or an array. A substring is a contiguous portion of a character string;
it is a scalar.

The form of a designator (R612) is:

part [% part]... [(substring-range)]

174 Chapter 6

where a part (R613) has the form

part-name [(section-subscript-list)]

and a substring range (R611) is:

[starting-position] : [ending-position]

The starting and ending positions must be scalar integer expressions.
A section subscript (R619) is one of:

subscript
subscript-triplet
vector-subscript

The simplest form of a section subscript list is a subscript list.

Rules and restrictions:

1. If the designator ends with a substring range, the rightmost part name must be of
type character.

2. If a substring range appears and the rightmost part name has the dimension at-
tribute, a section subscript list must be present in the rightmost part.

3. In a part containing a section subscript list, the number of section subscripts must
equal the rank of the part name.

If an object designator contains more than one part, the base object is the data ob-
ject specified by the leftmost part.

There are rules for determining whether a particular object designator identifies a
character string, character substring, structure component, scalar, array, array element,
or array section. This is important in the case of array sections and character substrings
because they have a similar syntax; however, in general, these classifications are perhaps
of more interest to compiler writers than to users of the language, but knowing how an
object designator is classified makes it clearer which rules and restrictions apply to the
object and easier to understand some of the explanations for the formation of expres-
sions.

To determine the classification of a valid designator, two aspects must be consid-
ered: the syntax of the designator and the type and attributes of the part names, partic-
ularly the rightmost part name.

1. A designator with one part may specify a scalar or array of any type, a substring,
an array element, or an array section.

2. A designator specifies a substring if a substring range appears and no part has a rank
greater than zero.

3. A designator specifies an array element if no part other than the rightmost has a rank
greater than zero and a subscript list appears in the rightmost part.

Using Data 175

4. A designator specifies an array section if any part other than the rightmost has a
rank greater than zero or the rightmost part contains a section subscript list with at
least one subscript triplet or vector subscript.

5. A designator specifies a structure component if there is more than one part and none
of the previous situations is true. The component may be a scalar or a whole array.

For example, given the declarations:

TYPE PERSON
INTEGER AGE
CHARACTER (LEN = 40) NAME

END TYPE PERSON

TYPE(PERSON) CHIEF, FIREMEN(50)
CHARACTER (20) DISTRICT, STATIONS(10)

the following designators are classified as indicated by the comments on each line.

DISTRICT(1:6) ! substring
STATIONS ! array of character strings
STATIONS(1) ! array element (character string)
STATIONS(1:4) ! array section of character strings
STATIONS(1)(15:16) ! substring of an array element
STATIONS(:)(15:16) ! array section (of substrings)
CHIEF%AGE ! structure component (integer scalar)
FIREMEN(I) % AGE ! structure component (integer scalar)
FIREMEN%AGE ! array section (of integers)

A subobject may have a constant parent, for example:

CHARACTER(*), PARAMETER :: MY_DISTRICT = "DISTRICT A7"
CHARACTER (2) DISTRICT_NUMBER
DISTRICT_NUMBER = MY_DISTRICT (10:11)

DISTRICT_NUMBER has the value A7, a character string of length 2.

6.3 Type Parameter Inquiry

An object of either intrinsic or user-defined type may have type parameters. The intrin-
sic types have the type parameters kind and length (4.4.3); user-defined types may
have user-named parameters (4.4.3); for example, SIZE or NUM. A type parameter in-
quiry returns the value of a type parameter of a data object. It has the form

designator % type-parameter-name

Although a type parameter inquiry has a syntax similar to a structure component
reference, it does not have the same semantics. It is not a variable and thus can never
be defined in an assignment statement; it may appear only as a primary in an expres-
sion or as an actual argument. It is scalar even if the designator is an array. The

176 Chapter 6

designator need not be defined. The intrinsic functions KIND and LEN also may be
used to inquire about some type parameters.

Rules and restrictions:

1. The name of the type parameter being queried must be that of a type parameter of
the type of the specified designator.

2. A deferred type parameter of a pointer that is not associated or an allocatable ob-
ject that is not allocated must not be queried.

Given the declarations:

INTEGER, PARAMETER :: DOUBLE = KIND (0.0D0)
REAL (DOUBLE) :: X, TEMP (20)
CHARACTER (10) :: TITLE

TYPE PROPERTIES (NUM)
 INTEGER, LEN :: NUM
 REAL :: ACREAGE (NUM)
END TYPE

TYPE (PROPERTIES(:)), ALLOCATABLE :: LIST

and the executable statement:

ALLOCATE (TYPE (PROPERTIES (NUM = 1000)) :: LIST (100))

the following are examples of type parameter inquiries:

X % KIND ! Same value as KIND (X)
TITLE % LEN ! Same value as LEN (TITLE)
TEMP(10) % KIND ! Same value as KIND (TEMP)
LIST % NUM ! 1000 because LIST has been allocated with NUM = 1000

6.4 Substrings

A character string consists of zero or more characters. Even though it is made up of in-
dividual characters, a character string is a scalar. This is a significant difference be-
tween Fortran and other languages, such as C, where a “character string” is an array of
single characters. As with any data type, it is possible to declare an array of character
strings, with all elements of the same length.

A substring is a contiguous portion of a parent string that has a starting point and
an ending point within the parent string.

A parent string (R610) is one of:

scalar-variable-name
array-element
scalar-structure-component
scalar-constant

Using Data 177

Rules and restrictions:

1. The parent string of a substring must be of type character. The substring is of type
character.

2. A substring is the contiguous sequence of characters within the string beginning
with the character at the starting position and ending at the ending position. If the
starting position is omitted, the default is 1; if the ending position is omitted, the
default is the length of the character string.

3. The length of a character string or substring may be 0, but not negative. Zero-
length strings result when the starting position is greater than the ending position.
The formula for calculating the length of a string is:

MAX (ending-position – starting-position + 1, 0)

4. The first character of a parent string is at position 1 and the last character is at po-
sition n where n is the length of the string. The starting position of a substring
must be greater than or equal to 1 and the ending position must be less than or
equal to the length n, unless the length of the substring is 0. If the parent string is
of length 0, the substring must be of length 0.

In the following example,

CHARACTER (14) NAME
NAME = "John Q. Public"
NAME(1:4) = "Jane"
PRINT *, NAME (9:14)

NAME is a scalar character variable, a string of 14 characters, that is assigned the value
ʺJohn Q. Publicʺ by the first assignment statement. NAME(1:4) is a substring of four
characters that is reassigned the value ʺJaneʺ by the second assignment statement, leav-
ing the remainder of the string NAME unchanged; the string NAME then becomes
ʺJane Q. Publicʺ. The PRINT statement prints the characters in positions 9 through 14,
in this case, the surname, ʺPublicʺ.

Given the definition and declarations:

TYPE PERSON
INTEGER AGE
CHARACTER (LEN = 40) NAME

END TYPE PERSON

TYPE(PERSON) CHIEF, FIREMEN(50)
CHARACTER (20) DISTRICT, STATIONS(10)

the following are all substrings:

STATIONS (1) (1:5) ! array element parent string
CHIEF%NAME(4:9) ! structure component parent string

178 Chapter 6

DISTRICT(7:14) ! scalar variable parent string
’0123456789’(N:N+1) ! character constant parent string

The last example is a substring where the parent is a constant and the starting and end-
ing positions are variable. This substring is an expression that is neither a constant nor
a variable, but is a primary; it is called a subobject of a constant (6.1).

Whenever an array is constructed of character strings and any part of it (other than
the whole object) is selected, an array section subscript must appear before the sub-
string range specification, if any. Otherwise, the substring range specification will be
treated as an array section specification because the two have the same form. STA-
TIONS (1:5) is an array section designator that specifies the entire character strings of
the first five elements of STATIONS. The designator STATIONS (:) (1:5) is permitted. It
specifies an array with elements that are substrings. Even though all elements of the ar-
ray are selected, this designator is an array section. STATIONS (1:5) (1:5) is also permit-
ted. It specifies an array section with elements that are substrings. Array sections are
described in 6.6.4.

If a character string is declared with a deferred length parameter, it is a variable
length string. The value of the deferred length parameter is determined by successful
execution of an ALLOCATE statement (6.7.1), intrinsic assignment statement (7.5.2),
pointer assignment statement (7.5.5.1), or by argument association (12.6)

6.5 Structure Components

A structure is an object of derived type. It is an aggregate of zero or more components
of intrinsic or derived types. The types, type parameters, and attributes of the compo-
nents are specified in the type definition; they may be scalars or arrays. Each structure
usually has at least one component; however, the base type of an extensible derived
type often has no components (see 4.4.12 for extensible types). There may be arrays of
structures. In the example given above, CHIEF is a structure; FIREMEN is an array of
structures of type PERSON.

A component of a structure may be specified by placing the name of the compo-
nent after the name of the parent structure, separated by a percent sign (%). For exam-
ple, CHIEF % NAME specifies the character string component of the variable CHIEF of
type PERSON.

Rules and restrictions:

1. In a structure component designator, the leftmost part name must be the name of a
data object, and each part name except the leftmost must be the name of a compo-
nent of the derived-type definition of the type of the preceding part name.

2. The type, as well as the type parameters if any, of an object of derived type are
those of the rightmost part name.

3. If the rightmost part name is of abstract type (4.4.12.3), the data object must be
polymorphic (5.2).

Using Data 179

4. A structure may have nested array components, but a designator must not contain
more than one part with nonzero rank. (See the example at the end of this section.)

5. In a structure component designator, a part name to the right of a part with non-
zero rank must not have the ALLOCATABLE or POINTER attribute.

A structure component is a pointer or allocatable object only if the rightmost part
name has the POINTER or ALLOCATABLE attribute. It is possible to declare an array
of structures that have a pointer or allocatable array as a component, but it is not pos-
sible to treat such an object as an array. This ensures that structure component arrays
have a regular structure in memory, simplifying implementation.

The rank of a part reference consisting of just a part name is the rank of the part
name. The rank of a part reference of the form

part-name (section-subscript-list)

is the number of subscript triplets and vector subscripts in the list. The rank is less than
the rank of the part name if any of the section subscripts are subscripts other than sub-
script triplets or vector subscripts. The shape of an object of derived type is the shape
of the part with nonzero rank, if any; otherwise, the object is a scalar and has rank
zero.

Given the type definition and structure declarations:

TYPE PERSON
INTEGER AGE
CHARACTER (LEN = 40) NAME

END TYPE PERSON

TYPE(PERSON) CHIEF, FIREMEN(50)

examples of designators are:

CHIEF % AGE ! scalar component of scalar parent
FIREMEN(J) % NAME ! component of array element parent
FIREMEN(1:N) % AGE ! array section of integers
FIREMEN % NAME ! array section of character strings
FIREMEN (1:N) % NAME ! array section of character strings
FIREMEN % NAME (39:40) ! array section of character strings,
 ! each two characters long

If a derived-type definition contains a component that is of derived type, then a desig-
nator can contain more than two part references. Given the type definitions and decla-
rations:

TYPE REPAIR_BILL
REAL PARTS
REAL LABOR

END TYPE REPAIR_BILL

180 Chapter 6

TYPE VEHICLE
CHARACTER (LEN = 40) OWNER
INTEGER MILEAGE
TYPE(REPAIR_BILL) COST

END TYPE VEHICLE

TYPE (VEHICLE) BLACK_FORD, RED_FERRARI

examples of designators are:

BLACK_FORD % COST % PARTS
RED_FERRARI % COST
RED_FERRARI % OWNER

Given the following type definition and declaration, the designators X % A(1) and
X(1) % A may appear, but the designator X % A must not.

Type T
 Real, Dimension(100) :: A
End Type T

Type(T) :: X(9)

6.6 Arrays

An array is a collection of scalar elements of any intrinsic or derived type. All of the el-
ements of an array have the same type and type parameters. An object that is specified
to have the DIMENSION attribute is an array. The value returned by a function may be
an array. The appearance of an array designator has no implications for the order in
which the individual elements are processed unless array element ordering is specifi-
cally required, such as for input/output statements.

6.6.1 Array Terminology

An array consists of elements that extend in one or more dimensions to represent col-
umns, rows, planes, etc. There may be up to seven dimensions in an array declaration.
The number of dimensions in an array is called the rank of the array. The number of el-
ements in a dimension is called the extent of the array in that dimension. Limits on the
size of extents are not specified in the Fortran standard.

The shape of an array is determined from the rank and the extents; to be precise,
the shape is a vector where each element of the vector is the extent in the correspond-
ing dimension. The size of an array is the product of the extents; that is, it is the total
number of elements in the array. Note that an array of size one is not a scalar.

For example, given the declaration

REAL X (0:9, 2)

Using Data 181

the rank of X is 2; X has two dimensions. The extent of the first dimension is 10; the ex-
tent of the second dimension is 2. The shape of X is 10 by 2, that is, a vector of two val-
ues, [10 2]. The size is 20, the product of the extents.

An object is given the DIMENSION attribute in a type declaration statement or in
one of several other declaration statements. The following are some ways of declaring
that A has rank 3 and shape [10 15 3]:

DIMENSION A(10, 15, 3)
REAL, DIMENSION(10, 15, 3) :: A
REAL A(10, 15, 3)
COMMON A(10, 15, 3)
TARGET A(10, 15, 3)

Arrays have a lower and upper bound along each dimension. For arrays of nonzero
size, the lower bound is the smallest subscript value along a dimension; the upper
bound is the largest subscript value along that dimension. The default lower bound is
1 if the lower bound is omitted in the declaration. Array bounds may be positive, zero,
or negative. In the example:

REAL Z(-3:10, 12)

the first dimension of Z ranges from –3 to 10, that is, –3, –2, –1, 0, 1, 2, ..., 9, 10. The
lower bound is –3; the upper bound is 10. In the second dimension, the lower bound
is 1; the upper bound is 12. The bounds for array expressions and zero-sized arrays are
described in 7.2.4.

6.6.2 Whole Arrays

The name of an array object or array component without a section subscript list speci-
fies all the elements of the array except when the name appears in an equivalence set
(5.14.1). The name may be that of a variable or a constant. Designators for a single ele-
ment of an array or a section of an array are permitted. In general, most attributes for
the whole array also apply to an element or section of an array. An element or section of
an array never has the ALLOCATABLE or POINTER attribute. An element never has
the DIMENSION attribute, but a section does.

6.6.3 Array Elements

An array element is one of the scalar elements that make up an array. A subscript list
is used to indicate which element is selected. If A is declared to be a one-dimensional
array:

REAL, DIMENSION (10) :: A

then A(1) selects the first element, A(2) to the second, and so on. The number in the pa-
rentheses is the subscript that indicates which scalar element is selected. If B is de-
clared to be a seven-dimensional array:

REAL B (5, 5, 5, 5, 4, 7, 5)

182 Chapter 6

then B (2, 3, 5, 1, 3, 7, 2) selects one scalar element of B, by specifying a subscript in
each dimension. The set of numbers that specify the position along each dimension in
turn (in this case, 2, 3, 5, 1, 3, 7, 2) is called a subscript list.

Rules and restrictions:

1. In an array element designator, a subscript must be present for each dimension of
the array.

2. For a structure component designator to be classified as an array element designa-
tor, every part must have zero rank and the last part must have a subscript.

6.6.4 Array Sections

Sometimes only a portion of an array is needed for a calculation. It is possible to desig-
nate a selected portion of an array as an array; this portion is called an array section. A
parent array is the array from which the portion that forms the array section is select-
ed.

The designator for an array section is the array variable name followed by a section
subscript list that consists of subscripts, triplet subscripts, or vector subscripts. At least
one subscript must be a triplet or vector subscript; otherwise, the designator indicates
an array element, not an array. The following example uses a section subscript to spec-
ify an array section:

REAL A (10)
. . .

A (2:5) = 1.0

The parent array A has 10 elements. The array section consists of the elements A(2),
A(3), A(4), and A(5) of the parent array. The section A(2:5) is an array itself and the val-
ue 1.0 is assigned to all four of its elements.

A section subscript (R619) can be any of:

subscript
subscript-triplet
vector-subscript

where a subscript triplet (R620) is:

[subscript] : [subscript] [: stride]

Subscripts and strides must be scalar integer expressions and a vector subscript (R622)
must be an integer array expression of rank one. The rank of a section is the number of
subscript triplets or vector subscripts that appear in the designator.

Rules and restrictions:

1. For a designator to be classified as an array section designator, exactly one part
must have nonzero rank. Either the final or only part must have a section subscript
list and nonzero rank or another part must have nonzero rank.

Using Data 183

2. A section subscript must be present for each dimension of an array. If any section
subscript is simply a subscript, the section will have a lesser rank than its parent.

3. In an array section of an assumed-size array, the second subscript must not be
omitted from a subscript triplet in the last dimension.

6.6.4.1 Subscripts

A subscript, other than one in a subscript triplet, must be within the bounds for that di-
mension. A subscript may appear in an array section designator. Whenever this occurs,
it decreases the rank of the section by one.

6.6.4.2 Subscript Triplets

If the first subscript in a subscript triplet is omitted, the lower bound for the array in
that dimension is used. If the second subscript is omitted, the upper bound is used.
The stride is the increment between successive subscripts in the sequence and must be
nonzero. If it is omitted, it is assumed to be one. If the subscripts and stride are omitted
and only the colon (:) appears, the extent for the dimension is used. For an assumed-
size array, the second subscript in the last dimension must not be omitted.

When the stride is positive, an increasing sequence of integer values is specified
from the first subscript in increments of the stride, up to the last value that is not great-
er than the second subscript. The sequence is empty if the first subscript is greater than
the second. If any subscript sequence is empty, the array section is a zero-sized array,
because the size of the array is the product of its extents. For example, given the array
declared A(5, 4, 3) and the section A(3:5, 2, 1:2), the array section is of rank 2 with
shape [3 2] and size 6. The elements are:

A(3, 2, 1) A(3, 2, 2)
A(4, 2, 1) A(4, 2, 2)
A(5, 2, 1) A(5, 2, 2)

The stride must not be 0.
When the stride is negative, a decreasing sequence of integer values is specified

from the first subscript, in increments of the stride, down to the last value that is not
less than the second subscript. The sequence is empty if the second subscript is greater
than the first, and the array section is a zero-sized array. For example, given the array
declared B(10) and the section B(9:4:–2), the array section is of rank 1 with shape [3]
and size 3. The elements are:

B(9)
B(7)
B(5)

However, the array sections B(9:4) and B(4:9:−1) are zero-sized arrays.
A subscript in a subscript triplet is not required to be within the bounds for the di-

mension as long as all subscript values selected by the triplet are within the bounds.
For example, the section B(3:11:7) is permitted. It has rank 1 with shape [2] and size 2.
The elements are:

184 Chapter 6

B(3)
B(10)

B(99:98) is a zero-sized array.

6.6.4.3 Vector Subscripts

While subscript triplets specify values in increasing or decreasing order with a speci-
fied stride to form a regular pattern, vector subscripts specify values in arbitrary order.
The values must be within the bounds for the dimension. A vector subscript is a rank-
one array of integer values used as a section subscript to select elements from a parent
array. For example:

INTEGER K(3)
REAL A(30)

. . .
K = [8, 4, 7]
A(K) = 1.0

The last assignment statement assigns the value 1.0 to A(4), A(7), and A(8) but not nec-
essarily in that order. The section A(K) is a rank-one array with shape [3] and size 3.

If K were assigned [4 7 4] instead, the element A(4) would be accessed in two ways:
as A(K(1)) and as A(K(3)). Such an array section is called a many-one array section. A
many-one section must not appear on the left of the equal sign in an assignment state-
ment or as an input item in a READ statement. The reason is that the result will de-
pend on the order of evaluation of the subscripts, which is not specified by the
language. The results would not be predictable and the program containing such a
statement would not be portable.

Array sections with vector subscripts must not appear:

1. as internal files

2. as pointer targets

3. as actual arguments for dummy arguments that become defined

If IV is declared:

INTEGER, DIMENSION(3) :: IV=[4,5,4]

then the section B(8:9, 5:4, IV) is a zero-sized array of rank 3 and the section B(8:9, 5,
IV) is a 2 by 3 array consisting of the six elements:

B(8, 5, 4) B(8, 5, 5) B(8, 5, 4)
B(9, 5, 4) B(9, 5, 5) B(9, 5, 4)

6.6.5 Examples of Array Elements and Array Sections

The following designators are classified as indicated by the comments on each line.

Using Data 185

ARRAY_A(1,2) ! array element
ARRAY_A(1:N:2,M) ! rank-one array section
ARRAY_B(:,:,:)(2:3) ! array section whose elements
 ! are substrings of length 2
SCALAR_A % SCALAR_B ! scalar structure component
SCALAR_A % ARRAY_C ! array structure component
SCALAR_A%ARRAY_C(L) ! array element
SCALAR_A%ARRAY_C(1:L) ! array section
SCALAR_C%ARRAY_D%SCALAR_D ! array section
ARRAY_E(1:N:2)%ARRAY_F(I,J)%STRING(K)(:) ! array section

If a part of a designator other than the last part has nonzero rank or the last part
has nonzero rank and also contains a section subscript list, the designator identifies an
array section. There may be at most one part with rank greater than zero. This is a
somewhat arbitrary restriction imposed for the sake of simplicity.

In the last example above, each component of the type definition is an array and
the object ARRAY_E(1:N:2) is an array. The designator is valid; each part except the
first is scalar. The substring range is not needed because it specifies the entire string;
however, it serves as a reminder that the last component is of type character.

The following examples demonstrate the allowable combinations of scalar and ar-
ray parents with scalar and array components.

TYPE REPAIR_BILL
 REAL PARTS(20)
 REAL LABOR
END TYPE REPAIR_BILL

TYPE(REPAIR_BILL) FIRST
TYPE(REPAIR_BILL) FOR_2003(6)

Scalar parent

1. FIRST%LABOR ! structure component (scalar)
2. FIRST%PARTS(I) ! array element
3. FIRST%PARTS ! structure component (array)
4. FIRST%PARTS(I:J) ! array section
5. FOR_2003(K)%LABOR ! structure component (scalar)
6. FOR_2003(K)%PARTS(I) ! array element
7. FOR_2003(K)%PARTS ! structure component (array)
8. FOR_2003(K)%PARTS(I:J) ! array section

Array parent

9. FOR_2003%LABOR ! array section
10. FOR_2003%PARTS(I) ! array section
11. FOR_2003%PARTS ! ILLEGAL
12. FOR_2003%PARTS(I:J) ! ILLEGAL
13. FOR_2003(K:L)%LABOR ! array section
14. FOR_2003(K:L)%PARTS(I) ! array section

186 Chapter 6

15. FOR_2003(K:L)%PARTS ! ILLEGAL
16. FOR_2003(K:L)%PARTS(I:J) ! ILLEGAL

Examples 11, 12, 15, and 16 are illegal because only one component may be of rank
greater than zero. Examples 3 and 7 are compact (contiguous) array objects and are
classified as whole arrays. Examples 9, 10, 13, and 14 are noncontiguous array objects
and are classified as array sections.

6.6.6 Array Element Order

The elements of an array form a sequence whose ordering is called array element or-
der. This is the sequence that occurs when the subscripts along the first dimension vary
most rapidly, and the subscripts along the last dimension vary most slowly. Thus, for
an array declared as:

REAL A(3, 2)

the elements in array element order are: A(1, 1), A(2, 1), A(3, 1), A(1, 2), A (2, 2),
A(3, 2).

The position of an array element in this sequence is its subscript order value. Ele-
ment A(1, 1) has a subscript order value of 1. Element A(1, 2) has a subscript order val-
ue of 4. Table 6-1 shows how to compute the subscript order value for any element in
arrays of rank 1 through 7.

Table 6-1 Computation of subscript order value

Rank Subscript bounds Subscript list Subscript order value

1 :

2 : , :

3 : : :

. . . .

. . . .

. . . .
7 : :

1. = max (− + 1, 0) is the size of the ith dimension.
2. If the size of the array is nonzero, for all = 1, 2, ..., 7.

j1 k1 s1 1 s1 j1–()+

j1 k1 j2 k2 s1 s2, 1 s1 j1)–(+
s2 j2) d1×–(+

j1 k1 j2, k2 j3, k3 s1 s2 s3, , 1 s1 j1)–(+
s2 j2) d1×–(+
s3 j3) d2 d1××–(+

j1 k1 … j7, , k7 s1 … s7, , 1 s1(j1)–+
s2 j2) d1×–(+
s3 j3) d2×–(d1×+

…+
s7(j7) d6×–+ d5× … d1××

di ki ji
ji si ki≤ ≤ i

Using Data 187

This ordering determines the effects of the input and output of arrays; it is needed
for features that depend on storage association such as EQUIVALENCE; and it deter-
mines the result of certain intrinsic functions such as MAXLOC. When arrays are used
as operands in expressions, the indicated operation is performed on corresponding el-
ements, but no order is implied for these elemental operations; they may be executed
in any order or simultaneously.

The subscript order of the elements of an array section is that of the array object
that the section represents. That is, given the array A(10) and the section A(2:9:2) con-
sisting of the elements A(2), A(4), A(6), and A(8), the subscript order value of A(2) in
the array section A(2:9:2) is 1; the subscript order value of A(4) in the section is 2 and
A(8) is 4.

Given the section A(9:4:−2), consisting of the elements A(9), A(7), and A(5), the
subscript order values of A(9), A(7), and A(5) are 1, 2, and 3, respectively.

6.7 Pointers and Allocatable Variables

There are several categories of dynamic data objects. Automatic objects are discussed
in 2.2.4. In addition, there are two data attributes that can be used to specify dynamic
data objects: ALLOCATABLE and POINTER. Arrays and scalars of any type may have
the ALLOCATABLE or POINTER attribute. Chapter 5 describes how such objects are
declared. This section describes how space is created for these objects, how it may be
released, and how pointers can be disassociated from any target.

The ALLOCATE statement is not the only means by which allocation may occur. In
Fortran 2003, because of changes to assignment, the ALLOCATE statement is no longer
needed in some cases. Assignment to an allocatable variable causes allocation if the
variable is unallocated or if the expression being assigned is an array of different shape
or any of the corresponding length type parameters of the expression and the variable
differ. This provides a shortcut for the Fortran programmer. See the examples at the
ends of 6.7.1 and 6.7.1.1.

 The association status of a pointer is either defined or undefined; initially (unless
the pointer is initialized), it is undefined. An undefined pointer may be used in very
limited ways (16.2.2.1). The association status of any pointer becomes defined by nulli-
fication, allocation, or pointer assignment. If the status is defined, the pointer is either
associated with a target or disassociated from any target. A disassociated pointer has a
defined status and can be used as an argument to the ASSOCIATED intrinsic function,
but a pointer with undefined status must not.

When a pointer designator appears in an expression, the pointer must have both a
defined association status and its target must be defined with a value. Figure 6-1 shows
the various states that a pointer may assume.

At the top left, an uninitialized pointer P is declared; it has an undefined association
status. Its association status becomes defined if it is nullified (lower left) or if space is
allocated for it (upper right). Its target may be undefined (upper right) or defined when
a value is assigned to it (lower right).

Section 7.5.5.1 describes how pointers can be associated with existing space and
how dynamic objects can acquire values.

188 Chapter 6

6.7.1 ALLOCATE Statement

The ALLOCATE statement creates space for variables with the ALLOCATABLE or
POINTER attribute. If the variable is a pointer, it becomes associated with the newly
created space.

The form of the ALLOCATE statement (R623) is:

ALLOCATE ([type-specifier ::] allocation-list [, allocate-option-list])

Type specifiers are described in 4. They may specify intrinsic or derived types.
An allocation (R628) is:

allocate-object [(allocate-shape-specification-list)]

An allocate object (R629) is one of:

variable-name
structure-component

Disassociated

Undefined

Associated

25

50

100

Undefined association status
Defined association status,
 undefined target

Defined association status,
 defined target

Defined association status,
 disassociated

Figure 6-1 States of a pointer

POINTER P(:) ALLOCATE (P(3))

NULLIFY (P)

ALLOCATE (P, SOURCE = [25,50,100])

Associated

Using Data 189

and an allocate shape specification (R630) is:

[allocate-lower-bound :] allocate-upper-bound

An allocate-option (R624) is one of:

STAT = scalar-integer-variable
ERRMSG = scalar-default-character-variable
SOURCE = source-expr

Rules and restrictions:

1. The allocate lower bound and allocate upper bound must be scalar integer expres-
sions.

2. Each allocate object must be a data pointer or an allocatable variable.

3. An allocate-shape-specification-list may appear if and only if the allocate object is
an array. The number of allocate shape specifications must agree with the declared
rank of the array.

4. If an allocate object in a statement has a deferred type parameter, a type specifier
or a SOURCE option must appear in the statement.

5. If a type specifier appears, it must specify a type that is compatible with each allo-
cate object (5.2).

6. Either a type specifier or a SOURCE option must appear if any allocate object in a
statement is unlimited polymorphic or is of abstract type (4.4.12.3).

7. A type parameter value in a type specifier must be an asterisk if and only if each
allocate object is a dummy argument for which the corresponding type parameter
is assumed.

8. If a type specifier appears, the kind type parameter values of each allocate object
must be the same as the corresponding kind type parameters in the type specifier;
length type parameter values may differ.

9. If the SOURCE option appears, type-specifier must not appear, and the allocation
list must contain only one allocate object, which must be type compatible (5.2) with
source-expr.

10. The rank of source-expr must be either zero or the same as that of the single allo-
cate object. Corresponding kind type parameters must have the same values.

11. Neither the STAT variable, source-expr, nor the ERRMSG variable may be allocated
in the ALLOCATE statement in which they appear; nor may they depend on the
value, bounds, length type parameters, allocation status, or association status of
any allocate object in the same statement.

190 Chapter 6

12. An allocate object or a bound or type parameter must not depend on the value of
the STAT variable, the value of the ERRMSG variable, or on the value, bounds,
length type parameters, allocation status, or association status of any allocate ob-
ject in the same ALLOCATE statement.

If a type-specifier or a source-expr appears, it determines the dynamic type and type
parameters of the allocate object(s). If neither appears, allocation of a polymorphic ob-
ject creates an object with a dynamic type and type parameters that are the same as its
declared type.

If source-expr appears, it must be conformable with the allocate object. If the allo-
cation is successful, the value of the allocate object becomes that of source-expr.

If a STAT variable appears, it is set to zero if the allocation is successful and is set
to a processor dependent positive value if there is an error condition. Each allocate ob-
ject that was successfully allocated will have an allocation status of allocated or a
pointer association status of associated; each allocate object that was not successfully
allocated will retain its previous allocation status or pointer association status. If there
is no STAT variable, the program terminates when an error condition occurs.

An error condition occurs if:

1. there is insufficient memory for the requested allocations or some other anomaly is
detected by the processor,

2. an allocate object in an ALLOCATE statement has an allocation status of allocated,

3. the value specified for a type parameter in a type specification differs from a corre-
sponding nondeferred value specified in the declaration of any of the allocate ob-
jects, or

4. the value of a type parameter in source-expr is different from the value of a nonde-
ferred length type parameter of the allocate object.

If the ERRMSG option appears and an error condition occurs during execution of
an ALLOCATE statement, the processor will assign an explanatory message to the
errmsg character variable. Otherwise, the processor will not change the value of the
errmsg variable.

An example of an allocate statement is:

ALLOCATE (pressure (i), mat (-1 : total, 0:50), STAT = alloc_err)

When an ALLOCATE statement is executed for an array, the values of the lower
and upper bound expressions determine the shape of the array. If an entity in one of
these expressions is subsequently redefined, the shape of the allocated array is not
changed. If the lower bound is omitted, the default is 1. If the upper bound is less than
the lower bound, the extent in that dimension is 0 and the array has zero size, in which
case no memory is allocated for the array.

An allocate object may be of type character. If it has a character length of zero, no
memory is allocated.

Using Data 191

An example of an ALLOCATE statement in which the value and dynamic type are
determined by reference to another object is:

CLASS (*), ALLOCATABLE :: ANY
CLASS (*), POINTER :: PICK
 . . .
PICK => . . .
ALLOCATE (ANY, SOURCE = PICK) ! Allocate ANY with the value and
 ! dynamic type of PICK

An example of an (unnecessary) ALLOCATE statement with a type specifier is:

TYPE BOOK
 CHARACTER (LEN = :), ALLOCATABLE :: TITLE
END TYPE BOOK

TYPE (BOOK) :: BOOKLIST (100)
CHARACTER (LEN = 1000) :: HOLDER

DO I = 1, 100
 READ *, HOLDER ! Get title
 J = LEN_TRIM (HOLDER) ! Get length of title
 IF (J <= 1) EXIT
 ALLOCATE (CHARACTER (LEN = J) :: BOOKLIST(I) % TITLE)
 BOOKLIST(I) % TITLE = HOLDER(1:J)
END DO

The ALLOCATE statement can be omitted because allocation is accomplished as a
part of the assignment in the statement following the ALLOCATE statement.

6.7.1.1 Allocation of Allocatable Variables

An allocatable variable has an allocation status of allocated or unallocated at any time
during the execution of a program. Unlike pointers, there is no undefined allocation
status. At the beginning of execution of a program, an allocatable variable has a status
of unallocated. Its status changes to allocated if it appears in a successfully executed
ALLOCATE statement, if it is allocated during assignment (7.5.2), or if it is given that
status by the allocation transfer intrinsic MOVE_ALLOC (13.3.3.1). An allocatable vari-
able with this status may be referenced, defined, or deallocated. The intrinsic function
ALLOCATED (13.3.1.4) returns true for such a variable.

The status of an allocatable variable becomes unallocated if it is successfully deal-
located (6.7.3.1) or if it is given that status by the allocation transfer intrinsic. An allo-
catable variable with this status must not be referenced, defined, or supplied as an
actual argument corresponding to a nonallocatable dummy argument, except to certain
intrinsic inquiry functions. The intrinsic function ALLOCATED returns false for such a
variable.

When the allocation status of an allocatable variable changes, the allocation status
of any associated allocatable variable changes accordingly. Allocation of an allocatable

192 Chapter 6

variable establishes values for the deferred type parameters of all associated allocatable
variables.

An example of using the intrinsic function ALLOCATED to query the allocation
status of an allocatable variable is:

REAL, ALLOCATABLE :: X(:,:,:)
 . . .
IF(.NOT. ALLOCATED(X)) ALLOCATE (X(-6:2,10,3))

The array X cannot be referenced until it has been allocated and assigned a value; it can
be used as an argument to the ASSOCIATED intrinsic, as that is not a reference (2.4). X
must be declared with a deferred-shape array specification and the ALLOCATABLE at-
tribute.

An unsaved allocatable object that is a local variable of a procedure has a status of
unallocated at the beginning of each invocation of the procedure. The status may
change during execution of the procedure. An unsaved allocatable object that is a local
variable of a module has an initial status of unallocated. The status may change during
execution of the program. When an object of derived type is created by an ALLOCATE
statement without a SOURCE option, any allocatable ultimate components have an al-
location status of unallocated.

In the following example, allocation occurs when an array constructor is assigned
to the allocatable array GAMEBOARD. In the first ALLOCATE statement, the value
and dynamic type and properties of STORE are determined by reference to GAME-
BOARD. In the second ALLOCATE statement, they are determined by reference to
CELLS.

TYPE POSITION
 INTEGER :: COLOR, PIECE
 LOGICAL :: FILLED = .FALSE.
END TYPE POSITION
TYPE (POSITION), ALLOCATABLE :: GAMEBOARD (:,:)
CLASS (*), ALLOCATABLE :: TEMP_STORE (:,:)
REAL, POINTER :: CELLS (:,:)
 . . .
READ *, SIZE
GAMEBOARD = RESHAPE (&
 [(([POSITION (COLOR = I, PIECE = J), &
 I = 1, SIZE), J = 1, SIZE)] , &
 SHAPE = [SIZE, SIZE])
 . . .
ALLOCATE (TEMP_STORE, SOURCE = GAMEBOARD)
 . . .
CELLS => . . .
IF (.NOT.ALLOCATED(TEMP_STORE)) ALLOCATE (TEMP_STORE, SOURCE = CELLS)

Using Data 193

6.7.1.2 Allocation of Pointers

When an object with the POINTER attribute is allocated, space is created, and the
pointer is associated with that space, which becomes the pointer target. Such an allo-
cated pointer target implicitly has the target attribute which allows additional pointers
to point to that target or part of that target. Additional pointers may become associated
with the same target by pointer assignment (7.5.5.1). A pointer target may be a variable
with the ALLOCATABLE attribute if the variable also has the TARGET attribute.

It is not an error to allocate a pointer that is already associated with a target. In this
case, a new pointer target is created as required by the attributes of the pointer and
any array bounds, type, and type parameters specified by the ALLOCATE statement.
The previous association of the pointer is lost. If there was no other way to access the
previous target, it becomes inaccessible. This is sometimes referred to as a “memory
leak”.

The ASSOCIATED intrinsic function may be used to query the association status of
a pointer only if the association status of the pointer is defined. There is no means to
determine whether a pointer with defined association status was associated by an
ALLOCATE statement; the ALLOCATED intrinsic function cannot have a pointer
argument. The ASSOCIATED function also may be used to inquire whether a pointer is
associated with a particular target or whether two pointers are associated with the
same target.

At the beginning of execution of a function with a pointer result, the association
status of the result pointer is undefined. Before such a function returns, it must associ-
ate a target with this pointer or cause the association status of the pointer to become
disassociated.

Pointers can be used in many ways; an important usage is the creation of linked
lists. For example:

TYPE NODE
INTEGER :: VALUE
TYPE (NODE), POINTER :: NEXT => NULL()

END TYPE NODE

TYPE(NODE), POINTER :: LIST
. . .

ALLOCATE (LIST)
LIST % VALUE = 17
ALLOCATE (LIST % NEXT)

The first two executable statements create a node pointed to by LIST and put the value
17 in the VALUE component of the node. The next statement creates a second node
pointed to by the NEXT component of the first node. The NEXT component of the sec-
ond node is disassociated because of default initialization specified for the derived
type NODE. Its VALUE component is undefined.

194 Chapter 6

6.7.2 NULLIFY Statement

The NULLIFY statement causes a pointer to be disassociated from any target. Unless
initialized, pointers have an initial association status that is undefined. One way to
give a pointer a defined association status of disassociated (pointing to no target) is to
execute a NULLIFY statement for the pointer. Another way is to execute a pointer as-
signment statement to the intrinsic function NULL. The intrinsic function NULL can be
used to initialize a pointer as well.

The form of the NULLIFY statement (R633) is:

NULLIFY (pointer-object-list)

where a pointer object (R634) is one of:

variable-name
structure-component
procedure-pointer-name

Rules and restrictions:

1. Each pointer object must have the POINTER attribute.

2. A pointer object must not depend on the value, bounds, or association status of an-
other pointer object in the same NULLIFY statement.

3. When a NULLIFY statement is applied to a polymorphic pointer (5.2), its dynamic
type becomes the declared type.

6.7.3 DEALLOCATE Statement

The DEALLOCATE statement releases the space allocated for an allocatable variable or
a pointer target and nullifies the pointer. After a pointer or an allocatable variable has
been deallocated, it cannot be referenced or defined until it is allocated or assigned
again.

The form of the DEALLOCATE statement (R635) is:

DEALLOCATE (allocate-object-list [, deallocate-option-list])

where an allocate object is (R629) one of:

variable-name
structure-component

and a deallocate-option (R636) is one of:

STAT = scalar-integer-variable
ERRMSG = scalar-default-character-variable

Rules and restrictions:

1. Each allocate object must be a data pointer or an allocatable variable.

Using Data 195

2. Neither the STAT variable nor the ERRMSG variable may be deallocated in the
same DEALLOCATE statement; nor may they depend on the value, bounds, alloca-
tion status, or association status of any allocate object in the same DEALLOCATE
statement.

3. An allocate object must not depend on the value, bounds, allocation status, or asso-
ciation status of another allocate-object in the same DEALLOCATE statement; it
also must not depend on the value of the STAT variable or the ERRMSG variable in
that statement.

The STAT variable is set to zero if the deallocation is successful and is set to a pro-
cessor-dependent positive value if there is an error condition. If an error occurs, each
allocate object that was successfully deallocated will have an allocation status of unal-
located or a pointer association status of disassociated. Each allocate object that was
not successfully deallocated will retain its previous allocation status or pointer associa-
tion status. The status of the allocate objects can be individually checked with the AL-
LOCATED or ASSOCIATED intrinsic functions. If there is no STAT variable, the
program terminates when an error condition occurs. An error condition occurs if an
allocate object has a status of unallocated.

If the ERRMSG option appears and an error condition occurs during the execution of
a DEALLOCATE statement, the processor will assign an explanatory message to the
errmsg character variable; otherwise, the processor will not change the value of the
errmsg variable.

An example of a DEALLOCATE statement is:

DEALLOCATE (PRESSURE, MAT, ERRMSG = MSG, STAT = DERR)

An example of the allocation and deallocation of an allocatable array is:

REAL, ALLOCATABLE :: X(:,:)
 . . .
ALLOCATE (X(10,2), STAT=IERR)
IF (IERR > 0) CALL HANDLER
X = 0.0
 . . .
DEALLOCATE (X)
 . . .
ALLOCATE (X(-10:10,5), STAT=JERR)

X is declared to be a deferred-shape, two-dimensional, real array with the ALLOCAT-
ABLE attribute. Space is allocated for it and it is given bounds, extents, shape, and size
and then initialized to have zero values in all elements. Later X is deallocated, and still
later, it is again allocated with different bounds, extents, shape, and size, but its rank
remains as declared.

196 Chapter 6

6.7.3.1 Deallocation of Allocatable Variables

An allocatable variable may have the TARGET attribute. If such a variable is deallocat-
ed, the association status of any pointer associated with the variable will become unde-
fined. Such a variable can be deallocated only by the appearance of its name in a
DEALLOCATE statement. It must not be deallocated by the appearance of the pointer
name in a DEALLOCATE statement.

When a RETURN or END statement is executed in a procedure, an allocatable vari-
able that is a named local variable of the procedure retains its allocation and definition
status if it has the SAVE attribute or is a function result variable or a subobject thereof;
otherwise, it is deallocated.

In the example

SUBROUTINE TASK
 REAL, ALLOCATABLE :: WORK
 REAL, ALLOCATABLE, SAVE :: VALUES
 . . .
END SUBROUTINE TASK

on return from subroutine TASK, the allocation status of VALUES is preserved because
VALUES has the SAVE attribute. WORK does not have the SAVE attribute, so it will be
deallocated. On the next invocation of TASK, WORK will have an allocation status of
unallocated.

If an allocatable variable declared in a module is allocated and, on the execution of a
RETURN or END statement, no active scoping unit has access to the module, the
allocation status of the variable is processor dependent. The allocation status can be
tested and the variable can be reallocated.

When a variable of derived type is deallocated, any allocated allocatable subobject
is deallocated.

A function may have a result that is allocatable or is a structure with a subobject
that is allocatable. If such a function appears in a specification expression that is exe-
cuted, the result or any allocated subobject of the result is deallocated before execution
of the executable constructs in the scoping unit. If such a function appears in an execut-
able construct that is executed, the result or any allocated subobject of the result is
deallocated after execution of the innermost executable construct containing the func-
tion reference.

When a procedure is invoked, any allocated allocatable object that is an actual ar-
gument associated with an INTENT (OUT) allocatable dummy argument is deallocat-
ed; any allocated allocatable subobject of the actual argument is also deallocated.

Deallocation may occur when intrinsic assignment takes place (7.5.2).
If an allocatable component is a subobject of a finalizable object (4.4.11.3), that ob-

ject is finalized before the component is automatically deallocated.
The effect of automatic deallocation is the same as that of a DEALLOCATE state-

ment without a deallocate-option-list.

Using Data 197

6.7.3.2 Deallocation of Pointers

A pointer may be deallocated only if it has a defined association status. Deallocating a
pointer that is disassociated causes an error condition in the DEALLOCATE statement.
A pointer associated with an allocatable variable must not be deallocated. (Of course,
the variable itself may be deallocated which would cause the association status of any
associated pointers to become undefined.)

It is possible (by pointer assignment) to associate a pointer with a portion of an ob-
ject such as an array section, an array element, or a substring. A pointer associated
with only a portion of an object must not be deallocated. If more than one pointer is as-
sociated with an object, deallocating one of the pointers causes the association status of
the others to become undefined. There are other events that cause the association status
of a pointer to become undefined (16.2.2.1.3). When its status is undefined, a pointer
can no longer be referenced, defined, deallocated, or be an argument to the
ASSOCIATED intrinsic function. It may be allocated, nullified, or pointer assigned to a
new target.

An example of the allocation of a pointer is:

REAL, POINTER :: X (:, :)
. . .

ALLOCATE (X (10, 2), STAT = IERR)
IF (IERR .GT. 0) CALL HANDLER
X = 0.0

. . .
ALLOCATE (X(-10:10, 5), STAT = JERR)

X is declared to be a deferred-shape, two-dimensional, real array with the POINTER at-
tribute. Space is allocated for it and it is given bounds, extents, shape, and size and
then initialized to have zero values in all elements. Later X is allocated with different
bounds, extents, shape, and size. This example is quite similar to the previous example
for allocatable arrays, except that, in the case of pointers, it is not necessary that X be
deallocated before it is reallocated.

7 Expressions and Assignment

• An Expression (made up of primaries, operators, and parentheses) usually pro-
duces a value as a result of evaluation. An expression has a type, type parameters,
and shape. Primaries and results may be scalars or arrays. If a primary is a pointer,
the value of the target is used in most cases. If the result is a pointer, it might not
have a value or any other particular attribute.

• An Initialization Expression is an expression that can be evaluated at compile time.
It is used whenever a value is needed at compile time, such as for kind type param-
eters, named constants, or to initialize variables.

• A Specification Expression is a scalar expression of type integer that can be evalu-
ated on entry to a subprogram. Specification expressions may be used to specify
array bounds and character lengths.

• Assignment is a process that gives a variable a value which is the result of evaluat-
ing an expression. Assignment is provided for all types. Assignment can cause
changes in the variable’s dynamic type, length type parameters, and bounds.

• Defined Assignment is provided by a user-supplied subroutine with an assign-
ment interface.

• Pointer Assignment associates a pointer with a target, disassociates the pointer, or
makes its association status undefined. A target is either a variable, a procedure, or
a function that returns a pointer.

• Masked Array Assignment assigns values to array elements selected by a mask.
This is accomplished with a WHERE statement or construct.

• Indexed Array Assignment assigns values to array elements selected by index val-
ues and an optional mask. This is accomplished with a FORALL statement or con-
struct.

In Fortran, calculations are specified by writing expressions. Expressions look much
like algebraic formulas in mathematics, particularly if the expressions involve calcula-
tions on numerical values. In fact, the attempt to give the programmer a programming
language that reflects, as much as possible, ordinary mathematical notation is what in-
spired the name Fortran (Formula translation).

An expression represents a computation that results in a value or a pointer. This
chapter describes how expressions are formed, how they are interpreted, and how they
are evaluated. Almost anywhere a value is needed, the value can be provided by a gen-
eral expression rather than just a simple variable or constant. The result of an
expression also has a type, type parameters, and shape. Context sometimes limits the al-
lowable expressions; for example, subscripts must be scalar integer expressions.
J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_7, © Springer-Verlag London Limited 2009

200 Chapter 7

The result value is a scalar or an array. A complex value or a structure value is a
scalar, even though it may consist of more than one part (for example, a complex value
consists of two parts).

Expressions are described in terms of the following three sets of rules:

• The rules for forming expressions (syntax) (7.1)

• The rules for interpreting expressions (semantics) (7.2)

• The rules for evaluating expressions (optimization of the computation) (7.3)

The syntax rules indicate which forms of expressions are valid. The semantics indi-
cate how each expression is to be interpreted. Once an expression has been given an in-
terpretation, a compiler may evaluate another completely different expression,
provided the expression evaluated is mathematically equivalent to the original.

One of the major uses of expressions is in assignment statements where the value
of an expression is assigned to a variable. Assignment may be

• intrinsic assignment

• defined assignment

• masked array assignment

• indexed parallel array assignment

• pointer assignment

Intrinsic assignment evaluates an expression and uses the result to define a variable.
Defined assignment evaluates an expression and invokes a user-provided subroutine.
For masked array assignment, multiple scalar values are involved and the mask deter-
mines which computations and assignments are performed. For indexed parallel array
assignment, a set of parallel assignments is specified by an index set and an optional
masked scalar expression. For pointer assignment, a pointer, the object on the left side,
is associated with (points to) the target indicated by the right side. The forms of assign-
ment are described in detail in this chapter.

7.1 Formation of Expressions

An expression is formed from primaries, operators, and parentheses. The simplest
form of an expression is a constant or a variable. Some examples are:

3.1416 A real constant

X A scalar variable

Expressions and Assignment 201

Slightly more complicated expressions consist of a designator, an array constructor,
a structure constructor, a function reference, a type parameter inquiry, or a type param-
eter name. Examples are:

These simple objects may be combined with operators to form more complicated
expressions. Examples are:

Finally, any expression enclosed in parentheses is an expression; this recursion al-
lows the formation of arbitrarily complicated expressions.

7.1.1 Operators and Operations

There are two classes of operations within an expression: intrinsic operations and
nonintrinsic operations. The latter class is often called defined operations or user-
defined operations. A nonintrinsic operation can be defined as a new operator, such as.MatrixDivide., or as an extension of an existing intrinsic operator, such as .NOT. or
+. Extending an existing operator is often called overloading.

7.1.1.1 Operators

An intrinsic operator is built into the Fortran language. Table 7-1 lists the intrinsic op-
erators and their allowed operand types. A defined operator (12.5.4.2) is defined by
the programmer using a function subprogram. There are two sorts of defined opera-
tors: extensions of intrinsic operators and new operators.

An operator is either unary or binary; a unary operator requires one operand and a
binary operator requires two operands.

Note that the operators + and – are both unary and binary. The only intrinsic unary
operators are +, −, and .NOT. The operator .NOT. is the only intrinsic operator that is
a unary operator but not a binary operator.

There is a precedence ordering among the operators. This precedence is used to de-
termine the interpretation of expressions containing more than one operator. The pre-
cedences of all operators are described in more detail in 7.2.1.

[X, Y, X] An array constructor

Y (2:10:2) A variable that is a section of array Y

M % N Either a variable that is a component of a structure M or
a type parameter inquiry

FX (Y + Z) A function reference

A + B An expression using intrinsic +

A + B .X. C An expression using intrinsic + and defined operator .X.

202 Chapter 7

7.1.1.2 Operations

The term operation refers both to the syntax forms of an operator and its operands and
also to the action performed.

An operation is unary or binary, depending on whether its operator is unary or bi-
nary.

A unary operation has one operand as in:

operator x1
Examples are:

- C
+ J
.NOT. L

A binary operation has two operands as in:

x1 operator x2
Examples are

A + B
2 * C

An operation is intrinsic or defined. Intrinsic operations are those defined by the
language. For an operation to be intrinsic, an intrinsic operator symbol must be used
and the operands must be of the intrinsic types specified in Table 7-1.

Table 7-1 Intrinsic operators and the allowed types of their operands

Operator
category

Intrinsic
operator Operand types

Arithmetic **, *, /, +, –,
unary +, unary –

Of any numeric type and any kind type parameters

Character // Both of type character of any length with the same
kind type parameter

Relational .EQ., .NE.,
==, /=

Either both of any numeric type and any kind type
parameters, or both of type character of any length
and with the same kind type parameter

Relational .GT., .GE., .LT., .LE.,
>, >=, <, <=

Both of any numeric type except complex and any
kind type parameter, or both of type character of any
length and with the same kind type parameter

Logical .NOT., .AND., .OR.,.EQV., .NEQV. Of type logical with any kind type parameters

Note: The relational operator symbols ==, /=, >, >=, <, and <= are synonyms for the
operators .EQ., .NE., .GT., .GE., .LT., and .LE., respectively.

Expressions and Assignment 203

A defined operation is any nonintrinsic operation that is interpreted and evaluat-
ed by a function subprogram. The defined operation uses a defined operator, either an
extension of an intrinsic operator or a new operator. Defined operations are described in
12.5.4.2. The forms of a defined operation are:

intrinsic-unary-operator x2
nonintrinsic-unary-operator x2
x1 intrinsic-binary-operator x2
x1 nonintrinsic-binary-operator x2

where x1 and x2 are operands. Intrinsic operations cannot be redefined. Therefore, when
either an intrinsic unary or binary operator symbol is used in a defined operation, the
operand types must not be the same as the types of the operands specified in Table 7-1
for the particular intrinsic operator symbol. Examples of each of the forms are:

- Person
.PLUS. A
Matrix_A / Matrix_B
A .HIGHER. B

7.1.2 Rules for Forming Expressions

The set of syntax rules defines an expression in terms of operators and operands which
may themselves be expressions. As a result, the formal set of rules is recursive. The ba-
sic or lowest level of an expression is a primary. The rules for forming expressions are
described from the lowest or most primitive level to the highest or most complex level;
that is, the rules are stated from a primary up to an expression.

Primary. A primary has one of the following forms (R701):

constant
designator
array constructor
structure constructor
function reference
type parameter inquiry
type parameter name
(expression)

Examples of primaries are:

3.2 A real constant

A A designator

[1, J, 7] An array constructor

RATIONAL (I, J) A structure constructor

STRING % LEN A type parameter inquiry

204 Chapter 7

A designator (6.2, R603) is a very general term and includes named objects, array
elements and sections, structure components, and substrings.

A general expression is built up by combining operators with their operands,
which can be primaries or other forms of expressions. Complicated expressions usually
enclose some of the operations in parentheses either to control operation precedence or
associativity or to make the expression more readable.

The grammar that follows is a simpler, easier to understand, version compared to
the one given by rules R310, R311, R312, and R701 through R723 of the Fortran 2003
standard. The simplification has lost some of the suggested precedence and associativity
information of the standard grammar. The grammar needs to be read in conjunction with
the restrictions and explanations below and also the discussion of operator precedence
(7.2.1).

defined-unary-expr is [nonintrinsic-unary-op] primary

power-expr is [defined-unary-expr **] ... defined-unary-expr

mult-expr is power-expr [mult-like-op power-expr] ...

add-expr is [unary-add-like-op] mult-expr [add-like-op mult-expr] ...

concat-expr is add-expr [// add-expr] ...

comparison-expr is concat-expr relational-op concat-expr

not-expr is [.NOT.] comparison-expr

and-expr is not-expr [.AND. not-expr] ...

or-expr is and-expr [.OR. and-expr] ...

equiv-expr is or-expr [equiv-op or-expr] ...

expr is equiv-expr [nonintrinsic-binary-op equiv-expr] ...

mult-like-op is *

or /

unary-add-like-op is add-like-op

add-like-op is +

or -

NROWS A type parameter name

FCN (A) A function reference

(A 1 B) A parenthesized expression

Expressions and Assignment 205

relational-op is ==

or .EQ.

or /=

or .NE.

or <

or .LE.

or <=

or .LE.

or >

or .GT.

or >=

or .GE.

equiv-op is .EQV.

or .NEQV.

Note that power-expr has a different form which suggests a right-to-left order of
evaluation of exponents. The form of the other operations suggests a left-to-right order
of evaluation.

Each operand must have an appropriate type as described in Table 7-1 (for intrinsic
operators) or specified by the function that defines the operation (for defined opera-
tors).

The syntax rules for expressions have some consequences that may not be obvious.

• A unary plus or minus followed by a constant is not a constant; it is an expression.
As a consequence, parentheses must be used for some common formulas; there is
little other effect on the language. Except for expression syntax, there are few cases
where it matters that 6, for example, is a constant whereas −6 is an expression. The
major one is that on a 2s complement 16-bit machine −32768 is representable as an
integer, but this expression is likely to cause an integer overflow as written.

• Except for some cases involving unary operators, two operators cannot be adjacent.
Thus, for example

X ** -Y ! Invalid syntax

(A+B) * -2 ! Invalid syntax

.not. .not. OK ! Invalid syntax

are illegal. Parentheses can be used to express the intention of the above illegal ex-
pressions

X ** (-Y)

(A+B) * (-2)

.not. (.not. OK)

206 Chapter 7

On the other hand, the following are legal:

X > -Y

X > - Y .OR. -X > 0

A .and. .not. B

C + .MatrixInverse. B

.not. -A ! for an appropriate extension of - or .NOT.

• The relational operators (e.g., < or .NE.) cannot occur in a series. That is, expres-
sions such as

A > B > C ! Invalid syntax

are illegal.

7.2 Interpretation of Expressions

Interpretation of an expression determines the meaning of the expression. As with the
rules for forming an expression, the rules for interpreting an expression are described
from the bottom up, from the interpretation of constants, variables, constructors, and
functions to the interpretation of each subexpression to the interpretation of the entire
expression.

For the purpose of evaluation of expressions, it is required that each referenced op-
erand (2.4) be defined, including all of its parts. If the operand is a subobject (part of an
array, structure, or string), only the selected part is required to be defined. If the oper-
and is a pointer, it must be associated with a target that is defined. Note that function
references are not in themselves references. Inquiry functions, such as SIZE, do not
require that their arguments be defined. Whether or not a function requires that its
arguments be defined depends on the particular function.

For the numeric intrinsic operations, the operands must have values for which the
operation is well-defined on the processor being used. For example, on some proces-
sors, the result of any of the numeric operations must be within the exponent range for
the result data type. Most processors support some form of IEEE arithmetic (14) and
can process values that are out of range.

When an expression is interpreted, the meaning of the simplest primaries, such as
constants and variables, is determined. Once these are determined, the operations for
which they are operands are interpreted in precedence order, and a meaning for the
operation is determined by the interpretation rules for each operator. This repeats re-
cursively until the entire expression is interpreted and a meaning is determined.

The interpretation rules for operations are either rules for the intrinsic operations
(intrinsic operators with operands of the intrinsic types specified by Table 7-1) or rules
for the defined operations (provided by function subprograms). Except for integer di-
vision, the intrinsic operations are interpreted in the usual mathematical way, subject
to representation limitations (for example, a finite range of integers, or finite precision

Expressions and Assignment 207

of real numbers). The defined operations are interpreted by a function program that is
specified in an interface block with a generic specifier of the form OPERATOR (defined-
operator).

The interpretation rules for an intrinsic or a defined operation are independent of
the context in which the expression occurs, except for the NULL intrinsic function.
That is, the type, type parameters, and interpretation of any expression do not depend
on any part of a larger expression in which it occurs. This statement is often misunder-
stood. It does not mean that in all cases the results of individual operations with the
same operands must be the same in all contexts. The reason is that the actual results of
the intrinsic operations for real and complex operands are not specified precisely. For
example, the following code fragment

REAL :: A, B, X
X = A+B
PRINT *, A+B .EQ. X

may print the value false because the result of A + B is required to be only an approx-
imation of the mathematical result of adding A to B, and different numerical approxi-
mations are allowed in different contexts. This allows an implementation the freedom
to optimize the evaluation of expressions. Many processors keep intermediate values of
an expression in registers and these values may have higher precision than values stored
in memory. When a value in a register is compared with a value that is fetched from
memory, the comparison may give surprising results because of the precision differences.
Because of the approximate nature of floating-point computations, programmers should
program defensively if small differences are important.

This section covers the precedence of operators, which determines how the opera-
tions in an expression are grouped; then it covers the data type and type parameters of
an expression, the shape and bounds of an expression, and the meaning of an expres-
sion.

These properties are determined inside-out in the sense that they are determined
first for the primaries. These properties then are determined repeatedly for the opera-
tions in precedence order, resulting eventually in the properties for the expression.

For example, consider the expression A + B ∗ C, where A, B, and C are of numeric
type. First, the data types, type parameter values, and shapes of the three variables A,
B, and C are determined. Because ∗ has a higher precedence than +, the type, type pa-
rameters, and shape of the expression B ∗ C are determined next, and then these prop-
erties for the entire expression are determined from those of A and B ∗ C.

7.2.1 Precedence of Operators

It is the precedence rules, not the formation rules, that determine how an expression is
interpreted. Table 7-2 summarizes the relative precedence of operators, including the
precedence when operators of equal precedence are adjacent. An entry “N/A” in the
column titled “In context of equal precedence” indicates that the operator cannot ap-
pear in such contexts. Note that these operators are not intrinsic operators unless the
types of the operands are those specified in Table 7-1.

208 Chapter 7

For example, in the expression

A .AND. B .AND. C .OR. D

Table 7-2 indicates that the .AND. operator is of higher precedence than the .OR. op-
erator, and the .AND. operators are combined left-to-right when in contexts of equal
precedence; thus, A and B are combined by the .AND. operator, the result A .AND. B
is combined with C using the .AND. operator, and that result is combined with D us-
ing the .OR. operator. This expression is thus interpreted the same way as the follow-
ing fully parenthesized expression

((A .AND. B) .AND. C) .OR. D

Exponentiation is right associative; all of the other binary operators are left associa-
tive (except for the relational operators, which cannot appear in a series). Thus

A ** B ** C

is interpreted as

A ** (B ** C)

while

A * B / C

Table 7-2 Categories of operations and relative precedences

Category
of operator Operator Precedence

In context of
equal precedence

Defined Defined unary operator Highest N/A

Numeric ** . Right-to-left

Numeric * or / . Left-to-right

Numeric Unary + or – . N/A

Numeric Binary + or – . Left-to-right

Character // . Left-to-right

Relational .EQ., .NE., .LT., .LE., .GT., .GE.
==, /=, <, <=, >, >=

. N/A

Logical .NOT. . N/A

Logical .AND. . Left-to-right

Logical .OR. . Left-to-right

Logical .EQV. or .NEQV. . Left-to-right

Defined Defined binary operator Lowest Left-to-right

Expressions and Assignment 209

is interpreted as

(A * B) / C

Note that all the defined operators have fixed precedences; defined unary opera-
tors have the highest precedence of all operators and are all of equal precedence; de-
fined binary operators have the lowest precedence, are all of equal precedence, and are
combined left-to-right when in contexts of equal precedence. Both kinds of defined op-
erators may be generic.

Recall that new defined unary and new defined binary operators have the form .let-
ter [letter…]. (3.2.4). It is also possible to give additional meanings to the intrinsic oper-
ators (7.2.7.2 or 12.5.4.2); they are called extended intrinsic operators or, sometimes,
overloaded operators. They have the same precedence as the intrinsic operator. An inter-
esting consequence is that if the .NOT. operator is extended, it is a defined operator and
a unary operator. However, it is not a defined unary operator; it is an extended intrinsic
operator. It has the same precedence as the intrinsic .NOT. operator.

As a consequence of the expression formation rules, unary operators in the same
category cannot appear in a context of equal precedence; parentheses must be used.
There is thus no left-to-right or right-to-left rule for any unary operators. Similarly, the
relational operators cannot appear in a context of equal precedence; consequently,
there is no left-to-right or right-to-left rule for the relational operators.

7.2.2 Data Type and Type Parameters of an Expression

Once the interpretation of an expression is complete, the data type and type parame-
ters of the expression are determined recursively from the primaries and operations
that make up the expression.

Expressions have both a declared type and a dynamic type. The declared type of
an expression is determined by the following rules using the declared types of the en-
tities and defined operators. The declared type can be determined at compile-time. The
dynamic type of an expression is also determined by the same rules; however, the dy-
namic types of the entities and operands are used as the expression is evaluated at run-
time. If none of the entities or operators are polymorphic, the declared type will be the
same as the dynamic type. If the expression is a polymorphic primary or a defined op-
eration with a polymorphic result, the declared and dynamic types might be different.

7.2.2.1 Data Type and Type Parameters of a Primary

The type and type parameters of a literal constant are determined by the form of the
constant (4.2.6) and not from the context. For example, the form of the constant

0.333333333333333333333333333333

indicates that it is of type default real. Neither the large number of digits in the constant,
nor usage in a context where double precision would be appropriate makes the constant
anything but a default real constant. Similarly

(1.3_LONG, 2.9_LONG)

210 Chapter 7

indicates that it is of type complex and of kind LONG, regardless of where it appears.
The type of a named constant is determined by its declaration.
The type and type parameters of a variable are determined by its declaration and

possibly partly when it is allocated or pointer assigned. For example,

TYPE :: D3(N)
 INTEGER, LEN :: N
 REAL, DIMENSION(N) :: A, B, C
END TYPE D3
TYPE(D3(N=:)), ALLOCATABLE :: QQ

indicates that QQ is of type D3, but until it is allocated, the length parameter N is not
established.

The type and type parameters of a structure constructor are described in 4.4.15. The
type and type parameters of a structure component are those given by the declaration
of that component.

The type and type parameters of an array constructor are described in 4.5. The type
and type parameters of an array element or array section are those of the array.

The type of a substring is character, the kind type parameter is that of the string,
and the length parameter is the length of the substring.

The type and type parameters of the result of an intrinsic function are described in
A. The type and type parameters of a user-defined function are determined by the
function subprogram; however, see 4.3.5.1 for an obsolescent character exception. If the
function is generic, the type and type parameters are determined from the specific
function referenced and the actual arguments.

A type parameter name (which can be used only within a type definition or a type
parameter inquiry) is a scalar integer with the same kind as the type parameter.

The type and type parameters of an expression in parentheses are the same as
those of the expression.

The type and type parameters of the intrinsic function NULL are context depen-
dent and are described in A. This is an exception to the general rule about context not
determining type.

If a pointer appears as a primary in a defined or intrinsic operation, in parenthesis
as an expression, or as a single primary to the right of the equals sign in an intrinsic as-
signment statement, the reference is to the target. The type and type parameters are
those of the target. If a pointer is not associated with a target, it may appear as the
target in a pointer assignment statement or as a primary only as an actual argument as-
sociated with a dummy argument that is also a pointer. It may also appear as the data
target in a pointer assignment statement (7.5.5), but, in that case, it is not a primary in
an expression.

7.2.2.2 Data Type and Type Parameters of an Operation

The type of the result of an intrinsic operation is determined by the type of the oper-
ands and the intrinsic operation and is specified by Table 7-3.

For nonnumeric intrinsic operations, the type parameters of the result of an opera-
tion are determined as follows.

Expressions and Assignment 211

• For the relational operations, it is that of the default logical type.

• For the logical operations, it is that of the operands if the operands have the same
kind type parameter; otherwise, it is processor dependent but must be that of one
of the operands.

• For the unary .NOT. operation, it is that of the operand.

• For the character operation //, the operands must have the same kind type param-
eter and the result has that kind type parameter. The length type parameter value
is the sum of the length type parameters of the operands.

For numeric intrinsic operations, the kind type parameter value of the result is de-
termined as follows:

• For unary operations, it is that of the operand.

• For binary operations, if one operand is of type integer and the other is of type real
or complex (for example, 1 + 2.0), it is the kind type parameter of the real or com-
plex operand.

Table 7-3 Type of operands, x1 and x2, and result for intrinsic operations

Intrinsic operator Type of x1 Type of x2 Type of result

Unary +, – I, R, Z I, R, Z

Binary +, –, *, /, ** I
R
Z

I, R, Z
I, R, Z
I, R, Z

I, R, Z
R, R, Z
Z, Z, Z

// C C C

.EQ., .NE.
==, /=

I
R
Z
C

I, R, Z
I, R, Z
I, R, Z
C

L, L, L
L, L, L
L, L, L
L

.GT., .GE., .LT., .LE.
>, >=, <, <=

I
R
C

I, R
I, R
C

L, L
L, L
L

.NOT. L L

.AND., .OR., .EQV., .NEQV. L L L

Note: The symbols I, R, Z, C, and L stand for the types integer, real, complex,
character, and logical, respectively. Where more than one type for is given,
the type of the result of the operation is given in the same relative position in
the next column. For the intrinsic operations with operands of type character,
the kind type parameters of the operands must be the same.

x2

212 Chapter 7

• For binary operations, if the operands are of the same type and kind type parame-
ters or one is real and one is complex with the same kind parameters, it is the kind
type parameter of the operands.

• For binary operations, if the operands are both of type integer but with different
kind type parameters, it is the kind type parameter of the operand with the larger
decimal exponent range. If the decimal exponent ranges of the two kinds are the
same, it is processor dependent, but must be that of one of the operands.

• For binary operations, if the operands are both of type real or complex but with
different kind type parameters, it is the kind type parameter of the operand with
the larger decimal precision. If the decimal precisions are the same, the kind type
parameter is processor dependent, but must be that of one of the operands.

For numeric intrinsic operations, an easy way to remember the result type and
type parameter rules is to consider that the three numeric types—integer, real, and
complex—are ordered by the increasing generality of numbers: integers are contained
in the set of real numbers and real numbers are contained in the set of complex num-
bers. Within the integer type, the kinds are ordered by increasing decimal exponent
ranges. Within the real and complex types, the kinds for each type are ordered by in-
creasing decimal precision. If there is more than one kind of integer with the same dec-
imal exponent range, the ordering is processor dependent; a similar processor-
dependent ordering is selected for the real and complex types if there is more than one
kind with the same decimal precision. Because the result precision is that of the higher
precision operation, operations between double precision real and single precision
complex produce a result of double precision complex. Most processors do not support
integers or reals that have different kinds but have the same exponent range or precision;
the processor dependent exceptions for kind rarely occur in practice.

The type and type parameter values of a defined operation are determined from
the interface block (or blocks) for the referenced operation and are the type and type
parameters of the name of the function specified by the interface block. Note that the
operator may be generic and therefore the type and type parameters may be deter-
mined by the operands. For example, consider the interface:

INTERFACE OPERATOR (.PLUS.)

TYPE (SET) FUNCTION FCN_SET_PLUS (X, Y)
TYPE (SET), INTENT (IN) :: X, Y

END FUNCTION FCN_SET_PLUS

TYPE (RATIONAL) FUNCTION FCN_RAT_PLUS (X, Y)
TYPE (RATIONAL), INTENT(IN) :: X, Y

END FUNCTION FCN_RAT_PLUS

END INTERFACE

Expressions and Assignment 213

The operation A .PLUS. B where A and B are of type RATIONAL is an expression of
type RATIONAL with no type parameters. The operation C .PLUS. D where C and D
are of type SET is an expression of type SET with no type parameters.

7.2.3 Shape of an Expression

The shape of an expression is determined by the shape of each operand in the expres-
sion in the same recursive manner as for the type and type parameters for an expres-
sion. That is, the shape of an expression is the shape of the result of the last operation.

However, the shape rules are simplified considerably by the requirement that the
operands of binary intrinsic operations must be in shape conformance. Two operands
are in shape conformance if both are arrays of the same shape, or one or both oper-
ands are scalars. When one operand is an array and the other is a scalar, the operation
behaves as if the scalar operand were broadcast to an array of the result shape and the
operation performed. Broadcasting a scalar to an array means creating an array of
elements all equal to the scalar. This broadcast need not actually occur if the operation
can be performed without it. The operands of a defined operation have no such require-
ment:

• they must match the shape of the corresponding dummy arguments of the defining
function, or

• they must be in shape conformance with each other, the dummy arguments of the
defining function must be scalar, and the defining function must be elemental.

For primaries that are constants, variables, constructors, or functions, the shape is
that of the constant, variable, constructor, or function name. Type parameter inquiries
and type parameter names are scalars. If the primary is a reference to the intrinsic
function NULL, the shape of the result is not relevant; the type, type parameters, and
rank are determined by the pointer that becomes associated with the result (A). Recall
that structure constructors are always scalar, and array constructors are always rank-
one arrays of size equal to the number of elements in the constructor. For unary intrin-
sic operations, the shape of the result is that of the operand. For binary intrinsic opera-
tions, the shape is that of the array operand if there is one and is scalar otherwise. For
defined operations, the shape is that of the function name specifying the operation if
the operands match the shapes of the dummy arguments or is the shape of an array
operand if the defining function is elemental.

For example, consider the intrinsic operation A + B where A and B are of type de-
fault integer and default real respectively; assume A is a scalar and B is an array of
shape [3 5]. Then, the result is of type default real with shape [3 5].

As a second example, consider the expression A // B as a defined operation where
A is a scalar of type character with kind type parameter value 1 and of length 25, and
B is an array of type character with kind type parameter value 2, of length 30, and of
shape [10]. This is permitted because there is no intrinsic concatenation between char-
acter operands of different kinds. Suppose further there is the following interface for
the // operator:

214 Chapter 7

INTERFACE OPERATOR (//)

FUNCTION FCN_CONCAT (X, Y)
CHARACTER (*, KIND=1), INTENT (IN) :: X
CHARACTER (*, KIND=2), INTENT (IN) :: Y (:)
CHARACTER (LEN (X) + LEN (Y), KIND=2) :: FCN_CONCAT (SIZE (Y))

END FUNCTION FCN_CONCAT

END INTERFACE

The type declaration for FCN_CONCAT specifies that the result of the expression A //
B is of type character with kind type parameter 2. In addition, the length of the result
is the sum of the lengths of the operands A and B, that is, of length 55. The shape is
specified to be of rank one and of size equal to the size of the actual argument B corre-
sponding to the dummy argument Y, that is, of shape [10].

7.2.4 Bounds of an Expression

For most contexts, the lower and upper bounds of the dimensions of an array expres-
sion are not needed; only the sizes of each dimension are needed to satisfy array con-
formance requirements for expressions. The bounds of an array expression can be
found by using the LBOUND and UBOUND intrinsic functions.

The bounds of the dimensions of whole arrays and whole array components are
described in 5.4.1. If the array is anything but a whole array or whole array component,
the lower bound in each dimension is one and the upper bound is the number of
elements in that dimension, which might be zero.

Note that the LBOUND and UBOUND functions distinguish between whole arrays,
including whole array structure components, and arrays that either have section
subscripts, are assumed-shape arrays, or are other expressions. It may seem strange to
distinguish between a simple array name and an array name with a section subscript.
For example, it seems obvious that the lower bound of ARRAY(2:4) should be 2 rather
than 1. Problems arise with more complicated forms, ARRAY(2:6:2) has only 3 elements;
it would be odd to say the upper bound is either 3 or 6 if the lower bound were 2.
Similarly, an expression such as ARRAY(2:4) + ARRAY(9:7:−1) has no obvious natural
bounds. Rather than try to distinguish between “simple” sections and “complicated”
sections, Fortran treats all sections as if they were complicated and returns 1 for the
lower bound and the actual extent for the upper bound.

As a practical matter, the LBOUND and UBOUND functions are usually applied to
pointer targets or dummy argument arrays that are assumed shape; the bounds for other
arrays are usually obvious from the declarations. With dummy arguments, the compiler
has no information at all about the associated actual argument and whether or not it has
“simple” section subscripts.

7.2.5 Elemental Operations and Functions

For both the unary and binary intrinsic operators, the operation is interpreted element-
by-element; that is, the scalar operation is performed on each element of the operand
or operands. Similarly, if the operation is an elemental function reference, the function

Expressions and Assignment 215

is invoked for each element of the array arguments. For example, if A and B are arrays
of the same shape, the expression A ∗ B is interpreted by taking each element of A and
the corresponding element of B and multiplying them together using the scalar intrin-
sic operation ∗ to determine the corresponding element of the result. Note that this is
not the same as matrix multiplication. As a second example, the expression SQRT(A) is
interpreted by taking each element of A and invoking the square root function to de-
termine the corresponding element of the result.

Note that there is no order specified for the interpretation of these array opera-
tions. Indeed, a processor is allowed to perform them in any order, including all at
once (possible for vector and parallel processors). A processor also has the option to in-
voke elemental functions on an element-by-element basis or to invoke a version of the
function that accepts array operands and evaluates the results in an optimized way.
The rules for elemental functions (12.7.2) allow either method.

7.2.6 Value of a Primary

The value of a primary that is a constant, designator, array or structure constructor, or
type parameter name or inquiry is the obvious value of the entity.

The value of a primary that is a function reference is the value returned by the
function.

The value of a primary that is an expression in parentheses is that of the expres-
sion.

7.2.7 Value of an Operation

The value of the result of an operation depends on the operator and the values of the
operands.

7.2.7.1 Value of Intrinsic Operations

When the operands of the intrinsic operators satisfy the requirements of Table 7-1, the
operations are intrinsic and are interpreted in the usual mathematical way as described
in Table 7-4, except for integer division. For example, the binary operator ∗ is interpret-
ed as the mathematical operation multiplication and the unary operator – is interpret-
ed as numeric negation. Intrinsic operations reference their operands for their value;
therefore, the operands must be defined and allocated or associated as appropriate.

7.2.7.1.1 Value of Numeric Intrinsic Operations
Except for exponentiation to an integer power, when an operand for a numeric intrin-
sic operation does not have the same type, type parameters, or shape as the result of
the operation, the operand is converted to the type, type parameter, and shape of the
result and the operation is then performed. For exponentiation to an integer power, the
operation may be performed without the conversion of the integer power, say, by de-
veloping binary powers of the first operand and multiplying them together to obtain
an efficient computation of the result.

For integer division, when both operands are of type integer, the result is of type
integer, but the mathematical quotient is, in general, not an integer. In this case, the re-

216 Chapter 7

sult is specified to be the integer value closest to the quotient and between zero and the
quotient inclusively.

Table 7-4 Interpretation of the intrinsic operations

Use of operator Interpretation

** raised to the power

/ divided by

* multiplied by

– subtracted from

– negated

+ added to

+ Same as

// concatenated with

.LT. True if less than

< True if less than

.LE. True if less than or equal to

<= True if less than or equal to

.GT. True if greater than

> True if greater than

.GE. True if greater than or equal to

>= True if greater than or equal to

.EQ. True if equal to

== True if equal to

.NE. True if not equal to

/= True if not equal to

.NOT. True if is false

.AND. True if and are both true

.OR. True if or or both are true

.NEQV. True if either or is true, but not both

.EQV. True if both and are true or both are false

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x2 x1

x2 x2

x1 x2 x1 x2

x2 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x2 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

Expressions and Assignment 217

For exponentiation, there are four special cases that need to be described further.

• When both operands are of type integer, the result is of type integer; when is
negative, the operation ∗∗ is interpreted as the quotient 1/(∗∗).
Note that it is subject to the rules for integer division and in most cases is zero. For
example, 4 ∗∗ (–2) is 0.

• The second case occurs when is a negative value of type integer or real and
is of type real; this is not permitted.

• The third case occurs when is of type real or of type complex. In this case, the
result returned is the principal value of the mathematical power function . If
is integer or real, it must not be negative.

• The standard does not specify what zero raised to the zero power is, nor even if it is
a valid operation.

7.2.7.1.2 Value of Nonnumeric Intrinsic Operations
The intrinsic character operation performs the usual concatenation operation. For this
operation, the operands must be of type character with the same kind type parameters.
The length parameter values may be different. The result is of type character with the
kind type parameter of its operands and a length type parameter value equal to the
sum of the lengths of the operands. The result consists of the characters of the first op-
erand in order followed by those of the second operand in order. For example, ’For-
tranb’ // ’b2003’ yields the result Fortranbb2003.

The intrinsic relational operations perform the usual comparison operations for
character and most numeric operands. For these operations, the operands must both be
of numeric type or both be of character type. The kind type parameter values of the op-
erands of the numeric types may be different but must be the same for operands of
type character. However, the lengths of the character operands may be different. Com-
plex operands may be compared only for equality and inequality; the reason is that
complex numbers are not totally ordered. The result in all cases is of type default logi-
cal.

When the operands of an intrinsic relational operation are both numeric, but of dif-
ferent types or type parameters, each operand is converted to the type and type param-
eters of the sum of the two operands. Then, the operands are compared according to
the usual mathematical interpretation of the particular relational operator.

When the operands are both of type character, the shorter one is padded on the
right with blank characters until the operands are of equal length. Then, the operands
are compared one character at a time in order, starting from the leftmost character of
each operand until the corresponding characters differ. The first operand is less than or
greater than the second operand according to whether the characters in the first posi-
tion where they differ are less than or greater than in the collating sequence (4.3.5.3).
The operands are equal if both are of zero length or all corresponding characters are
equal, including the padding characters. Note that the padding character is the Fortran
blank when the operands are of default, ASCII, or ISO_10646 character kind and is a
processor specified character for nondefault character kinds (3.1.2). Also, all compari-

x2
x1 x2 x1 x2)–(

x1 x2

x2
x1

x2 x1

218 Chapter 7

sons, except equality (.EQ. or ==) and inequality (.NE. or /=), are processor dependent
as they depend on the processor-dependent collating sequence. However, the collating
sequences for the default kind is partially specified (4.3.5.3) and the important sorting
cases work as expected. The collating sequences for ASCII and ISO 10646 characters are
specified by the appropriate standards.

There is no ordering defined for logical values. However, logical values may be
compared for equality and inequality by using the logical equivalence and not equiva-
lence operators .EQV. and .NEQV. That is, L1 .EQV. L2 is true when L1 and L2 are
equal and is false otherwise; L1 .NEQV. L2 is true if L1 and L2 are not equal and is
false otherwise.

For logical operations, the operands must both be of logical type but may have dif-
ferent kind type parameters. When the kind type parameters are the same, the kind pa-
rameter value of the result is that value; if different, the kind parameter value of the
result is processor dependent, but is that of either L1 or L2. The values of the result in
all cases are specified in Table 7-5.

7.2.7.2 Value of Defined Operations

The interpretation of a defined operation is provided by a function subprogram with
an OPERATOR interface (12.5.4). When there is more than one function with the same
OPERATOR interface, the function giving the interpretation of the operation is the one
whose dummy arguments match the operands in argument order, type, kind type pa-
rameters, and rank (12.8). In the following example, for the operation A .PLUS. B,
where A and B are structures of the derived type RATIONAL, the generic interface
specifies that the function RATIONAL_PLUS provides the interpretation of this opera-
tion.

TYPE(RATIONAL)
INTEGER :: N, D

END TYPE

INTERFACE OPERATOR (.PLUS.)

FUNCTION RATIONAL_PLUS (L, R)
IMPORT RATIONAL
TYPE (RATIONAL), INTENT (IN) :: L, R
TYPE (RATIONAL) :: RATIONAL_PLUS

END FUNCTION RATIONAL_PLUS

Table 7-5 The values of operations involving logical intrinsic operators

.NOT. .AND. .OR. .EQV. .NEQV.

true true false true true true false

true false true false true false true

false true false false true false true

false false true false false true false

x1 x2 x2 x1 x2 x1 x2 x1 x2 x1 x2

Expressions and Assignment 219

FUNCTION LOGICAL_PLUS (L, R)
LOGICAL, INTENT (IN) :: L, R
LOGICAL :: LOGICAL_PLUS

END FUNCTION LOGICAL_PLUS

END INTERFACE

The result of A .PLUS. B is the same as RATIONAL_PLUS (A, B).
As with the intrinsic operations, the type, type parameters, and interpretation of a

defined operation are independent of the context of the larger expression in which the
defined operation appears. The interpretation of the same defined operation in differ-
ent contexts is the same; however, the results may be different because the results of
the procedure being invoked may depend on values that are not operands and that are
different for each invocation.

The relational operators ==, /=, >, >=, <, and <= are synonyms for the operators.EQ., .NE., .GT., .GE., .LT., and .LE., even when they are defined operators. It is in-
valid, therefore, to have an interface block for both == and .EQ., for example, for
which the order, types, type parameters, and rank of the dummy arguments of two
functions are the same.

Defined operations are either unary or binary. An intrinsic unary operator cannot
be defined as a new binary operator unless it is also an intrinsic binary operator. Note
that this applies only to the .NOT. operator. Similarly, an intrinsic binary operator can-
not be defined as a new unary operator unless it is also an intrinsic unary operator.
However, a nonintrinsic defined operator, .PLUS. say, (that is, one that is not the same
as an intrinsic operator) can be defined as both a unary and binary operator.

7.3 Evaluation of Expressions

The form of the expression, the precedence rules, and the meaning of the operations es-
tablish the interpretation. Once the interpretation is established, the compiler is free to
evaluate the expression in any way that provides the same interpretation with one ex-
ception: parentheses specify an order of evaluation that cannot be modified. This ap-
plies to both intrinsic operations and defined operations. For defined operations, it is
more difficult to determine whether an alternative evaluation scheme provides the
same interpretation.

Another way to state this is to say that, except for the presence of parentheses, the
compiler may evaluate any expression that is equivalent to the one written.

7.3.1 Equivalent Expressions

Two expressions are equivalent if they have the same value for all possible values of
the operands in the expressions. For example, because addition is commutative and as-
sociative, the expressions A + B + C and C + A + B are equivalent.

This freedom for the compiler to use alternative equivalent evaluations permits the
compiler to produce code that is more optimal in some sense (for example, fewer oper-

220 Chapter 7

ations, array operations rather than scalar operations, or a reduction in the use of reg-
isters or work space), and thereby produce more efficient executable code.

For the numeric intrinsic operations, two expressions are equivalent if they are
mathematically equivalent, not computationally equivalent. Mathematical equivalence
assumes exact arithmetic (no rounding errors and infinite exponent range) and thus as-
sumes the rules of commutativity, associativity, and distributivity as well as other rules
that can be used to determine equivalence (except that the grouping of operations spec-
ified by parentheses must be honored). A + B + C and C + A + B are thus mathematical-
ly equivalent, but are not necessarily numerically equivalent because of possibly
different rounding errors. On the other hand, K / 2 and 0.5 ∗ K (where K is an integer)
is a mathematical difference because of the special Fortran definition of integer divi-
sion.

Parentheses within the expression must be honored. This is particularly important
for computations involving numeric values where rounding errors or range errors may
occur or for computations involving functions with side effects. Of course, if there is no
computational difference between two evaluation schemes where parentheses are pro-
vided, the compiler can violate the parentheses integrity because no one can tell the
difference. For example, the expression (1.0/3.0)∗3.0 must be evaluated by performing
the division first because of the explicit parentheses. Evaluating the expression as 1.0
would be valid if the value obtained by performing the division first and then the mul-
tiplication produced a result that is equal to 1.0 despite rounding errors. Although this
sort of rearrangement might be possible in theory, it is not a practical option in general,
unless all of the operands are constants as in the above example.

Table 7-6 gives examples of equivalent expressions where A, B, and C are operands
of type real or complex, and X, Y, and Z are of any numeric type, I and J are of type in-
teger, L1, L2, and L3 are of type logical, and C1, C2, and C3 are of type character with
the length of C1 greater than or equal to the length of C3. If the expression in the left-
hand column is written in a Fortran program, the compiler may evaluate the expres-
sion as if it were written as the equivalent expression in the right-hand column. All of
the variables are assumed to be defined and have values that make all of the operations
in this table well-defined.

Table 7-7 provides examples of invalid alternative expression evaluations. In the
first three examples, the expressions are not mathematically equivalent; recall that
when both operands of the division operator are of type integer, a Fortran integer divi-
sion truncates the result toward zero to obtain the nearest integer quotient. The last
three are not allowed because of parentheses in the expression written.

There are three concerns raised by alternative evaluation of an expression. They
are:

• The rearrangement of an expression may cause the resulting computation to yield
a different computational result. For example, evaluating the equivalent expres-
sions A − B − C and A − (B + C) might produce significantly different results due to
roundoff error for real or complex results.

• An unevaluated portion of an expression may reference a function with a side ef-
fect and so the side effect may or may not take place if the function is not invoked.

Expressions and Assignment 221

• The rearrangement of an expression may result in an error that the programmer
thought would be avoided by a particular order of evaluation. For example, in the
logical expression that represents the condition for the IF test

if (present(x) .and. x > 0) then

the condition x > 0 may be evaluated first, resulting in an error if x is not present.

7.3.2 Side Effects and Partial Evaluation

With some exceptions described below, functions are allowed to have side effects; that
is, they are allowed to modify the state of the program so that the state is different after

Table 7-6 Valid alternative expression evaluation

Expression Equivalent evaluation

X + Y Y + X

– X + Y Y – X

X – Y + Z X – (Y – Z)

X * A / Z X * (A / Z)

X * Y – X * Z X * (Y – Z)

A / B / C A / (B * C)

A / 5.0 0.2 * A

I > J (I−J) > 0

L1 .AND. L2 .OR. L1 .AND. L3 L1 .AND. (L2 .OR. L3)

L1 .AND. L1 L1

L1 .OR. F(X) L1 ! if L1 is true

F(X) .AND. L1 L1 ! if L1 is false

C3 = C1 // C2 C3 = C1 ! LEN(C1) >= LEN(C3)

Table 7-7 Invalid alternative expression evaluation

Expression Prohibited evaluations

I / 2 0.5 * I

X * I / J X * (I / J)

I / J / A I / (J * A)

(X + Y) + Z X + (Y + Z)

(X * Y) – (X * Z) X * (Y – Z)

X * (Y – Z) X * Y – X * Z

222 Chapter 7

the function is invoked than before it is invoked. This possibility potentially affects the
results of a program when an equivalent expression is evaluated.

The first exception is pure procedures (12.7.1), which, in effect, are not allowed to
have any side effects.

Some side effects are prohibited in all procedures: a function (or defined operation)
within a statement must not affect nor be affected by a change in any entity in the same
statement. Exceptions are those statements that have statements within them—for ex-
ample, an IF statement or a WHERE statement. In these cases, the evaluation of func-
tions in the logical expressions in parentheses after the IF or WHERE keyword or
within the subscripts and stride in a FORALL statement are allowed to affect objects in
the statement following the closing right parenthesis. For example, if F and G below
are functions that change their actual argument I, the statements

IF (F (I)) A = I
WHERE (G (I)) B = I

are valid, even though I is changed when the functions are evaluated. Examples of in-
valid statements are:

A (I) = F (I) ! Invalid code
Y = G (I) + I ! Invalid code

because F and G change I, which is used elsewhere in the same statement.
The rules for equivalent evaluation schemes allow the compiler to elide evaluating

any part of an expression that has no effect on the resulting value of the expression.
Consider the expression X ∗ F(Y), where F is a function and X has the value 0. The re-
sult will be the same regardless of the value of F(Y); therefore, it need not be evaluated.
This shortened evaluation is allowed in all cases, even if F(Y) has side effects. In this
case every data object that F could affect is undefined after the expression is evaluat-
ed—that is, it does not have a predictable value.

This normally applies to functions in logical expressions where expression evalua-
tion is often “short-circuited”. Some processors evaluate every term in a logical expres-
sion, others use run-time tests and skip further evaluation once the result is clear.
Consider

PRESENT(A) .AND. A > 0 .AND. LOG(A) < 3.5

where A is an optional argument. If A is not present, the processor is allowed to eval-
uate the A > 0 term, and the program is invalid. Similarly, if A is present and has a neg-
ative value, the processor is allowed to evaluate LOG(A) and the program is again
invalid.

The conclusion to be drawn from all of this is that the result of a program using a
function with side effects is not predictable and hence not portable. To be completely
safe and portable, a subroutine should be used in place of a function when a procedure
is needed with a side effect. However, in practice, the side effect will occur as expected
in most cases.

The execution of an array element, an array section, or a character substring refer-
ence requires, in most cases, the evaluation of the expressions that are the subscripts,

Expressions and Assignment 223

strides, or substring ranges. It is not necessary for these expressions to be evaluated if,
for example, the array section can be shown to be zero-sized or the substring can be
shown to be of a zero-length by other means. For example, in the expression

A (1:0) + B (expr1:expr2)

expr1 and expr2 need not be evaluated as the conformance rules for intrinsic operations
require that the section of B be zero sized.

7.4 Special Expressions

Expressions may appear in many places. In many contexts, expressions are restricted in
some way. There are two particularly important special categories of expressions. Ex-
pressions that need to be evaluated at compile time are called initialization expres-
sions—they can be used for variable initialization or kind values. Expressions that need
to be evaluated on entry to a subprogram at the time of execution are called specifica-
tion expressions; they can be used as array bounds and character lengths in specifica-
tion statements, for example. Figure 7-1 shows the relationship between these
categories of expressions.

7.4.1 Initialization Expressions

An initialization expression is built up from constants or attributes which are constant. In
an initialization expression

1. Each primary is one of the following:

a. a literal or named constant, or a subobject of a constant

b. an array constructor

Specification Initialization

General

Figure 7-1 Diagram describing relationships between the kinds of expressions

224 Chapter 7

c. an implied-DO variable within an array constructor

d. a structure constructor

e. a reference to a standard elemental intrinsic function

f. a reference to a standard transformational intrinsic function other than NULL

g. a reference to NULL where any type parameter for its argument that is
assumed or defined is an initialization expression

h. a reference to IEEE_SELECTED_REAL_KIND from the intrinsic module
IEEE_ARITHMETIC (14.3)

i. a specification inquiry (7.4.2.1)

j. a kind type parameter of the derived type being defined

k. an initialization expression enclosed in parentheses

2. Each operation is intrinsic.

3. Each subscript, section subscript, starting and ending point of a substring range,
type parameter value, and argument of an intrinsic function (except for a specifica-
tion inquiry) must be an initialization expression.

4. Each component of a structure constructor must be an initialization expression, ex-
cept that one corresponding to an allocatable component must be a reference to the
intrinsic function NULL.

5. Each element of an array constructor must be an initialization expression.

6. Each expression specifying the initial, final, or stride value in an implied-DO in an
array constructor must be an initialization expression.

7. If a specification inquiry designator or function argument is not an initialization
expression, it must be a variable whose properties being inquired about are not as-
sumed, not deferred, and not defined by an expression that is not an initialization
expression.

8. If a specification inquiry depends on a type parameter or array bound, it must be
specified prior to the specification inquiry, but not in the same entity declaration
(5.1). See the examples below.

Examples of initialization expressions follow.

3.0E+01 A real literal constant

[7, (I, I = 1, 10)] An array constructor

RATIONAL (1, 2+J) A structure constructor where RATIONAL is a
derived type and J is a named integer constant

Expressions and Assignment 225

7.4.2 Specification Expressions

A specification expression is restricted to using constants and variables whose values can
be determined on entry to a scoping unit before any executable statement is executed.
For example, variables that are dummy arguments, are in a common block, are in a host
program unit, or are in an accessible module can appear in a specification expression.
Specification expressions are used as bounds for arrays and length parameter values in
type declarations, attribute specifications, dimension declarations, and other
specification statements. Usually specification expressions are evaluated at run-time as a
subprogram begins execution; however, simple forms are often evaluated at compile-
time.

In order to describe specification expressions, a slightly more general sort of ex-
pression, a general specification expression, is defined first. A specification expression
is then defined to be a general specification expression with a scalar integer value; the
general category is used to describe what can occur within a specification expression,
for example, as a function argument. In the statement

Real :: X(INT(TAN(3.14)))

TAN(3.14) is a general specification expression and INT (TAN(3.14)) is a specification
expression. A general specification expression is called a restricted expression in the
Fortran standard.

LBOUND (A,1)+3 A reference to an inquiry intrinsic function where A
is an explicit-shape array

LOG (2.0) An intrinsic function

INT (N, 2) An intrinsic function where N is a named constant

KIND (X) An intrinsic function where X is a real variable with
a known type parameter

I/3.3 + J**3.3 A numeric expression where I and J are named
integer constants

SUM (A) A reference to a transformational intrinsic function
where A is a named integer array constant

KIND (0.0D0) An inquiry function with a constant argument

SELECTED_REAL_KIND (6, 30) An inquiry function with constant arguments

4.0 * ATAN(1.0) A reference to an intrinsic function to compute an
approximation to p

ceiling(DIGS/log10(radix(0.0)))
References to intrinsic functions to compute the
number of model digits equivalent to a given
number of decimal digits DIGS

226 Chapter 7

A general specification expression is an expression that has the following limita-
tions.

1. Each primary is one of the following:

a. a literal or named constant, or a subobject of a constant

b. an object designator with a base object (6.2) that is a dummy argument with
neither the OPTIONAL nor the INTENT (OUT) attribute.

c. an object designator with a base object that is in a common block

d. an object designator with a base object that is made accessible from a module
or the host

e. an array constructor

f. an implied-DO variable within an array constructor

g. a structure constructor

h. a specification inquiry (7.4.2.1)

i. a reference to a standard intrinsic function that is not a specification inquiry

j. a reference to a specification function (7.4.2.2)

k. a type parameter of the derived type being defined

l. a general specification expression enclosed in parentheses

2. Each operation is intrinsic.

3. Each subscript, section subscript, starting and ending point of a substring range,
type parameter value, and argument of a function (except for a specification inqui-
ry) must be a general specification expression.

4. Each element of an array constructor must be a general specification expression or
an implied-DO variable.

5. Each expression specifying the initial, final, or stride value in an implied-DO must
be a general specification expression.

6. Each component of a structure constructor must be a general specification expres-
sion.

7. Each designator and function argument in a specification inquiry must be a general
specification expression or it must be a variable whose properties being inquired
about are not assumed, not deferred, and not defined by an expression that is not
a general specification expression.

8. Each final subroutine invoked must be pure.

Expressions and Assignment 227

Rules and restrictions:

1. When a specification expression is evaluated, it must not directly or indirectly
invoke any procedure defined by the subprogram in which it appears. Neither a
recursive reference to the subprogram in which the specification expression appears
nor a reference to any contained internal procedures or statement functions is
allowed.

2. A specification expression that is not also an initialization expression may appear
only within the specification part of a subprogram or the type specification of a
FUNCTION statement, but not in the main program. For example, the variable N
in the program segment:

INTEGER N
COMMON N
REAL A(N)

is providing a value that determines the size of the array A. This program segment
must not appear in a main program but may appear in the specification part of a
subprogram.

Specification expressions are often used to declare the dimensions of dummy argu-
ments or temporary arrays as in the following example:

Subroutine Example (A, B, C, N)

 Use values, only: J, K
 Real :: A (N, J+2, 2*K-1)
 Real :: B (Size(A))
 Integer :: C (Dot_Product ([J, K, N], [J, K, N])
 Real :: Temp (N, N)

A specification function (7.4.2.2) may be used in the declaration of bounds. The fol-
lowing example illustrates the declaration and use of specification functions.

MODULE SPEC_FNS
IMPLICIT NONE

 PUBLIC :: N_ROWS, N_COLS
CONTAINS

PURE FUNCTION N_ROWS(X)
INTEGER :: N_ROWS
REAL, INTENT(IN) :: X(:,:)
N_ROWS = SIZE(X,DIM=1)

END FUNCTION N_ROWS

228 Chapter 7

PURE FUNCTION N_COLS(X)
INTEGER :: N_COLS
REAL, INTENT(IN) :: X(:,:)
N_COLS = SIZE(X,DIM=2)

END FUNCTION N_COLS
END MODULE SPEC_FNS

SUBROUTINE S(A)
 USE SPEC_FNS
 IMPLICIT NONE
 REAL :: A(:,:)
 REAL :: TEMP(N_ROWS(A), N_COLS(A))
 REAL :: TEMP_TRANSPOSE(N_COLS(A), N_ROWS(A))
 . . .

 END SUBROUTINE S

7.4.2.1 Specification Inquiry

A specification inquiry is one of the following:

1. an array inquiry function (13.3.1.4)

2. the bit inquiry function BIT_SIZE

3. the character inquiry functions LEN or NEW_LINE

4. the kind inquiry function KIND

5. a numeric inquiry function (13.3.1.3)

6. a type parameter inquiry (6.3)

7. an IEEE inquiry function (Table 14-4, Table 14-9, B)

7.4.2.2 Specification Functions

A function is a specification function if it

1. is pure,

2. is not a standard intrinsic function,

3. is not an internal function,

4. does not have a dummy argument that is a procedure,

5. is not a statement function, and

6. has an explicit interface.

7.4.3 Differences Between Specification and Initialization Expressions

Initialization expressions are not a subset of specification expressions because the re-
sult of an initialization expression can be of any type, whereas the result of a specifica-

Expressions and Assignment 229

tion expression must be of type integer and scalar. Also, specification expressions are
not a subset of initialization expressions because specification expressions allow certain
variables (such as dummy arguments and variables in common blocks) to be primaries,
whereas initialization expressions do not allow such variables. Table 7-8 summarizes
the allowed properties of the two forms of expressions.

There is a good deal of commonality between the forms of general, specification,
and initialization expressions; context determines which is required. For example:

Subroutine EXAMPLE (A)
 Integer, Parameter :: Two = 2
 Real, Dimension(2) :: A
 Print *, 2

In the second line, the 2 is an initialization expression. In the next line, it is a specifica-
tion expression and in the last line it is a general expression.

7.4.4 Uses of Specification and Initialization Expressions

An expression used in the following contexts must be a specification expression (7.4.2):

1. as an array bound in a type declaration specification

2. as a length type parameter value in a type declaration specification or character
specification

Table 7-8 Differences and similarities between initialization and specification expressions

Kind of expression

Property Initialization Specification

Integer result Yes Yes

Any noninteger result Yes No

Scalar result Yes Yes

Array or structure result Yes No

Variables as primaries (limited to dummy arguments, common
objects, host objects, module objects)

No Yes

Intrinsic functions of any type Yes1 Yes

Specification functions No Yes

Specification inquiry Yes Yes

Only constants as primaries Yes No

Only constant subscripts, strides, character lengths Yes No
1With restrictions on NULL

230 Chapter 7

Note that in some cases, such as a declarations for an item in a common block, the
specification expression must also meet the requirements for an initialization expres-
sion.

An expression used in the following contexts must be an initialization expression
(7.4.1).

1. as the value following the equal sign in a PARAMETER statement and in a type
declaration statement with the PARAMETER attribute

2. as a subscript or substring range expression of a data object in a DATA statement

3. as a value in a DATA statement value list

4. as a kind type parameter value in a type specifier, type declaration statement, or
constant

5. as the default value for a type parameter in a derived-type definition

6. as the default value for a component in a derived-type definition

7. as a value in an enumerator

8. as an initial value in a type declaration statement

9. as the name in a BIND attribute

10. as an ASYNCHRONOUS specifier in an input/output control list

11. as a length specifier for a character statement function or one of its dummy argu-
ments

12. as a bound in an explicit-shape array dimension in some contexts

13. as a length type parameter value in a type declaration specification or character
specification in some contexts

14. as a length specifier for an entity with the VALUE attribute

15. as an actual argument for a KIND dummy argument of an intrinsic function

16. as a case value in the CASE statement

17. as a subscript or substring range expression of an equivalence object in an EQUIV-
ALENCE statement

18. as a part of any of the above items

The following rules and restrictions apply to the use of initialization and specifica-
tion expressions.

Expressions and Assignment 231

Rules and restrictions:

1. If an entity is implicitly typed and then is explicitly declared in a subsequent type
declaration statement, it must confirm the implicit type and type parameters.

PARAMETER (K = 2, X = 3.0)
REAL X ! Valid
REAL K ! Invalid

2. If an element of an array is referenced in one of these expressions, the array bounds must
be specified in a prior specification.

3. If a specification or initialization expression depends on an attribute or value of an
entity defined in the same specification part, the attribute or value must have been
completely specified in a prior specification.

A prior specification in the above cases may be in the same specification statement,
but to the left of the reference and not in the part of the statement specifying the entity.
For example, the following declarations are valid:

INTEGER, DIMENSION(4), PARAMETER :: A = [4,3,2,1]
REAL, DIMENSION(A(2)) :: B, C(SIZE(B) + 1)

B and C are of size 3 and 4 respectively. But the following declaration is invalid be-
cause SIZE (E) precedes E:

REAL, DIMENSION(2) :: D(SIZE(E)), E ! Invalid

The following also is invalid because the size of X is specified in the same entity
declaration (5.1) as the occurrence of SIZE(X):

REAL :: X(9) = SIZE(X) ! Invalid

The following is an example using specification expressions to declare a working
array with the same shape as the dummy argument array.

SUBROUTINE S(A)
REAL :: A(:,:)
REAL :: WORK(SIZE(A,DIM=1), SIZE(A,DIM=2))
 . . .
END SUBROUTINE S

7.5 Assignment

A common use of the result of an expression is to give a value to a variable. This is
done with an assignment statement. For example,

RUG = BROWN + 2.34 / TINT

232 Chapter 7

Assignment involves the evaluation of an expression and the use of the result to es-
tablish the value of a variable. In the assignment statement example above, the expres-
sion on the right of the assignment symbol (=) is evaluated and assigned to the variable
RUG.

There are five forms of assignment: intrinsic, defined, pointer, masked array, and
indexed parallel array.

Examples of the five forms of assignment are:

7.5.1 The Assignment Statement

The assignment statement is used for intrinsic assignment and defined assignment; its
form is

variable = expression

The assignment statement is used to assign a value to a nonpointer variable of any
type or to the target associated with a pointer variable. It defines or redefines the value
of the variable or the target, as appropriate. In general, the value is determined from
the result of evaluation of the expression on the right-hand side of the equal sign.

Rules and restrictions:

1. The variable must not be a whole assumed-size array (5.4.1.4); however, it may be
an element or section of an assumed-size array.

7.5.2 Intrinsic Assignment

An assignment statement is an intrinsic assignment if it does not meet the require-
ments (12.5.4.3) of a defined assignment statement.

Rules and restrictions:

1. Assignment of an array to a scalar is not allowed, even if the size of the array is 1.

2. The variable must not be polymorphic.

3. The types and kind parameters of the variable and expression in an intrinsic as-
signment statement must be as given in Table 7-9.

4. If the variable and expression are of type character with different kinds, each must
be either default, ASCII, or ISO 10646 kind.

X = X + 1 Intrinsic assignment for reals

POLAR_0 = (0.0, 0.0) Defined assignment for a derived type

PTR => X Pointer assignment

WHERE (Z /= 0.0) A = B / Z Masked array assignment

FORALL (I=1:N) A(I) = 1.0/I Indexed parallel assignment

Expressions and Assignment 233

5. If the expression is an array, it must have the same rank as the variable. If the vari-
able is not allocatable, the shapes of the variable and the expression must conform.

6. If the variable is a pointer, it must be associated with a target and the target must
satisfy all of the conditions required of the variable.

Before the assignment begins, any necessary type conversions are completed if the
variable has a different numeric type or type parameter from the expression. For nu-
merical and logical types, the conversion is the same as that performed by the conver-
sion intrinsic functions INT, REAL, CMPLX, and LOGICAL, as specified in Table 7-10;
for the character type, see below.

For character assignment, if the variable and expression have different character
kinds, the value of each character c in the expression is converted to the character kind
of the variable by applying ACHAR (IACHAR(c), KIND(variable)). If a character in the
expression is not representable in the character kind of variable, the result is processor
dependent. If the variable and expression have different lengths and the expression
length is greater than the length of the variable, characters are truncated from the right of
the expression. If the variable length is greater than the expression length, blank

Table 7-9 Type and type parameter requirements for the variable and expression in an intrinsic
assignment

Variable Expression

Integer, real, or complex Integer, real, or complex

ISO 10646, ASCII, or default
character kind

ISO 10646, ASCII, or default character kind

Other character kind Character with the same kind as the variable

Logical Logical

Derived type Same derived type and same kind parameters as the
variable; each length parameter must be the same as
that of the variable unless the variable is allocatable
and its corresponding length parameter is deferred

Table 7-10 Conversion performed on an expression before assignment

Type of
the variable Value assigned

Integer INT (expression, KIND (variable))

Real REAL (expression, KIND (variable))

Complex CMPLX (expression, KIND (variable))

Logical LOGICAL (expression, KIND (variable))

234 Chapter 7

characters are appended on the right of the expression. Except for default, ASCII, and
ISO 10646 character kinds, the blank padding character is processor dependent.

The evaluation of subscript and section subscript expressions that are part of the
expression or part of the variable and the complete expression on the right-hand side of
the equal sign is performed before any portion of the assignment is performed. This may
require temporary storage to hold values before they can be stored into the variable,
however, the as-if rule often allows the compiler to optimize temporary storage. For ex-
ample, in evaluating a character string expression on the right-hand side of an assign-
ment, the values in the variable on the left-hand side may be used, as in

DATE (2:5) = DATE (1:4)

This is not the same as the similar appearing DO loop

DO I = 1, 4
 DATE(I+1 : I+1) = DATE (I : I) ! not the same thing
END DO

It is, however, the same as

DO I = 4, 1, -1
 DATE(I+1 : I+1) = DATE (I : I)
END DO

Compilers are free to evaluate the expressions and perform the assignments in an
order that avoids use of temporary storage.

Similarly, all subscripts and substrings are established before any values are as-
signed.

A = [1, 2]
A(A) = A(A) + 1 ! Increments A(1) and A(2) by 1

Array assignment is element-by-element but the order is not specified. If A and B
are real arrays of size 10, in the whole array assignment:

A = B

the first element of B would be assigned to the first element of A, the second element
of B would be assigned to the second element of A, and this would continue element-
by-element for 10 elements. The assignment of elements, however, may be performed
in any order, as long as the effect is as if all elements were assigned simultaneously.

When a scalar is assigned to an array, the assignment behaves as if the scalar is
broadcast to an array of the shape of the variable; it is then in shape conformance with
the variable. In the example:

REAL A(10)
A = 1.0

all ten elements of the array A are assigned the value 1.0.

Expressions and Assignment 235

The evaluation of expressions in the variable on the left-hand side, such as sub-
script expressions, must have no affect on, nor be affected by, the evaluation of the ex-
pression on the right-hand side. The right-hand side expression is evaluated
completely before any assignment is made to a variable on the left-hand side. (As usu-
al, this requirement that the expression on the right be evaluated first is specifying the
semantics of the statement and does not imply that an implementation must perform
the computation in this way if there is an equivalent order that computes the same re-
sult.)

Consider the case where the variable is allocatable. If it is allocated, but if the ex-
pression has a different shape or any of the corresponding length parameters differ, the
variable is deallocated. Whether originally unallocated or deallocated as described in
the previous sentence, it is allocated with each deferred type parameter equal to the
corresponding type parameter of the expression, with the same shape as the expres-
sion, and with each lower bound equal to the corresponding lower bound of the ex-
pression. Regardless of the original state of the variable, it will be allocated with shape
and length parameters to match the expression. The assignment then proceeds as an
ordinary array assignment as described above.

Note that even if A is an allocatable array, A(:) is not an allocatable array; it is an
array subsection.

integer, dimension(:), allocatable :: a
a = [1, 2, 3] ! Size of a becomes 3
a = [1, 2, 3, 4] ! Size of a becomes 4
a(:) = [1, 2, 3] ! Illegal because a(:) is size 4 and not allocatable

If the variable is not allocatable and the variable and expression are of character
type with different lengths, the assignment occurs as follows: if the length of the vari-
able is less than that of the expression, the value of the expression is truncated from the
right; if the length of the variable is greater than the expression, the value of the ex-
pression is filled with blanks on the right. The character used as the blank character for
default, ASCII, or ISO 10646 character kind is the Fortran blank character and otherwise
is a blank padding character specified by the processor (3.1.2).

If an allocatable variable of type character has deferred length, the variable as-
sumes the length of the expression. For example

character(len=:), allocatable :: c
c = "Brahms"
print *, len(c)

c(:) = "Beethoven"
print *, len(c)

prints the value 6 in both cases. In the first assignment, c is an allocatable variable and it
assumes the length of the expression, 6. In the second assignment, c(:) is not a variable, it
is a character substring, and, therefore, does not have the allocatable attribute. Ordinary
assignment takes place, the length remains 6, and the new value is Beetho. Deferred
length characters provides much of the functionality of what is commonly called
“variable length character strings”. Similar functionality can be provided by derived
types with a length parameter.

236 Chapter 7

Derived-type intrinsic assignment is performed as if the assignment were expand-
ed, component-by-component with corresponding elements from the variable and the
expression, into separate assignment statements. Each assignment is processed as fol-
lows:

1. If the component is a pointer, pointer assignment (7.5.5) is used.

2. If the component is not allocatable, is not a pointer, and there is a type-bound as-
signment available, that defined assignment is used.

3. If the component is not allocatable, is not a pointer, and there is no type-bound as-
signment available, intrinsic assignment, following the rules given above, is used.
This is true even if a non-type-bound defined assignment is available.

4. If the component is allocatable

a. if it is allocated, it is deallocated.

b. if the corresponding component of the expression is allocated, the variable
component is allocated with the same dynamic type and type parameters and,
if it is an array, with the same bounds. The value of the expression component
is then assigned to the variable component using defined assignment if there is
a consistent type-bound assignment available; otherwise, intrinsic assignment
is used.

If the variable is a subobject, the assignment does not affect any of the parts of the
object not designated.

7.5.3 Defined Assignment

Defined assignment is an assignment operation provided by a subroutine with the ge-
neric specifier ASSIGNMENT (=) (12.5.4.3). When the variable and expression in the
assignment statement are of intrinsic types and do not satisfy the type matching rules
in Table 7-9 or are of different derived types, a defined assignment operation will be
used. Defined assignment also may replace the intrinsic assignment operation for de-
rived types.

The effect of the defined assignment on variables in the program is determined by
the referenced subroutine.

Rules and restrictions:

1. There must be an accessible generic interface for the subroutine with the generic
specifier of the form ASSIGNMENT (=). This can be either in an interface block or a
type definition (12.5.4.3, 4.4.7)

2. The types and kind type parameters of the variable and expression in the assign-
ment statement must be compatible with the dynamic types of those of the dummy
arguments.

Expressions and Assignment 237

3. For a nonelemental subroutine, the rank of the variable and the expression in the
assignment must match the ranks of the corresponding dummy arguments of the
subroutine. For an elemental subroutine, the variable must be an array and the ex-
pression must be conformable with the variable, or both the variable and expres-
sion must be scalar. If the variable and expression match both the interface to a
nonelemental and elemental subroutine, the nonelemental subroutine defines the
assignment operation.

Example:

INTERFACE ASSIGNMENT (=)

ELEMENTAL SUBROUTINE RATIONAL_TO_REAL (L, R)
IMPORT RATIONAL
TYPE (RATIONAL), INTENT (IN) :: R
REAL, INTENT(OUT) :: L

END SUBROUTINE RATIONAL_TO_REAL

ELEMENTAL SUBROUTINE REAL_TO_RATIONAL (L, R)
IMPORT RATIONAL
REAL, INTENT(IN) :: R
TYPE (RATIONAL), INTENT (OUT) :: L

END SUBROUTINE REAL_TO_RATIONAL

END INTERFACE

The above interface block specifies two defined assignments for two assignment opera-
tions in terms of two external subroutines, one for assignment of objects of type RA-
TIONAL to objects of type default real and another for assignment of objects of type
default real to objects of type RATIONAL. With this interface block, the following as-
signment statements are defined:

REAL R_VALUE
TYPE (RATIONAL) RAT_ARRAY(10)

R_VALUE = RATIONAL (1, 2)
RAT_ARRAY = 3.7

The second example is equivalent to

CALL REAL_TO_RATIONAL (RAT_ARRAY, (3.7))

7.5.4 Polymorphic Assignment

There is the restriction that the variable on the left of an intrinsic assignment statement
must not be polymorphic. However, it is possible to assign to a polymorphic variable
using a defined assignment. In the following example, the two assignment statements
in the main program assign a value of two different types to the variable X.

238 Chapter 7

module types
 integer, parameter, public :: &
 red = 1, blue = 2, green = 3
 type, public :: line_type
 real :: x, y
 end type line_type
 type, public, extends(line_type) :: painted_line_type
 integer :: color
 end type painted_line_type
 type, public, extends(line_type) :: labeled_line_type
 character(len=99) :: label
 end type labeled_line_type
end module types

module poly_assign_mod
 use types
 interface assignment(=)
 module procedure poly_assign_sub
 end interface
 private :: poly_assign_sub
 public :: assignment (=)
contains
subroutine poly_assign_sub(v, e)
 class(line_type), intent(in) :: e
 class(line_type), intent(out), allocatable :: v
 allocate (v, source = e)
end subroutine poly_assign_sub
end module poly_assign_mod

program p
use types
use poly_assign_mod
class(line_type), allocatable :: line

line = painted_line_type(1.1, 2.2, blue)
 . . .
line = labeled_line_type(4.4, 6.6, "long")
 . . .
end program p

Note that in subroutine poly_assign_sub, v is an INTENT (OUT) variable and
therefore deallocated on entry to poly_assign_sub. The subroutine then allocates v
with the dynamic type and value of e.

7.5.5 Pointer Assignment

A pointer is a variable that points to another object. The term pointer association is
used for the concept of “pointing to” and the term target is used for the object associ-
ated with a pointer.

Expressions and Assignment 239

A pointer assignment associates a pointer with a target, and terminates any
previous association for that pointer. If the target is a disassociated or undefined point-
er, the pointer becomes disassociated or undefined, respectively.

There are two forms of pointer assignment, data pointer assignment and procedure
pointer assignment.

There is no pointer analog to defined assignment; all pointer assignments are in-
trinsic.

7.5.5.1 Data Pointer Assignment

The forms of a data pointer assignment are (R735):

data-pointer-object [(bounds-specification-list)] => data-target
data-pointer-object (bounds-remapping-list) => data-target

where a data pointer object (R736) has one of the forms:

variable-name
structure-component

a data target (R739) has one of the forms:

variable
expression

a bounds specification is of the form (R737):

lower-bound :

and a bounds remapping is of the form (R738):

lower-bound : upper-bound

If the variable on the right of => has the TARGET attribute, the pointer object on
the left of => becomes associated with this target.

If the variable on the right of => has the POINTER attribute and is associated, the
pointer object on the left of => points to the same data that the target points to after the
pointer assignment statement is executed. If the variable on the right of => has the
POINTER attribute and is disassociated or if the expression on the right is a reference
to the intrinsic function NULL, the data pointer object on the left of => becomes disas-
sociated.

If the variable on the right of => has the POINTER attribute and has an undefined
association status, the association status of the data pointer object on the left of => be-
comes undefined.

Data pointer assignment associates the pointer with the new target. If the pointer
was previously associated with allocated memory, the assignment does not deallocate
the old memory. This can cause memory leaks.

240 Chapter 7

Rules and restrictions:

1. If the pointer object is a variable name, the name must have the POINTER at-
tribute. If the pointer object is a structure component, the component must have
the POINTER attribute.

2. If the target is not unlimited polymorphic, the pointer object must be type compat-
ible with the target and the corresponding kind type parameters must have the
same value.

3. If the target is unlimited polymorphic, the pointer object must be unlimited poly-
morphic, of a sequence derived type, or of a type with the BIND attribute.

4. If the target is a variable, it must have the TARGET or POINTER attribute.

5. The target expression must be a pointer. The only form of expression which satisfies
this restriction is a function whose result is a pointer. This can a defined operation, a
user written function, or the intrinsic function NULL.

6. The target must not have a vector subscript.

7. If the target is allocatable, it must be allocated.

8. If there is a bounds list, the number of bounds must be the same as the rank of the
pointer object.

9. If there is a bounds remapping list, the number of bounds remappings must be the
same as the rank of the pointer object.

10. If there is a bounds remapping list, the target must have rank one; otherwise, the
ranks of the pointer object and the target must be the same.

11. If there is a bounds remapping list, the target must not be a disassociated or
undefined pointer. If s is the size of the target, s must be greater than or equal to the
size of the pointer object. The first s elements of the target, in array element order,
become the target of the pointer object.

12. If the pointer object is polymorphic, it assumes the dynamic type of the target.

13. If the pointer object is of a type that has the BIND attribute or is of a sequence type,
the dynamic type of the target must be the same type.

14. If the pointer object is not polymorphic and the target is polymorphic with a
dynamic type that differs from its declared type, the assignment will be to the
ancestor component of the target that has the same type as the pointer object;
otherwise, the assignment is to the target.

15. If the target is a disassociated pointer, all nondeferred type parameters of the de-
clared type of the pointer object must be the same as the corresponding type pa-
rameters of the target. Otherwise, all nondeferred type parameters of the declared

Expressions and Assignment 241

type of the pointer object that correspond to nondeferred type parameters of the
target must have the same value as the corresponding type parameters of the tar-
get.

16. If the pointer object has nondeferred type parameters that correspond to deferred
type parameters of the target, the target must not be an undefined pointer.

17. The target must not be a whole assumed-size array. If it is an array section of an as-
sumed-size array, it must have a subscript or a triplet section with the upper bound
specified in the last dimension.

18. If the target of a pointer must not be referenced or defined, the pointer must not be
referenced or defined while it is an alias of that target.

Note that, when a pointer appears on the right side of => in a pointer assignment,
the pointer on the left side of => is defined or redefined to be associated with the target
of the pointer on the right side of the =>. To put it another way, the pointer on the right
does not become the target of the pointer on the left; this does not create “a pointer to
a pointer”.

Examples:

MONTH => DAYS(1:30)
PTR => X(:, 5)
NUMBER => JONES % SOCSEC
HEAD_OF_CHAIN => NULL()

An example where a target is another pointer is:

REAL, POINTER :: PTR, P
REAL, TARGET :: A
REAL B
A = 1.0
P => A
PTR => P
B = PTR + 2.0

This program segment defines A with the value 1.0, associates P with A; then PTR is
associated with A, not with P. The value assigned to B in the regular assignment state-
ment is 3.0, because the reference to PTR in the expression yields the value of the target
A which is the value 1.0.

If the pointer object is an array, the pointer assignment statement establishes the
extents for each dimension of the array. If bounds remapping is specified, the extents
and lower and upper bounds are specified by the remapping. If no bounds remapping
is specified, the extents are those of the target. If a bounds specifier is present, it speci-
fies the lower bounds; otherwise the lower bounds for each dimension are the same as
the result of the LBOUND (7.2.4, A) function applied to that dimension. For example,
if the following statements have been processed:

242 Chapter 7

INTEGER, TARGET :: T(11:20)
INTEGER, POINTER :: P1(:), P2(:)
P1 => T
P2 => T(:)

the extents of P1 are those of T, namely 11 and 20, but those of P2 are 1 and 10, because
T(:) has a section subscript list.

Bounds specifications and remapping may be used to define the subscript extents
in the pointer object.

REAL, TARGET :: DATA(1000)
REAL, POINTER :: DP(:), DQ(:), DR(:)
 . . .
DP(FIRST:LAST) => DATA(FIRST:LAST)
DQ => DATA(FIRST:LAST)
DR(0:) => DATA(FIRST:LAST)

In the first case, DP is assigned with a simple form of bounds remapping and will
have lower and upper bounds of FIRST and LAST, respectively. In the second case, no
subscripts are specified for DQ and it will have 1 and LAST-FIRST+1 as its lower and
upper bounds, respectively. In the last case, a bounds specification is used and DR will
have bounds of 0 and LAST-FIRST, respectively.

Bounds remapping may also be used to give multi-dimensional views of a rank one
array.

REAL, DIMENSION(1000*1000), TARGET :: LOTSA_DATA
REAL, DIMENSION(:, :), POINTER :: SQUARE, SMALL_SQUARE
REAL, DIMENSION(:), POINTER :: DIAGONAL
SQUARE(1:1000, 1:1000) => LOTSA_DATA

SQUARE is a two-dimensional representation of the data
A target array may have triplets for subscripts. With the definitions above and

DIAGONAL => LOTSA_DATA(1 : : 1001)
SMALL_SQUARE => SQUARE (1 : 10, 1 : 10)

DIAGONAL is an alias of the diagonal of SQUARE and SMALL_SQUARE is an alias for
the upper left corner of SQUARE.

Pointers may become associated using the ALLOCATE (6.7.1) statement instead of
a pointer assignment statement. Pointers may become disassociated using the DEAL-
LOCATE (6.7.3) or NULLIFY (6.7.2) statements, as well as with the pointer assignment
statement.

A pointer may be used in an expression (see 7.2.2.1 for the details). Briefly, any ref-
erence to a pointer in an expression, other than in a pointer assignment statement or in
certain procedure references, yields the value of the target associated with the pointer.
When a pointer appears as an actual argument corresponding to a dummy argument
that has the POINTER attribute, the reference is to the pointer and not the value. Note
that a procedure must have an explicit interface (12.5.1) if it has a dummy argument
with a POINTER attribute.

Expressions and Assignment 243

7.5.5.2 Procedure Pointer Assignment

Procedure pointer assignment is similar to data pointer assignment, except that the
pointer must be a procedure pointer and the target must be a procedure.

The form of a procedure pointer assignment is (R735):

procedure-pointer-object => procedure-target

where a procedure pointer object has one of the forms (R740):

procedure-pointer-name
structure-component

and a procedure target has one of the forms (R742):

procedure-name
procedure-component-reference
expression

If the procedure target is not a pointer, the procedure pointer object is pointer asso-
ciated with the target. If the procedure target is a pointer, the procedure pointer object
assumes the definition status of the pointer target and, if the pointer target is associat-
ed, the procedure pointer becomes associated with the same target.

Procedure pointers are declared with the PROCEDURE statement (5.11).

Rules and restrictions:

1. If the pointer object is a structure component, the component must be a procedure
pointer.

2. The target expression must be a pointer. The only form of expression which satisfies
this restriction is a function whose result is a pointer. This can be a defined
operation, a user written function, or the intrinsic function NULL.

3. If the target is a procedure name, it must be the name of an external procedure,
module procedure, dummy procedure, a specific intrinsic function (not marked
with a asterisk in Table 13-1), or a procedure pointer. However, it must not be a
nonintrinsic elemental procedure.

4. If the pointer object has an explicit interface, it must have the same characteristics
(12.5.1.1) as the target, except that the pointer need not be pure or elemental, even
if the target is.

5. If the characteristics of either the pointer object or the target require an explicit in-
terface, both must have an explicit interface.

6. If the pointer object has an implicit interface and is typed or referenced as a func-
tion, the target must be a function; if it is referenced as a subroutine, the target must
be a subroutine.

244 Chapter 7

7. If both the pointer and target are functions, they must have the same type; corre-
sponding type parameters must either have the same value or must both be de-
ferred.

8. If the target is the name of both a specific and generic intrinsic procedure, only the
specific procedure is associated with the pointer.

Examples:

PROCEDURE, POINTER :: PP
PROCEDURE (REAL) :: BESSEL
 . . .
PP => BESSEL

TYPE :: T
 REAL :: X
 PROCEDURE(REAL), POINTER :: TPP
END TYPE T

INTRINSIC :: SORT

TYPE(T) :: TP
 . . .
TP % TPP => SQRT ! TPP becomes associated with the specific SQRT

ABSTRACT INTERFACE

 FUNCTION EXT_FCN(X)
 REAL :: X
 REAL :: EXT_FCN
 END FUNCTION
END INTERFACE
PROCEDURE (EXT_FCN), POINTER :: P
PROCEDURE (EXT_FCN) :: GAMMA

P => GAMMA

In this example, the abstract interface EXT_FCN declares functions that have one
real argument and return one real result. After execution of the pointer assignment
statement, the pointer P points to the GAMMA function.

7.5.6 Masked Array Assignment—WHERE

Sometimes, it is desirable to assign only certain elements of one array to another array.
The masked array assignment often is used for such selective assignment, as the fol-
lowing example illustrates:

REAL, DIMENSION(10,10) :: A, RECIP_A
...

WHERE(A /= 0.0)
RECIP_A = 1.0 / A ! Assign only where the

! elements are nonzero.

Expressions and Assignment 245

ELSEWHERE
RECIP_A = 1.0 ! Use the value 1.0 for

! the zero elements.
END WHERE

The first array assignment statement is executed for only those elements where the
mask A /= 0.0 is true. Next, the second assignment statement (after the ELSEWHERE
statement) is executed for only those elements where the same mask is false. If the val-
ues of RECIP_A where A is 0 are never used, this example can be simply written using
the WHERE statement rather than the WHERE construct as follows:

WHERE(A /= 0.0) RECIP_A = 1.0 / A

A masked array assignment is an intrinsic assignment statement in a WHERE
block, an ELSEWHERE block, or a WHERE statement for which the variable being as-
signed is an array. The WHERE statement and WHERE construct appear to have the
characteristics of a control statement or construct such as the IF statement and IF con-
struct. But there is a major difference; every assignment statement in a WHERE con-
struct is executed, whereas at most one block in the IF construct is executed. Similarly,
the assignment statement following a WHERE statement is always executed. For this
reason, WHERE statements and constructs are discussed here under assignment rather
than under control constructs.

In a masked array assignment, the assignment is made to certain elements of an ar-
ray based on the value of a logical array expression serving as a mask for picking out
the array elements. The logical array expression acts as an array-valued condition on
the following:

• elemental intrinsic operations

• elemental intrinsic function references

• elemental user-defined operations

• elemental user-defined function references

• intrinsic assignment

• elemental user-defined assignment

for each array assignment statement in the WHERE statement or WHERE construct.

7.5.6.1 Form of the WHERE Construct

The form of the WHERE construct (R744) is:

[where-construct-name :] WHERE (logical-expression)

[where-body-construct] ...
[ELSEWHERE (logical-expression) [where-construct-name]

[where-body-construct] ...]
 ...

246 Chapter 7

[ELSEWHERE [where-construct-name]
[where-body-construct] ...]

END WHERE [where-construct-name]

and a where body construct (R746) is one of:

assignment-statement
where-construct
where-statement

Note that a FORALL is not allowed in a WHERE construct, although a WHERE
may appear in a FORALL.

The logical expression that appears on the initial WHERE statement forms a mask
that controls the evaluation of expressions and assignment of values in array assign-
ment statements that appear in the WHERE body constructs. If a logical expression ap-
pears on an ELSEWHERE statement, that statement is referred to as a masked
ELSEWHERE statement. That logical expression further restricts the mask, as de-
scribed below in 7.5.6.2, that would otherwise apply to the WHERE body constructs
following the ELSEWHERE statement.

Rules and restrictions:

1. In each assignment statement in a WHERE construct, the variable being defined
must have the same shape as the mask. If a WHERE construct contains a masked
ELSEWHERE statement or if one of the WHERE body constructs is a WHERE
statement or another WHERE construct, each mask expression must have the same
shape.

2. Each statement and construct in a WHERE construct is executed in sequence as it
appears in the construct. Subsequent masks may use the assigned values.

3. Each mask is evaluated only once. Subsequent changes to the values of entities in
the logical expression that defines the mask have no effect on the value of the con-
trol mask.

4. A defined assignment (12.5.4.3) in a WHERE construct must be defined by an ele-
mental subroutine (12.7.2).

5. In a WHERE construct, only the WHERE statement may be a branch target.

7.5.6.2 Execution of a WHERE Construct

Except as described below, an elemental operation or function within the expression or
variable of an assignment statement in the construct is evaluated only for the elements
corresponding to true values in the control mask. For example:

REAL, DIMENSION(10, 20) :: A, SQRT_A
 . . .

Expressions and Assignment 247

WHERE (A>0.0)
 SQRT_A = SQRT(A)
END WHERE

Square roots are calculated only for positive elements of A.
If an array constructor appears in a logical expression or an assignment statement

in the construct, the array constructor is evaluated completely without any mask con-
trol.

Nonelemental function references in a logical expression or the variable or expres-
sion of an assignment statement in the construct are completely evaluated even though
all elements of the resulting array may not be used. For example:

REAL A(2,3), B(3,10), C(2,10), D(2,10)
INTRINSIC MATMUL
 . . .
WHERE (D<0.0)
 C = MATMUL(A,B)
END WHERE

The matrix product A × B is performed, yielding all elements of the product. The only
elements of C assigned a value are those corresponding to elements of D that are neg-
ative.

When a WHERE construct is executed, both a control mask and a pending control
mask are established. It is the control mask that governs the execution of the following
block of statements. If the WHERE construct is not a nested WHERE construct, the con-
trol mask, mask, has the value of the logical expression. The pending control mask has
the value .NOT. mask. The calculation of the mask and the pending mask for subse-
quent blocks in a WHERE construct can be illustrated with the following example.

WHERE (C1) ! Statement 1
 . . . ! Block 1
ELSEWHERE (C2) ! Statement 2
 . . . ! Block 2
ELSEWHERE ! Statement 3
 . . . ! Block 3
END WHERE

Following execution of statement 1, the control mask has the value C1 and the
pending control mask has the value .NOT. C1. Following execution of statement 2, the
control mask has the value (.NOT. C1) .AND. C2 and the pending control mask has
the value (.NOT. C1) .AND. (.NOT. C2). Following execution of statement 3, the con-
trol mask has the value of the pending control mask (.NOT. C1) .AND. (.NOT. C2).
This complicated looking formulation has a simple effect: it guarantees that each corre-
sponding location in the various conformable arrays will only be processed once. The
expression for the pending control mask is equivalent to .NOT. (C1 .OR. C2 .OR. ...).
Once an element in the control mask becomes true, the corresponding element in the
pending control mask will become false. No subsequent ELSEWHERE (logical expres-
sion) block will process that element because the pending control mask is ORd with

248 Chapter 7

the expression mask for each subsequent block. The process acts as if there were a
pending control mask with all true values for the WHERE logical expression. The final
ELSEWHERE block (if there is one) will process all of the elements that were not pro-
cessed by any previous blocks (the ones that still have a true in the pending control
mask), and only those elements.

If the WHERE construct in the example above is a nested WHERE construct, it ap-
pears in a block that is governed by a control mask outer-mask. The control mask for
Block 1 of the nested construct is then outer-mask .AND. C1 and the pending control
mask is .NOT. (outer-mask .AND. C1). The following control masks and pending con-
trol masks are calculated from these initial masks as above. Only elements selected by
outer-mask can be processed in the inner nested WHERE construct. On execution of the
inner END WHERE statement, the control mask reverts to outer-mask. This is also the
case for a nested WHERE statement.

Consider:

INTEGER :: N(9) = [1,2,3,4,5,6,7,8,9]
WHERE (MOD (N,2) == 0)
 N = 2 ! N is now [1 2 3 2 5 2 7 2 9]
ELSEWHERE (MOD (N,3) == 0)
 N = 3 ! N is now [1 2 3 2 5 2 7 2 3]
ELSEWHERE (MOD (N,5) == 0)
 N = 5 ! N is now [1 2 3 2 5 2 7 2 3]
ELSEWHERE
 N = 0 ! N is now [0 2 3 2 5 2 0 2 3]
ENDWHERE

The masks for the various blocks are shown in Table 7-11.

7.5.6.3 WHERE Statement

The form of the WHERE statement (R743) is:

WHERE (logical-expression) array-assignment-statement

It is equivalent to the WHERE construct

Table 7-11 Masks for various WHERE blocks

Statement
Mask expression
value Control mask

Pending control
mask

before block (as if) [T T T T T T T T T]

where block [F T F T F T F T F] [F T F T F T F T F] [T F T F T F T F T]

first elsewhere block [F F T F F T F F T] [F F T F F F F F T] [T F F F T F T F F]

second elsewhere block [F F F F T F F F F] [F F F F T F F F F] [T F F F F F T F F]

final elsewhere block [T F F F F F T F F]

Expressions and Assignment 249

WHERE (logical-expression)
 array-assignment-statement
END WHERE

Examples:

WHERE(TEMPERATURES > 90.0) HOT_TEMPS = TEMPERATURES
WHERE(TEMPERATURES < 32.0) COLD_TEMPS = TEMPERATURES

7.5.7 Indexed Parallel Array Assignment—FORALL

The FORALL statement and construct provide a mechanism to specify an indexed par-
allel assignment of values to an array for the following sorts of formulas often found in
mathematical treatises:

aij = i + j, for i = 1 to n, j = 1 to m

or

aii = bi, for i = 1 to n

The first formula above can be translated into nested DO loops:

DO J = 1, M
 DO I = 1, N
 A(I,J) = I + J
 END DO
END DO

But this formulation does not allow for the optimization that can be achieved on some
computers when array notation is used.

FORALL statements and constructs provide a notational convenience, but also, be-
cause of the rules that govern their execution, they express data parallel computations
that can be optimized on certain machine architectures. However, they sometimes are
less efficient than a corresponding nest of DO loops on other machine architectures. One
of the rules that is imposed is that any procedures referenced in the FORALL body or
the mask expression must be pure (12.7.1). A pure procedure is one that is virtually
free of side effects.

The Fortran array assignment statement requires that the expression on the right-
hand side be conformable with the array on the left. The first formula above can be ex-
pressed in Fortran with an array assignment that makes use of the SPREAD intrinsic
function on the right side to create a conformable array:

A = SPREAD ((/ (I, I=1,N) /), DIM=2, NCOPIES=M) + &
 SPREAD ((/ (I, I=1,M) /), DIM=1, NCOPIES=N)

It is not obvious at a glance that this assignment statement has the same effect as
the first formula. A FORALL statement is provided that makes use of array element
and section references to express such calculations more naturally and at the same time
indicate computations that may be executed in parallel.

250 Chapter 7

FORALL (I=1:N, J=1:M) A(I,J) = I+J

The second formula above cannot be expressed with array section notation, but a
FORALL statement can be used to assign the elements of the array B of rank one to the
diagonal of array A:

FORALL (I=1:N) A(I,I) = B(I)

The information in parentheses following the FORALL keyword is called the
FORALL header. The header exerts some control over the following statement or block
of statements. If there is a need to control more than one statement in this way, a
FORALL construct can be used, for example:

FORALL (I=2:N-1, J=2:N-1)
 A(I,J) = (A(I+1,J) + A(I-1,J) + A(I,J+1) + A(I,J-1))/4.0
 B(I,J) = 1.0/A(I+1,J+1)
END FORALL

The statements and constructs that appear between the FORALL statement and
END FORALL statement make up the FORALL body. The following are permitted in a
FORALL body:

1. assignment statements

2. pointer assignment statements

3. WHERE constructs and statements

4. FORALL constructs and statements

Each construct or statement in a FORALL body is completely evaluated in state-
ment order for all selected index values before any evaluation is performed on the next
one. For an assignment statement, such as one of those in the previous example, all ex-
pressions on the right hand side are evaluated for all selected index values and these
evaluations may occur in any order of the selected index values. After all of these eval-
uations have been performed for a particular statement, the assignments for this state-
ment may occur in any order. Thus in the first assignment statement in the construct
above, it is always the original values of the elements in array A that participate in the
calculation. In the second assignment statement, it is the new values of the elements of
array A that determine the values of the elements of array B.

The FORALL statement resembles a loop construct, but its evaluation rules really
treat the statements within the construct as indexed parallel operations, in which a par-
ticular statement is executed for all selected index values before the next statement in
the FORALL body is executed. As such, it is not a control construct, but a special kind
of parallel assignment statement. On the other hand, a DO construct executes each
statement in its range in order for a particular index value and then returns to the first
statement in the range to repeat the computations for the next index value.

Sometimes it is desirable to exclude some elements from taking part in a calcula-
tion. Thus an optional mask expression may appear in a FORALL header. For example,

Expressions and Assignment 251

FORALL (I=1:N, J=1:M, A(I)<9.0 .AND. B(J)<9.0) C(I,J) = A(I) + B(J)

7.5.7.1 Form of the FORALL Construct

The form of the FORALL construct (R752) is:

[forall-construct-name :] FORALL (forall-triplet-specification-list &
[, scalar-logical-expression])

[forall-body-construct] ...
END FORALL [forall-construct-name]

where a forall triplet specification (R755) is:

index-name = scalar-integer-expression : &
scalar-integer-expression [: scalar-integer-expression]

and a forall body construct (R756) is one of:

assignment-statement
pointer-assignment-statement
where-construct
where-statement
forall-construct
forall-statement

Rules and restrictions:

1. The index name is the name of a scalar integer variable. The name has the scope of
the FORALL construct itself. It has the type (which must be integer) and type pa-
rameters it would have if it were the name of a variable in the scope that contains
the FORALL construct, but it has no other attributes. For example:

SUBROUTINE CALC (II, A)
INTEGER :: A(:)
INTEGER, INTENT(IN) :: II
 . . .
FORALL (II = 1:SIZE(A)) !OK even though II is intent IN
 A(II) = II
END FORALL
 . . .
END SUBROUTINE CALC

After execution of the FORALL construct, A has the value (1, 2, 3, ...) and II retains
the value it had on entry to the subroutine. The definition of II in the FORALL con-
struct does not violate the intent specification of IN for II. However, this is such a
confusing style that it is never recommended.

2. An expression that appears in a triplet specification must not contain a reference to
any index name from the list in which the expression appears. Thus, the following
FORALL statement is invalid:

FORALL (I = 1:J, J = 1:N) A(I,J) = 0.0

252 Chapter 7

but can be rewritten as:

FORALL (I = 1:N, J = 1:N, I<=J) A(I,J) = 0.0

3. Any procedure referenced in the scalar logical expression that defines the mask or
in any FORALL body construct (including one referenced by a defined operation
or assignment) must be a pure procedure.

4. An index name must not be assigned a value within the FORALL body constructs.

5. A nested FORALL construct or statement must not use as an index name one of the
index names of an outer construct. The value of an inner construct index name,
however, may depend on the values of outer index variables.

6. A many-one assignment (6.6.4.3) must not occur within a single statement in a
FORALL construct. For example:

FORALL (J=1:20)
 A1(INDEX(J)) = A2(J)
END FORALL

is allowed only if INDEX(1:20) contains no duplicate values. It is possible to assign
or pointer assign to the same object in different statements in a FORALL construct.

7. A FORALL body construct must not be a branch target.

The triplet notation has an interpretation similar to that for section triplets (6.6.4.2);
that is,

scalar-integer-expression : scalar-integer-expression : scalar-integer-expression

corresponds to

first value : last value : stride

The stride may be positive or negative, but not zero; if omitted, it is assumed to be 1.
It is normally the case that each index name in the triplet list appears in the sub-

script or section subscript list of the variable being assigned.
The scalar logical expression defines a mask. A reference to an index name may ap-

pear in the expression. For example:

FORALL (I=1:10, J=1:10, A(I)/=0.0 .AND. B(J)>0.0)
 . . .
END FORALL

An assignment statement in a FORALL body may be an array assignment state-
ment:

REAL A(100,100)
 . . .

Expressions and Assignment 253

FORALL (I=1:N)
 A(I,:) = 1.0 / REAL(I) ! A scalar value is broadcast
 . . . ! to each row of A

or a pointer assignment statement:

TYPE SCREW
 CHARACTER (30), POINTER :: HEAD_TYPE
 REAL LENGTH, THREAD
END TYPE SCREW

TYPE (SCREW) INVENTORY (500)
REAL THREADS (100)
CHARACTER (30), TARGET :: HEAD_TYPES(5)
 . . .
FORALL (I=1:500, INVENTORY(I)%LENGTH > .05)
 INVENTORY(I)%HEAD_TYPE => HEAD_TYPES(MOD(I-1,5)+1)
 ! Subscripts for HEAD_TYPES are 1,2,3,4,5,1,2,3,4,5, ...
 INVENTORY(I)%THREAD = THREADS((I-1)/5+1)
 ! Subscripts for THREADS are 1,1,1,1,1,2,2,2,2,2,3,3,3,3,3, ...
END FORALL

or a defined assignment (12.5.4.3).

7.5.7.2 Execution of a FORALL Construct

There are three steps in the execution of a FORALL construct:

1. determination of the values for index name variables

2. evaluation of the mask expression, if there is one

3. execution of the body constructs

Determination of the values for index name variables. The scalar integer expressions
in a triplet are evaluated; they may be evaluated in any order. If necessary, they are
converted to the kind of the index name. They determine the set of values the index
may assume. If the expressions are designated by m1, m2, and m3 (where m3 has the
value 1 if not present), the number of values in the set is determined by the formula
(m2 − m1 + m3) /m3. If this number, call it n, is less than or equal to zero, the execution
of the construct is complete (like the DO construct, the body is not executed). Other-
wise, the set of values for the index name is m1 + (k − 1) × m3, where k = 1, 2, ..., n. The
set of combinations of index values is determined by the Cartesian product of the sets
of values defined by each triplet specification.

Evaluation of the mask expression. If there is no mask expression, it is as if it were
present with the value true. Otherwise, the expression is evaluated for each combina-
tion of index values. The active combination of index values is then the subset of all
possible combinations (determined in step 1) for which the mask expression has the
value true.

254 Chapter 7

Execution of the body constructs. FORALL body constructs are executed in the order
in which they appear. Each of these constructs is executed for all active combinations
of index values and may be an assignment statement, a pointer assignment statement,
a WHERE construct or statement, or a nested FORALL construct or statement.

1. Assignment statements. An assignment statement has the form

variable = expression

Execution of such a statement within a FORALL construct causes evaluation of the
expression on the right-hand side and all expressions within the variable for all ac-
tive combinations of the index values. These evaluations may be done in any order.
After all of these evaluations have been done, each expression value is assigned to
the appropriate variable. The assignments may occur in any order. If the assign-
ment is a defined assignment (12.5.4.3), the subroutine that defines the assignment
must not contain a reference to any variable that becomes defined by the statement
or any pointer that becomes associated by the statement.

2. Pointer assignment statements. A pointer assignment statement has the form

pointer-object => target

Execution of such a statement within a FORALL construct causes evaluation of all
expressions within the target and the pointer object, the determination of any
pointers within the pointer object, and the determination of the target for all active
combinations of the index values. These evaluations may be done in any order. Af-
terward, each pointer object is associated with the corresponding target. These as-
sociations may be done in any order. The pointer-object may be either a data pointer
or a procedure pointer.

3. WHERE constructs and statements. Each statement in a WHERE construct (7.5.6.1)
within a FORALL construct is executed in sequence. When a WHERE statement,
WHERE construct statement, or masked ELSEWHERE statement is executed, the
statement’s mask expression is evaluated for all active combinations of index val-
ues as determined by the outer FORALL construct (or constructs, if nested) and
masked by any masks from outer WHERE constructs. The assignment statement
within a WHERE statement and any assignment statements within a WHERE con-
struct are then executed for all active combinations of index values masked by the
new control mask in effect for that statement. For example,

INTEGER A(5,4)
 . . .
INT_WHERE: FORALL (I=1:5)
 WHERE (A(I,:) > I) A(I,:) = I
END FORALL INT_WHERE

If A has the initial value

Expressions and Assignment 255

after execution, it will have the value

4. FORALL constructs and statements. Execution of an inner FORALL construct or
FORALL statement causes the evaluation of the expressions in the triplet list of the
inner header for all active combinations of the index values of the outer FORALL
construct. The set of combinations of index values for the inner FORALL is the
union of the sets defined by these expressions for each active combination of the
outer index values. The mask is then evaluated for all combinations of the index
values of the inner construct or statement to produce a set of active combinations
for the statement or statements it controls, which are executed for each active com-
bination of the index values. For example,

INTEGER A(3,3)
 . . .
OUTER: FORALL (I=1:N-1)
 INNER: FORALL (J=I+1:N)
 A(I,J) = A (J,I)
 END FORALL INNER
END FORALL OUTER

If N is 3 and A has the initial value

after execution, it will have the value

0 0 1 2
1 2 3 0
2 4 0 6
1 9 3 6
8 8 8 8

0 0 1 1
1 2 2 0
2 3 0 3
1 4 3 4
5 5 5 5

0 3 6
1 4 7
2 5 8

0 1 2
1 4 5
2 5 8

256 Chapter 7

The transpose of the lower triangle of array A (the section below the main diago-
nal) is assigned to the upper triangle of A.

7.5.7.3 FORALL Statement

The FORALL statement allows a single assignment or pointer assignment statement to
be controlled by a set of index values and an optional mask expression.

The form of the FORALL statement (R759) is:

FORALL (forall-triplet-specification-list [, scalar-logical-expression]) &
 forall-assignment-statement

where a forall assignment statement (R757) is one of:

assignment-statement
pointer-assignment-statement

The FORALL statement is equivalent to the FORALL construct

FORALL (forall-triplet-specification-list [, scalar-logical-expression])
 forall-assignment-statement
END FORALL

The effect of the previous example of nested FORALL constructs can be achieved
with a single FORALL statement:

FORALL (I=1:N-1, J=1:N, J>I) A(I,J) = A(J,I)

8 Block Constructs and Execution Control

• A Block is a bounded sequence of executable constructs and statements that is
treated as a unit. It may be empty.

• A Block Construct has an initial statement and a terminal statement; it contains
zero or more blocks and the statements that bound the blocks. It is used to control
execution or simply to define a region of code.

• The ASSOCIATE Construct allows a named entity, the associate name, to be associ-
ated with a variable or expression during the execution of its single block.

• The IF Construct contains one or more blocks; at most one is chosen for execution.
The choice is based on the value of a logical expression.

• The CASE Construct contains zero or more blocks; at most one is selected for execu-
tion. The selection is based on the value of an integer, character, or logical expres-
sion.

• The SELECT TYPE Construct contains zero or more blocks; at most one is selected
for execution. Rather than a value, as in the CASE construct, the selection is based
on the dynamic type of a variable or expression.

• The DO Construct contains a single block that is executed repeatedly. There are
multiple forms for controlling the execution. A CYCLE statement is permitted at
any point to start the next execution of the block. An EXIT statement terminates the
repetition.

• The IF Statement permits the execution of a single statement if the contained logical
expression evaluates to true.

• The GO TO Statement transfers control to a labeled statement.

• The CONTINUE Statement has no effect on execution.

• The STOP Statement causes termination of the execution of the program.

• The Computed GO TO Statement, the Arithmetic IF Statement, and the nonblock
DO are obsolescent features that use labels.

This chapter describes five block constructs, four of which are execution control con-
structs. It also describes the executable statements that are used to alter the normal ex-
ecution sequence. The block constructs that are control constructs are the IF construct,
the CASE construct, the SELECT TYPE construct, and the DO construct. Individual
statements that alter the normal execution sequence include the EXIT and CYCLE
statements that are special statements for DO constructs, branch statements such as the

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_8, © Springer-Verlag London Limited 2009

258 Chapter 8

GO TO statement, and a statement that causes execution to cease, the STOP statement.
The fifth block construct described in this chapter is the ASSOCIATE construct. Its sin-
gle block defines a region of the program in which an associate name may be used in-
stead of a longer or more complicated variable or expression.

There are two other constructs that look like control constructs, but are really
forms of assignment. These are the WHERE construct (7.5.6), which somewhat resem-
bles an IF construct and the FORALL construct (7.5.7), which somewhat resembles a
DO construct.

With any of the block constructs, construct names may be used to identify the con-
structs and also to identify which DO constructs, particularly in a nest of DO con-
structs, are being terminated or cycled when using the EXIT or CYCLE statements.

8.1 Blocks and Construct Names

A block (R801) has the form:

[execution-part-construct] ...

A block is treated as a whole. Not every statement or construct in a block need be
executed; for example, a branch statement early in the block may prevent subsequent
statements in the block from being executed. This is still a complete execution of the
block.

A control construct consists of zero or more blocks and the control logic that ex-
plicitly or implicitly encloses these blocks. A construct has an initial statement and a
terminal statement. In constructs that have more than one block, there are additional
statements between blocks that determine which block is chosen for execution. The
control for the DO construct determines how many times its block will be executed. An
example of a named executable construct controlling a block of statements is:

INNER: IF (I<=1) THEN ! Initial statement of the IF construct
 X = 1.2*I ! First statement of the block
 Y = COS(X) ! Final statement of the block
END IF INNER ! Terminal statement of the IF construct

All of the block constructs (ASSOCIATE, CASE, DO, IF, and SELECT TYPE), as
well as the FORALL and WHERE constructs, may have construct names. If a construct
name is used, it must appear on the initial statement of the construct and a matching
occurrence of the same name must appear on the terminal statement of the construct. If
there is no construct name on the initial statement, the terminal statement must not
have a construct name. If one of the internal control statements contains a construct
name, it must be the same name as the one on the initial and terminal statements. The
same construct name must not be used for different constructs in the same scoping
unit.

Block Constructs and Execution Control 259

Rules and restrictions:

1. The first statement or construct of a block is executed first. The statements of the
block are executed in order unless there is a control construct or statement within
the block that changes the sequential order.

2. A block, as an integral unit, must be completely contained within a construct.

3. If a block contains a construct, the construct must be completely contained within
the block.

4. A block may be empty; that is, it may contain no statements or constructs at all.

5. A branching statement or control construct within a block that transfers to a state-
ment or construct within the same block is permitted.

6. Exiting from a block may be done from anywhere within the block.

7. Branching to a statement or construct within a block from outside the block is pro-
hibited. (Even branching to the first executable statement within a block from out-
side the block is prohibited.) An ENTRY statement must not appear in a block.

8. References to procedures are permitted within a block.

8.2 The ASSOCIATE Construct

The ASSOCIATE construct has one block in which associate names may be used in-
stead of expressions or variables.

8.2.1 Form of the ASSOCIATE Construct

The form of the ASSOCIATE construct (R816) is:

[associate-construct-name :] ASSOCIATE (association-list)
 block
END ASSOCIATE [associate-construct-name]

where an association has the form (R818):

associate-name => selector

and selector (R819) is one of:

expr
variable

Rules and restrictions:

1. An associate name must not be the same as another associate name in the same as-
sociation list. If an associate name is the same as a name in the scoping unit of the
construct, the name in the construct is interpreted as the associate name (16.1.3(6)).

260 Chapter 8

2. If a selector is not permitted to appear in a variable definition context or is a variable
with a vector subscript, the associated name must not appear in a variable defini-
tion context (16.3.1).

3. If a selector is a variable with the ALLOCATABLE attribute, it must be allocated.
The associate name is associated with the data object and does not have the ALLO-
CATABLE attribute.

4. If a selector is a variable with the POINTER attribute, it must be pointer associated
with a target. The associate name is associated with the target and does not have
the POINTER attribute.

5. If the selector is an optional dummy argument, it must be present.

8.2.2 Execution of the ASSOCIATE Construct

The association between an associate name and a selector is established before the exe-
cution of the block. If the selector is not a variable, the expression is evaluated and the
value of the expression is associated with the associate name. Because the association is
established before the execution of the block, it is not affected by any subsequent
changes to variables that were used in subscripts or substring ranges in the selector.
This process is somewhat similar to what happens in a procedure call with the associ-
ate name taking the role of a local dummy argument.

During execution of the block, each associate name identifies the entity specified
by its selector. This associating entity assumes the declared type and type parameters
of its selector. If the selector is a variable of type character, a substring range may be
appended to the associate name. If the selector is of derived type, a structure compo-
nent may be appended. If the selector is an array, a subscript list or section subscript
list may be appended to the name. If and only if the selector is polymorphic, the asso-
ciating entity is polymorphic, in which case it assumes the dynamic type and type pa-
rameter values of the selector. The associating entity has the ASYNCHRONOUS or
VOLATILE attribute if and only if the selector is a variable and has the attribute. The
associating entity has the TARGET attribute if and only if the selector is a variable and
has either the TARGET or POINTER attribute. Each associating entity has the same
rank as its selector. The lower bound of each dimension is the result of the intrinsic
function LBOUND (13.3.1.4) applied to the corresponding dimension of the selector.
The upper bound is one less than the sum of the lower bound and the extent.

An example with an expression as the selector is:

ASSOCIATE (D => (X-H)**2 + (Y-K)**2)
 PRINT *, SQRT(D)
END ASSOCIATE

These type definitions and declaration are needed in the following three examples
that have variables as the selectors:

TYPE MORE
 INTEGER K, L
END TYPE MORE

Block Constructs and Execution Control 261

TYPE COLLECTION
 REAL X
 INTEGER J
 CHARACTER (80) C
 TYPE (MORE) MMM
END TYPE COLLECTION

TYPE ARRAY_INSIDE
 TYPE (COLLECTION) :: MISC (10, 10)
END TYPE ARRAY_INSIDE

TYPE (ARRAY_INSIDE) AI

1. An example with a variable that is a structure component as the selector is:

ASSOCIATE (COMP => AI % MISC(N, M) % MMM)
 COMP % K = COMP % L + INDEX
END ASSOCIATE

2. An example with a variable of type character as the selector is:

ASSOCIATE (ANS => AI % MISC(N, M) % C)
 ANS (1 : 75) = “FALSE” // ANS (1 : 70)
END ASSOCIATE

3. An example with a variable that is an array section as the selector is:

ASSOCIATE (ARRAY => AI % MISC (I, :) % X) ! ARRAY has 10 elements
 ARRAY (1) = ARRAY (2) + ARRAY (3)
END ASSOCIATE

Without the ASSOCIATE construct, it would be necessary to write:

AI % MISC (I, 1) % X = AI % MISC (I, 2) % X + AI % MISC (I, 3) % X

The following example illustrates several selectors:

ASSOCIATE (IX=>AI%MISC(1,1)%J, VAR=>AI%MISC(:, 1), Q=>EXP (P)*100.0)
 R = VAR % X(IX)*Q
END ASSOCIATE

8.3 Controlling Execution

There is an established execution sequence for action statements in a Fortran program.
It is called the normal execution sequence. Normally, a program or subprogram begins
with the first executable statement in that program or subprogram and continues with
the next executable statement in the order in which these statements appear. However,
there are executable control constructs and executable branching statements that cause

262 Chapter 8

statements to be executed in an order that is different from the order in which they ap-
pear in the program.

There are two basic ways to affect the execution sequence. One is to use an execut-
able construct that selects a block of statements and constructs for execution. The sec-
ond is to execute a statement that branches to a specific statement in the program. In
almost all cases, the use of constructs will result in programs that are more readable
and maintainable.

8.4 The IF Construct and the IF Statement

An IF construct selects at most one block of statements and constructs within the con-
struct for execution. The IF statement controls the execution of only one statement. The
arithmetic IF statement is not the same as the IF statement; it is a branching statement
that is designated as obsolescent and is discussed in 8.8.4.

8.4.1 The IF Construct

The IF construct contains one or more executable blocks; at most one block is chosen
for execution, after which the IF construct is completed and it terminates.

8.4.1.1 Form of the IF Construct

The form of the IF construct (R802) is:

[if-construct-name :] IF (scalar-logical-expression) THEN

 block
[ELSE IF (scalar-logical-expression) THEN [if-construct-name]

block] ...
[ELSE [if-construct-name]

block]
END IF [if-construct-name]

Rules and restrictions:

1. At most one of the blocks in the construct is executed. It is possible that no block is
executed.

2. Any ELSE statement must follow any ELSE IF statements.

3. Branching to an ELSE IF or an ELSE statement is prohibited.

4. Branching to an END IF is allowed from any block within the IF construct.

8.4.1.2 Execution of the IF Construct

The logical expressions in the bounding statements are evaluated in order; when one is
found to be true, the block following it is executed, and the execution of the IF con-
struct terminates. There may be no logical expressions that are true. In this case, the

Block Constructs and Execution Control 263

block following the ELSE statement is executed if there is one; otherwise, no block in
the construct is executed.

Figure 8-1 indicates the execution flow for IF constructs.

An example of the IF construct is:

IF (I < J) THEN
X = Y + 5.0

ELSE IF (I > 100) THEN
X = 0.0
Y = -1.0

ELSE
X = -1.0
Y = 0.0

END IF

If I is less than J, the statement X = Y + 5.0 is executed and execution proceeds fol-
lowing the END IF statement. If I is not less than J and if I is greater than 100, the two
statements following the ELSE IF statement are executed and execution proceeds fol-
lowing the END IF statement. If neither of these conditions is true, the block after the
ELSE statement is executed.

8.4.2 The IF Statement

The IF statement controls the execution of a single statement.

Figure 8-1 Execution flow for IF constructs.

T

F

T

F

T

TF

F

T

T

T

F

F

F

IF THEN

IF THEN
ELSE IF
ELSE IF
ELSE

IF THEN
ELSE IF

IF THEN
ELSE

264 Chapter 8

8.4.2.1 Form of the IF Statement

The form of the IF statement (R807) is:

IF (scalar-logical-expression) action-statement

Example:

IF (S < T) S = 0.0

8.4.2.2 Execution of the IF Statement

The scalar logical expression is evaluated. If true, the action statement is executed. If
false, the action statement is not executed.

Rules and restrictions:

1. The action statement must not be an IF statement or an END statement.

2. If the logical expression contains a function reference, its evaluation may have side
effects that modify the action statement. This is permitted.

A complete list of the action statements can be found in 2.5.3. Fundamentally, ac-
tion statements change the definition state of variables or the condition of the in-
put/output system, or are control statements. Examples of action statements are the
assignment, WRITE, and GO TO statements. Specification statements such as type dec-
laration statements, FORMAT statements, and ENTRY statements are not action state-
ments.

8.5 The CASE Construct

The CASE construct, like the IF construct, consists of a number of blocks, of which at
most one is selected for execution. The selection is based on the value of a scalar ex-
pression in the initial SELECT CASE statement; the value of this expression is called
the case index. The block selected is the one for which the case index matches a case
value in a preceding CASE statement. There is an optional DEFAULT CASE statement
that contains no values, but, in effect, is considered to match all values not matched by
any other case values in the construct. The types of the case index and case values are
limited to the “discrete” types; namely integer, character, and logical. For other types,
the IF construct is available, but for the discrete types, the CASE construct may be
more expressive and more efficient in execution.

8.5.1 Form of the CASE Construct

The form of the CASE construct (R808) is:

[case-construct-name :] SELECT CASE (case-expression)

[CASE case-selector [case-construct-name]
block] ...

END SELECT [case-construct-name]

Block Constructs and Execution Control 265

where case expression is a scalar expression. A case-selector (R813) is one of:

(case-value-range list)
DEFAULT

The forms of a case value range (R814) are:

case-value
case-value :
: case-value
case-value : case-value

where each case value is a scalar initialization expression of the same type as the case
expression. Recall that an initialization expression is an expression that can be evaluat-
ed at compile time.

Rules and restrictions:

1. A CASE DEFAULT statement is optional. If it appears, the general form (R808) of
the CASE construct does not require that such a CASE statement be the last CASE
statement. (This is unlike the IF construct where the ELSE statement must be last.)

2. Within a particular CASE construct, the case expression and all case values must be
of the same type. The kind type parameter values may be different unless the type
is character. If the type is character, different character lengths are allowed, but the
kind type parameter values must be the same.

3. The colon forms of the case values expressing a range may be used for any case
value ranges; the case values must be of type integer and character (but not logi-
cal). For example, a CASE statement of the form

CASE (’BOOK’:’DOG’)

would select all character strings that collate between BOOK and DOG inclusive,
using the processor-dependent collating sequence for the default character type.

4. Overlapping case values and case ranges are prohibited.

An example of the CASE construct is:

FIND_AREA: & ! Compute the area with a formula
 ! appropriate for the shape of the object

 ! CIRCLE, SQUARE, and RECTANGLE are named constants.
SELECT CASE (OBJECT)

CASE (CIRCLE) FIND_AREA
AREA = PI * RADIUS ** 2

CASE (SQUARE) FIND_AREA
AREA = SIDE * SIDE

CASE (RECTANGLE) FIND_AREA
AREA = LENGTH * WIDTH

266 Chapter 8

CASE DEFAULT FIND_AREA
 PRINT *, "Object not recognized."

END SELECT FIND_AREA

8.5.2 Execution of the CASE Construct

The case index (the scalar expression) in the SELECT CASE statement is evaluated and
compared with the case values in the CASE statements preceding the blocks. The case
index must match at most one of the selector values. The block following the case
matched is executed, and the CASE construct terminates. If no match occurs and the
CASE DEFAULT statement is present, the block after the CASE DEFAULT statement is
selected. If there is no CASE DEFAULT statement, the CASE construct terminates with
no block selected for execution. If the case value is a single value, a match occurs if the
index is equal to the case value (determined by the rules used in evaluating the equal-
ity or equivalence operator (7.2.7.1.2). If the case value is a range of values, there are
three possibilities to determine a match depending on the form of the range:

Rules and restrictions:

1. There must not be case values that would select more than one block.

2. Branching to the END SELECT statement is allowed only from within the con-
struct.

3. Branching to a CASE statement is prohibited; branching to the SELECT CASE
statement is allowed, however.

Figure 8-2 illustrates the execution flow for a CASE construct.

Case value range Condition for a match

case-value1 : case-value2 case-value1 ≤ case-index ≤ case-value2

case-value : case-value ≤ case-index

: case-value case-value ≥ case-index

Figure 8-2 Execution flow for a CASE construct.

.

.

Block Constructs and Execution Control 267

Example:

INDEX = 2
SELECT CASE (INDEX)
CASE (1)

X = 1.0
CASE (2)

X = 2.0
CASE DEFAULT

X = 99.0
END SELECT

The case expression INDEX has the value 2. The block following the case value of 2 is
executed; that is, the statement X = 2.0 is executed, and execution of the CASE con-
struct terminates.

Example:

COLOR = ’GREEN’
SELECT CASE (COLOR)
CASE (’RED’)

STOP
CASE (’YELLOW’)

CALL STOP_IF_YOU_CAN_SAFELY
CASE (’GREEN’)

CALL GO_AHEAD
END SELECT

This example uses selectors of type character. The expression COLOR has the value
GREEN, and therefore the procedure GO_AHEAD is executed. When it returns, the ex-
ecution of the CASE statement terminates.

8.6 The SELECT TYPE Construct

The SELECT TYPE construct, like the CASE construct, consists of a number of blocks;
at most one is selected for execution. The selection is based on the dynamic type of an
expression. An optional name may be associated with the expression in the same way
as for the ASSOCIATE construct (8.2). If this option is used, it is as if the SELECT TYPE
construct without the option appeared inside an ASSOCIATE construct with that selec-
tor.

8.6.1 Form of the SELECT TYPE Construct

The form of the SELECT TYPE construct (R821) is:

[select-construct-name :] SELECT TYPE ([associate-name =>] selector)
 [type-guard [select-construct-name]
 block] . . .
END SELECT [select-construct-name]

268 Chapter 8

where type-guard (R823) is one of:

TYPE IS (type-spec)
CLASS IS (derived-type-spec)
CLASS DEFAULT

Rules and restrictions:

1. The selector must be polymorphic.

2. If the selector is not a named variable, associate-name => must appear.

3. If the selector is not permitted to appear in a variable definition context (16.3.1) or
is a variable that has a vector subscript, associate-name must not appear in a vari-
able definition context.

4. Each length type parameter in a type-spec or derived-type-spec must be assumed.

5. A type-spec or derived-type-spec must not specify a sequence derived type or a
type with the BIND attribute.

6. If the selector is not unlimited polymorphic, the type-spec or derived-type-spec
must specify an extension of the declared type of selector.

7. For a given SELECT TYPE construct, the same type and kind type parameter val-
ues must not be specified in more than one TYPE IS type-guard and must not be
specified in more than one CLASS IS type-guard.

8. For a given SELECT TYPE construct, there must be at most one CLASS DEFAULT
type-guard.

If an associate name is specified, it is the associate name of the construct; other-
wise, the associate name of the construct is the name of the variable that is the selector.

8.6.2 Execution of the SELECT TYPE Construct

The SELECT TYPE construct is used to select for execution the most appropriate block
of code for the particular dynamic type and type parameter values of the selector, if
such a block is provided.

If the selector is not a variable, the selector expression is evaluated. At most one
block in the construct is selected for execution. It is the block following the type guard
with a matching type-spec or the DEFAULT block if there is one. A TYPE IS type guard
matches if the dynamic type and type parameter values of the selector are the same as
those of the type-spec. A CLASS IS type guard matches if the dynamic type of the se-
lector is an extension of the specified type and the kind type parameter values speci-
fied by the type-spec are the same as the corresponding type parameter values of the
dynamic type of the selector.

The block to be executed is selected as follows:

Block Constructs and Execution Control 269

1. If the type-spec in a TYPE IS type guard matches that of the selector, the following
block is executed.

2. Otherwise, if exactly one type-spec in a CLASS IS type guard matches the type of
the selector, the following block is executed.

3. Otherwise, if several type-specs in CLASS IS type guards match, one of these will
specify a type that is an extension of all the types specified in the others; the block
following that type guard is executed.

4. Otherwise, if there is a CLASS DEFAULT type guard, the block following it is exe-
cuted.

During execution of the chosen block, the associate name identifies an entity that is
associated with the selector. In the block following a TYPE IS type guard, the associat-
ing entity is not polymorphic (5.2), but has the type named in the type-spec and the
type parameter values of the selector.

 In the block following a CLASS IS type guard, the associating entity is polymor-
phic and has the same declared type as the selector. The type parameter values are
those of the declared type of the selector.

In the block following a CLASS DEFAULT type guard, the associating entity is
polymorphic and has the same declared type as the selector. The type parameter values
are those of the declared type of the selector.

The other attributes of the associating entity: rank, ASYNCHRONOUS, OPTION-
AL, TARGET, and VOLATILE are as described for the ASSOCIATE construct (8.2).

Figure 8-2 illustrates the execution flow of a SELECT TYPE construct as well as
that of a CASE construct; however, the process of selecting a block is not the simple
match of a CASE construct. Figure 8-3 illustrates the block selection process for a SE-
LECT TYPE construct. A TYPE IS guard matches if the dynamic type and type param-
eters values of the selector match the guard. A CLASS IS guard matches if the dynamic
type of the selector is an extension of the type of the guard and the kind type parame-
ter values match.

An example of the SELECT TYPE construct:

TYPE END_PTS
 REAL :: X1, Y1, X2, Y2
END TYPE END_PTS

TYPE LINE
 TYPE (END_PTS) PTS
END TYPE LINE

TYPE, EXTENDS (LINE) :: LINE_W
 REAL :: WIDTH
END TYPE LINE_W

270 Chapter 8

Figure 8-3 Block selection process for a SELECT TYPE construct. A TYPE IS guard matches if
the dynamic type and type parameters values of the selector match the guard. A CLASS IS guard
matches if the dynamic type of the selector is an extension of the type of the guard and the kind

type parameter values match.

Is there a
matching
TYPE IS
guard?

Is there
a matching
CLASS IS

guard?

Is there a
CLASS DEFAULT

guard?

Is there a
more extended matching

CLASS IS
guard?

Execute
its block

Execute last
matching block

Execute
its block

Yes

Yes

Yes

Yes

No

No

No

Obtain selector

No

Block Constructs and Execution Control 271

TYPE, EXTENDS(LINE_W) :: LINE_WC
 CHARACTER (10) :: COLOR
END TYPE LINE_WC

TYPE, EXTENDS (LINE_WC) :: LINE_WCS
 INTEGER STYLE
END TYPE LINE_WCS

TYPE (LINE_W), TARGET :: LW
TYPE (LINE_WCS), TARGET :: LWCS
CLASS (LINE), POINTER :: ANY

ANY => LW
SELECT TYPE (ANY)
 CLASS IS (LINE)
 CALL DRAW (ANY % PTS)
 TYPE IS (LINE_W)
 CALL SET_W (ANY % WIDTH) ! Block selected
 CALL DRAW (ANY % PTS)
 TYPE IS (LINE_WC)
 CALL SET_W C (ANY % WIDTH, ANY % COLOR)
 CALL DRAW (ANY % PTS)
END SELECT

ANY => LWCS
SELECT TYPE (A => ANY)
 CLASS IS (LINE)
 CALL DRAW (A % PTS)
 CLASS IS (LINE_W)
 CALL SET_W (A % WIDTH)
 CALL DRAW (A % PTS)
 CLASS IS (LINE_WC)
 CALL SET_WC (A % WIDTH, A % COLOR)
 CALL DRAW (A % PTS)
 CLASS IS (LINE_WCS)
 CALL SET_S (A % STYLE) ! Block selected
 CALL SET_WC (A % WIDTH, A % COLOR)
 CALL DRAW (A % PTS)
END SELECT

8.7 The DO Construct

The DO construct controls the number of times its single block is executed. The num-
ber may be zero. There are three steps in the execution of a DO construct:

1. First, if execution of the DO construct is controlled by a DO variable, the expres-
sions that determine the number of times the block is to be executed are evaluated.

2. Next, a decision is made as to whether the block is to be executed.

272 Chapter 8

3. Finally, if appropriate, the block is executed; the DO variable, if present, is updat-
ed; and steps 2 and 3 are repeated.

There are three ways of controlling a loop: one involves a loop variable that is in-
cremented with a prescribed value (which may be negative) a certain number of times
as can be calculated from the initial DO statement; the second involves a WHILE con-
dition; and the third is the simple DO, sometimes called a “DO forever”. The execution
of the simple DO construct must be terminated by executing a statement, such as an
EXIT statement, that transfers control out of the DO block.

There is another DO—the nonblock DO (8.7.5). Except for one special form of the
nonblock DO, it is obsolescent. The standard treats this special form of the nonblock DO
as if it were a block construct. The block DO contains all of the functionality of the
nonblock DO. Indeed, both forms permit DO WHILE and DO forever loop control. The
primary difference between the two forms is that the block DO construct is always
terminated by an END DO statement whereas the nonblock DO terminates with an
action statement, and it may share a termination statement with another DO statement.

The first statement of a DO construct or nonblock DO is called a DO statement.
An example of a block DO construct is:

DO I = 1, N
 SUM = SUM + A(I)
END DO

An example of a nonblock DO (which is obsolescent) to perform the same computation
is:

DO 10 I = 1, N
10 SUM = SUM + A(I)

8.7.1 Form of the Block DO Construct

The form of the block DO construct (R826) is:

[do-construct-name :] DO [label] [loop-control]
block

[label] END DO [do-construct-name]

where the two forms of loop control (R830) are:

[,] do-variable = scalar-integer-expression , scalar-integer-expression &

[, scalar-integer-expression]

[,] WHILE (scalar-logical-expression)

The first statement of a DO construct or nonblock DO is called a DO statement.

Rules and restrictions:

1. The DO variable must be a scalar variable of type integer.

2. The expressions must be scalar integer expressions.

Block Constructs and Execution Control 273

3. If a label appears in the initial statement, the terminal statement must be identified
with the same label.

Although a DO construct can have both a label and a construct name, use of both
is not in the spirit of modern programming practice where the use of labels is mini-
mized.

Examples:

SUM = 0.0
DO I = 1, N

SUM = SUM + X (I) ** 2
END DO

FOUND = .FALSE.
I = 0
DO WHILE (.NOT. FOUND .AND. I < LIMIT)

IF (KEY == X (I)) THEN
FOUND = .TRUE.

ELSE
I = I + 1

END IF
END DO

NO_ITERS = 0
DO

! F and F_PRIME are functions
X1 = X0 - F (X0) / F_PRIME (X0)
IF (ABS(X1-X0) < SPACING (X0) .OR. &

NO_ITERS > MAX_ITERS) EXIT
X0 = X1
NO_ITERS = NO_ITERS + 1

END DO

LOOP: DO I = 1, N
 Y(I) = A*X(I) + Y(I)
 END DO LOOP

INNER_PROD = 0.0
DO 10 I = 1, 10

INNER_PROD = INNER_PROD + X (I) * Y (I)
10 CONTINUE

8.7.2 Execution of DO Constructs

There are three forms of the DO construct, each with its own loop control and rules for
execution. These forms are: a DO construct with an iteration count, a DO construct
with WHILE control, and a simple DO construct. Each form of the DO construct may
contain executable statements that alter the sequential execution within the DO block;
in addition, some statements terminate the DO construct as described in 8.7.3.

274 Chapter 8

8.7.2.1 Execution of the DO Construct with an Iteration Count

In this case, an iteration count controls the number of times the DO block is executed.
The form of loop control using an iteration count is:

expression1 , expression2 [, expression3]

Examples of the DO statement are:

DO 10 I = 1, N
DO, J = -N, N
DO K = N, 1, -1

8.7.2.1.1 The Iteration Count
An iteration count is established for counting the number of times the program exe-
cutes the DO block. This is done by evaluating the expressions expression1, expression2,
and expression3, and converting these values to the kind of the DO variable. Let ,

, and be the values obtained. The value of must not be zero. If expression3 is
not present, is given the value 1. Thus:

 is the initial value of the DO variable
 is the limiting value
 is the DO variable increment

The iteration count is calculated from the formula:

MAX ((– +) / , 0)

Note that the iteration count is 0 if:

 > and > 0
 or

 < and < 0

8.7.2.1.2 The Execution Steps
The steps that control the execution of the DO construct with an iteration count are:

1. The DO variable is set to , the initial value.

2. The iteration count is tested. If it is 0, the DO construct terminates.

3. a) If the iteration count is not 0, the DO block is executed.

b) The iteration count is decremented by 1, and the DO variable is incremented by
. Steps 2 and 3 are repeated until the iteration count is 0.

After termination, the DO variable retains its last value, the one that it had when
the iteration count was tested and found to be 0.

The DO variable must not be redefined or become undefined during the execution
of the DO block. Note that changing the variables used in calculating the iteration

m1
m2 m3 m3

m3

m1
m2
m3

m2 m1 m3 m3

m1 m2 m3

m1 m2 m3

m1

m3

Block Constructs and Execution Control 275

count during the execution of the DO construct does not change the iteration count; it
is fixed each time the DO construct is entered.

Example:

N = 10
SUM = 0.0
DO I = 1, N

SUM = SUM + X (I)
N = N + 1

END DO

The loop is executed 10 times; after execution I = 11 and N = 20.

Example:

DO I = 1, 9, 3
 K(I) = 0
END DO

The loop is executed 3 times; after execution I = 10.

Example:

X = 20.0
DO I = 1, 2

DO J = 1, 5
X = X + 1.0

 END DO
END DO

The inner loop is executed 10 times. After completion of the outer DO construct, J = 6,
I = 3, X = 30.0.

If the second DO statement had been

DO J = 5, 1

the inner DO construct would not have executed at all; X would remain equal to 20; J
would equal 5, its initial value; and I would be equal to 3.

8.7.2.2 Execution of the DO Construct with WHILE Control

The DO WHILE form of the DO construct specifies that the DO block will be repeated
while a specified condition remains true.

The form of WHILE control (R830) is:

WHILE (scalar-logical-expression)

Examples of the DO statement with WHILE control are:

DO WHILE(K >= 4)
DO 20 WHILE(.NOT. FOUND)
DO, WHILE(A(I) /= 0)

276 Chapter 8

Prior to each execution of the DO block, the logical expression is evaluated. If it is
true, the block is executed; if it is false, the DO construct terminates.

SUM = 0.0
I = 0
DO WHILE (I < 5)

I = I + 1
SUM = SUM + I

END DO

The loop would execute 5 times, after which SUM = 15.0 and I = 5.

8.7.2.3 Execution of the Simple DO Construct

A DO construct without any loop control allows statements in the DO block to be re-
peated until the DO construct is terminated explicitly by some statement within the
block. When the end of the block is reached, the first executable statement of the block
is executed next.

The form of the simple DO statement (R829) is:

DO [label]

Example:

DO
READ *, DATA
IF (DATA < 0) STOP
CALL PROCESS (DATA)

END DO

The DO block executes repeatedly until a negative value of DATA is read, at which
time the DO construct (and the program, in this case) terminates.

8.7.3 Altering the Execution Sequence within the DO Block

There are two special statements that may appear in the block of any DO construct that
alter the execution sequence in a special way. One is the EXIT statement; the other is
the CYCLE statement. Other statements, such as branch statements, RETURN state-
ments, and STOP statements also alter the execution sequence but are not restricted to
DO constructs as are the EXIT and CYCLE statements.

8.7.3.1 The EXIT Statement

The EXIT statement immediately causes termination of the DO construct. No further
action statements within the block are executed. It may appear in either the block or
nonblock form of the DO construct, except that it must not be the DO termination ac-
tion statement of the nonblock form.

The form of the EXIT statement (R844) is:

EXIT [do-construct-name]

Block Constructs and Execution Control 277

Rules and restrictions:

1. The EXIT statement must be within a DO construct.

2. If the EXIT statement has a construct name, it must be within the DO construct
with the same name; when it is executed, the named DO construct is terminated as
well as any DO constructs containing the EXIT statement and contained within the
named DO construct.

3. If the EXIT statement does not have a construct name, the innermost DO construct
in which the EXIT statement appears is terminated.

Example of the use of the EXIT statement:

LOOP_8 : DO
. . .
IF (TEMP == INDEX) EXIT LOOP_8
. . .

END DO LOOP_8

The DO construct has a construct name, LOOP_8; the DO block is executed repeatedly
until the condition in the IF statement is met, when the DO construct terminates.

8.7.3.2 The CYCLE Statement

In contrast to the EXIT statement, which terminates execution of the DO construct en-
tirely, the CYCLE statement interrupts the execution of the DO block and begins a new
cycle of the DO construct, with appropriate adjustments made to the iteration count
and DO variable, if any. It may appear in either the block or nonblock form of the DO
construct, except it must not be the DO termination action statement of the nonblock
form. When the CYCLE statement is in the nonblock form, the DO termination action
statement is not executed.

The form of the CYCLE statement (R843) is:

CYCLE [do-construct-name]

Rules and restrictions:

1. The CYCLE statement must be within a DO construct.

2. If the CYCLE statement has a construct name, it must be within the DO construct
with the same name; when it is executed, the execution of the named DO construct
is interrupted, and any DO construct containing the CYCLE statement and con-
tained within the named DO construct is terminated.

3. If the CYCLE statement does not have a construct name, the innermost DO con-
struct in which the CYCLE statement appears is interrupted.

278 Chapter 8

4. The CYCLE statement may be used with any form of the DO construct and causes
the next iteration of the DO block to begin, if permitted by the condition control-
ling the loop. Upon interruption of the DO construct, if there is a DO variable, it is
updated and the iteration count is decremented by 1. Then, in all cases, the pro-
cessing of the next iteration begins.

Example:

DO
. . .
INDEX = . . .
. . .
IF (INDEX < 0) EXIT
IF (INDEX == 0) CYCLE
. . .

END DO

In the above example, the loop is executed as long as INDEX is nonnegative. If INDEX
is negative, the loop is terminated. If INDEX is 0, the latter part of the loop is skipped.

Figure 8-4 illustrates the execution flow for various DO constructs, some with EXIT
and CYCLE statements.

8.7.4 Terminating a DO Construct

A DO construct terminates when any of the following situations occur:

1. The iteration count is zero at the time it is tested.

2. The WHILE condition is false at the time it is tested.

3. An EXIT statement is executed that causes an exit from the DO construct or any
DO construct containing the DO construct.

Figure 8-4 Execution flow for DO constructs

simple loop
with EXIT

with EXIT
and CYCLE

with EXITindexed or
WHILE loop

Block Constructs and Execution Control 279

4. A CYCLE statement is executed that causes cycling of any DO construct containing
the DO construct.

5. There is a transfer of control out of the DO construct.

6. A RETURN statement in the DO construct is executed.

7. The program terminates for any reason.

8.7.5 Form of the Nonblock DO

Except for one special form, the nonblock DO is obsolescent; it always uses a label to
specify the terminal statement and construct names are not allowed. The form (R835)
is:

[DO label [loop-control]
 [execution-part-construct] ...] ...
 DO label [loop-control]
 [execution-part-construct] ...
label action-statement

Rules and restrictions:

1. Each occurrence of label must refer to the same label.

2. An action statement that terminates a nonblock DO must not be a CYCLE statement,
an EXIT statement, a GO TO statement, a RETURN statement, a STOP statement, an
arithmetic IF statement, or an END statement for a program or subprogram.

If more than one DO statement appears, the terminal statement is shared. In this
case, it is permitted to branch to the terminal statement only from within the body of
the innermost DO loop. Likewise, a CYCLE statement may appear only in the inner-
most loop. Recall that when a CYCLE statement is executed in a nonblock DO, the ter-
minal action statement is not executed (8.7.3.2). EXIT statements are allowed in an
outer loop body to exit from that outer loop.

Prior to Fortran 90, the nonblock DO was the only loop facility in the language. At
that time, it was considered good programming practice for each loop to terminate
with its own labeled CONTINUE statement, for example:

DO 10 I = 1, N
 . . .
 DO 20 J = 1, M
 . . .
 20 CONTINUE
10 CONTINUE

This was the safest way to create a nest of loops and avoid errors that a program-
mer might make when more than one loop terminates on the same action statement.
Therefore, when the more error prone forms were made obsolescent, this special form
was not. The standard treats this form as if it were a block construct, but it does not

280 Chapter 8

have a terminal statement particular to the form, construct names may not appear, and
the body of the loop is not a block. However, the standard treats the body as a block
and the rules that apply to the block form are extended to this form. The lack of con-
struct names limits the functionality of the form in nested loops, as any EXIT or CY-
CLE statements can refer only to the innermost loop in which they appear—never to an
outer loop. The WHILE form of loop control and the absence of loop control (the sim-
ple loop) are permitted in the nonblock DO.

Examples:

PROD = 1.0
DO 10 I = 1, N
10 PROD = PROD*P(I)

DO 10 I = 1, N
DO 10 J = 1, N
10 HILBERT(I,J) = 1.0 / REAL(I+J-1)

FOUND = .FALSE.
I = 0
DO 10 WHILE(.NOT. FOUND .AND. I < LIMIT)
 I = I + 1
10 FOUND = KEY == X(I)

DO 20 I = 1 ,L
 DO 20 J = I+M
 DO 20 K = 1, N
 IF (T(I, J, K) .GT. ALLOWED) GO TO 999
20 CONTINUE

8.7.6 Conversion from the Nonblock to the Block Form

There is a relatively straightforward translation from obsolescent nonblock loops to the
block form. See Table 8-1.

8.8 Branching

Branching is a transfer of control from the current statement to another statement or
construct in the program unit. A branch alters the execution sequence. This means that
the statement or construct immediately following the branch is usually not executed.
Instead, some other statement or construct is executed, and the execution sequence
proceeds from that point. The terms branch statement and branch target statement are
used to distinguish between the transfer statement and the statement to which the
transfer is made.

The GO TO statement is used to transfer to a statement in the execution sequence
that is usually not the next statement in the program, although this is not prohibited.

The statements that may be branch target statements are those classified as action
statements plus the initial statements for the ASSOCIATE, CASE, DO, FORALL, IF, SE-
LECT TYPE, and WHERE constructs, and a few additional statements in limited situa-

Block Constructs and Execution Control 281

tions. However, it is not permitted to branch to a statement within a block from outside
the block. The additional statements that may be branch targets in limited contexts are:

1. an END ASSOCIATE statement provided the branch is taken from within the AS-
SOCIATE construct

2. an END SELECT statement, provided the branch is taken from within the CASE or
SELECT TYPE construct

3. an END DO statement provided the branch is taken from within the DO construct

4. an END IF statement provided the branch is taken from within the IF construct

5. a DO termination action statement, provided the branch is taken from within the
innermost DO body, but this use is obsolescent

In addition to the statements described in this section, branching also may be
caused by a CALL statement that has an alternate return or an input/output statement
that has an END, ERR, or EOR specifier.

Table 8-1 Conversion of nonblock DO loops to block loops.

Nonblock loop Block loop

DO 10 I = 1, N

 . . .

 IF (. . .) GO TO 20

 . . .

 DO 10 J = 1, M

 . . .

 IF (. . .) GO TO 10

 . . .

10 CONTINUE

20 . . .

DO I = 1, N

 . . .

 IF (. . .) EXIT

 . . .

 DO J = 1, M

 . . .

 IF (. . .) CYCLE

 . . .

 END DO

END DO

DO 10 I = 1, N

 . . .

 IF (. . .) GO TO 20

 . . .

 DO 10 J = 1, M

 . . .

 IF (. . .) GO TO 10

 . . .

10 A (I, J) = . . .

20 . . .

DO I = 1, N

 . . .

 IF (. . .) EXIT

 . . .

 DO J = 1, M

 . . .

 IF (. . .) GO TO 10

 . . .

10 A(I, J) = . . .

 END DO

END DO

282 Chapter 8

8.8.1 Use of Labels in Branching

A statement label is a means of identifying the branch target statement. Any statement
in a Fortran program may have a label. However, if a branch statement refers to a
statement label, some statement in the program unit must have that label, and the
statement label must be on an allowed branch target statement (8.8). The labeled
branch target statement must be in the same scoping unit as the branch statement (that
is, in the same program unit, excluding labels on statements in internal procedures, de-
rived-type definitions, and interface blocks).

As described in 3.2.5, a label is a string of from one to five decimal digits; leading
zeros are not significant. Note that labels can be used in both free and fixed source
forms.

8.8.2 The GO TO Statement

The GO TO statement is an unconditional branch statement.

8.8.2.1 Form of the GO TO Statement

The form of the GO TO statement (R845) is:

GO TO label

8.8.2.2 Execution of the GO TO Statement

When the GO TO statement is executed, the next statement that is executed is the
branch target statement identified with the label specified. Execution proceeds from
that point. For example:

GO TO 200 ! This is an unconditional branch
 ! and always goes to 200.

X = 1.0 ! Because this statement is not labeled and follows
! a GO TO statement, it is not reachable.

GO TO 10
GO TO 010 ! 10 and 010 are the same label.

8.8.3 The CONTINUE Statement

The form of the CONTINUE statement (R848) is:

CONTINUE

Normally, the statement has a label and is used for DO termination; however, it
may serve as some other place holder in the program or as a branch target statement.
It may appear without a label. The statement by itself does nothing and has no effect
on the execution sequence or on program results. Examples are:

100 CONTINUE
CONTINUE

Block Constructs and Execution Control 283

8.8.4 The Arithmetic IF Statement

The arithmetic IF statement is a three-way branch statement based on an arithmetic ex-
pression.

The form of the arithmetic IF statement (R847) is:

IF (scalar-numeric-expression) label , label , label

Rules and restrictions:

1. The same label may appear more than once in an arithmetic IF statement.

2. The numeric expression must not be of type complex.

3. Each statement label must be the label of a branch target statement in the same
scoping unit as the arithmetic IF statement itself.

Execution begins with the evaluation of the expression. If the expression is less
than zero, the branch is to the first label; if equal to zero, to the second label; and if
greater than zero, to the third label. Note that both negative and positive zero are equal
to zero. The arithmetic IF statement is obsolescent.

8.8.5 The Computed GO TO Statement

The computed GO TO statement transfers to one from a list of branch targets based on
the value of an integer expression. The computed GO TO statement is obsolescent; the
CASE construct provides a similar functionality in a more structured form.

The form of the computed GO TO statement (R846) is:

GO TO (label-list) [,] scalar-integer-expression

Examples:

GO TO (10, 20), SWITCH
GO TO (100, 200, 3, 33, 100), 2*I-J

Rules and restrictions:

1. If there are n labels in the list and the expression has the value i between 1 and n,
the value identifies the ith statement label in the list. A branch to the statement
with that label is executed.

2. If the value of the expression is less than 1 or greater than n, no branching occurs.

3. Each label in the list must be the label of a branch target statement in the same
scoping unit as the computed GO TO statement.

4. A label may appear more than once in the list of branch targets.

Example:

284 Chapter 8

SWITCH = . . .
GO TO (10, 11, 10) SWITCH
Y = Z

10 X = Y + 2.
. . .

11 X = Y

If SWITCH has the value 1 or 3, the assignment statement labeled 10 is executed; if it
has the value 2, the assignment statement labeled 11 is executed. If it has a value less
than 1 or greater than 3, the assignment statement Y = Z is executed, because it is the
next statement after the computed GO TO statement, and the statement with label 10 is
executed next.

8.9 The STOP Statement

This statement causes normal termination (2.3.1) of the program. At normal termina-
tion, all input/output units that are connected are closed (9.8). Finalization (4.4.11.3)
does not occur.

The forms of the STOP statement (R849) are:

STOP [scalar-character-constant]
STOP digit [digit [digit [digit [digit]]]]

Rules and restrictions:

1. The character constant or list of digits identifying the STOP statement is optional
and is called a stop code.

2. The character constant must be of default character type. It can have a kind value
provided it is the value for the default character type.

3. When the STOP code is a string of digits, leading zeros are not significant; 10 and
010 are the same STOP code.

The stop code is accessible following program termination. This might mean that
the processor prints this code or sets a program status return code for the operating
system. Examples are:

STOP
STOP "Error #823"
STOP 20

In addition to normal termination, if exceptions (14.3.2) are supported in a scoping
unit and any exception is signaling when a STOP statement is executed, the processor
must issue a warning indicating which exceptions are signaling; this warning must be
on the unit identified by the named constant ERROR_UNIT from the
ISO_FORTRAN_ENV intrinsic module (13.6.1, 14.4).

Normal termination also occurs if the END statement of a main program is execut-
ed, but in this case, exceptions need not be reported.

9 Input and Output Processing

• READ, WRITE, and PRINT statements are used to transfer data to and from files.

• A File is either an external or internal file. An external file may be either a record file
or a stream file. An internal file is a record file.

• A Record is a sequence of data values. The data may be formatted (converted to
characters) or unformatted (not converted). There is also an end-of-file record.

• A Stream file is a sequence of file storage units that are not necessarily organized
into records. It can be used compatibly with C.

• File Connection applies to external files only. The OPEN statement connects a file
to a unit and determines connection properties. The CLOSE statement disconnects
a file from a unit. The INQUIRE statement inquires about the connection proper-
ties.

• Sequential Access is a method of operating on records in sequence starting at the
current file position.

• Direct Access is a method of operating on records by record number; records may
be accessed in any order. All records are of the same length.

• Stream Access is a method of operating on files that reads or writes file storage
units sequentially starting at the current file position.

• Data formatting can be explicit or implicit. List-directed and namelist input/output
are the implicit forms.

• Advancing Input/Output leaves a file positioned between records. Nonadvancing
Input/Output leaves the file positioned within a record.

• Asynchronous Input/Output allows computations to proceed while data is being
transferred. A subsequent WAIT statement synchronizes processing by waiting
until the input/output operation is complete.

• An Internal File is a character variable that is used in place of an external file in a
data transfer statement. The transfer is memory to memory.

• User-Defined Input/Output subroutines allow specialized processing of derived-
type objects.

Fortran input/output statements are designed to accommodate a wide variety of
tasks—reading characters from a terminal, reading or writing disk files, efficiently
transferring huge data files, even transferring data from attached devices such as Gei-
ger counters. Also, the editing capabilities of the data transfer statements for internal

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_9, © Springer-Verlag London Limited 2009

286 Chapter 9

files are so powerful that in conjunction with the character intrinsic functions, they ef-
fectively form a string processing language. Each of these tasks is accomplished using
the Fortran input/output statements described in this chapter.

The input/output statements are:

READ
PRINT
WRITE
OPEN
CLOSE
INQUIRE
BACKSPACE
ENDFILE
REWIND
WAIT
FLUSH

The READ statement is a data transfer input statement that provides a means for
transferring data from an external file to internal storage or from an internal file to in-
ternal storage through a process called reading. The WRITE and PRINT statements are
both data transfer output statements that provide a means for transferring data from
internal storage to an external media or from internal storage to an internal file. This
process is called writing. The OPEN and CLOSE statements are both file connection
statements. The INQUIRE statement is used to make inquiries about file and connec-
tion properties. The BACKSPACE, ENDFILE, and REWIND statements are file posi-
tioning statements.

Most input/output happens synchronously with program execution when a data
transfer statement is executed. Asynchronous input/output allows the processor to
start the data transfer and then continue computations until a subsequent wait opera-
tion synchronizes the input/output operation. This is often called “buffered input/out-
put”; it requires some care to overlap the transfers with the computations. The most
common use of asynchronous input/output is for transferring parts of large data sets
while computations proceed on other parts.

Programmers need to be careful about system-dependent input/output limitations,
especially when doing input/output to devices that have unusual properties, such as
terminals, pipes, or devices like Geiger counters. The processor is not required to per-
form any input/output operation that cannot be supported by the processor or the in-
put/output device. This and other restrictions are described in 9.12.

9.1 Basic Input/Output Concepts

Collections of data are stored in either stream files or record files. In a record file, the
data are organized into a series of records; most data transfer statements process entire
records. In a stream file, the data consists of a sequence of file storage units (9.1.2,
9.5.1.3); most stream data transfer statements process only a few storage units at a
time. The file storage unit is also the basic unit of record length for unformatted

Input and Output Processing 287

records and for the length of any external file. Because stream files are defined in terms
of file storage units, most of the discussion of file storage units is embedded in the dis-
cussion of stream files. The standard recommends that the file storage unit be an 8-bit
octet; most implementations follow that recommendation. The value is given by the
named constant FILE_STORAGE_SIZE from the ISO_FORTRAN_ENV intrinsic mod-
ule (13.6.1). A Fortran record could be a line on a computer terminal or printout, or a
logical record on a magnetic tape or disk file. Most processors add a few hidden con-
trol bytes at the beginning and end of each record to help with the organization; these
control bytes are not part of the Fortran record.

Historically, files were defined in a way that made magnetic tape easy to process.
The tape unit had a physical concept of a “record” and a tape was processed one
record at a time in sequence. BACKSPACE and REWIND statements allowed for basic
repositioning within a file. Obviously, only one reel of tape (one file) could be on a tape
unit at a time. An OPEN statement was analogous to mounting a tape on a unit and a
CLOSE statement was analogous to dismounting the tape and freeing the unit for an-
other use. As both Fortran and input/output systems have improved, more capabilities
have been added to Fortranʹs file processing. But, basic record oriented file processing
remains as the cornerstone for most input/output. Modern disk oriented file systems
often use a somewhat different concept of a “record”. Rather than do the physical in-
put/output one record at a time, they usually block records into natural disk chunks
(sectors or tracks) in order to do the input/output efficiently. One chunk might contain
several small records, or a large record might be split into many chunks.

Because stream and record files might have different physical representations on a
processor, it is not always possible to OPEN a file for stream input/output in one part
of a program and for record input/output in different part of the program or with a dif-
ferent program. Similarly, direct-access and sequential-access files often have different
representations and access might be limited to only one method. The properties of files
and records do not depend on how they are stored on the hardware.

When phrases such as “file properties” or “file is a record file” are used, they are a
shorthand to mean that not only does the file have that property, but also that it has
been connected in a way that lets that property be used. Files can often be viewed in
more than one way; an OPEN statement (9.3) lets a programmer choose or restrict the
particular properties of interest. The set of allowed properties is sometimes restricted
by the operating system and sometimes also by permissions from the owner of the file.
Some programs might be allowed to read and write a particular file, while other pro-
grams might be allowed only to read the file.

9.1.1 Record Files

A record file is a sequence of records; it can be represented schematically with each
box representing a record as shown in Figure 9-1. Although the boxes in the figure are
the same size, records do not always have to have the same size—some or all of them
can be empty and a file does not even have to have any records.

There are three kinds of records: formatted, unformatted, and end-of-file. Format-
ted and unformatted records are collectively called data records. A data record is a se-
quence of values; it can be represented schematically as a collection of small boxes,

288 Chapter 9

each containing a value, as shown in Figure 9-2. A record can be empty and contain no
values; such records can still be read or written.

The records of a file must either be all formatted or be all unformatted, except that
the file may have an end-of-file record as the last record. A formatted record is read or
written by a formatted data transfer input/output statement, and an unformatted record
is read or written by an unformatted data transfer input/output statement. A record file
will either be a formatted file or an unformatted file and cannot be opened in the other
mode.

A formatted record is one that contains a sequence of characters. It might be creat-
ed by a person typing at a terminal or by a Fortran program that converts values into
character strings that form human readable representations of those values. When for-
matted data is read into the computer, the characters are converted to the computer’s
internal representation of values, which is usually a binary representation. Character
values may also be converted from one character representation in the record to anoth-
er internal representation. The length of a formatted record is the number of characters
in it; the length may be zero. A processor may prohibit use of some control characters
(3.1) in formatted files to avoid conflicts with record markers or the file structure.

For example, a record containing the four character values “6”, “,”, “1”, and “1”
might represent the two numbers, 6 and 11. In this case, the record might be represent-
ed schematically as shown in Figure 9-3.

...

Figure 9-1 A record file

. . .

Figure 9-2 Data records

Input and Output Processing 289

An unformatted record is one that contains only unformatted data, usually repre-
sented just as it is stored in computer memory. Unformatted records usually are creat-
ed by running a Fortran program, although with the knowledge of how to form the bit
patterns correctly, they could be created by other means. Unformatted data often re-
quire less space on an external device. Also, it is faster to read and write because no
conversion is required. However, it is not suitable for reading by humans and frequent-
ly it is not suitable for easily transferring data from one computer to another because
the internal representation of values is machine dependent. The length of an unformat-
ted data record is measured in processor-dependent units called file storage units
(9.1.5.3); it may be zero. The length of an unformatted record that is produced by a par-
ticular output list may be determined by the INQUIRE statement (9.9.3). For example,
if integers are stored using a binary representation, an unformatted record, consisting
of two integer values, 6 and 11, might look like Figure 9-4.

The third kind of record is the end-of-file record. There is at most one end-of-file
record in a file and is always the last record of the file. It marks the end of the file. It
may be written explicitly by using the ENDFILE statement. It also may be written im-
plicitly with a file positioning statement (REWIND or BACKSPACE statement) or by
closing the file. End-of-file records can be read or written only when the file is connect-
ed for sequential access. An end-of-file record need not have a physical representation
in the file, it might just be a bookkeeping entry in the file management system. Its form
is processor dependent.

9.1.2 Stream Files

A stream file is a sequence of file storage units. Depending on the file, a stream file
may be connected for either formatted or unformatted access.

Figure 9-3 A formatted record

6 , 1 1

00000110 00001011

Figure 9-4 An unformatted record

290 Chapter 9

Stream files, as the name implies, need not have the record orientation that record
files have. This gives them several advantages over record files. They are designed to
interoperate with C, but can work with almost any nonFortran file structure. They have
a more intuitive structure for some applications, for example, standardized file
interchange formats such as graphic image files. Because they have no required record
structure, they have no maximum record length. Their random access is more flexible
than Fortranʹs direct-access files. The cost of these advantages is that the programmer
often must use more care and handle more of the small details when using stream files.

When a stream file is connected for unformatted access, there is no concept of
records. Each file storage unit may be individually read or written. File storage units
each have a unique position number. Some stream files can be positioned to specific
places by using the position number; others, for example an input stream from a de-
vice such as a data encoder, cannot be positioned.

When creating a formatted stream file, the programmer can use the NEW_LINE in-
trinsic function to insert record markers into the file, which gives the file a record
structure in addition to a stream structure. Each character in a formatted stream file
has a unique position number. However, because of the possibility of record markers,
not all position numbers necessarily correspond to characters in the file. The result of
an INQUIRE statement with a POS specifier must be used if a formatted stream file is
to be positioned other than at its initial point. (9.1.4, 9.4.2, 9.9.1).

9.1.3 External and Internal Files

There are two broad classes of files: those that are located on an external device such as
a disk or magnetic tape, and those contained in character variables internal to the pro-
gram.

The use of these files is illustrated schematically in Figure 9-5.

Figure 9-5 External and internal files

External fileComputer
memory

Data value

Internal file (character variable)

Reading

Writing

Reading Writing

Input and Output Processing 291

9.1.3.1 External Files

External files are located on devices such as tapes, disks, or computer terminals, as op-
posed to program memory. For each external file, there is a set of allowed access meth-
ods, a set of allowed forms, a set of allowed actions, and a set of allowed record
lengths. How these characteristics are established is not described by the standard, but
usually is determined by a combination of requests by the creator of the file, by actions
of the operating system and by details of the device the file is on. Each of these charac-
teristics is discussed later in this chapter. An external file connected to a unit has the
position property. Unless the file is positioned at the beginning or end of the file, a
record file is positioned at the current record (at the beginning or end), or in some cases,
is positioned within the current record, and a stream file is positioned between file
storage units. A file may have a name, but the allowed forms of a file name depend on
the processor.

9.1.3.2 Internal Files

An internal file is a character variable of either default, ASCII, or ISO 10646 kind. These
character values may be created using all the usual means of assigning character val-
ues, or they may be created with an output statement specifying the variable as an in-
ternal file. Data transfer to and from internal files is described in detail in 9.5.1.5. Data
transfer to and from an internal file must use formatted sequential-access input/output
statements; explicit, list-directed, and namelist formatting are allowed.

 The initial value of any connection property (9.3.3) for an internal file is the de-
fault value an external file would have if it were opened with no corresponding speci-
fier. An internal file acts as if it is connected just prior to execution of the input/output
statement and closed at the end of execution.

Because of this, file connection, file positioning, and file inquiry are irrelevant and
cannot be used with internal files. If the internal file variable is a scalar, the file has just
one record; if the variable is an array, the file has one record for each element of the ar-
ray. The order of the records is the order of the elements in the array. If the variable is
an array section, it cannot have vector valued subscripts. The length of each record is
the length of one array element.

Internal files provide a powerful way to convert numeric data to or from charac-
ters. Common usage includes constructing formats where the number of items de-
pends on run-time values, creating file names from data values, and parsing input
strings.

9.1.3.3 Existence of Files

Certain external files are made known to the processor for an executing program.
These files are said to exist for the program. There are circumstances where a file does
not exist for a program. A file might not exist because it is not anywhere on the disks
accessible to a system. A file might not exist for a particular program because the user
of the program is not authorized to access the file. For example, Fortran programs usu-
ally are not permitted to access files belonging to other users or system files, such as
the operating system files. A file which is preconnected (9.1.6.2) does not exist if no
data has been written to the file. For the most part preconnection of a file and its exist-

292 Chapter 9

ence are obsolete concepts; the combination is a left over from early versions of Fortran
before the OPEN statement was added.

In addition to files that are made available to programs by the processor, programs
may create files needed during program execution. When the program creates a file
with an OPEN statement, it exists, even if no data has been written into it. A file no
longer exists after it has been deleted. Any of the input/output statements may refer to
files that exist for the program at that point during execution. Some of the input/output
statements (INQUIRE, OPEN, CLOSE, WRITE, PRINT, FLUSH, REWIND, and END-
FILE) may refer to files that do not exist. READ, BACKSPACE, and WAIT statements
can refer only to files that exist. A file that does not yet exist but has been preconnected
and is referenced by a WRITE, PRINT, or ENDFILE statement will be created and data
put into that file, unless an error condition occurs.

File existence does not apply to internal files. Any character variable has the poten-
tial to be an internal file. The only operations available on internal files are READ and
WRITE.

9.1.4 File Position

Each connected file has a position. During the course of program execution, as data
records are read or written, the file position changes. Also, there are other Fortran
statements that cause the file position to change; an example is the BACKSPACE state-
ment. The action produced by the input/output statements is described in terms of the
file position.

 File position becomes indeterminate when an error condition occurs. The pro-
grammer cannot rely on the file being in any particular position and must do some-
thing, usually a REWIND or CLOSE operation, to put the file in a known state.

The initial point of a file is the point just before the first record. The terminal
point of a file is the point just after the last record. If the file is empty, the initial point
and the terminal point are the same. Initial and terminal points of a file are illustrated
in Figure 9-6.

A file may be positioned between records. In the example pictured in Figure 9-7,
the file is positioned between records 2 and 3. In this case, record 2 is the preceding
record and record 3 is the next record. Of course, if a file is positioned at its initial
point, there is no preceding record, and there is no next record if it is positioned at its
terminal point.

If a record file is positioned within a record as shown in Figure 9-8, that record is
the current record, the preceding record is the record immediately previous to the cur-
rent record, and the next record is the record immediately following the current record.
The first record has no preceding record and the last record has no next record. If the
file is not positioned within a record, there is no current record.

When there is a current record, the file is positioned at the initial point of the
record, between values in a record, or at the terminal point of the record as illustrated
in Figure 9-9.

An internal file is always positioned at the beginning of the first record just prior to
data transfer.

Input and Output Processing 293

Advancing input/output is record oriented and leaves a file positioned between
records even if an input operation does not completely consume a record. If an error
condition occurs, the file position is indeterminate.

In contrast with advancing input/output, nonadvancing input/output usually
leaves the file positioned within a record. The position of a nonadvancing file is never
changed following a data transfer (although it will change during the data transfer),
unless an error, end-of-file, or end-of-record condition occurs while reading the file.
The file position is indeterminate following an error condition when reading a file.

.

.

.

Initial point

Figure 9-6 Initial and terminal points of a file

Terminal

.

.

.

Figure 9-7 A file positioned between records

294 Chapter 9

When a nonadvancing input operation is performed, the end-of-record condition
occurs only if that input attempts to read past the last character in the record. The file
can be positioned after the last character of the record without causing an end-of-
record indication. A subsequent nonadvancing input operation causes an end-of-
record condition to occur, and positions the file after the end of the record. If another
read operation is executed after the end-of-record condition occurs and the record was
the last record of the file, an end-of-file condition occurs. An advancing output opera-
tion often is used after a series of nonadvancing output operations to terminate pro-
cessing of the current record.

9.1.5 File Access Methods

There are three access methods:

.

.

.

Current record

Figure 9-8 A file positioned with a current record

. . .

At initial point Between values At terminal point

Figure 9-9 Positions within a record of a file

Input and Output Processing 295

1. sequential access

2. direct access

3. stream access

Some files may be accessed by any of the methods; other files may be restricted to
only some access methods. For example, a printer is restricted to sequential writing.
While a file is connected, it has a particular access method, determined by the way it
was connected (see OPEN). A file cannot be connected for more than one access meth-
od simultaneously; for example, if a file is connected for direct access, it must be dis-
connected with a CLOSE statement and reconnected specifying stream or sequential
access before it can be referenced in a stream- or sequential-access data transfer state-
ment. Note that stream- and sequential-access input/output statements can look the
same but what they do depends on the file connection access method, whereas direct-
access input/output statements require a REC specifier which is not allowed in either
stream- or sequential-access statements.

In summary, the file access method used to read or write a file is not a property of
the file itself, but is a property of the particular connection. However, the set of al-
lowed access methods for a file is a property of the file, usually determined when the
file is created, although that is operating system dependent.

9.1.5.1 Sequential Access

Sequential access is a method of accessing the records of a record file in order. When
connected for sequential access, the records of the file can be read or written only with
sequential input/output statements. Sequential access to the records in the file typically
begins with the first record of the file and proceeds sequentially to the next records,
record-by-record, as illustrated in Figure 9-10. The records are accessed serially as they
appear in the file. It is not generally possible to begin at some particular record within
the file without reading down to that record in sequential order; however, see 9.3.3 for
the POSITION specifier in an OPEN statement.

When a file is being accessed sequentially, the records are read and written in or-
der of their record number even if the records were written in any arbitrary order us-
ing direct access.

The records in a sequential file are either all formatted or all unformatted records,
except for the end-of-file record, if there is one.

9.1.5.2 Direct Access

Direct access is a method of accessing the records of an external record file in arbitrary
order. While a file is connected for direct access, records can be read or written only
with direct-access input/output statements. The records are selected by a record num-
ber, which must be positive. The records, which must all be the same size, may be read
or written in any order. Therefore, it is possible to write record number 47 first, then
number 13. In a new file, this produces a file represented by Figure 9-11. Either record
may be written without first writing the other. However, direct-access reads are re-
stricted to records that have been written.

296 Chapter 9

Some files can be accessed using either direct or sequential access. A direct-access
file does not have an end-of-file record. If the file can also be accessed sequentially and
has an end-of-file record, the end-of-file record is not considered part of the direct-ac-
cess file.

Because all of the records of a direct-access file are the same size, many processors
store the records in order and pad with empty records where needed. In the example
above, a processor could write 46 empty records, record 47 and then rewrite record 13.
This is neither required nor forbidden by the standard.

Records in a direct-access file cannot be deleted; however, unlike sequential-access
records, they can be rewritten in place.

Records in a direct-access file cannot be read or written using list-directed, name-
list, or nonadvancing input/output.

The records in a direct-access file are either all formatted or all unformatted.

9.1.5.3 Stream Access

Stream access is a method of accessing the file storage units of an external stream file.
When a file is connected for stream access, its file storage units can be read or written
only with stream-access input/output statements. Each file storage unit is uniquely
identified by a positive integer position number. Some stream files can be positioned

.

.

.

record 1

record 2

record 3

record n

Figure 9-10 Sequential access

record 47

record 13

Figure 9-11 A file written using direct access

Input and Output Processing 297

by using the position number of a file storage unit, others, such as a data sampler con-
nected to a Geiger counter, cannot. Other properties of the file and the interpretation of
the position number depend on whether the file is connected for formatted or unfor-
matted access.

For a formatted file, some of the file storage units may contain record markers. On
many systems, the record markers are multibyte codes, often a combination of car-
riage-return and line-feed. If they do, this imposes a record structure on top of the
stream structure. If there are records, they may be any length. The size of the external
device usually limits the record or file size. If there is no record marker at the end of
the last record in a file, the record is, by definition, nonempty and also incomplete
(9.5.1.2).

Because some of the file storage units of a formatted file might be record markers
and not data, some positive integers might not correspond to data. Because of this, a
formatted stream file can be repositioned only to a file storage unit that was previously
written. Just as with output to a nonstream file, if data is written to this point, it over-
writes the existing data and the highest position number written becomes the terminal
point of the file. The POS specifier (9.9.2) in an INQUIRE statement can be used to find
the current position number, which can be used to subsequently reposition the file.
Values returned from an INQUIRE, or the value one, are the only values that can be
used to reposition a formatted stream file.

A processor may prohibit use of some control characters (3.1) in formatted stream
files to avoid conflicts with record markers or the file structure. If a POS specifier is
present in a formatted stream output statement and no characters are written, the only
effect is to position the file.

For an unformatted file, the position number is the sequence number, beginning
with one, of the file storage units in the file; each position number is one more than
that of the preceding file storage unit. If the file can be positioned, then the file storage
units do not have to be read or written in order. The only requirement in the standard
is that a file storage unit cannot be read before it has been written. In this respect, un-
formatted stream files are similar to direct-access files. However, unlike direct access, a
processor might prohibit attempts to write a file storage unit if all previous file storage
units have not been written.

9.1.6 Units

Input/output statements refer to a particular file by specifying an input/output unit.
An input/output unit is either an external unit or an internal unit and a unit is speci-
fied by a scalar integer expression, an asterisk (∗), or a character variable name.

The number of available external units and their numbering are processor depen-
dent. A particular value identifies one and only one external unit in all program units
in a Fortran program. In an input data transfer statement, an asterisk refers to the
numbered unit INPUT_UNIT. In an output data transfer statement, an asterisk refers to
the numbered unit OUTPUT_UNIT. The value INPUT_UNIT and * (in an input
statement) both refer to the default input unit. The value OUTPUT_UNIT and * (in an
output statement) both refer to the default output unit. Note that external unit numbers
must be nonnegative unless they are equal to one of the special unit names. This al-

298 Chapter 9

lows, but does not require, the processor to use negative values to identify special
units.

Traditionally, the asterisk referred to unit 5 for input and unit 6 for output on most
processors. However, that was not a universal convention. To avoid existing differences
between processors, Fortran 2003 introduced the parameter names, INPUT_UNIT,
OUTPUT_UNIT, and ERROR_UNIT in the ISO_FORTRAN_ENV module (13.6.1). Us-
ing INPUT_UNIT and OUTPUT_UNIT, rather than 5 or 6, has a number of advantages
beyond enhanced portability. Not all systems behaved the same way if either unit 5 or
6 were closed, possibly reopened connected to a different file, and then an input/out-
put statement using an asterisk unit was executed. Because most processors try to
maintain compatibility with past practice, doing an OPEN or CLOSE on the special
files or units 5 or 6 should be avoided. The auxiliary input/output statements, such as
OPEN, INQUIRE, and REWIND, do not allow an asterisk for the unit specifier.

The C standard defines three files, standard input, standard output and standard
error. There is no requirement that these files correspond to the similarly named For-
tran files. However, that is the most likely implementation and Fortran subprograms
that read or write INPUT_UNIT or OUTPUT_UNIT should be able to interoperate with
C functions that read or write standard input or standard output. It is probably best to
avoid ADVANCE=ʺNOʺ or tabbing if a C function will be processing the same record.

An internal unit is a character variable of either default, ASCII, or ISO 10646 kind;
it cannot have a vector-valued subscript. An internal unit is also identified by a unit
number if it is the active file in a child input/output statement (9.5.1.4). The phrases
“internal unit” and “internal file” are often used interchangeably.

9.1.6.1 Unit Existence

The collection of unit numbers that can be used in a program for external files is deter-
mined by the processor, but most processors support units numbered between 1 and
99. An INQUIRE statement (9.9) can be used to find out if a particular unit number is
available. The unit numbers that may be used are said to exist. Some unit numbers on
some processors are always used for data input (for example, unit 5), others are always
used for output (for example, unit 6); other values less than 10 are sometimes special
cased by the processor. There may be certain unit numbers that are never allowed for
user files because they are restricted by the operating system. For portable
programming, an INQUIRE statement should be used to determine if a unit exists and
unit numbers should be greater than 10 and less than 100. Input/output statements must
refer to units that exist, except for the CLOSE or INQUIRE statement.

9.1.6.2 Establishing a Connection to a Unit

In order to transfer data to or from an external file, the file must be connected to a unit.
An internal file is always connected to the unit that is the character variable. There are
two ways to establish a connection between a unit and an external file:

1. execution of an OPEN statement in the executing program

2. preconnection by the operating system

Input and Output Processing 299

Only one file can be connected to a unit at any given time and vice versa. If the
unit is disconnected from the file with a CLOSE statement, it may be reconnected to
another file or to the same file. A file that is not connected to a unit cannot be used in
any statement, except the OPEN or INQUIRE statements.

Some units may be preconnected to files by the operating system without any ac-
tion necessary by the program. For example, on most systems, units 5 and 6 are pre-
connected to the default input and default output files, respectively. Preconnection of
units also may be done by the operating system if requested by the user in the operat-
ing system command language. In either of these cases, the user program does not use
an OPEN statement to connect the file; it is preconnected.

Preconnection is primarily a historical method designed to deal with limitations in
early operating systems and versions of Fortran. Modern practice uses an OPEN state-
ment to establish a connection. If preconnection must be used, an INQUIRE statement
should be used to make sure the connection was made and that the appropriate prop-
erties are set for the file.

A standard-conforming program must not attempt any data transfer to or from a
unit unless it has a file connected to it, either by preconnection or by an OPEN state-
ment. However, it is a fairly common extension for processors to relax this requirement
and treat a data transfer to a unit with no connection as if there had been an OPEN of
an empty file with the appropriate properties for the transfer. The file is typically given
a processor-dependent name like FORT.nn or TAPE.nn, where nn is the unit number.
An INQUIRE by unit statement executed before the data transfer would indicate that
the unit is not connected even though it will subsequently behave as if it were connect-
ed. Because this is nonstandard, it should be avoided and OPEN statements should al-
ways be used.

Once a file has been disconnected, the only way to reference it is by its name using
an OPEN or INQUIRE statement. There is no means of referencing an unnamed file
once it is disconnected.

9.2 Input/Output Statement Specifier Lists

The general scheme for Fortran input/output is to connect a file to a unit with an
OPEN statement, perform actions on the file with READ, WRITE, PRINT, position
(BACKSPACE, ENDFILE, or REWIND), WAIT, or FLUSH statements, and then termi-
nate the connection with a CLOSE statement. At any step in the process, an INQUIRE
statement may be used to inquire about properties of the file, unit, or connection.
These input/output statements are described in the following sections. However, many
of the specifiers are common to several statements and are described here. Specifiers
unique to a particular statement are described in the statement description. Many spec-
ifiers are interrelated; if one appears, others may be either required or prohibited.

9.2.1 General form of an Input/Output Statement

The general form of an input/output statement is

statement-name (specifier-list) [variable-list]

300 Chapter 9

The PRINT statement and some forms of the READ and file position statements do
not have specifier lists. These exceptions are noted in the statement descriptions, but
not in the individual specifier descriptions. See 9.2.1.1 below.

Some specifiers provide values which control how the statement will execute; oth-
ers return values which describe the results of execution. Two general rules for specifi-
ers are that no variable which provides a value may also appear in a context where it
would return a value and that no variable which returns a value may appear more than
once in the statement. This also applies to variables used as subscripts or substrings.

Rules and restrictions:

1. Most specifiers have one of two forms, either

[keyword =] variable

or

[keyword =] expression

Specifiers are usually referred to by their keyword name. For example

RECL = nn

is called a RECL specifier. Depending on context, nn can be either a variable and
receive a value after the statement is processed or be an expression and provide a
value when the statement begins execution.

For the UNIT, FMT, and NML specifiers, the keyword is optional in some cases; for
the other specifiers, it is required. If the UNIT= is omitted, the unit specifier must
be the first in the list.

2. No specifier may appear more than once in a given specifier list.

3. Most specifiers for the input/output statements provide values to be used and may
use expressions; others return values and must use variables. Because an expression
can be just a simple variable, the interpretation and rules for something that looks
like keyword = variable depends on context.

4. The value of the character expression for many of the specifiers must be one of the
permitted values for that specifier. Trailing blanks in any specifier value are ig-
nored. The value is interpreted without regard to case.

5. File names are processor dependent and are an exception to the above rule. They
can be in upper or lower case and can have embedded blanks, but not trailing
blanks.

6. Character results will be in upper case when they are values from specific lists. Re-
sults, such as file names or IOMSG variables, that are not restricted to a small set of
values, are processor dependent.

Input and Output Processing 301

7. Most specifiers for the INQUIRE statement return status results and must use vari-
ables.

8. Most specifiers are optional; a UNIT specifier, but not necessarily the UNIT=, is re-
quired in all of the input/output statements, except for the inquire by output list
form.

9. A variable which provides a value to the statement must not be the same as any
other variable which returns a value, must not be used as a subscript or substring
for any other entity in the statement, nor be associated with any variable which is
in the input or output list of a data transfer statement.

10. The value of any variable or expression in a specifier, including its subscript values
and substring bounds, must not affect nor be affected by the definition or evalua-
tion of any other entity appearing in the statement.

The last rule allows the processor to evaluate terms in the statements in any order.
If, for example, the IOMSG variable is subscripted, the processor need not evaluate the
subscript expressions until it detects an error. This allows the normal error-free case to be
processed somewhat more efficiently.

9.2.1.1 Abbreviated Form of Input/Output Statements

For mostly historical reasons Fortran has abbreviated forms of several of the input/out-
put statements. Originally, input/output was simple. The card reader had no user se-
lectable properties. The “Job Control Language” for mounting a tape was a
handwritten note fastened to the card deck with a rubber band. The input/output state-
ments had a correspondingly simple syntax. As operating systems and input/output
devices matured, the syntax also grew to accommodate the new options. For compati-
bility, the original abbreviated forms are still part of Fortran and are often sufficient for
quick and dirty programs. For mature applications, it is usually better practice to use
the general form described above.

Each abbreviated form is exactly equivalent to a general form with a limited speci-
fier list. The abbreviated forms will be used in some of the examples, but will generally
not be described in detail since they are merely special cases of the general form.
Descriptions and rules are usually given in terms of the general form. The corresponding
rules for the special forms can be easily deduced. Table 9-1 shows the abbreviated form
and the corresponding general form.

9.2.1.2 Recursive Input/Output Statements

A recursive input/output statement is an input/output statement executed while an-
other input/output statement is executing. This can occur in a defined input/output
subroutine or if a function referenced in an input/output statement executes any in-
put/output statement.

302 Chapter 9

Rules and restrictions:

1. The recursive input/output statement must not reference an external unit unless it
is a child data transfer statement that references its parent external unit.

2. A recursive input/output statement must not modify any existing internal unit, ex-
cept that a WRITE statement may modify its own internal unit.

3. The restrictions apply to all input/output statements, not just data transfer state-
ments.

Note that an asynchronous input/output statement finishes execution before the
next statement begins execution, even though the data transfer might not be complete.
Thus, input/output statements executed while the transfer is taking place are not recur-
sive.

These rules recognize the common implementation technique of doing internal
transfers directly to or from the internal unit while also allowing the processor to use a
single “system buffer” to hold intermediate results for transfers to or from external
files. Allowing recursive output to different internal files makes it easy to use a func-
tion to format things like dates and times directly in a list.

Example

write(unit, *) pretty_date(day_number)

where pretty_date is an external function that converts a day number into month, date,
and name of the day using internal write statements.

9.2.2 The UNIT Specifier

The UNIT specifier identifies the unit on which the action will be performed. The
forms is one of

[UNIT =] scalar-integer-expression external or child unit
[UNIT =] * default external unit
[UNIT =] character-variable internal unit

Table 9-1 Abbreviated and general forms of some input/output statements

Abbreviated Form Equivalent statement

BACKSPACE scalar-integer-expression BACKSPACE (scalar-integer-expression)

ENDFILE scalar-integer-expression ENDFILE (scalar-integer-expression)

FLUSH scalar-integer-expression FLUSH (scalar-integer-expression)

READ format [, input-item-list] READ (* , format) [input-item-list]

PRINT format [, output-item-list] WRITE (* , format) [output-item-list]

Input and Output Processing 303

Rules and restrictions:

1. An external unit is required in OPEN, CLOSE, position, FLUSH, and WAIT state-
ments; it is optional in an INQUIRE statement

2. A UNIT specifier is required in READ and WRITE statements.

3. If the optional UNIT= is absent, the unit specifier must be first in the specifier list.

An external unit is specified by a scalar integer expression or *. The scalar integer
expression value must be zero, positive, or equal to one of the values of the named con-
stants INPUT_UNIT, OUTPUT_UNIT, or ERROR_UNIT of the ISO_FORTRAN_ENV
module (13.6.1).

Specifying a unit by * is shorthand for either INPUT_UNIT or OUTPUT_UNIT.
These units are preconnected for formatted sequential access. The units associated with
* are processor dependent. On many systems, units 5 and 6 are preconnected for input
and output respectively. On other systems, INPUT_UNIT and OUTPUT_UNIT might
be negative, preventing clashes with programmer selectable unit numbers.

There is another unit preconnected for formatted sequential output, ERROR_UNIT.
The purpose is for error reporting, although the standard itself does not mandate that
any processor detected errors be reported on that unit. The value of ERROR_UNIT
might be the same as OUTPUT_UNIT.

If the unit specified is a character variable, the statement must be a READ or
WRITE statement and the transfer is called an internal read or write (9.5.1.5). In effect,
the character variable acts as the source or destination, respectively, for the data being
transferred. The character variable must not have any vector-valued subscripts; its kind
must be either default character, ASCII character, or ISO 10646 character.

If a parent data transfer statement (9.5.1.4) references an external unit, the value of
the unit argument to the defined input/output subroutine will be value of the external
unit. If the parent data transfer statement is an internal read or write, then the unit val-
ue will be a processor-dependent negative value. Thus, a child data transfer statement
that accesses the defined input/output subroutine’s unit argument might do internal in-
put or output even though the unit is specified by an integer expression.

The relationship between a specific unit number and a file is established either by
an OPEN statement (9.3) or by preconnection (9.1.6.2). Once established, all references
throughout the program to the same unit number will refer to the same connected file.
In effect, file unit numbers and the file they refer to are global to the entire program.
The connection may be broken by a CLOSE statement (9.8) and then the unit may
again be connected to a file by a subsequent OPEN statement.

All of the input/output statements may refer to units that exist; INQUIRE, CLOSE,
and WAIT statements may also refer to units that do not exist. The allowed values for
the unit specifier are processor dependent; numbers in the range 10 to 99 are generally
safe to use portably. An INQUIRE by unit statement (9.9.1) can determine if a unit
number is valid for a particular processor.

304 Chapter 9

9.2.3 Error and Exception Handling Specifiers

These specifiers allow for recovery from some input/output errors or other exceptional
conditions. Control will branch to a labeled statement and/or status variables will be
given a value.

END

Allowed in WAIT and READ statements

EOR

Allowed in WAIT and READ statements

ERR

Allowed in all input/output statements

IOMSG

Allowed in all input/output statements

IOSTAT

Allowed in all input/output statements

Rules:

1. The label must be the label of a branch target statement in the current scoping
unit. The normal rules for transferring into a block apply.

2. If an error is detected, control branches to the ERR label. The position of the
file becomes indeterminate.

3. If an end-of-file is encountered during input, control branches to the END
label.

4. If an end-of-record is encountered during nonadvancing input, control
branches to the EOR label.

5. If an error, end-of-file, or end-of-record occurs, the IOSTAT variable is set to a
processor-dependent nonzero value, as described in 9.6. Otherwise, it is set to
zero, indicating a successful operation.

6. If an error, end-of-file, or end-of-record occurs, the processor will assign an
explanatory message to the IOMSG variable. Otherwise, this variable is
unchanged.

7. In a data transfer statement, the variable in an IOSTAT or IOMSG specifier
must not be the same as or associated with any entity in the input/output item
list or in the namelist group or with the variable specified in the SIZE specifier.

Input and Output Processing 305

8. If a variable in an IOSTAT or IOMSG specifier is an array element, its subscript
values must not be affected by the data transfer, by any implied-do processing,
or with the definition or evaluation of any other specifier in the control
specifier list.

9. If more than one error occurs during execution of an input/output statement, it
is processor dependent which error is reported.

10. A statement might cause multiple operations to be implicitly performed on a
unit. Examples include an OPEN statement performing a close operation, or a
READ statement performing a wait operation. Errors and exceptions from any
of these operations will be processed as if they were caused by the current
statement. The processor does not go back to the initial statement and set its
error variables or use its branch labels.

If an endfile, error, or end of record occurs and there is neither a corresponding
branch label nor an IOSTAT specifier, program execution is terminated. Note that the
presence of an IOMSG specifier does not, by itself, prevent program termination. The
set of errors detected is processor dependent. The details of error and exception pro-
cessing are described under the various input/output statements and also in 9.6.

9.2.4 Changeable Connection Mode Specifiers

These mode specifiers control processing of characters during formatted input/output.
They are allowed only for files connected for formatted input/output.

They are all set on the initial open of a formatted file, either with explicit specifiers
in the OPEN statement or with a default value. These modes remain in effect until a
subsequent reopen for the same unit gives them new values. A READ or WRITE data
transfer statement may change them temporarily for that specific statement execution.
Most also have associated format specifiers that may change the mode as data is being
transferred. With each, there is a corresponding INQUIRE specifier, which returns the
mode currently in effect.

When a data transfer statement terminates, the changeable modes, as well as the
scale factor (10.9.5) revert to the values in effect immediately before the statement be-
gan execution. Values set during one nonadvancing input/output statement do not
propagate forward into subsequent input/output to the same record. Similarly, values
set by a child data transfer statement do not propagate back to the parent data transfer
statement. Values set by the parent do propagate down to the child data transfer state-
ment (where they can be temporarily changed) because the parent does not terminate
when it invokes the child statement. If a child statement changes the modes, they reset
to the parentʹs values when the child input/output statement completes.

These specifiers may appear in OPEN, READ, and WRITE statements as

keyword = scalar-default-character-expression

and in INQUIRE statements as

keyword = scalar-default-character-variable

306 Chapter 9

Some specifiers are not allowed in READ statements, others are not allowed in
WRITE statements, as noted below. The changeable modes set by the OPEN statement
are ignored in these cases.

BLANK (not allowed in WRITE statements)

Controls the interpretation of blanks in numeric fields during explicitly formatted
input (10.2)

NULL ignore all such blanks (default)

ZERO interpret all such blanks except leading blanks as
zeros

A field of all blanks evaluates to zero in both cases. This mode only applies to ex-
plicitly formatted input. List-directed and namelist input use a blank character as a
delimiter, not as part of a numeric value.

Related edit descriptors: -BN, BZ

Related INQUIRE specifier: BLANK

DECIMAL

Sets the character used as the decimal point during numeric conversion (10.5)

COMMA the decimal symbol is ʺ,ʺ

POINT the decimal symbol is ʺ.ʺ (default)

Note that when the decimal mode is COMMA, the separator used between the real
and imaginary part of a complex value and between values in list-directed and
namelist input/output is a “;” rather than a “,”. This separator is referred to as a CS
symbol in this book.

Related edit descriptors: DC, DP

Related INQUIRE specifier: DECIMAL

DELIM (Not allowed in READ statements)

Sets the character used to delimit character values in list directed and namelist out-
put (10.10, 10.11)

APOSTROPHE use the apostrophe (ʹ) as the delimiting character

QUOTE use the quotation mark (ʺ) as the delimiting
character

NONE use no delimiter (default)

Input and Output Processing 307

If the DELIM value is APOSTROPHE, each occurrence of an apostrophe within the
character value is doubled; if the DELIM specifier is QUOTE, each occurrence of a
quote within the character value is doubled. If a DELIM specifier appears, the
statement must perform list-directed or namelist output.

Related edit descriptors: none

Related INQUIRE specifier: DELIM

PAD (Not allowed in WRITE statements)

Controls padding of short records with blanks during formatted input when the
input item list and format specification require more characters than the record
contains.

YES use blank padding (default)

NO requires that the input record contain the data
indicated by the input list and format specification

Rules:

1. The blank padding character used for nondefault character types is processor
dependent.

2. If this specifier has the value YES and an end-of-record condition occurs, the
data transfer behaves as if the record were padded with sufficient blanks to
satisfy the input item and the corresponding data edit descriptor.

Related edit descriptors: none

Related INQUIRE specifier: PAD

ROUND

Sets the rounding mode used for formatted input/output processing (but not for
general computation) (10.9.7)

UP the rounding mode is up

DOWN the rounding mode is down

ZERO the rounding mode is to zero

NEAREST the rounding mode is to nearest

COMPATIBLE the rounding mode is historically compatible

PROCESSOR_DEFINED the rounding mode is processor defined

The default value is processor dependent if not specified in an OPEN statement. It
must be one of the above values, but need not be PROCESSOR_DEFINED.

308 Chapter 9

In the following rules, for input, “representable value” means internal hardware
representation; for output it means the character value produced in the specified
field.

Rules:

1. If the mode is UP, the resulting value will be the smallest representable value
that is greater than or equal to the original value.

2. If the mode is DOWN, the resulting value will be the largest representable
value that is less than or equal to the original value.

3. If the mode is ZERO, the resulting value will be the closest representable value
which is no greater in magnitude than the original value.

4. If the mode is NEAREST, the resulting value will be the closest of the two
nearest representable values if one is closer than the other; otherwise it is
processor dependent which is chosen. On a processor supporting IEEE input
and output, NEAREST will pick the even value.

5. If the mode is COMPATIBLE, the result is the same as for NEAREST unless the
original value is halfway between the two representable values. In such a case,
the value away from zero is selected.

6. If the mode is PROCESSOR_DEFINED, the rounding mode need not
correspond to any of the other modes.

7. On processors that support the IEEE rounding conventions (14.2.8), UP,
DOWN, ZERO, and NEAREST correspond to the respective IEEE rounding
modes.

Related edit descriptors: RU, RD, RZ, RN, RC, RP

Related INQUIRE specifier: ROUND

SIGN (Not allowed in READ statements)

Controls whether or not a plus sign that is optional in numeric output (10.9.4) will
appear

PLUS the optional plus sign will appear

SUPPRESS the optional plus sign will not appear

PROCESSOR_DEFINED appearance of the optional plus sign is processor
dependent (default)

Related edit descriptors: S, SP, SS

Related INQUIRE specifier: SIGN

Input and Output Processing 309

9.3 The OPEN Statement

The OPEN statement establishes a connection between a unit and an external file and
specifies the connection properties or it may modify the existing connection properties.

Once an OPEN statement connects a file to a unit, the connection of the unit to the
file is valid in the main program or any subprogram, unless a CLOSE statement affect-
ing the connection is executed.

If a file exists, the OPEN statement must specify properties that are consistent with
the file properties. For example, ACCESS cannot specify stream unless the stream-ac-
cess method is one of the allowed access methods for the file. If the file does not exist,
the OPEN statement will create it with a set of properties that include those specified
by the OPEN statement. It is processor dependent if other properties are also allowed.
For example, a file opened for direct access might be created to also allow sequential
access.

If a file is already connected to one unit, it must not be connected to a different
unit.

9.3.1 Connecting a File to a Unit

In what is probably the most common situation, the unit is not connected to a file and
the OPEN statement connects an external file to a unit. If the file does not exist, it is
created. If the unit is connected to a file and if the FILE specifier is absent or names the
same connected file, the OPEN statement may be used to change the changeable con-
nection modes as described in 9.2.4. If new values for these specifiers are provided,
they will be used in subsequent data transfer statements; otherwise, the old ones will
be used. This is often called a reopen, although there is no special syntax to indicate
this. The reopen may also contain ERR, IOMSG, and IOSTAT specifiers. They apply
only to the OPEN statement being executed; after that, the values of these specifiers
have no effect. If no ERR or IOSTAT specifiers appear in the new OPEN statement, an
error condition will terminate the execution of the program. If the unit was preconnect-
ed to a file that does not exist and the FILE specifier is absent or names the connected
file, the OPEN statement also creates the file. A reopen statement can only be used to
alter the changeable modes; any other specifiers must be consistent with the existing
connection. If there is a STATUS specifier, it must specify OLD.

If the FILE specifier specifies a different file, the effect is as if a CLOSE statement
(9.8) without a STATUS specifier is executed on the unit and the OPEN statement is
then executed.

If the unit is preconnected to a file that does not exist and there is no FILE specifier,
the OPEN statement creates the file and establishes properties of the connection.

9.3.2 Form of the OPEN Statement

The form of the OPEN statement (R904) is:

OPEN (connection-specifier-list)

where the forms of a connection specifier (R905) are:

310 Chapter 9

[UNIT =] scalar-integer-expression
ACCESS = scalar-default-character-expression
ACTION = scalar-default-character-expression
ASYNCHRONOUS = scalar-default-character-expression
BLANK = scalar-default-character-expression
DECIMAL = scalar-default-character-expression
DELIM = scalar-default-character-expression
ENCODING = scalar-default-character-expression
ERR = label
FILE = file-name-expression
FORM = scalar-default-character-expression
IOMSG = scalar-default-character-variable
IOSTAT = scalar-integer-variable
PAD = scalar-default-character-expression
POSITION = scalar-default-character-expression
RECL = scalar-integer-expression
ROUND = scalar-default-character-expression
SIGN = scalar-default-character-expression
STATUS = scalar-default-character-expression

Rules and restrictions:

1. Note that the form UNIT = * for the unit specifier is not permitted in the OPEN
statement. However, the values INPUT_UNIT, OUTPUT_UNIT, and ERROR_UNIT
may be used to reopen these files and alter their changeable modes. It is also pos-
sible, in principle, to connect different files to these units; however, whether that is
allowed or the way that it will interact with subsequent uses of the * unit is proces-
sor dependent.

2. If the last data transfer to a unit connected for sequential access to a particular file
was an output data transfer statement, an OPEN statement for that unit connecting
it to a different file writes an end-of-file record to the original file as part of the im-
plicit close processing.

3. See 9.2 for the general rules and restrictions for input/output statement specifier
lists.

Examples are:

OPEN (STATUS = "SCRATCH", UNIT = 9)
OPEN (8, FILE="PLOT_DATA", RECL=80, ACCESS="DIRECT")

9.3.3 The Connection Specifiers

The OPEN statement specifies the connection properties between the file and the unit,
using keyword specifiers, which are described in this section. Table 9-2 gives the possi-
ble values for the specifiers in an OPEN statement that have a restricted set of options
and their default values when the specifier is omitted.

Input and Output Processing 311

UNIT

Described in 9.2.2

A unit specifier is required.

ACCESS

Specifies the access method (9.1.5) for the connection

DIRECT direct access

SEQUENTIAL sequential access

STREAM stream access

Rules:

1. If the ACCESS value is DIRECT, a RECL specifier also must appear.

Related INQUIRE specifier: ACCESS

Table 9-2 Values for some keyword specifiers in an OPEN statement

Specifier keyword Possible values Default value

ACCESS DIRECT, SEQUENTIAL, STREAM SEQUENTIAL

ACTION READ, WRITE, READWRITE Processor dependent

ASYNCHRONOUS YES, NO NO

BLANK NULL, ZERO NULL

DECIMAL COMMA, POINT POINT

DELIM APOSTROPHE, QUOTE, NONE NONE

ENCODING UTF-8, DEFAULT DEFAULT

FORM FORMATTED, UNFORMATTED Note 1

PAD YES, NO YES

POSITION ASIS, REWIND, APPEND ASIS

ROUND UP, DOWN, ZERO, NEAREST, COMPATIBLE,
PROCESSOR_DEFINED

Processor dependent

SIGN PLUS, SUPPRESS, PROCESSOR_DEFINED PROCESSOR_DEFINED

STATUS OLD, NEW, UNKNOWN, REPLACE,
SCRATCH

UNKNOWN

Note 1. FORMATTED for sequential access, UNFORMATTED for direct access

312 Chapter 9

ACTION

Specifies the actions allowed for the connection

READ WRITE, PRINT, and ENDFILE statements are
prohibited

WRITE READ statements are prohibited

READWRITE any input/output statement is permitted

Rules:

1. The default value is processor dependent.

2. If READWRITE is an allowed ACTION value for the file, READ and WRITE
are allowed.

Related INQUIRE specifiers: ACTION, READ, WRITE, and READWRITE

ASYNCHRONOUS

Specifiers whether or not asynchronous input/output is allowed

YES asynchronous input/output is allowed

NO asynchronous input/output is not allowed (default)

Related INQUIRE specifier: ASYNCHRONOUS

BLANK

Described in 9.2.4

DELIM

Described in 9.2.4

ENCODING

Specifies the character encoding method for formatted files

UTF-8 ISO/IEC 10646-1:2000

DEFAULT processor dependent (default)

Rules:

1. If UTF-8 is specified, the file is called a Unicode file and all the characters in
the file must be ISO 10646 character kind.

2. UTF-8 must not be specified if the processor does not support ISO 10646
character kind.

Input and Output Processing 313

3. The connection must be for formatted input/output.

Related INQUIRE specifier: ENCODING

ERR

Described in 9.2.3

FILE

Specifies the name of the file being connected

expression the name of the file to be connected. It is called the
file name expression

Rules:

1. Trailing blanks in the name are ignored.

2. The name must be a file name allowed by the processor.

3. The interpretation of case is processor dependent; for example, the processor
may distinguish file names by case or it may interpret the name all in
uppercase or lowercase letters.

4. The FILE specifier must appear if the STATUS value is NEW or REPLACE.

5. If the STATUS value is OLD, the FILE specifier must appear unless the unit is
already connected to a unit that exists.

6. If the STATUS specifier has the value SCRATCH, the FILE specifier must not
appear.

Related INQUIRE specifiers: NAME and NAMED

FORM

Specifies formatted or unformatted input/output

FORMATTED the connection will be for formatted access

UNFORMATTED the connection will be for unformatted access

Rules:

1. The default value is UNFORMATTED, if the file is connected for direct or
stream access.

2. The default value is FORMATTED, if the file is connected for sequential access.

Related INQUIRE specifiers: FORM and FORMATTED

314 Chapter 9

IOMSG

Described in 9.2.3

IOSTAT

Described in 9.2.3

PAD

Described in 9.2.4

POSITION

Specifies the initial position of the file

ASIS file position is unchanged for a connected file and is
unspecified for a file that is not connected (default)

REWIND file is positioned at its initial point

APPEND file is positioned either at the terminal point or just
before an end-of-file record, if there is one

Rules:

1. The default value is ASIS, permitting an OPEN statement to change other
connection properties of a file that is already connected without changing its
position.

2. The file must be connected for sequential or stream access.

3. If the file is new, it is positioned at its initial point.

Related inquiry specifier: POSITION

RECL

Specifies record length for direct- or sequential-access files

The expression specifies the length of each direct-access record or the maximum
record length if the access method is sequential.

Rules:

1. The expression value must be positive.

2. The RECL specifier must appear for a file connected for direct access.

3. The default maximum value is processor dependent for a file connected for
sequential access.

4. The RECL specifier must not appear for a file connected for stream access.

Input and Output Processing 315

5. If the file is connected for formatted input/output, the length is the number of
default characters for a record that contains only default characters and the
length is processor dependent for a record that contains nondefault characters.

6. If the file is connected for unformatted input/output, the length is measured in
file storage units (9.1.5.3). On most systems, a file storage unit is a byte.

Related INQUIRE specifier: RECL

See also inquire by output list (9.9.3)

ROUND

Described in 9.2.4

SIGN

Described in 9.2.4

STATUS

Specifies the file existence before the connection is made

OLD the file must exist

NEW the file must not exist; it will be created

UNKNOWN the file has a processor-dependent status (default)

REPLACE if the file does not exist, it is file is created and given
a status of OLD; if the file does exist, it is deleted, a
new file is created with the same name, and the file
is given a status of OLD

SCRATCH file is created and connected to the specified unit; it
is deleted when the program terminates normally
or a CLOSE statement is executed on that unit

Rules:

1. Scratch files must be unnamed; that is, the STATUS value must not be
SCRATCH when a FILE specifier appears. The term scratch file refers to this
temporary file.

Note that, if the STATUS value is REPLACE, the specifier itself in this statement is
not changed to OLD; the file status will be OLD when the OPEN statement termi-
nates.

Related INQUIRE specifier: none

316 Chapter 9

9.4 Data Transfer Statements

When a unit is connected, data may be transferred by reading and writing to the file
associated with the unit. The transfer may occur to or from internal or external files.

The data transfer statements are the READ, WRITE, and PRINT statements.

9.4.1 General Form for Data Transfer Statements

The general forms for data transfer statements are (R910, R911, R912):

READ (io-control-specifier-list) [input-item-list]
READ format [, input-item-list]

WRITE (io-control-specifier-list) [output-item-list]

PRINT format [, output-item-list]

Input and output items are described in 9.4.4. The format is described as part of the
FMT specifier in 9.4.3. io-control specifiers, described below, provide detailed specifica-
tions for the data transfer.

9.4.2 The Input/Output Control Specifiers

The forms of the input/output control specifier (R913) are:

[UNIT =] io-unit
[FMT =] format
[NML =] namelist-group-name
ADVANCE = scalar-default-character-expression
ASYNCHRONOUS = scalar-character-initialization-expression
BLANK = scalar-default-character-expression
DECIMAL = scalar-default-character-expression
DELIM = scalar-default-character-expression
END = label
EOR = label
ERR = label
ID = scalar-integer-variable
IOMSG = scalar-default-character-variable
IOSTAT = scalar-integer-variable
PAD = scalar-default-character-expression
POS = scalar-integer-expression
REC = scalar-integer-expression
ROUND = scalar-default-character-expression
SIGN = scalar-default-character-expression
SIZE = scalar-integer-variable

The ADVANCE, ASYNCHRONOUS, BLANK, DECIMAL, DELIM, PAD, ROUND,
and SIGN specifiers have a limited list of allowed character values. The allowed values
are case independent and any trailing blanks are ignored.

Input and Output Processing 317

When used in a READ or WRITE statement, the changeable connection mode spec-
ifiers (9.2.4)—BLANK, DECIMAL, DELIM, PAD, ROUND, and SIGN—may temporari-
ly change those connection modes for that specific statement execution. The BLANK,
DECIMAL, ROUND, and SIGN modes may also be temporarily changed during format
processing. The connection modes usually revert to the OPEN modes when execution
of the statement completes; when a defined input/output subroutine terminates, the
changeable connection modes revert to the modes in effect when the subroutine began
execution.

The UNIT specifier, with or without the keyword UNIT, is called a unit specifier;
the FMT specifier, with or without the keyword FMT, is called a format specifier; and
the NML specifier, with or without the keyword NML, is called a namelist specifier.

Use of many of the control specifiers is prohibited or required depending on the
file properties or other specifiers used. For example, if an ID specifier appears, then an
ASYNCHRONOUS specifier with the value YES must also appear and the unit must
have been opened for asynchronous input/output.

9.4.3 Specifiers for Data Transfer Statements

This section describes the form and effect of the control information specifiers that are
used in the data transfer statements. Table 9-3 summarizes the allowed values for some
specifiers.

UNIT

Described in 9.2.2

A unit specifier is required.

FMT

Specifies the format specification

default character expression explicit format specification (10.2)

∗ list-directed formatting (10.10)

label the statement label of a FORMAT statement
containing the explicit format specification (10.1.1)

Rules:

1. The keyword FMT may be omitted if the format specifier is the second
specifier in the control information list and the unit, without the UNIT
keyword, is the first; otherwise, it is required.

2. If a format specifier appears, a namelist specifier must not appear.

3. A format specifier without the FMT= is used in a PRINT statement and the
abbreviated form of the READ statement.

318 Chapter 9

4. The default character expression must produce a valid format specification,
including the enclosing parenthesis (10.2). It may be a character literal
constant. If it is an array, it is treated as if all elements of the array were
concatenated in array element order.

5. The label must be the label of a FORMAT statement in the same scoping unit as
the data transfer statement.

6. List-directed formatting must not be used with files connected for direct
access.

NML

Specifies the namelist group name

namelist group name the name of a namelist group declared in a
NAMELIST statement

Rules:

1. The namelist group name identifies the list of data objects to be transferred.

2. If a namelist specifier appears, a format specifier must not appear.

3. The keyword NML may be omitted if the namelist specifier is the second
specifier in the control information list and the unit, without the UNIT keyword,
is the first; otherwise, it is required.

4. There must not be an input or output list.

5. The NML specifier may appear in a sequential- or stream-, but not direct-
access data transfer statement.

ADVANCE

Specifies whether advancing or nonadvancing input/output is performed

NO nonadvancing data transfer

YES advancing data transfer (default)

Rules:

1. If an ADVANCE specifier appears in the control information list, the data
transfer must be a formatted sequential or formatted stream data transfer
statement.

2. List-directed or namelist input/output is not allowed and neither is data
transfer to or from an internal file.

3. If an EOR or SIZE specifier appears in the control information list, an
ADVANCE specifier must also appear with the value NO.

Input and Output Processing 319

ASYNCHRONOUS

Specifies whether asynchronous or synchronous input/output is performed

NO synchronous input/output data transfer (default)

YES asynchronous input/output data transfer

Rules:

1. Both synchronous and asynchronous input/output are permitted on files
opened for asynchronous input/output.

2. Asynchronous input/output can be specified only for external files opened for
asynchronous input/output; that is, asynchronous input/output is not
permitted for internal files nor for preconnected files accessed without an
OPEN statement.

3. If an ID specifier appears, there must be an ASYNCHRONOUS specifier with
the value YES.

4. Unlike most specifiers, the ASYNCHRONOUS value must be an initialization
expression. This allows the processor to make compile time decisions about
input/output transfers and determine if there is a set of variables involved in
asynchronous input/output.

5. A variable is said to be involved in asynchronous input/output if it is an item
in the input/output list or namelist group or is the SIZE variable. This set of
variables is called the pending input/output storage sequence by the standard.
They, and their base objects, are implicitly given the asynchronous attribute
(5.7.5); this applies to the scoping unit containing the input/output statement
and may be confirmed by an explicit asynchronous declaration. Any variable
that is associated, totally or partially, with a pending input/output storage
sequence is also involved. The standard refers to these variables as a pending
input/output storage sequence affector.

BLANK

Described in 9.2.4

DECIMAL

Described in 9.2.4

DELIM

Described in 9.2.4

END

Described in 9.2.3

320 Chapter 9

Rules:

1. The END specifier may appear in a sequential- or stream-, but not direct-access
READ statement.

EOR

Described in 9.2.3

Rules:

1. The EOR specifier may appear only in a nonadvancing READ statement.

ERR

Described in 9.2.3

ID

Returns a value which identifies this asynchronous input/output operation

integer variable identifier of the asynchronous data transfer

Rules:

1. An ID specifier may appear only in an asynchronous input/output statement.

2. The variable becomes defined with a processor-dependent value, called the
identifier of the asynchronous data transfer. This value may be used in
subsequent WAIT or INQUIRE statements.

3. If an error occurs during execution of the data transfer statement, the variable
becomes undefined.

4. A child data transfer statement must not have an ID specifier.

IOMSG

Described in 9.2.3

IOSTAT

Described in 9.2.3

PAD

Described in 9.2.4

POS

Specifies the file position for an external file connected for stream input/output

integer file position

Input and Output Processing 321

Rules:

1. The UNIT specifier must identify an external unit connected for stream
input/output.

2. The value is specified in file storage units (9.1.5.3).

3. For a formatted file, the value must either be 1 or be a value returned from a
POS specifier in an INQUIRE statement.

4. A POS specifier must not appear in a child data transfer statement.

5. It is processor dependent whether or not a particular stream file supports
positioning or positioning in a particular direction; for example, devices such
as Geiger counters usually are not positionable.

REC

Specifies the record number for a direct-access data transfer

integer expression the record number to be read or written

Rules:

1. The value of the scalar integer expression must be positive.

2. The REC specifier must appear in a nonchild data transfer statement with a
unit that is connected for direct access; it must not appear in other data transfer
statements.

3. The REC specifier must not appear in a child data transfer statement, even if
the parent is a direct-access transfer statement. The child data transfer
statement is, however, a direct-access data transfer statement.

ROUND

Described in 9.2.4

SIGN

Described in 9.2.4

SIZE

Returns the number of characters read during nonadvancing input

nonnegative integer returns the number of characters read

Rules:

1. The SIZE specifier may appear only in a nonadvancing READ statement.

322 Chapter 9

2. Blanks inserted as padding characters when the PAD mode is YES for the
connection (9.2.4) are not counted.

3. The variable specified in the SIZE specifier must not be the same as or
associated with any entity in the input/output item list or in the namelist group
or with the variable specified in the IOSTAT specifier, if one appears.

4. For a synchronous nonadvancing input statement, the SIZE variable becomes
defined when execution of that statement completes.

5. For asynchronous nonadvancing input, the SIZE variable becomes defined
when the corresponding wait operation completes. The variable is in the set of
variables involved in asynchronous input/output and must not be referenced
or defined until the transfer has been completed.

9.4.4 The Input/Output Item List

The input/output item list consists effectively of a list of variables in a READ statement
or a list of expressions in a WRITE or PRINT statement. In addition, in any of these
statements, the input/output item list may contain an input/output implied-do list.
Note that in an output list an expression can be a variable or a constant, as well as a
more general expression.

The forms of an input item (R915) are:

variable
io-implied-do

Table 9-3 Allowed values for some keyword specifiers in a data transfer statement

Specifier keyword Possible values Default value when not
specified in OPEN

ADVANCE YES, NO YES

ASYNCHRONOUS YES, NO NO

BLANK NULL, ZERO NULL

DECIMAL COMMA, POINT POINT

DELIM APOSTROPHE, QUOTE, NONE NONE

PAD YES, NO YES

ROUND UP, DOWN, ZERO, NEAREST, COMPATIBLE,
PROCESSOR_DEFINED

Processor dependent

SIGN PLUS, SUPPRESS, PROCESSOR_DEFINED PROCESSOR_DEFINED

Note. If a changeable edit mode specifier does not appear, the mode determined when the file
was opened is used.

Input and Output Processing 323

and the forms of an output item (R916) are:

expression
io-implied-do

where the form of an input/output implied-do (R917) is:

(io-implied-do-object-list , io-implied-do-control)

and the forms of an input/output implied-do object (R918) are:

input-item
output-item

and the form of an input/output DO control (R919) is:

do-variable = scalar-integer-expression , &

scalar-integer-expression [, scalar-integer-expression]

Rules and restrictions:

1. The DO variable must be a named scalar integer variable.

2. The DO variable must not be one of the input items in the implied-do nor be asso-
ciated with any of them. However, the DO variable may appear in an output list.

3. Two nested implied-dos must not have the same (or associated) DO variables.

4. An input item must be a variable or an implied-do whose objects are ultimately
variables. Similarly, an output item must be an expression or an implied-do whose
objects are ultimately expressions.

5. For an input/output implied-do, the loop is initialized, executed, and terminated in
the same manner as for the DO construct (8.7.2.1). Its iteration count is established
at the beginning of processing of the items that constitute the input/output im-
plied-do.

6. An array appearing without subscripts in an input/output list is treated as if all el-
ements of the array were listed in array-element order. For example, if UP is an ar-
ray of shape [2 3],

READ *, UP

is the same as

READ *, UP(1,1), UP(2,1), UP(1,2), UP(2,2), UP(1,3), UP(2,3)

For an array section or array expression appearing in the list, the order is that of
the array object that the section or expression represents (6.6.6).

7. When a subscripted array is an input item, it is not permitted to have the transfer of
one value to the array affect another part of the input item. This normally applies to
vector valued subscripts and is similar to the rule that a vector-valued assignment

324 Chapter 9

statement cannot make multiple assignments to the same element. Consider the
following READ statements:

INTEGER A(100), V(10)

! Suppose V’s elements are defined with values
! in the range 1 to 100.

READ *, A(A) ! always invalid
READ *, A(A(1):A(9)) ! valid if the range A(1) to A(9)
 ! does not include either 1 or 9
READ *, A(V) ! valid if V has no repeated elements

8. An assumed-size array must not appear in an input/output list, unless a subscript,
a subscript triplet specifying an upper bound, or a vector subscript appears in the
last dimension.

9. A derived-type list item will be processed by defined input/output (9.5.1.4) if an
appropriate subroutine is accessible and, for explicitly formatted input/output, if a
DT edit descriptor is encountered in the format.

10. In formatted input/output, if a derived-type list item is not processed by defined
input/output, it is treated as if, in place of the structure, all components were listed
in the order of the components in the derived-type definition. For example, if FIRE-
CHIEF is a structure of type PERSON defined in 4.5,

READ *, FIRECHIEF

is the same as

READ *, FIRECHIEF % AGE, FIRECHIEF % NAME

Note that if a component is itself a derived-type list item, it will either be processed
by defined input/output or recursively expanded.

11. In unformatted input/output, if a derived-type list item is not processed by defined
input/output, and one or more of its components would be processed by defined
input/output, it is treated as if its components were listed in declaration order. Oth-
erwise, it is treated as a single object. It is not necessarily processed as if all compo-
nents appeared in the order given in the derived-type definition, even if it is of a
sequence type. Padding might be added or components might be word aligned. In
the case where such a list item is treated as a single object, it must not have any
allocatable or pointer components.

12. All components of a derived-type list item which is expanded must be accessible in
that scoping unit and they must not have either the pointer or allocatable attribute.

13. An allocatable variable may be an input or output list item, but it must be allocated
at the time the data transfer statement is executed.

Input and Output Processing 325

14. A pointer may be an input or output list item, but it must be associated with a tar-
get at the time the data transfer statement is executed.

15. A variable in an input list must not be a procedure pointer and the value of an ex-
pression in an output list must not be a procedure pointer.

16. If the file is an internal file of kind:

default character all input/output character list items must be of default
character kind

ISO 10646 all input/output character list items must be of default, ISO
10646, or ASCII kind

ASCII all input/output character list items must be of ASCII kind

17. For input from a Unicode file, characters read into a character variable of the ASCII
kind must have a position in the ISO 10646 table of 127 or less and characters read
into a default character variable must be representable in the default character set.

18. During input from a non-Unicode file, characters read into a character variable
must have the same kind parameter as the character variable and characters that
correspond to a logical or numeric variable must be of default character kind.

19. During output to a Unicode file, all characters transmitted from a character vari-
able or character string edit descriptor must be of ISO_10646 kind or the result is
processor dependent.

20. During output to a non-Unicode file, characters from a character string edit
descriptor, a default character kind variable, or a logical or numeric variable will be
of default type.

21. A constant or an expression other than a variable must not appear as an input list
item, but may appear as an output list item.

22. An input list item, or an entity associated with it, must not contain any portion of
an established format specification.

23. On output, every entity whose value is to be written must be defined. However,
entities processed by a defined output subroutine need not be defined if the rou-
tine does not access their values.

24. If a list item is polymorphic, it must be processed by defined input or output.

25. Function references in an input or output list and defined input/output subroutines
are subject to the rules for recursive input/output statements (9.2.1.2).

326 Chapter 9

9.4.5 General Data Transfer Restrictions

Fortran supports a wide variety of file types, access methods, data formatting, and
transfer properties. Not all of these features can interact with each other. The major re-
strictions and limitations are:

1. An internal file cannot be used for direct access or stream access, it cannot be used
with an ADVANCE specifier (even if the specifier is YES), and it cannot be used
with asynchronous input/output.

2. A file opened for direct, sequential, or stream access can only be read or written
with direct, sequential or stream data transfer statements, respectively. Note that
the forms of a sequential or stream data transfer statement can be identical. There
is no explicit STREAM or SEQUENTIAL specifier.

3. A direct-access file cannot be used with list-directed or namelist data transfer, nor
with an ADVANCE specifier (even if it specifies YES).

4. List-directed and namelist formatting cannot be specified if an ADVANCE specifier
appears.

5. Synchronous data transfer can be performed on a file opened for asynchronous in-
put/out, but the converse is not true.

9.4.6 Printing of Formatted Records

Previous standards included a concept of “carriage control”, sometimes called “print-
ing”. If a file was “printedʺ, the characters in column one were not actually printed;
rather, they provided carriage control (double space, skip to top of the next page, etc.)
as each line was printed. Because these actions were highly processor dependent and
were primarily dependent on hardware characteristics of mechanical printers, the con-
cept has been deleted from Fortran 2003. Removing support from the standard had no
practical effect on compilers, libraries, or standard conforming programs. However, for
backward compatibility, namelist and list-directed output generally produce output
with a blank in the first character position. Many existing programs also put a blank in
column one as a safety feature.

As a carry over from printing, many texts and programmers refer to a “line” when
discussing output, or even input. A better term is “record” since it is independent of
any physical medium.

9.5 Execution Model for Data Transfer Statements

When a data transfer statement is executed, it is as if these steps are followed in the or-
der given:

1. Determine the direction of data transfer. A READ statement indicates that data is
to be transferred from a file. A WRITE or PRINT statement indicates that data is to
be transferred to a file.

Input and Output Processing 327

2. Identify the unit. The unit identified by a data transfer input/output statement
must be connected to a file when execution of the statement begins. Note that the
unit may be preconnected and that internal files are always connected.

3. If the transfer is a WRITE or PRINT statement to a file that is preconnected and
does not exist, the file is created unless an error occurs. It is a common extension to
create a file even though it is not preconnected. Processors usually select a reason-
able set of attributes that allow the transfer statement to execute. Some processors
will also create a file used for input and supply an immediate end-of-file indica-
tion.

4. If the data transfer is synchronous, perform a wait operation for all pending asyn-
chronous input/output operations for the unit. If an error, end-of-record, or end-of-
file occurs, skip to step 10 below.

5. Establish the format, if one is specified. It specifies list-directed, namelist, or explic-
itly formatted data transfer.

6. If the statement is not a child data transfer statement, position the file prior to
transferring the data and, if the transfer is also formatted, set the left tab limit. The
position depends on the method of access (sequential, direct, or stream) and is de-
scribed in 9.5.2.

7. If the transfer is synchronous, transfer data between the file and the entities speci-
fied by the input/output item list (if any).

If the transfer is asynchronous, establish the set of storage units involved in the in-
put/output list and initiate the transfer. See 9.4.4 for special cases of some READ
statements. The transfer might be completed before execution of the statement is
completed. If so, error, end-of-record, or end-of-file conditions might be detected
by this statement; otherwise, they will be detected when a wait operation is per-
formed. They will be detected only at one of these occurrences. Note that child data
transfer statements cannot be asynchronous.

8. Determine if an error, end-of-record, or end-of-file condition exists. If one of these
conditions occurs, the status of the file and the input/output items is specified in
9.6. Also, if one of these conditions would occur during a wait operation for a
pending asynchronous transfer that did not have an ID specifier, it might occur
here. In effect, the processor is allowed to maintain a queue of pending
asynchronous data transfers for each unit and, at any subsequent asynchronous data
transfer for that unit, examine some or all of the pending transfers that did not have
an ID specifier. The pending transfers with an ID specifier are not examined until
there is an synchronous transfer statement for the unit or there is a WAIT for that ID
specifier.

9. Position the file after transferring the data (9.5.3) unless it is a child data transfer.
The file position depends on whether one of the situations in step 4 above occurred

328 Chapter 9

or if the data transfer was advancing or nonadvancing. Asynchronous files are po-
sitioned as if the transfer had finished.

10. Define the variables specified in the IOSTAT and SIZE specifiers, if they appear.
See the description of these specifiers in the READ and WRITE data transfer state-
ments in 9.4.3.

11. If ERR, END, or EOR specifiers appear in the statement, transfer to the branch tar-
get corresponding to the condition that occurs. If an IOSTAT specifier appears in
the statement and the label specifier corresponding to the condition that occurs
does not appear in the statement, the next statement in the execution sequence is
executed. Otherwise, the execution of the program terminates. See the descriptions
of these label specifiers in 9.2.3. Details of error and exception processing are given
in 9.6.

9.5.1 Data Transfer

Data are transferred between records in the file and entities in the input/output list
(9.4.4) or namelist. The list items are processed in the order of the input/output list for
all data transfer input/output statements except namelist data transfer statements. The
list items for a namelist formatted data transfer input statement are processed in the
order of the entities specified within the input records. The list items for a namelist
data transfer output statement are processed in the order in which the data objects are
specified in the namelist group object list.

The next item to be processed in the input or output item list is called the next ef-
fective item, which is used to determine the interaction between the input/output item
list and the format specification, if any (10.2).

Zero-sized arrays and implied-do lists with zero iteration counts are ignored in de-
termining the next effective item, but zero-length character entities are effective list
items.

The value of an item that appears early in an input/output list may affect the pro-
cessing of an item that appears later in the list. In the example,

READ (10) N, X(N), (A(I), I = 1, N)

the new value of N is used for the subscript of X and the.implied-do bound.
Additional rules governing interaction of variables in data transfer specifier lists

and the actual input/output list are given in 9.12. In general, a variable appearing as a
specifier should not also appear in the input or output list.

Rules and restrictions:

1. Values for a list item are completely transferred before processing of a subsequent
list item begins.

2. Before beginning the input/output processing of a particular list item, all values
needed to determine which entities are specified by the list item are evaluated first.
For example, the subscripts of a variable in an input/output list are evaluated be-
fore any data is transferred.

Input and Output Processing 329

3. If a namelist entity is specified more than once in the input, the last value encoun-
tered is the value used.

4. If a list item is a pointer, data is transferred between the file and the target. For an
input item, the data is transferred to the associated target. For an output item, the
target associated with the pointer must be defined, and the value of the target is
transferred.

5. On output, every entity whose value is to be written must be defined.

9.5.1.1 Unformatted Data Transfer

Unformatted data transfer moves data to or from an external file directly, without edit-
ing or formatting. Unformatted transfers are generally used for fast input/output, espe-
cially with large arrays, and to preserve exact values. The output is usually not in a
human readable form and often cannot be interchanged between different computer
systems.

An unformatted data transfer statement does not have a FMT or NML specifier.
The file may be connected for direct, sequential, or stream access, but must not be

an internal file. If the file is connected for either sequential or direct access, exactly one
record is written. Unformatted stream-access files do not have records; they are a
sequence of file storage units.

Values are read or written as a contiguous series of file storage units, beginning im-
mediately after the current file position. As each value is transmitted, the file position
is moved to a point immediately after the last transmitted value.

Both intrinsic and derived-type entities may be transmitted and, if an appropriate
defined input/output subroutine is available, derived-type entities will be processed by
the defined input/output subroutine. If a derived-type entity is not processed by a de-
fined input/output subroutine, the order of the components is processor dependent
(9.4.4(11)).

For unformatted sequential output, a record will be written with a length which
sufficient to hold the values. The processor is allowed to pad the record length to a
convenient size. The necessary record length must not exceed the length specified by
either the processor-dependent default length, or the value from the RECL specifier in
the OPEN statement.

If the file is connected for unformatted direct access, the actual record length must
not exceed the value specified by the RECL specifier in the OPEN statement. If the
record would be shorter than this length, it will be padded with undefined values.

For unformatted sequential input, the input list must not specify more values than
the record contains. If the file storage units do not contain values with the same type
and kind as the input list item, then, except for complex and character data, the result
is processor-dependent. Two real values, of the appropriate kind, may be used as input
for a complex entity. A character list item of default kind and length N will accept N
default characters from the input, even if they were not written as a single string of
length N.

330 Chapter 9

9.5.1.2 Formatted Data Transfer

Formatted data transfer moves data to or from an external or internal file with editing.
The editing may be done with explicit format control (10.2) or implicitly with list-di-
rected (10.10) or namelist formatting (10.11). Formatted data transfer reads or writes to
the current record, and possibly to additional records. The output is generally human
readable and portable among different kinds of computer systems. Accuracy is often
lost when real or complex values are edited.

A formatted data transfer statement has either a FMT or NML specifier. The FMT=
or NML= characters may be omitted if the corresponding specifier is the second item in
the control list. If the format specifier is a FORMAT statement label or a character ex-
pression, the statement is an explicitly formatted data transfer statement. If the format
specifier is an *, the statement is a list-directed formatted data transfer statement. If
there is a NML specifier, the statement is a namelist formatted data transfer statement.

The file may be connected for direct, sequential, or stream access or may be an in-
ternal file. For direct-access files, the record number is increased by one as each record is
processed. Both intrinsic and derived-type entities may be transmitted. For explicitly
formatted transfers, if a DT edit descriptor is encountered and an appropriate defined
input/output subroutine is available, derived-type entities will be processed by the de-
fined input/output subroutine. If a derived-type entity is not processed by a defined in-
put/output subroutine, the elements are processed in the order they were declared in
the type definition (9.4.4).

During output, the record length must not be larger than the RECL specifier value
from the OPEN statement or the record length of an internal file. If the file is a direct-
access file or an internal file, blank characters will be added as necessary to fill the
record.

During advancing input, if the pad mode is NO, the format and input list must not
require more characters than are in the record. If the pad mode is YES, blank characters
will be supplied by the processor until the input list is completed.

During nonadvancing input, if the pad mode is NO and the list and format require
more characters than the record contains, an end-of-record condition will be signaled,
unless the record is an incomplete stream record, in which case an end-of-file condition
will be signaled. If the pad mode is YES, blank characters will be supplied by the pro-
cessor until the input list is completed and then end-of-record will be signaled, unless
the record is an incomplete stream record, in which case an end-of-file condition will
be signaled. An incomplete record can only occur as the last record in a stream file.

List-directed and namelist data transfers are processed with an implicit format.
The details are in 10.10 and 10.11.

9.5.1.3 Asynchronous Data Transfer

If an external file is opened for asynchronous data transfer and if a data transfer state-
ment has an ASYNCHRONOUS specifier with the value YES, then the transfer state-
ment is an asynchronous transfer statement. Synchronous data transfer statements
perform all of the input or output operations during execution of the statement. An
asynchronous data transfer statement is designed to allow the transfer to be initiated
by the statement and to proceed asynchronously while other computations take place.

Input and Output Processing 331

It is the programmer’s responsibility to ensure that variables referenced in the transfer
statement are not referenced or defined during the transfer. A wait operation must be
performed before any of the variables can be used. Details of the usage rules are given
in 9.4 under the ASYNCHRONOUS specifier.

Processors are not required to perform the operation asynchronously; they are al-
lowed to effectively ignore the ASYNCHRONOUS attribute during the data transfer.
This gives the processors the freedom to optimize some transfers while not imposing a
burden on transfers that will not benefit from asynchronous transfers. As a general
rule, the only transfers that are likely to benefit are unformatted transfers of large ar-
rays with either no explicit subscript list or with very simple subscripts. Because of the
high overhead of doing editing, formatted transfers are unlikely to benefit from asyn-
chronous transfer. Also, because of the potential overhead and different implementa-
tion schemes, the ASYNCHRONOUS specifier must be an initialization expression,
known at compile time, with an value of YES or NO.

Records and file storage units are processed by asynchronous input or output
statements in the same order that they would be processed by synchronous transfer
statements.

An ID specifier may also be given in the data transfer statement. If one appears, it
is given a processor-dependent value upon completion of the transfer statement. This
value can be used in subsequent INQUIRE or WAIT statements to determine the status
of the transfer. If there is no ID specifier, there is no way to inquire about or wait for a
this specific transfer. However, a wait or an inquire can be done on a file basis. If there
is an error during the data transfer statement, the ID specifier becomes undefined.

9.5.1.4 Defined Input/Output

Defined input/output allows a programmer to override the default processing of de-
rived-type objects. Like defined assignment and defined operations, defined input/out-
put may be automatically invoked. This happens if a data transfer is executed for a
derived-type object, an appropriate defined input/output subroutine is accessible, and,
for explicit formatted transfers, if a DT edit descriptor is encountered in the format.
Defined input/output is called “user-defined derived-type input/output” in the stan-
dard. If an appropriate defined input/output subroutine is not available, then the data
object is expanded into its components, as described in 9.4.4. If a component is itself a
structure, it will be processed by defined input/output or expanded into components.
The expansion continues recursively until the ultimate components are reached. If an
ultimate component has either the ALLOCATABLE or POINTER attribute, it must be
processed by defined input/output. See 9.4.4 for more details about when structures
are expanded. Defined input/output subroutines must match a dtio-generic-spec
(R1208, 12.5.4.4) and are selected based on the form of the input/output statement and
the type of the data element.

Defined output is similar to replacing the output list items with function references
and, if necessary, modifying the format.

332 Chapter 9

Defined Input/Output Data Transfer
Once a defined input/output subroutine has been selected, the processor calls the sub-
routine with an appropriate argument list. The defined input/output subroutine man-
ages all of the data transfer for the data object. Normally the defined input/output
subroutine will itself contain data transfer statements that read or write to the current
record or file position. However, they need not do any actual data transfers. A defined
output subroutine for the employee%department field might not output anything if the
FIRED variable is true.

A data transfer statement which causes a defined input/output subroutine to be in-
voked is called the parent data transfer statement. A data transfer statement that is ex-
ecuted during execution of the invoked defined input/output subroutine (including
any subprograms that it invokes) and that also specifies the unit passed into the de-
fined input/output subroutine is called a child data transfer statement. A child data
transfer statement may also be a parent data transfer if it causes a defined input/output
subroutine to be invoked. The process can be directly or indirectly recursive, if so, then
the defined input/output subroutine must also be declared RECURSIVE. Any restric-
tions on the defined input/output subroutine also apply to any procedures invoked
while it is active.

A child data transfer statement transfers data just like any other data transfer state-
ment except that there is no file positioning before the transfer nor does an unformat-
ted transfer cause any file positioning after the transfer. The child data transfer
statement starts transferring data at the current position of the file, as determined from
the last parent transfer or record positioning format descriptor. This need not be at the
beginning of a record.

The restrictions on recursive input/output allow a child data transfer statement to
perform data transfers on its argument file. This is an exception to the general rule that
a recursive input/output statement must not reference an external unit (9.2.1.2). The
defined input/output subroutine may also use data transfer statements with internal files
as it processes the derived-type data, perhaps to format a date and time code stamp into
human readable months and days. But, a defined input/output subroutine cannot exe-
cute any input/output statement on a different external file.

A defined input/output subroutine can be directly invoked, just like any other sub-
routine, in which case the data transfer statements are not child data transfer state-
ments (although they might become parent or child data transfer statements as the
subroutine executes).

A PRINT statement may be a child data transfer statement; however, since the
child data transfer statement must reference the external unit passed into the defined
input/output subroutine, a PRINT statement can be a child only to another PRINT
statement or to a WRITE statement specifying the default output unit.

Defined Input/Output Subroutines
Defined input/output subroutines can be specified for formatted or unformatted input
or output, giving four possible subroutines for any defined type. The subroutines can
be specified for either an extensible CLASS or for a particular TYPE. Only the subrou-
tines used must be provided, although it is likely that a module that provides a defini-

Input and Output Processing 333

tion for a type would provide all four. Generic resolution (12.5.4.4, 12.8) takes place
based on both the data type and the input/output statement.

Defined input/output subroutines are either specified with a generic specifier in ei-
ther an interface block (12.5.4) or bound to a type with a generic binding (4.4.11.2). As
with defined assignment or defined operators, the interface block would normally be
in a module. The generic specification must be one of:

READ (FORMATTED)

READ (UNFORMATTED)

WRITE (FORMATTED)

WRITE (UNFORMATTED)

The subroutine must have an argument list that matches the appropriate one of the fol-
lowing:

subroutine read_formatted(dtv, unit, iotype, v_list, iostat, iomsg)

subroutine read_unformatted(dtv, unit, iostat, iomsg)

subroutine write_formatted(dtv, unit, iotype, v_list, iostat, iomsg)

subroutine write_unformatted(dtv, unit, iostat, iomsg)

The arguments must be declared with the following characteristics:

TYPE(derived-type-spec), INTENT(INOUT or IN) :: dtv

or

CLASS(derived-type-spec), INTENT(INOUT or IN) :: dtv

INTEGER, INTENT(IN) :: unit
CHARACTER(LEN=*), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: v_list(:)
INTEGER, INTENT(INOUT) :: iostat
INTEGER, INTENT(INOUT) :: iomsg

The actual subroutine names (read_unformatted, etc.) and the dummy argument
names (dtv, unit, etc.) are arbitrary. The names above are suggestive of the use of the
arguments and will be used in discussions, both here and in 10. The argument mean-
ings are:

dtv Input or output item. For a READ statement, dtv is argument associated
with the input/output list item. It is INTENT (INOUT) to allow the defined
input subroutine to modify only part of the argument values. For a WRITE
or PRINT statement, dtv must be INTENT (OUT) and the value of the list
item is passed as the argument. If the type is extensible (4.4.12), the CLASS
form must be used; otherwise, the type form is used.

334 Chapter 9

unit Unit number to be used in the child data transfer statements. If the parent
data transfer statement has a unit number, this will be the same value. If
the parent data transfer statement is a WRITE statement with * for the unit
or is a PRINT statement, the value will be the same as the named constant
OUTPUT_UNIT. If the parent data transfer statement is a READ statement
with an * for the unit or is an abbreviated form without a control specifier
list, the value will be the same as the named constant INPUT_UNIT. Other-
wise, the parent data transfer statement must access an internal file and the
unit value will be a processor-dependent negative value. Because the unit
value will be negative for internal files, the subroutine must not execute an
INQUIRE statement until it has checked that the unit value is either not
negative or one of the special values, INPUT_UNIT, OUTPUT_UNIT, or
ERROR_UNIT.

iotype Type of transfer for a formatted data transfer. The value will be one of
LISTDIRECTED, NAMELIST, or DT concatenated with the character literal
constant portion of the DT edit descriptor that corresponds to dtv. The
character literal might have zero length (10.8).

v_list Values from the v-list portion of the DT edit descriptor (10.8) in the order
given. If the v-list portion is absent, v_list will be a zero-sized array. The
subroutine may interpret elements of v_list as field widths, but it is not re-
quired to do so. It can attach any arbitrary interpretation (or even no inter-
pretation) to both v_list and iotype.

iostat Error reporting variable. If an error condition occurs, the subroutine must
return a positive value for this argument. Otherwise, if an end-of-file con-
dition occurs, the subroutine will return IOSTAT_END. Otherwise, if an
end-of-record condition occurs, the subroutine will return IOSTAT_EOR.
Otherwise, it will return zero.

iomsg Error description variable. If the subroutine returns a nonzero value, the
subroutine must include an error message in iomsg. Otherwise, it must
leave it unchanged.

The defined input/output subroutine is given great freedom in what it classifies as
an error. It is not limited to errors that occur during a child data input/output transfer
statement. Data values that are improper, for example an author’s royalty greater than
$1,000,000, can cause iostat to be set to an error value.

If a defined input/output subroutine executes an input/output statement and the
statement returns an error indication, that error need not be passed up to the parent
data transfer statement. It is possible for the defined input/output subroutine to inter-
cept the error, do the right thing, and then set iostat to zero. The subroutine must pre-
serve the initial value of iomsg in this case. Similarly, the subroutine may return an
error, end-of-file, or end-of-record status in iostat even though no exception was sig-
naled by any input/output statement.

Input and Output Processing 335

If the subroutine returns a nonzero value for iostat and the parent data transfer
statement does not have an appropriate IOSTAT, EOR, END, or EOR specifier, the pro-
cessor will terminate execution of the program as described in 9.6.

A formatted child data transfer statement may use explicitly formatted, namelist,
or list-directed input/output regardless of the formatting in the parent data transfer
statement.

The subroutine cannot reopen the unit to change any of the changeable edit mode
specifiers (9.2.4); however, it can override them on a statement-by-statement basis either
in the control list or with an explicit format specifier.

Rules and restrictions:

1. When a parent input/output statement is active:

a. Other input/output statements must either refer to the unit specified by the
unit argument or to an internal file.

b. If the parent is a READ statement, only READ or INQUIRE statements may
refer to the unit.

c. If the parent is a WRITE or PRINT statement, only WRITE, PRINT, or
INQUIRE statements may refer to the unit.

d. An OPEN, CLOSE, BACKSPACE, ENDFILE, REWIND, FLUSH, or WAIT
statement must not be executed (but an INQUIRE is allowed if the unit is an
external unit).

2. Neither the parent nor child data transfer statement can be recursive.

3. The defined input/output subroutine, and any procedures it invokes, must not de-
fine, nor cause to become undefined, any storage location referenced by any item
in the input/output list, the format (if there is one), nor any specifier in an active
parent data transfer statement, except through the dtv argument.

4. A child data transfer statement must not specify an ID, POS, or REC specifier. The
parent data transfer statement may have a POS or REC specifier, but not an ID
specifier.

5. A child data transfer statement must not use positioning edit descriptors to posi-
tion the record to the left of the position when the defined input/output subroutine
was invoked.

6. If the parent data statement is formatted or unformatted, the child data transfer
statements also must be formatted or unformatted, respectively.

Defined Input/Output Subroutine Resolution
A subroutine is suitable as a defined input/output subroutine if it has a generic specifi-
cation that matches the direction of the data transfer—read or write, matches the form
of the data transfer—formatted or unformatted, and has a dtv argument that is com-

336 Chapter 9

patible with the effective list item type, according to the rules for argument association
(12.6).

Defined input/output occurs if a structure item is in the input/output list and both
of the following conditions are true:

1. The data transfer statement is a list-directed, namelist, unformatted data transfer
statement, or it is an explicitly formatted input/output statement and the corre-
sponding edit descriptor is DT.

2. A suitable defined input/output subroutine is accessible and the subroutine is ei-
ther:

a. a generic type-bound procedure of the declared type of the effective list item,
or

b. an accessible generic interface.

If 2a is true, the normal rules for selecting type-bound procedures based on the dy-
namic type of the list item apply (12.8)

If 2b is true (and 2a is false), the reference is to the procedure with the appropriate
specific interface.

Defined Input/Output Example
MODULE rational_stuff

 TYPE rational
 INTEGER n, d
 END TYPE
 INTERFACE WRITE(FORMATTED)
 MODULE PROCEDURE write_rational_value
 END INTERFACE WRITE (FORMATTED)

CONTAINS

 SUBROUTINE write_rational_value &
 (dtv, unit, iotype, v_list, iostat, iomsg)
 TYPE(rational), INTENT(IN) :: dtv
 INTEGER, INTENT(IN) :: unit
 CHARACTER(LEN=*), INTENT(IN) :: iotype
 INTEGER, INTENT(IN) :: v_list(:)
 INTEGER, INTENT(INOUT) :: iostat
 INTEGER, INTENT(INOUT) :: iomsg

 IF (SIZE(v_list) == 0) then
 ! use a default format
 IF (dtv%d == 0) then
 WRITE (unit, '(I0, "/", I0, " = “ Infinity)', &
 IOSTAT = iostat, IOMSG = iomsg), dtv%n, dtv%d

Input and Output Processing 337

 WRITE (unit, '(I0, "/", I0, " = " G20.10)', &
 IOSTAT = iostat, IOMSG = iomsg) &
 dtv%n, dtv%d, dtv%n/dtv%d
 ENDIF
 ELSE
 ! use v_list to format the results
 . . .
 ENDIF
 END SUBROUTINE write_rational_value

END MODULE rational_stuff

PROGRAM defined_example

 USE rational_stuff
 TYPE (rational) x
 . . .
 x = rational (2 , 3)

 WRITE (25, '(A, DT)') " X is ", x

END PROGRAM defined_example

The previous program will produce output similar to

 X is 2/3 = bbbbb.6666666667bbbb

9.5.1.5 Transfer on Internal Files

An internal file is a character variable. Transferring data between machine representation
and this character variable is called internal input/output. A formatted sequential-access
input or output statement is used. Explicit, namelist, or list-directed formatting may be
used. As a practical matter, namelist and list-directed output are problematic with
internal files because the processor has so much latitude in formatting and record
structure. The format is used to interpret the characters. The internal file and the inter-
nal unit are the same character variable.

With this feature, it is possible to read in a string of characters without knowing its
exact format, examine the string, and then interpret it according to its contents.

In addition to the following, the data transfer follows the general rules for format-
ted data transfer (9.5.1.2).

Rules and restrictions:

1. The unit must be a character variable of either default, ASCII, or ISO 10646 kind
that is not an array section with a vector subscript.

2. If the character variable is a scalar, the file consists of one record. If the character
variable is an array or an array section, each element of the array or section is a
record. The order of the records is array element order. The length of the record is
the length of the scalar or of one array element.

338 Chapter 9

3. If the character variable is allocatable, it must be allocated. If the character variable
is a pointer, it must be associated with a target. It must be defined if it is used as an
internal file in a READ statement.

4. For output data transfer, the format specification must not be part of the internal
file or associated with the internal file or part of it.

5. If the number of characters written is less than the length of the record, the remain-
ing characters are set to blank.

6. A record in an internal file is defined when the record is written. An input/output
list item must not be in the internal file or associated with the internal file.

7. An input/output list item must not be in the internal file or associated with the in-
ternal file.

8. Before a data transfer occurs, an internal file is positioned at the beginning of the
first record (that is, before the first character, if a scalar, and before the first charac-
ter of the first element, if an array) unless it is also a child data transfer statement.
This record becomes the current record.

9. Only formatted sequential access is permitted on internal files.

10. On input, an end-of-file condition occurs when there is an attempt to read beyond
the last record of the internal file.

11. Initially, all connection mode specifiers have the value they would have if an OPEN
statement using only default values were executed. Changeable mode specifiers
may be changed with data transfer specifiers or with format control edit descrip-
tors.

12. File connection, positioning, and inquiry must not be used with internal files.

13. Execution of a data transfer statement on an internal file terminates when:

a. format processing encounters a data or colon edit descriptor, and there are no
remaining elements in the input item list or output item list

b. if list-directed processing is specified, the input item list or the output item list
is exhausted; or on input, a slash (/) is encountered as a value separator

c. on input, an end-of-file condition is encountered

d. an error condition is encountered.

9.5.2 File Position Prior to Data Transfer

The file position prior to data transfer depends on the method of access: sequential, di-
rect, or stream.

For sequential access on input, if there is a current record, the file position is not
changed; this will be the case if the previous data transfer was nonadvancing. Other-
wise, the file is positioned at the beginning of the next record and this record becomes

Input and Output Processing 339

the current record. Input must not occur if there is no next record (there must be an
end-of-file record at least) or if there is a current record and the last data transfer state-
ment accessing the file performed output.

If the file contains an end-of-file record, the file must not be positioned after the
end-of-file record prior to data transfer. However, a REWIND or BACKSPACE state-
ment may be used to reposition the file.

For sequential access on output, if there is a current record, the file position is not
changed; this will be the case if the previous data transfer was nonadvancing. Other-
wise, a new record is created as the next record of the file; this new record becomes the
last and current record of the file and the file is positioned at the beginning of this
record.

For direct access, the file is positioned at the beginning of the record specified. This
record becomes the current record.

For stream access, if there is no POS specifier, the file position is not changed. If
there is, the file is positioned immediately before the specified file storage unit.

Child data transfer statements do not generally position the file prior to transfer.
They are discussed in detail in 9.5.1.4.

9.5.3 File Position After Data Transfer

After a data transfer operation completes, the file will be positioned as follows.
If an error condition exists, the file position is indeterminate. If no error condition

exists, but an end-of-file condition exists as a result of reading an end-of-file record, the
file is positioned after the end-of-file record.

If an end-of-file occurs during formatted stream input, the file position is not
changed. If no error occurs during formatted stream output, the terminal point of the
file is set to the highest-numbered position to which data was transferred. This might
not be the current position if T or TL edit descriptors were used during the editing.

If no error occurs during unformatted stream output, the file position is not
changed. If the current position exceeds the previous terminal point, the terminal point
is set to the current value.

For nonadvancing input, if no error condition or end-of-file condition exists, but an
end-of-record condition exists, the file is positioned after the record just read. If no er-
ror condition, end-of-file condition, or end-of-record condition exists, the file position
is not changed. For nonadvancing output, if no error occurs, the file position is not
changed.

In all other cases, the file is positioned after the record just read or written, and
that record becomes the preceding record.

9.5.4 Termination of Data Transfer

Data transfer statements normally terminate execution when all of the items in the in-
put/output list have been processed. The specific conditions are:

1. Unformatted or list-directed input/output has processed every list item

2. Formatted input/output has processed every list item and encounters a data edit
descriptor or a colon edit descriptor in an explicit format

340 Chapter 9

3. Namelist output exhausts the output item list

4. A slash value separator is encountered during namelist or list-directed input

5. An error or end-of-file condition occurs

6. An end-of-record occurs during nonadvancing input

9.6 Error and Other Conditions in Input/Output Statements

All of the input/output statements have optional specifiers which allow the program-
mer to detect, and possibly recover from, error conditions encountered during execu-
tion. Input data transfer statements can also detect end-of-file and end-of-record
conditions. If an error condition and an end-of-file or end-of-record condition both oc-
cur, the error condition takes precedence and will be signaled; information on the other
conditions will be lost.

9.6.1 Error Conditions

The set of error conditions which are detected is processor dependent. The standard
does not specify any input/output errors. A processor is not required to diagnose any
errors, and is free to treat errors as if they were features. Most compilers have a large
list of errors they will detect. But the lists are not consistent from compiler to compiler.
For example, some compilers will accept zero or one as logical input values, others will
not.

If an error condition occurs, the following steps occur:

1. The file position becomes indeterminate.

2. If no ERR or IOSTAT specifier appears, program execution is terminated.

3. Processing of the input/output list, if there is one, terminates.

4. If the statement is a READ statement, or the error occurs during a wait operation
for an asynchronous read operation, all of the items in the input list (or namelist
group) become undefined.

5. If the statement is a data transfer statement, or the error occurs during a wait oper-
ation, all implied do variables in the data transfer statement become undefined.

6. If an IOSTAT specifier appears, the variable is assigned a processor-dependent pos-
itive integer value.

7. If an IOMSG specifier appears, the variable is assigned a processor-dependent ex-
planatory message.

8. If the statement is a READ statement with a SIZE specifier, the variable is assigned
a count of the number of characters transferred, as described in 9.4.3.

9. If an ERR specifier appears, control is transferred to the label specified.

Input and Output Processing 341

Note that rules 4 and 5 are very severe. They are in part due to backward compat-
ibility with early operating systems which could not provide any details if, for exam-
ple, a magnetic tape broke, and also to allow modern operating systems to provide
high speed input/output. A consequence of these rules is that it is impossible to read a
record of unknown length and somehow determine how many values were correctly
read in.

9.6.2 End-of-File Condition

An end-of-file condition occurs during an input data transfer, or during a wait opera-
tion associated with an input data transfer, when one of the following occurs:

1. The endfile record is encountered during sequential input,

2. An attempt is made to read beyond the end of an internal file, or

3. An attempt is made to read beyond the end of a stream file.

The end-of-file condition might occur when the data transfer statement begins to
execute, or, for formatted input, it might occur when a new record is required. For
asynchronous input, it is processor dependent whether the condition is detected dur-
ing execution of the transfer statement or during the corresponding wait operation.

If an end-of-file condition occurs and no error condition occurred, the following
steps occur:

1. If the file is an external record file, it is positioned after the end-of-file record.

2. If there is no END or IOSTAT specifier, program execution is terminated.

3. Processing of the input list, if there is one, terminates.

4. If the statement is a READ statement, or the end-of-file occurs during a wait oper-
ation for an asynchronous read operation, all of the items in the input list (or
namelist group) become undefined.

5. If the statement is a READ statement, or the end-of-file occurs during a wait oper-
ation, all implied do variables in the READ statement become undefined.

6. If an IOSTAT specifier appears, the variable is assigned the processor-dependent
negative integer value IOSTAT_END.

7. If an IOMSG specifier appears, the variable is assigned a processor-dependent ex-
planatory message.

8. If an END specifier appears, control is transferred to the label specified.

9.6.3 End-of-Record Condition

An end-of-record condition occurs during nonadvancing input when there is an at-
tempt to transfer from beyond the end of the current record. However, if the file is a
stream file and the current record is also the last record, end-of file is signaled instead.

342 Chapter 9

If an end-of-record condition occurs and no error conditioned occurred, the follow-
ing steps occur:

1. If no EOR or IOSTAT specifier appears, program execution is terminated.

2. If the pad mode is YES, enough blanks are provided to satisfy the edit descriptors
and the list items and the input list items become defined. Otherwise they become
undefined.

3. Processing of the input/output list, if there is one, terminates.

4. The file is positioned after the current record.

5. If the statement is a READ statement, or the end-of-record occurs during a wait op-
eration, all implied do variables in the READ statement become undefined.

6. If an IOSTAT specifier appears, the variable is assigned the processor-dependent
negative integer value IOSTAT_EOR.

7. If an IOMSG specifier appears, the variable is assigned a processor-dependent ex-
planatory message.

8. If a SIZE specifier appears, the variable is assigned a count of the number of char-
acters transferred, as described in 9.4.3.

9. If an EOR specifier appears, control is transferred to the label specified.

The following program segment illustrates how to handle end-of-file and error
conditions.

READ (FMT = "(E8.3)", UNIT=3, IOSTAT = IOSS) X

IF (IOSS < 0) THEN
! PERFORM END-OF-FILE PROCESSING ON THE
! FILE CONNECTED TO UNIT 3.
CALL END_PROCESSING

ELSE IF (IOSS > 0) THEN

! PERFORM ERROR PROCESSING
CALL ERROR_PROCESSING

END IF

The procedure END_PROCESSING is used to handle the case where an end-of-file
condition occurs and the procedure ERROR_PROCESSING is used to handle all other
error conditions, because an end-of-record condition cannot occur.

Input and Output Processing 343

9.7 The WAIT Statement

The form of the WAIT statement (R921) is:

WAIT (wait-specifier-list)

where the forms of a wait specifier (R922) are:

[UNIT =] scalar-integer-expression
END = label
EOR = label
ERR = label
ID = scalar-integer-expression
IOMSG = scalar-default-character-variable
IOSTAT = scalar-integer-variable

UNIT

Described in 9.2.2

END

Described in 9.2.3

EOR

Described in 9.2.3

ERR

Described in 9.2.3

ID

Specifies the asynchronous transfer to wait for

IOMSG

Described in 9.2.3

IOSTAT

Described in 9.2.3

If an ID specifier appears, the wait operation is for that specific pending transfer.
The value must be the identifier of a pending transfer operation. If no ID specifier ap-
pears, wait operations will be performed for all pending transfers on the unit in a pro-
cessor-dependent order.

A WAIT statement may specify a unit that does not exist, has no file connected to
it, or was not opened for asynchronous input/output only if there is no ID specifier.
This does not cause an error condition and has no effect on the unit.

344 Chapter 9

If the pending data transfer is not a read, the END specifier is ignored. If the pend-
ing transfer is a write or advancing read, the EOR specifier is ignored.

9.7.1 The WAIT Operation

As the name implies, a wait operation waits for a previously initiated asynchronous in-
put or output transfer to complete. There may be many pending transfers on many dif-
ferent external units. However, a wait operation is always specific to a particular
transfer on a specific external unit. The wait may be explicitly performed with a WAIT
or INQUIRE statement that has an ID specifier, or implicitly performed with a synchro-
nous data transfer, CLOSE, or file positioning statement or WAIT or INQUIRE
statement without an ID specifier.

If a wait operation is performed implicitly, the initiating statement ultimately will
perform wait operations for all pending asynchronous transfers for the unit, unless an
error or exception occurs during a particular wait operation. The waits will be per-
formed in a processor-dependent order.

After a wait operation for an input data transfer, the variables involved in the
transfer become defined. Until the wait completes, the variables can be neither refer-
enced nor defined. After a wait operation for an output operation, the variables are
now redefinable. During the output operation, the variables may be referenced, but not
redefined.

Once the data transfer is complete, the wait operation checks for an error, end-of-
file, or end-of-record condition. If any are present, they are processed according to the
IOSTAT, IOMSG, ERR, END, and EOR specifiers, as appropriate. It is important to note
that the error handling is performed according to the specifiers in the statement that
initiated the wait operation, not the ones that initiated the data transfer. Thus, a syn-
chronous read will branch to its ERR label if a pending asynchronous operation on the
same unit had an error or if there is an error in the current read operation. Frequent
use of implicit waits makes it difficult to do error and exception processing.

9.8 The CLOSE Statement

Execution of a CLOSE statement terminates the connection of a file to a unit. Any con-
nections not closed explicitly by a CLOSE statement are closed by the processor have
an implicit close operation performed when the program terminates normally. Under
certain circumstances, an OPEN statement (9.3) or normal program termination (2.3.1,
8.9) also perform implicit close operations. The implicit close is equivalent to a CLOSE
statement with no STATUS specifier. The form of the CLOSE statement (R908) is:

CLOSE (close-specifier-list)

where the forms of a close specifier (R909) are:

[UNIT =] scalar-integer-expression
IOMSG = scalar-default-character-variable
IOSTAT = scalar-integer-variable

Input and Output Processing 345

ERR = label
STATUS = scalar-default-character-expression

Rules and restrictions:

1. A CLOSE statement may refer to a unit that is not connected or does not exist; such
a CLOSE statement has no effect on any file.

2. A CLOSE statement performs a wait operation if there is a pending asynchronous
data transfers for the unit.

3. If the last data transfer to a file connected for sequential access is an output data
transfer statement, a CLOSE statement for a unit connected to this file writes an
end-of-file record to the file.

4. After a unit has been disconnected by a CLOSE statement, it may be connected
again to the same or a different file. Similarly, after a file has been disconnected by
a CLOSE statement, it may also be connected to the same or a different unit, pro-
vided the file still exists.

5. See 9.2 for the general rules and restrictions for input/output statement specifier
lists.

Examples are:

CLOSE (ERR = 99, UNIT = 9)
CLOSE (8, IOSTAT = IR, STATUS = "KEEP")

9.8.1 The CLOSE Specifiers

This section describes the form and effect of the specifiers that may appear in a CLOSE
statement.

UNIT

Described in 9.2.2

ERR

Described in 9.2.3

IOMSG

Described in 9.2.3

IOSTAT

Described in 9.2.3

STATUS

Determines whether or not the file will exist after being closed.

346 Chapter 9

KEEP the file will exist after it is closed

DELETE the file will not exist after it is closed

Rules:

1. The default value is DELETE, if the unit was opened with a STATUS value of
SCRATCH.

2. The default value is KEEP, if the unit was opened with any other value of the
STATUS specifier.

3. KEEP must not be specified if the unit was opened with a STATUS specifier of
SCRATCH.

4. If KEEP is specified for a file that does not exist, the file does not exist after the
CLOSE statement is executed.

9.9 The INQUIRE Statement

There are three kinds of INQUIRE statements (R929): inquiry by unit, inquiry by file,
and inquiry by output list.

The form of an inquiry by unit or file is:

INQUIRE (inquiry-specifier-list)

The form of an inquiry by an output list is:

INQUIRE (IOLENGTH = scalar-integer-variable) output-item-list

The inquire by unit inquires about the connection properties of the unit to its file.
The inquire by file inquires about what connection properties are allowed for the

specific file.
The inquire by output list determines a value that could be used as a RECL specifi-

er for a direct-access read or write for a specific output list

9.9.1 Inquire by File or Unit

An inquiry may be made about the existence, connection, access methods, or other
properties of a file or unit. For each property inquired about, a scalar variable is sup-
plied; that variable is given a value that answers the inquiry. The inquiry specifiers
have the form of

keyword = variable

pairs in the INQUIRE statement.
An inquire by file can be made if the file is connected or unconnected. An inquire

by unit can be made if the unit has a file connected to it or not. If a file is connected to
a unit, inquiry by unit or file returns information about the file and the connection.
However, some specifiers return information about the file only, not the specific con-

Input and Output Processing 347

nection. In an inquire by unit to a disconnected unit or by file to a file that is not con-
nected, the OPENED specifier will return false and many other specifiers are not useful
and return UNKNOWN or UNDEFINED. In some cases, inquiry by file for a discon-
nected file will give properties from the file catalog. Details are given in the specific
specifier sections below.

An inquire by unit can be made to a unit that does not exist. Because the set of al-
lowed unit numbers is processor dependent, the EXIST specifier should be used in por-
table code.

The forms of an inquiry specifier (R930) are:

[UNIT =] scalar-integer-expression

FILE = scalar-default-character-expression

ACCESS = scalar-default-character-variable
ACTION = scalar-default-character-variable
ASYNCHRONOUS = scalar-default-character-variable
BLANK = scalar-default-character-variable
DECIMAL = scalar-default-character-variable
DELIM = scalar-default-character-variable
DIRECT = scalar-default-character-variable
ENCODING = scalar-default-character-variable
ERR = label
EXIST = scalar-default-logical-variable
FORM = scalar-default-character-variable
FORMATTED = scalar-default-character-variable
ID = scalar-integer-expression
IOMSG = scalar-default-character-variable
IOSTAT = scalar-integer-variable
NAME = scalar-default-character-variable
NAMED = scalar-default-logical-variable
NEXTREC = scalar-integer-variable
NUMBER = scalar-integer-variable
OPENED = scalar-default-logical-variable
PAD = scalar-default-character-variable
PENDING = scalar-default-logical-variable
POS = scalar-integer-variable
POSITION = scalar-default-character-variable
READ = scalar-default-character-variable
READWRITE = scalar-default-character-variable
RECL = scalar-default-integer-variable
ROUND = scalar-default-character-variable
SEQUENTIAL = scalar-default-character-variable
SIGN = scalar-default-character-variable
SIZE = scalar-integer-variable
STREAM = scalar-default-character-variable
UNFORMATTED = scalar-default-character-variable
WRITE = scalar-default-character-variable

348 Chapter 9

Rules and restrictions:

1. An INQUIRE statement with an inquiry specifier list must have a UNIT specifier or
a FILE specifier, but not both.

2. In an inquire by unit, the unit must be an external file unit.

3. The value given to a variable in an inquiry specifier is the value that would be ob-
tained if the specified value were assigned to the variable using an intrinsic assign-
ment statement.

4. An INQUIRE statement about a file unit may be executed even if the file or unit is
not connected.

5. Except for the NAME specifier, the processor will return character values in upper-
case. For the NAME specifier, the allowed characters used in the value returned are
processor determined.

6. If an error condition occurs during the execution of an INQUIRE statement, all the
inquiry specifier variables become undefined except the IOSTAT and IOMSG vari-
ables.

7. An INQUIRE statement performs a wait operation if there is a pending asynchro-
nous data transfer for the unit or file. If there are any errors detected in the wait
operation, the CLOSE statement will reflect these errors.

8. See 9.2 for the general rules and restrictions for input/output statement specifier
lists.

Examples of the INQUIRE statement are:

INQUIRE (9, EXIST = EX)
INQUIRE (OPENED = OP, ACCESS = AC, FILE = "T123")
INQUIRE (IOLENGTH = IOLEN) X, Y, CAT

9.9.2 Specifiers for Inquiry by Unit or File Name

This section describes the form and effect of the inquiry specifiers that may appear in
the inquiry by unit and file forms of the INQUIRE statement. The UNIT, FILE, ERR,
and ID specifiers provide input to the INQUIRE statement, the other specifiers return
values based on the connection properties. Most specifiers are paired with connection
specifiers as described in 9.3.3.

UNIT

Described in 9.2.2

When this specifier appears, the inquiry is referred to as “inquire by unit”. Note,
however, that if a file is connected to the unit, the inquire can also inquire about
file properties.

Input and Output Processing 349

FILE

Gives the name of the file being inquired about. When this specifier appears, the
inquiry is referred to as “inquire by file”.

expression the name of the file

Rules:

1. The value of the scalar default character expression must be a file name
acceptable to the processor. Trailing blanks are ignored. The interpretation of
case is processor dependent.

2. The file name may refer to a file that is not connected or to one that does not
exist.

ACCESS

Find the access method of the connection.

SEQUENTIAL the connection is for sequential access

DIRECT the connection is for direct access

STREAM the connection is for stream access

UNDEFINED the unit or file is not connected

ACTION

Find what action is allowed for this connection.

READ access is limited to input only

WRITE access is limited to output only

READWRITE both input and output are allowed

UNDEFINED the unit or file is not connected

ASYNCHRONOUS

Determine if the unit or file is connected for asynchronous input/output.

YES asynchronous input/output is allowed

NO asynchronous input/output is not allowed

UNDEFINED the unit or file is not connected

BLANK

Determine the blank interpretation mode.

350 Chapter 9

NULL null blank interpretation is in effect

ZERO zero blank interpretation is in effect

UNDEFINED the unit or file is not connected for formatted
input/output

DECIMAL

Find which character is used for the decimal symbol.

COMMA the decimal mode is COMMA

POINT the decimal mode is POINT

UNDEFINED the unit or file is not connected for formatted
input/output

DELIM

Find which character is used to delimit character values in list-directed or namelist
output.

APOSTROPHE an apostrophe is used as the delimiter

QUOTE the quotation mark is used as the delimiter

NONE there is no delimiting character

UNDEFINED the unit or file is not connected for formatted
input/output

DIRECT

Determine if direct access is allowed.

YES direct access is an allowed access method for the file

NO direct access is not an allowed access method for the
file

UNKNOWN the processor is unable to determine if direct access
is allowed for the file

ENCODING

Find the character encoding used for the file.

UTF-8 the file is either connected for formatted
input/output with UTF-8 encoding, or not
connected but the processor can determine that the
encoding form is UTF-8

Input and Output Processing 351

UNDEFINED the file is connected for unformatted input/output

UNKNOWN the file is not connected and the processor cannot
determine the encoding form

other if the processor supports additional encoding
forms, it is allowed to return other values

ERR

Described in 9.2.3

EXIST

Find whether a file or unit exists.

true the file or unit exists

false the file or unit does not exist

FORM

Determine if a connection is for formatted or unformatted input/output.

FORMATTED the connection is for formatted input/output

UNFORMATTED the connection is for unformatted input/output

UNDEFINED the unit or file is not connected

FORMATTED

Determine if formatted input/output is allowed.

YES formatted input/output is allowed for the file

NO formatted input/output is not allowed for the file

UNKNOWN the processor is unable to determine if formatted
input/output is allowed for the file

ID

expression an input value to the inquiry. It must be the
identifier of a pending data transfer. The PENDING
specifier value is affected by this specifier.

IOMSG

Described in 9.2.3

352 Chapter 9

IOSTAT

Described in 9.2.3

NAME

Find the name of a file connected to a unit.

file name the name of the file, if the file has a name

Rules:

1. The processor may return a name different from the one specified in the FILE
specifier or in the OPEN statement, perhaps because a user identifier or
directory path was added.

2. Whatever the name returned, it will be acceptable for use as a FILE specifier in
an OPEN statement.

3. The interpretation of the case of letters used and characters allowed in a file
name is determined by the processor.

4. If the unit is connected and the file does not have a name, or if the unit is not
connected, the character variable value becomes undefined. See the NAMED
specifier.

NAMED

Find out if a file has a name.

true the file has a name

false the file does not have a name or there is no
connection

NEXTREC

Find the next record number of a direct-access file.

last record number + 1 the next record number for a file connected for
direct access. The value is one more than the record
number of the record most recently read or written

1 no records have been read or written since the
connection was made

undefined value the file is not connected for direct access or the file
position is indeterminate because of a previous
error condition

If there are any pending asynchronous data transfers, the value is computed as if
all of the transfers had completed.

Input and Output Processing 353

NUMBER

Find which unit is connected to a file.

unit number the number of the unit connected to the file

–1 there is no unit connected to the file

OPENED

Determine if a file or unit is open (connected).

true the file or unit is connected (that is, opened)

false the file or unit is not connected (that is, not opened)

An inquire by file determines if the file is connected to some unit, an inquire by
unit determines if the unit is connected to some file.

PAD

Find the pad mode for the connection.

NO the pad mode is NO

YES the pad mode is YES

UNDEFINED the connection is not for formatted input/output or
the file or unit is not connected

PENDING

Determine if an asynchronous input/output operation is pending.

true asynchronous operation on the unit is pending

false asynchronous operation on the unit is complete

If an ID specifier also appears, the test is on the specific asynchronous operation.
Otherwise, all operations on the unit are tested. If the return value is false (the test-
ed asynchronous input/output operation is not pending), the inquire will also per-
form the wait operation (9.7.1) for either the specific transfer or all previously
issued transfers.

Because asynchronous input/output is highly processor dependent, processors can
choose among a variety of ways of determining the result value.

1. It can assume an asynchronous operation to be pending until a wait operation
has been executed; it would always return true until a wait operation removes
the operation from the pending list.

354 Chapter 9

2. The inquire could always wait for all asynchronous operations to complete; it
would always return false.

3. The inquire could dynamically test the transfer and return true or false
depending on the physical transfer status; however, the status could change
before the inquire processing completes.

POS

Find the file position of a file connected for stream access.

position value the number of the file storage unit immediately
following the current position. If the file is at its
terminal point, the value is one more than that of
the highest-numbered file storage unit in the file.

undefined the file is not connected for stream access or the
position is indeterminate because of a previous
error condition.

POSITION

Find the file position for a connection.

REWIND the file was connected with its position at the initial
point

APPEND the file was connected with its position just before
the endfile or at the terminal point

ASIS the file was connected without changing its position

UNDEFINED the file is not connected or is connected for direct
access

processor dependent the file has been repositioned since it was connected

This specifier is most useful before any action has been taken on the file. If any re-
positioning has occurred since the file was connected, the value returned is proces-
sor dependent, but it is not equal to REWIND unless the file is positioned at the
initial point, and it is not equal to APPEND unless the file is positioned just before
the endfile record or at the terminal point. Processors could provide information in
the return value, such as the value of the record number, although depending on
this in not portable.

READ

Determine if read is an allowed action for the file.

YES READ is one of the allowed actions for the file

Input and Output Processing 355

NO READ is not one of the allowed actions for the file

UNKNOWN the processor is unable to determine if READ is one
of the allowed actions for the file

READWRITE

Determine if readwrite is an allowed action for the file.

YES READWRITE is an allowed action for the file

NO READWRITE is not an allowed action for the file

UNKNOWN the processor is unable to determine if
READWRITE is an allowed action for the file

RECL

Find the record length of the file.

record length the length of each record of a file connected for
direct access or the maximum record length of a file
connected for sequential access

undefined value the file is not connected or the connection is for
stream access

Rules:

1. For a formatted file, the length is the number of default characters in a record.
If a record contains nondefault characters, the number that can be in a record is
processor dependent.

2. For an unformatted file, the length is in file storage units.

ROUND

Determine the input/output rounding mode.

UP the mode is up

DOWN the mode is down

ZERO the mode is zero

NEAREST the mode is nearest

COMPATIBLE the mode is compatible

PROCESSOR_DEFINED the mode is processor defined

UNDEFINED the unit is not connected for formatted input/output

356 Chapter 9

The value PROCESSOR_DEFINED will be returned only if the rounding mode is
not one of the other above modes.

SEQUENTIAL

Find if sequential access is allowed for a file.

YES sequential access is an allowed access method

NO sequential access is not an allowed access method

UNKNOWN the processor is unable to determine if sequential
access is allowed

SIGN

Find the sign mode in effect.

PLUS the sign mode is plus

SUPPRESS the sign mode is suppress

PROCESSOR_DEFINED the sign mode is processor defined

UNDEFINED the unit is not connected for formatted input/output

SIZE

Find file size.

file size size of the file in file storage units

−1 the file size cannot be determined

Rules:

1. If STREAM is an allowed access mode, the size is the highest-numbered file
storage unit in the file.

2. If SEQUENTIAL or DIRECT is an allowed access method, the file size is
processor dependent and may be different from expected due to record
padding, etc.

STREAM

Determine if stream is an allowed access method for a file.

YES stream access is an allowed access method

NO stream access is not an allowed access method

UNKNOWN the processor is unable to determine if stream
access is allowed

Input and Output Processing 357

UNFORMATTED

Determine if unformatted input/output is allowed.

YES unformatted input/output is allowed for the file

NO unformatted input/output is not allowed for the file

UNKNOWN the processor is unable to determine if unformatted
input/output is an allowed form for the file

WRITE

Determine if WRITE is an allowed action on a file.

YES WRITE is an allowed action

NO WRITE is not an allowed action

UNKNOWN the processor is unable to determine if WRITE is an
allowed action for the file

9.9.3 Inquire by Output List

For an inquire by output list, the output item list must be a valid output item list for an
unformatted output statement. The length value returned in the scalar integer variable
is the minimum number of file storage units required when used as the value of the
RECL specifier in an OPEN statement. This value may be used in a RECL specifier to
connect a file whose unformatted records will hold the data indicated by the output
list of the INQUIRE statement. The output list must not have any derived-type entities
that require a defined input/output subroutine (9.5.1.4, 9.4.4).

9.9.4 Table of Values Assigned by the INQUIRE Statement

Table 9-4 summarizes the values assigned to the various variables by the execution of
an INQUIRE statement.

9.10 File Positioning Statements

Execution of a data transfer statement usually changes the file position. In addition,
there are three statements whose main purpose is to change the file position. Changing
the position backwards by one record is called backspacing and is performed by the
BACKSPACE statement. Changing the position to the beginning of the file is called re-
winding and is performed by the REWIND statement. The ENDFILE statement writes
an end-of-file record and positions the file after the end-of-file record.

The forms of the BACKSPACE statement (R923) are:

BACKSPACE scalar-integer-expression
BACKSPACE (position-specifier-list)

358 Chapter 9

Table 9-4 Allowed values returned for keyword specifier variables in an INQUIRE statement

INQUIRE by file INQUIRE by unit

Specifier keyword Unconnected Connected Connected Unconnected

ACCESS UNDEFINED SEQUENTIAL or DIRECT UNDEFINED

ACTION UNDEFINED READ, WRITE, or READWRITE UNDEFINED

ASYNCHRONOUS UNDEFINED YES or NO UNDEFINED

BLANK UNDEFINED NULL, ZERO, or UNDEFINED UNDEFINED

DECIMAL UNDEFINED COMMA, POINT, or UNDEFINED UNDEFINED

DELIM UNDEFINED APOSTROPHE, QUOTE,
NONE, or UNDEFINED

UNDEFINED

DIRECT YES, NO, or UNKNOWN UNKNOWN

ENCODING UTF-8,
UNKNOWN, or

other

UTF-8, UNDEFINED, or UNKNOWN UNKNOWN

EXIST true if file exists,
false otherwise

true if unit exists,
false otherwise

FORM UNDEFINED FORMATTED or UNFORMATTED UNDEFINED

FORMATTED YES, NO, or UNKNOWN UNKNOWN

IOLENGTH RECL value for output item list

IOMSG error message or unchanged unchanged

IOSTAT 0 for no error, a positive integer for an error

NAME file name (might not be the
same as FILE value)

file name if named,
else undefined

undefined
value

NAMED true true if file named,
false otherwise

false

NEXTREC Undefined value If direct access, next record number;
else undefined

Undefined

NUMBER –1 unit number

OPENED false true false

PAD UNDEFINED YES or NO YES

PENDING false true or false false

Input and Output Processing 359

The forms of the REWIND statement (R925) are:

REWIND scalar-integer-expression
REWIND (position-specifier-list)

The forms of the ENDFILE statement (R924) are:

ENDFILE scalar-integer-expression
ENDFILE (position-specifier-list)

The forms of a position specifier (R926) are:

[UNIT =] scalar-integer-expression
ERR = label
IOMSG = scalar-default-character-variable
IOSTAT = scalar-integer-variable

POS undefined value file storage unit position number or
undefined value

undefined
value

POSITION UNDEFINED REWIND, APPEND,
ASIS, or UNDEFINED

UNDEFINED

READ YES, NO, or UNKNOWN UNKNOWN

READWRITE YES, NO, or UNKNOWN UNKNOWN

RECL undefined if direct access, record length;
else maximum record length

undefined

ROUND UNDEFINED UP, DOWN, ZERO, NEAREST,
COMPATIBLE,

PROCESSOR_DEFINED, or
UNDEFINED

UNDEFINED

SEQUENTIAL YES, NO, or UNKNOWN UNKNOWN

SIGN UNDEFINED PLUS, SUPPRESS,
PROCESSOR_DEFINED, or

UNDEFINED

UNDEFINED

SIZE the size or −1 −1

STREAM YES, NO, or UNKNOWN UNKNOWN

UNFORMATTED YES, NO, or UNKNOWN UNKNOWN

WRITE YES, NO, or UNKNOWN UNKNOWN

Table 9-4 Allowed values returned for keyword specifier variables in an INQUIRE statement

INQUIRE by file INQUIRE by unit

Specifier keyword Unconnected Connected Connected Unconnected

360 Chapter 9

Rules and restrictions:

1. The BACKSPACE, REWIND, and ENDFILE statements are used to position exter-
nal files; the integer expression must be a unit number.

2. The files must be connected for sequential or stream access—not direct access.

3. If the last data transfer to a file connected for sequential access is an output data
transfer statement, a BACKSPACE or REWIND statement for this file implicitly
writes an end-of-file record.

4. A file positioning statement performs a wait operation if there are any pending
asynchronous data transfers for the unit.

Example file positioning statements are:

BACKSPACE 9
BACKSPACE (UNIT = 10)
BACKSPACE (ERR = 99, UNIT = 8, IOSTAT = STATUS)
REWIND (ERR = 102, UNIT = 10)
ENDFILE (10, IOSTAT = IERR)
ENDFILE (11)

9.10.1 Specifiers for File Position Statements

This section describes the form and effect of the position specifiers that may appear in
the file positioning statements.

UNIT

Described in 9.2.2

Rules:

1. There must be a file connected for sequential access to the unit.

ERR

Described in 9.2.3

IOMSG

Described in 9.2.3

IOSTAT

Described in 9.2.3

9.10.2 The BACKSPACE Statement

Execution of a BACKSPACE statement causes the file to be positioned before the cur-
rent record if there is a current record, or before the preceding record if there is no cur-
rent record. If there is no current record and no preceding record, the file position is

Input and Output Processing 361

not changed. If the preceding record is an end-of-file record, the file becomes posi-
tioned before the end-of-file record. If a BACKSPACE statement causes the implicit
writing of an end-of-file record and if there is a preceding record, the file becomes po-
sitioned before the record that precedes the end-of-file record.

If the file is already at its initial point, a BACKSPACE statement has no effect. If the
file is connected, but does not exist, backspacing is prohibited. Backspacing over
records written using list-directed or namelist formatting is prohibited. A file connect-
ed for unformatted stream access cannot be backspaced.

Examples of BACKSPACE statements are:

BACKSPACE ERROR_UNIT ! ERROR_UNIT is an integer variable
! or named constant.

BACKSPACE (10, IOSTAT = STAT)

9.10.3 The REWIND Statement

A REWIND statement positions the file at its initial point. Rewinding has no effect on
the file position when the file is already positioned at its initial point. If a file does not
exist, but it is connected, rewinding the file is permitted, but has no effect. Examples of
REWIND statements are:

REWIND INPUT_UNIT ! INPUT_UNIT is an integer variable
REWIND (10, ERR = 200)

9.10.4 The ENDFILE Statement

For a file connected for sequential access, an ENDFILE statement writes an end-of-file
record as the next record and positions the file after the end-of-file record. The end-of-
file record becomes the last record in the file. Any records that existed after the current
position no longer exist. Reading or writing records after the end-of-file record is pro-
hibited; it is necessary to execute a BACKSPACE or REWIND statement to position the
file ahead of the end-of-file record before reading or writing the file. If the file is subse-
quently connected for direct access, only those records before the end-of-file record
may be read. Records may be written after the last direct-access record as if the end-of-
file record did not exist.

For a file connected for stream access, an ENDFILE statement sets the terminal po-
sition of the file to the current position. Only file storage units prior to the current po-
sition may be read. Stream output statements may be used to write additional data to
the file. Note that stream files have no explicit end-of-file record.

An ENDFILE statement for a file that is connected but does not exist will create the
file. If the file is connected for sequential access, it is created before the endfile record
is written.

An ENDFILE statement must not be used for a unit connected for read only access.
Examples of ENDFILE statements are:

ENDFILE OUTPUT_UNIT ! OUTPUT_UNIT is an integer variable
ENDFILE (10, ERR = 200, IOSTAT = ST)

362 Chapter 9

9.11 The FLUSH Statement

On most computer systems, data from an output statement is kept in memory in a
buffer local to the output library and physically transferred to the output device when
some trigger point is reached. This typically happens when the buffer is almost full, or
when the amount of data is large enough to be efficiently transferred, or, obviously, at
program termination. Sometimes the data needs to be used or monitored as it is gener-
ated. Perhaps as a progress bar on a screen, or to check for unusual events in the pro-
gram operation. Similarly, during input, the input routines typically read a large
amount of data, often a disk sector or track, into internal buffers and do memory to
memory transfers during execution of the input statements. When reading data from a
file that is being produced in real time the buffers need to be refreshed to get the latest
data. From a language definition point of view, execution of an input/output statement
causes the data to be transferred to or from a file. The standard does not specify details
of the timing of the transfer; buffering is a normal optimization on most systems. The
FLUSH statement is a prompt to the compiler that normal buffering is not desired at
that point and there should be an immediate physical transfer of data.

9.11.1 Form of the FLUSH Statement

The forms of the FLUSH statement are

FLUSH scalar-integer-expression
FLUSH (flush-specifier-list)

The form of a flush specifier is

[UNIT =] scalar-integer-expression
ERR = label
IOMSG = scalar-default-character-variable
IOSTAT = scalar-integer-variable

Rules and restrictions:

1. The unit must be connected to a file. If the file does not exist, the flush operation
has no effect—it does not create the file.

Examples:

FLUSH 10
FLUSH (UNIT = 10, IOSTAT = IERR)

9.11.2 Specifiers for the FLUSH Statement

UNIT

Described in 9.2.2

Input and Output Processing 363

ERR

Described in 9.2.3

IOMSG

Described in 9.2.3

IOSTAT

Described in 9.2.3

The variable will be set to zero if the flush operation succeeds, to a processor-de-
pendent positive value if there was an error, and to a processor-dependent nega-
tive value if a flush operation is not supported for the unit.

9.11.3 Execution of the FLUSH Statement

Because the standard cannot specify details of the file handling system, execution of a
FLUSH statement is ultimately processor dependent. The intention is that data written
to a file should be made available to other processes and that data written to a file by
other processes be made available to the program in a timely fashion. The standard is
unclear about whether or not a FLUSH statement performs a wait operation if asyn-
chronous input/output is pending. It seems likely that it would perform an implicit
wait. However, since the purpose of the FLUSH statement is to prohibit the processor
from overlapping computation and input/output, it seems unlikely that a real program
would execute a FLUSH statement for a unit that had any pending asynchronous in-
put/output.

9.12 Restrictions on Input/Output Specifiers, List Items, and Statements

There are three major restrictions on the execution of input/output statements. These
apply in addition to specific restrictions for specific statements. Usually the restrictions
have the most impact on input/output data transfer statements, because they have the
most generality; but the restrictions apply to all input/output statements. They are:

1. A processor is allowed to limit the operations that can be performed on a file or
unit.

2. Input/output operations cannot be recursive, except for some special cases of child
data transfers or internal files.

3. An action of an input/output statement cannot cause another entity in the in-
put/output statement, or an active parent statement, to be changed.

There is also the minor restriction that a STOP statement cannot be executed while
an input/output statement is active.

The program is not allowed to attempt any operation the processor does not sup-
port. It is not guaranteed that attempting to do an unsupported action will cause an er-

364 Chapter 9

ror indication, although most processors catch most errors. Some limits are related to
the physical nature of the file itself—the terminal cannot be rewound. Some are im-
posed by the underlying operating system—the file system might or might not let di-
rect-access files be opened for sequential or stream access. These cases can usually be
checked for by reading the documentation, or using a suitable INQUIRE statement.
Other limits are harder to cope with—once the disk becomes full, you cannot do any
more output.

A recursive input/output statement is one that is executed while another in-
put/output statement is executing. A recursive input/output statement is one that ap-
pears in a function or subroutine invoked either during evaluation of an expression in
the initial input/output statement or by defined input/output. Except for a child data
transfer statement writing to its parent data transfer statementʹs unit, a recursive in-
put/output statement must not refer to an external unit. This limits non-child recursive
input/output statements to data transfer statements that operate on internal files. A de-
fined input/output subroutine may execute an INQUIRE statement on its parentʹs unit
as well as perform data transfers to the parentʹs unit or to internal files.

Most actions which could change the values of entities appearing in an input/out-
put statement in more than one way are prohibited. These prohibitions basically allow
a processor to do input/output efficiently without imposing an order on the way things
are evaluated or defined. The rules apply to input/output statements directly and to
any statement executed in a defined input/output subroutine or a function invoked
during expression evaluation. The rules apply to variables explicitly named in an input
out output list, as well as to variables in a namelist group. The rules are:

1. A function invoked during execution of an input/output statement must not
change the value of any variable used anywhere in the input/output statement.
This is simply an application of the general rule on side effects (7.3.2).

2. An input/output statement must not change the value of any format specification
that is in use, including parts that have already been used or that havenʹt yet been
reached during format processing.

3. The value of a specifier, including the values of any subscripts or substring bounds,
in a control list must not depend on the value of any item in an input list nor on
the value of an input/out implied-do variable.

4. The value of a specifier, including the values of any subscripts or substring bounds,
in a control list or inquire list must not depend on any other specifier in the list.

5. In a data transfer statement, the variables specified by an IOSTAT, IOMSG, or SIZE
specifier, including any subscripts, must not be associated with any entity in the in-
put or output list nor with the do variable of an implied do.

6. In a data transfer statement, the values of the variables specified by an IOSTAT,
IOMSG, or SIZE specifier, including any subscripts, must not be affected by the
transfer itself, including implied do processing, and the evaluation of any other
specifier in the control list.

Input and Output Processing 365

7. Any variable that might become defined or undefined by an INQUIRE statement
cannot appear more than once in the inquire list, nor can it be associated with any
other variable in the list.

The net effect of these rules is that the processor is free to evaluate, or assign values
to, variables in the control lists in any order.

10 Input and Output Editing

• Explicit Formatting uses a format specification either in a character expression or in
a FORMAT statement. A label is required to reference a FORMAT statement.

• Implicit Formatting, used for list-directed or namelist input/output, does not use
explicit format specifications; rather the processor supplies edit descriptors for each
data item.

• A Format Specification is basically a list of edit descriptors enclosed in parentheses.
There are data, control, and character string edit descriptors.

• Data Edit Descriptors determine how data is converted to or from the internal rep-
resentation. There must be an appropriate data edit descriptor for each item in the
input/output list. There are specific data edit descriptors for each intrinsic type,
additionally, the G edit descriptor can be used for any intrinsic type. Alternatively,
the DT edit descriptor may be used for derived-type items.

• Control Edit Descriptors create new records, specify spacing, position, blank
interpretation, decimal point and algebraic sign display, and also may affect
numeric conversions by specifying a scale factor or rounding mode.

• Character String Edit Descriptors specify the output of literal character strings
delimited by quotes or apostrophes; they are not used on input.

• List-Directed Formatting is specified by an asterisk used as a format specifier. The
conversion that occurs for an item in the input/output list is based on the type and
value of the item.

• Namelist Formatting is indicated by a namelist specifier appearing in the
input/output statement; there is no explicit input/output list. The names of the items
in the namelist group appear as pairs, name=value, in both the input and the out-
put. Comments may appear in the input. Conversion is based on the type and value
of the item.

Data usually are stored in memory in binary form. For example, the integer 6 might be
stored as 0000000000000110, where the 0s and 1s represent binary digits. On the other
hand, formatted data records in a file consist of characters. Thus, when data is read from a
formatted record, it must be converted from characters to the internal representation.
Conversely, when data is written to a formatted record, it must be converted from the
internal representation into a string of characters.

Although the form of the data read during formatted input is similar to that of For-
tranʹs constants, the values are not actually Fortran constants. They do not have to fol-
low all the rules for Fortran literal constants and they are not allowed to have kind

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_10, © Springer-Verlag London Limited 2009

368 Chapter 10

parameters. The specific forms allowed are described in the appropriate section for
each type of input. This chapter refers to the input items as “values”, although “char-
acter string representation of the values before conversion” would be a more descrip-
tive term.

There are three forms of formatted input/output: namelist (10.11), list-directed
(10.10), and explicitly formatted (10.1). Namelist input/output reads or writes values in
a form name=value. The variable names are specified in a namelist declaration. It is of-
ten used to provide simple human readable output for a large number of variables. On
input, not all of the variables need to be specified; namelist input is often used to mod-
ify a few variables in a group while the others retain a default value. List-directed in-
put/output reads or writes a comma separated list of values. It is often used for reading
human prepared values, say from a terminal, or writing debugging output where the
appearance of the output is not important. As the name implies, explicit formatting
specifies where each value will appear and how it will look. Namelist and list-directed
input/output use implicit formatting; the processor can read almost any appropriate
form of data and is allowed to use “reasonable” forms for the output.

An explicit format specification provides the information necessary to determine
how conversions are to be performed. The format specification is basically a list of edit
descriptors. There must be a data edit descriptor for each data value in the input/out-
put list of the data transfer statement. Control edit descriptors may be added to control
the spacing and position within a record, create new records, specify the interpretation
of blanks, set the rounding mode and scale factor, and change the display of the deci-
mal point and optional plus sign. String edit descriptors transfer strings of characters
from the format specifications to output records. Tables 10-1, 10-2, and 10-3 list all the
edit descriptors and provide a brief description of each.

The format specifier may be a statement label that identifies a FORMAT statement,
or it may be a character expression giving the format directly. Either method is called
explicit formatting.

Table 10-1 Summary of control edit descriptors

Descriptor Description Default Section

BN, BZ Set blank mode BN 10.9.6

DC, DP Set decimal mode DC 10.9.8

RC, RD, RN,
RP, RU, RZ

Set rounding mode RP 10.9.7

S, SP, SS Set sign mode S 10.9.4

T, TL, TR, X Tab N/A 10.9.1

/ End current record N/A 10.9.2

: Conditionally stop format processing N/A 10.9.3

P Set scale factor 0P 10.9.5

Input and Output Editing 369

10.1 Explicit Formatting

As indicated above, explicit formatting information may be:

1. contained in a FORMAT statement

PRINT 100, LIGHT, AND, HEAVY
100 FORMAT (F10.2, I5, E16.8)

2. given as the value of a character expression, which might be a literal constant or a
simple variable or array

character (len=50) :: my_format
my_format = “(F10.2, I5, E16.8)”
print my_format, LIGHT, AND, HEAVY

PRINT ’(F10.2, I5, E16.8)’, LIGHT, AND, HEAVY

Table 10-2 Summary of data edit descriptors

Descriptor Description: convert data of Section

A type character 10.7

B type integer to/from a binary base 10.5.1

D type real—similar to E edit descriptor 10.5.2.2

DT derived type 10.8

E type real with an exponent 10.5.2.2

EN type real to engineering notation 10.5.2.2

ES type real to scientific notation 10.5.2.2

F type real with no exponent on output 10.5.2.1

G any intrinsic types 10.5.1, 10.5.2.3, 10.6, 10.7

I type integer 10.5.1

L type logical 10.6

O type integer to/from an octal base 10.5.1

Z type integer to/from a hexadecimal base 10.5.1

Table 10-3 Summary of string edit descriptors

Descriptor Description Section

’text’ Transfer of a character literal constant to output record 10.9.9

ʺtextʺ Transfer of a character literal constant to output record 10.9.9

370 Chapter 10

10.1.1 The FORMAT Statement

The form of the FORMAT statement (R1001) is:

FORMAT ([format-item-list])

A format specification (R1002) consists of the parentheses and the format item list
(10.2).

The FORMAT statement must be labeled. The label is used in input/output state-
ments to reference a particular FORMAT statement.

10.1.2 Character Expression Format Specifications

A character expression may be used in an input/output statement as a format
specification. The leading part of the character expression must be a valid format
specification including the parentheses; that is, the value of the expression must be such
that the first nonblank character is a left parenthesis, followed by a list of valid format
items, followed by a closing right parenthesis.

Rules and restrictions:

1. All character positions up to the closing right parenthesis in the character expres-
sion must be defined when the input/output statement is executed.

2. In a character expression, the closing right parenthesis may be followed by any
characters, including parentheses. None of these trailing characters are relevant to
the rules and restrictions in this section. For example, the following character
string may be used as a format specification in a character string; the part after the
first right parenthesis is ignored.

’(I5,E16.8,A5) This (part (is (ignored))))))’

3. If the expression is a character array, the format is scanned in array element order.
For example, the following format specification is valid (where A is a character ar-
ray of length at least 6 and size at least 2):

A (1) = ’(1X,I3,’
A (2) = ’ I7, I9)’
PRINT A, MUTT, AND, JEFF

4. If the expression is an array element, the format must be entirely contained within
that element.

5. If the expression is a character variable, no part of it up to the closing right paren-
thesis may be redefined or become undefined during the execution of the in-
put/output statement.

6. If the expression is a character literal constant, the normal rules for such constants
apply. In particular, if it is delimited by apostrophes, two apostrophes must be
written to represent each apostrophe in the format specification. If a format speci-

Input and Output Editing 371

fication contains, in turn, a character constant delimited by apostrophes, there
must be two apostrophes for each of the apostrophe delimiters, and each apostro-
phe within the character constant must be represented by four apostrophes (see the
example below). If quotes are used for the string delimiters and quotes are used
within the string, a similar doubling of the quote marks is required. One way to
avoid problems is to use both character delimiters in the format specification, if
possible. The best way to avoid the problem is to put the character expression in
the input/output list instead of the format specification as shown in the last line of
the following example.

PRINT ’(’’I can’’’’t hear you’’)’
PRINT "('I can''t hear you')"
PRINT "(A)", "I can’t hear you"

The processor must scan FORMAT statements for errors; however, when a charac-
ter expression, including a simple constant, is used as a format specification, the pro-
cessor is not required to detect at compile-time any syntax or constraint violations in
the format specification. The reason for relaxing the requirements for detection of er-
rors is that the format specification might not be complete or known until the data
transfer statement is executed and therefore cannot be checked for validity until execu-
tion time. The same relaxation on the requirements for run-time error detection also
applies to the use of deleted, obsolescent, and extended features used in format speci-
fications.

10.2 Format Specifications

A format specification is built using data, control, or character string edit descriptors.
Each data list item must have a corresponding data edit descriptor; other descriptors,
which are optional, specify such things as spacing, tabulation, scale factors for real data,
and printing of optional signs. Most edit descriptors must be separated by commas within
a format specification; however, rule 2 below gives some exceptions.

Blanks may be used freely in format specifications without affecting the interpreta-
tion of the edit descriptors (except within the character string descriptor), both in free
and fixed source forms. Named constants are not allowed in format specifications be-
cause they would create ambiguities in the interpretation of the format specifications.
For example, if N12 were a named integer constant with value 15, the engineering for-
mat edit descriptor E N12.4 could be interprete as the edit descriptor EN12.4 or E15.4.

The forms of a format item (R1003) are:

[r] data-edit-descriptor
control-edit-descriptor
character-string-edit-descriptor
[r] (format-item-list)

where r is a default integer literal constant and is called a repeat factor. If a repeat fac-
tor does not appear, it is as if it were there with a value of 1. The effect is as if the

372 Chapter 10

format item were repeated r times. Note that a parenthesized format item can be
repeated and can contain repeated format items.

Rules and restrictions:

1. r must not have a kind value specified for it and it must be positive.

2. The comma between edit descriptors may be omitted in the following cases:

a. between the scale factor (P) and the numeric edit descriptors F, E, EN, ES, D, or
G, including a repeat factor if one appears

b. before a new record indicated by a slash when there is no repeat factor

c. after the slash for a new record

d. before or after the colon edit descriptor

3. Blanks may be used as follows:

a. before the first left parenthesis

b. anywhere in the format specification; the blanks have no effect on the
formatting, except within a character string descriptor

The following examples illustrate many of the edit descriptors that are described in
detail in the next sections.

100 FORMAT (2(5E10.1, I10) / (1X, SP, I7, ES15.2))
110 FORMAT (I10, F14.1, EN10.2)
120 FORMAT (TR4, L4, 15X, A20)
130 FORMAT ("MORE SNOW")
140 FORMAT (9X, 3A5, 7/ 10X, 3L4)

10.2.1 Data Edit Descriptor Form

Data edit descriptors specify the conversion of values to and from the internal
representation to the character representation in the formatted record of a file. The forms
of the data edit descriptors (R1005) are:

I w [. m]
B w [. m]
O w [. m]
Z w [. m]
F w . d
E w . d [E e]
EN w . d [E e]
ES w . d [E e]
G w . d [E e]

Input and Output Editing 373

L w
A [w]
D w . d
DT [character-literal-constant] [(v-list)]

where w, m, d, and e are default integer literal constants, and

Rules and restrictions:

1. w, m, d, e, v and character-literal-constant must not have a kind value.

2. e must be positive.

3. w must be zero or positive for the I, B, O, Z, and F edit descriptors; w must be pos-
itive for all other edit descriptors.

4. The I, B, O, Z, F, E, EN, ES, G, L, A, D, and DT edit descriptors indicate the manner
of editing.

The detailed meanings of the data edit descriptors are provided in 10.5 through
10.8.

10.2.2 Control Edit Descriptor Form

Control edit descriptors determine the position, form, layout, and interpretation of
characters transferred to and from formatted records in a file. The forms of a control edit
descriptor (R1011) are:

T n TL n TR n n X

[r] /

:
S SP SS
k P
BN BZ
DC DP
RC RD RN RP RU RZ

w determines the width of the field

m is the least number of digits in the field

d is the number of digits after the decimal symbol

e is the number of digits in the exponent field

v is a signed integer literal constant and its interpretation
depends on the user supplied DTIO subroutine

374 Chapter 10

where n and r are default integer literal constants, k is a signed default integer literal
constant, and

The control edit descriptors T, TL, TR, and X are called position edit descriptors
(R1013). The control edit descriptors S, SP, and SS are called sign edit descriptors
(R1015). The control edit descriptors BN and BZ are called blank interpretation edit
descriptors (R1016). The control edit descriptors RC, RD, RN, RP, RU, and RZ are
called round edit descriptors (R1017). The control edit descriptors DC and DP are
called decimal edit descriptors (R1018).

Rules and restrictions:

1. n and r must be positive.

2. k, n, and r must not have a kind value specified for them.

The control edit descriptors are described in detail in 10.9.

10.2.3 Character String Edit Descriptor Form

Character string edit descriptors specify character strings to be transmitted to the
formatted output record of a file. The form of the character string edit descriptor (R1019)
is:

character-literal-constant

The character string edit descriptor is described in detail in 10.9.9.

10.3 Formatted Data Transfer

The format specification indicates how data are transferred by READ, WRITE, and PRINT
statements. The data transfer typically involves a conversion of data values. The particular
conversion depends on the data input or output item and the matching edit descriptor in
the format specification.

An empty format specification () is restricted to input/output statements with no
effective items (9.5.1) in the input/output data item list.

The effect on input and output of an empty format specification depends on
whether the data transfer is advancing or nonadvancing (9.1.4), and whether there is a
current record (9.1.4). The effect is described by the following algorithm:

k is a scale factor

n is a position in the record, relative to the left tab limit for T

n is the number of spaces for X, TR, and TL

r is a repeat factor

Input and Output Editing 375

1. If the data transfer is advancing:

a. if there is no current record, then:

i. on input, skip the next record

ii. on output, write an empty record

b. if there is a current record, then:

i. on input, skip to the end of the current record

ii. on output, terminate the current record

2. If the data transfer is nonadvancing:

a. if there is no current record, then:

i. on input, move to the initial point of the next record

ii. on output, create an empty record and move to its initial point

b. if there is a current record, then:

i. on input, there is no effect

ii. on output, there is no effect

Example of nonadvancing input:

DO I = 1, 5
READ (input_unit, ’(80A1)’, ADVANCE=’NO’) CHARS(I)(1:10)

ENDDO
READ (input_unit, ’()’, ADVANCE = ’YES’)

The above program segment reads five character strings, each of length 10, from a sin-
gle record and then advances to the end of the current record (step 1(b)(i) above).

The data and the edit descriptors are processed in a left-to-right fashion, except for
repeated edit descriptors, which are processed until either the data items are exhausted
or the repeat number is reached. A complex data item requires two data edit descrip-
tors suitable for data items of type real; that is, two of the edit descriptors E, F, D, ES,
EN, or G (they may be different).

Control edit descriptors and character edit descriptors do not have a correspond-
ing data item in the list. The effect is directly on the record transferred.

10.3.1 Parentheses Usage

The effect of parentheses in a format specification depends on the nesting level of the
parentheses. They are normally used to allow a series of edit descriptors to be used
repeatedly or to control reversion, which is what happens when the end of a format is
reached while there are still remaining data items. The algorithm for format reversion is:

1. When the rightmost right parenthesis of a complete format specification is encoun-
tered and there are no more data items, the input/output data transfer terminates.

376 Chapter 10

2. When the rightmost right parenthesis is encountered and there are more data
items, format control continues beginning at the left parenthesis corresponding to
the last preceding right parenthesis in the specification, if there is one, with an im-
plied slash (/) to cause a new record to begin. If there is no preceding right paren-
thesis, the reversion is to the beginning of the format. There must be at least one
data edit descriptor to the right of the reversion point.

3. If there is a repeat factor preceding the left parenthesis, it is reused.

4. Reversion does not affect or “reset” the scale factor, the sign control, rounding,
decimal display, or blank interpretation.

Example of format reversion:

CHR_FMT = “(I5, /, 4(3F10.2, 10X), E20.4)”

If the above character string were used in a formatted output data transfer statement,
the first output data item must be an integer and will be the only item in the first
record. The remaining items must be of type real or complex. Up to 13 values are print-
ed in the second record, and then the remaining values are transferred to each new
record, 13 at a time, until the data items are exhausted. All but the first and possibly
the last record will have 13 values, 4 sequences of 3 values using an F10.2 edit descriptor
and 10 blanks, followed by a value using the E20.4 edit descriptor.

A typical use of this format would be

PRINT CHR_FMT, N, (A(I), I = 1,N)

This behavior is described in more detail in the next section.

10.3.2 Correspondence between a Data-Edit Descriptor and a List Item

The best way to describe how this correspondence is determined is to think of two
markers, one beginning at the first item of the input/output data item list and the other
beginning at the first left parenthesis of the format specification. The input/output data
item list is conceptually expanded by listing each element of an array, each component of
a structure (unless the matching edit descriptor is a DT descriptor), each part (real and
imaginary) of each item of type complex, and each iteration of each implied-do list. The
expanded item list is called the effective data item list, and each item in the list is called
an effective item. Zero-sized arrays yield no effective items. A zero-length character
object is an effective item. The format specification is conceptually expanded for repeat
factors and reversion. Because of interactions between data values, data types, and edit
descriptors, the format can only be conceptually expanded before data items are
processed. For example, an input value might be used in an implied do expression and,
obviously, will not be known until some list items and edit descriptors have been
processed. If the data item list is not empty, there must be at least one data edit descriptor
in the format specification.

If the effective data list is empty, the format marker proceeds through the format
specification. On output, string edit descriptors are processed (10.9.9). On either input

Input and Output Editing 377

or output, slash control edit descriptors are processed (10.9.2). When a data edit de-
scriptor, a colon edit descriptor, or the outer right parenthesis is encountered, the in-
put/output operation terminates.

If the effective data item list is not empty:

1. The format marker proceeds through the format specification until a data edit de-
scriptor or right parenthesis is encountered. Any control edit descriptor or string
edit descriptor encountered before the first data edit descriptor is encountered is
interpreted according to its definition, each possibly changing the position within
the record or the position within the file, or changing the interpretation of data in
the record or conversion of data to the record.

2. The effective data item pointed to by the marker in the data item list is transferred
and converted according to the data edit descriptor, and the markers in the data
item list and format item list proceed to the next effective data item or format spec-
ification, respectively.

3. If there is a remaining effective list item, processing continues at step one, other-
wise.

4. Format processing continues as in step 1 until a data edit descriptor, a colon edit
descriptor, or the outer right parenthesis is encountered; at this point the in-
put/output operation terminates.

To illustrate how this works, consider the following example:

INTEGER A(3)
COMPLEX C
TYPE RATIONAL

INTEGER N, D
END TYPE
TYPE (RATIONAL) R

. . .
PRINT &

 "(’A and C appear on line 2, R appears on line 3.’ &
& / (1X, 3I5, 2F5.2))", A, C, R

The data item list is expanded as described above. The expanded data item list be-
comes:

A(1), A(2), A(3), REAL(C), AIMAG(C), R % N, R % D

The format specification is also expanded and becomes:

(’A and C appear on line 2, R appears on line 3.’ &
& / (1X, I5, I5, I5, F5.2, F5.2))

A marker is established in the data item list, which initially points at the item A(1). A
marker is also established in the format specification and initially points to the first left
parenthesis. The marker in the format specification proceeds left to right to the first

378 Chapter 10

edit descriptor, which is the first I5. In so doing, it sees the string edit descriptor which
is transferred to the output record, the slash edit descriptor which causes the previous
record to terminate and to begin a new record, and the position edit descriptor which
positions the record at the second character, blank filling the record. The item A(1) is
then converted according to the I5 specification and the converted value is transferred
to the output record. The format specification marker is moved right to the second I5
edit descriptor. The marker in the data item list is moved to A(2) and A(2) is converted
and transferred to the output record. Similarly, A(3), the real part of C, and the imagi-
nary part of C are converted and transferred to the output record. At this point, the
format specification marker begins scanning after the second F5.2 edit descriptor look-
ing for the next edit descriptor, the data item list marker is pointing at R % N. The first
right parenthesis is encountered and the scan reverts back to the corresponding left pa-
renthesis. The repeat factor in front of this parenthesis is 1 by default and is reduced
by 1 to 0. The marker in the format specification proceeds right from the first right pa-
renthesis, encountering the outermost right parenthesis and then reverts to the left pa-
renthesis before the edit descriptor 1X. As a result, an implicit slash edit descriptor is
interpreted, causing the previous output record to be completed and a new record to
be started. The format specification marker scans right looking for a data edit descrip-
tor, which is the first I5. In the process of the scan right, the position edit descriptor is
interpreted, which positions the file at the second character of the next record (and
blank fills the skipped characters). Finally, the N and D components of R are converted
and transferred to the output record, using the first two I5 edit descriptors. The format
specification marker moves to the third I5 edit descriptor. The data item list marker
finds no further items, and the output operation terminates.

If A has the value [2 4 6], C has the complex value (1.0, 2.0), and R has the value
RATIONAL(10, 20), then the completed output will be:

A and C appear on line 2; R appears on line 3.
bbbbb2bbbb4bbbb6b1.00b2.00
bbbb10bbb20

where b is a blank character.
Examples of writing a zero-sized array and zero-length character string using for-

matted output data transfer are:

REAL A(10)
CHARACTER(LEN=10) CHR, X(3)
WRITE(*, ’()’) A(1:0)
WRITE(*, ’(A4)’) CHR(4:3)
WRITE(*, '(A4)') X(1:3)(4:3)

An empty format specification is allowed for the first WRITE statement, because the ar-
ray to be printed is a zero-sized array section. The format specification in the second
WRITE statement is required to have at least one A edit descriptor, because the effec-
tive data item is a zero-length character string, not a zero-sized array. In the first case,
an empty record is written, and, in the second case, a record consisting of four blank

Input and Output Editing 379

characters is written. The third WRITE statement will produce three records, each
consisting of four blank characters.

10.4 File Positioning by Format Control

During a formatted input or output operation, there is a current record being processed.
After each data edit descriptor is used, the file position within that record is following the
last character read or written by the particular edit descriptor. On output, after a string
edit descriptor is used, the file is positioned within that record following the last character
written. (See the description of the control edit descriptors T, TL, TR, and X for any special
positioning within the current record; see the description of the slash edit descriptor for
special positioning within the file.) The remaining control edit descriptors do not affect
the position within a record or within the file; they affect only the interpretation of the
input characters or the form of the output character string or how subsequent edit
descriptors are interpreted. The interpretation of the edit descriptors is not affected by
whether the operation is an advancing or a nonadvancing input/output operation.

10.5 Numeric Editing

The edit descriptors that apply to numeric editing are I, B, O, Z, F, E, EN, ES, D, and G.
The following rules apply to all of them.

Rules and restrictions:

On input:

1. Leading blanks are never significant.

2. Plus signs may be omitted in the input data.

3. A completely blank field is considered to be zero, regardless of the BLANK inter-
pretation mode in effect.

4. Within a field, blanks are interpreted in a manner that depends on the BLANK in-
terpretation mode in effect, unless the value is an IEEE infinity or NaN (10.5.2.4).

5. In numeric fields that have a decimal symbol and correspond to F, E, EN, ES, D, or
G edit descriptors, the decimal symbol in the input field overrides the placement of
the decimal symbol specified by the edit descriptor specification.

6. Data input can have more digits of significance than the processor can use to rep-
resent a number.

7. The lowercase exponent letters e and d are equivalent to the corresponding upper-
case exponent letters and lower case letters are equivalent to upper case letters in
IEEE infinity or NaN values (10.5.2.4).

380 Chapter 10

On output:

1. Except for B, O, and Z editing, it is processor dependent whether a positive value,
including a positive zero, has a plus sign, unless a sign edit descriptor is used to
force the presence or absence of the plus sign (10.9.4).

2. Except for B, O, and Z editing, negative values will have a minus sign. For real da-
ta, a zero with a negative sign may be produced on output. This allows support for
IEEE arithmetic processors that can represent negative zero.

3. The number is right justified in the field. Leading blanks will be inserted as need-
ed.

4. Except when w is zero, if the number or the exponent is too large for the field
width specified in the edit descriptor, the entire output field is filled with asterisks.

5. The processor will not produce asterisks if the output value fits in the output field
when the optional characters are omitted.

6. w may be zero only for I, B, O, Z, or F editing. In this case, the processor will select
the minimum field width which will contain the sign (if one is necessary) and val-
ue with no leading blanks.

10.5.1 Integer Editing

Integer editing converts integer values to or from strings of characters. The integer edit
descriptors are:

I w [. m]
B w [. m]
O w [. m]
Z w [. m]
G w . d [E e]

where:

They are the only edit descriptors that may be used with integer data (note that the G
edit descriptor also may be used with other data types).

w determines the field width

m is the minimum number of digits in the output field

d, e have no effect on integer editing

Input and Output Editing 381

Rules and restrictions:

On both input and output:

1. For an integer input/output list item, the edit descriptor Gw.d[Ee] is the same as an
Iw descriptor with the same value of w; w must be greater than zero.

On input:

1. w must not be zero.

2. m has no effect on an input field.

3. For the I edit descriptor, the character string in the file must be an optionally
signed string of blanks and digits.

4. For the B, O, or Z edit descriptors, the character string must be an unsigned string
of blanks and digits of binary, octal, or hexadecimal base, respectively (4.3.1.4).

Example of formatted input:

READ 100, K, J, L
100 FORMAT (I5, G8.0, O4)

If the input field is (where b is a blank)

bb-24bbbbb117bb77

K is read using the integer I5 edit descriptor, J is read with a G8 edit descriptor,
and L is read with an O4 edit descriptor. The resulting values of K, J, and L are –24,
117, and 63, respectively.

On output:

1. The output field generally consists of blank characters, possibly a sign, and a digits
string. The sign and digits are right adjusted within the field. Some or all of these
parts may be absent.

2. The value of m, if it appears, must not exceed the value of w unless w is zero.

3. If w>0, the Iw edit descriptor produces a field with a width of w characters consist-
ing of leading blanks as needed, a minus sign if the value is negative or an optional
plus sign, and a digit string in the rightmost characters of the field. If the value will
not fit in w characters (with no optional plus sign), the field is filled with asterisks.
If w=0, the processor will select the minimum field width to contain a minus sign if
needed or an optional plus sign and the value with no leading spaces.

4. For Iw.m, with w>0, at least m digits, with leading zeros as necessary, are produced.

5. The I0.m edit descriptor produces a result with at least m digits, and as many more
digits as are necessary to represent the integer value. The output field contains a
minus sign if necessary and optionally a plus sign.

382 Chapter 10

6. The Bw[.m], Ow[.m], and Zw[.m] edit descriptors follow the same rules and produce
the same output form as Iw[.m] except that the digits are in the binary, octal, or
hexadecimal system and no sign is produced.

7. For the special case of m=0 and a data value of zero, the output field consists of w
blanks, unless w is also zero, in which case the field is one blank. No sign is
produced, regardless of the sign control in effect.

Because the B, O, and Z edit descriptors do not allow a sign in the input field or
produce one on output, depending on the processor, a negative value might be encoded
in the digits. For example, −1 might be given as 80000000 using a hexadecimal edit
descriptor. If the highest order bit is set, the interpretation of the digits with B, O, and Z
edit descriptors is not specified by the standard.

Examples:

The statement

PRINT "(4I4)", 22, -444, 0, 55555

produces

bb22-444bbb0****

because 55555 will not fit in a field that is only 4 spaces wide, whereas the statement

PRINT "(4I0)", 22, -444, 0, 55555

produces

22-444055555

The processor selects the minimum field width necessary, although the compressing of
the resulting values is difficult for humans to read.

The statement

PRINT "(4I4.3)", 22, -444, 0, 55555

produces

b022-444b000****

with at least 3 digits, including forced leading zeros for each value, whereas

PRINT "(4I0.3)", 22, -444, 0, 55555

produces

022-44400055555

and the fields are adjusted to allow all of the values to print with at least 3 digits dis-
played.

Input and Output Editing 383

The following table shows the output displayed when internal values are printed
with different integer edit descriptors.

Consider the particular case where 1874 is printed with the I6.5 edit descriptor.
Then the minimal number of digits needed to represent the value is 4. Because the val-
ue of m is 5, the output field consists of one blank followed by a five-digit representa-
tion of 1874, in which one leading zero is needed to produce five digits. Also, note
carefully the special case of zero and an I0.0 edit descriptor: it produces a single blank
space, not a zero!

The I0 and I0.m are often used with internal output to produce a sequence of file
names that follow operating system conventions. If C1 and C2 are character variables
with a length of 7, the statements

WRITE (C1, "(A, I0.3)") "file", 012
WRITE (C2, "(A, I3.3)") "file", 012

will set the variables C1 and C2 to file12b and file012, respectively, producing file
names with no internal blanks.

10.5.2 Real Editing

Real editing converts real (or complex) values to or from strings of characters. The F, E,
EN, ES, D, and G edit descriptors specify editing for real and complex input/output list
items. Two such edit descriptors are required for each complex data item (10.5.3).

The forms of the edit descriptors for real values are:

F w . d
E w . d [E e]
EN w . d [E e]
ES w . d [E e]
D w . d
G w . d [E e]

For output, the E, EN, and ES descriptors produce a field with a decimal symbol
and an exponent field; the position of the decimal symbol depends on the descriptor
used. The E descriptor writes no significant digits to the left of the decimal, the ES, (sci-
entific), descriptor writes one digit to the left of the decimal, and the EN (engineering)
descriptor writes one to three digits to the left of the decimal such that the exponent
value is divisible by 3. The F descriptor writes values with a decimal symbol in a fixed

Internal value I6 I6.5 I6.3 I6.0 I0.6 I0.3 I0.0

1874 bb1874 b01874 bb1874 bb1874 001874 1874 1874

−1874 b-1874 -01874 b-1874 b-1874 -001874 -1874 -1874

0 bbbbb0 b00000 bbb000 bbbbbb 000000 000 b

384 Chapter 10

place and no exponent field. The D descriptor was historically used for double preci-
sion values, but is now essentially the same as an E descriptor. The G descriptor will
produce either F or E output, depending on which form fits “best” in the output field.

For input, all six descriptors may be used interchangeably.
The general rules for the format descriptors and the processing of numeric values

are described below. The special case IEEE values, infinity and NaN, are described in
10.5.2.4.

10.5.2.1 F Editing

Fw.d editing converts to or from a string occupying w positions, except when w is zero.

Rules and restrictions:

On both input and output:

1. The value in the input field or the value transferred to the output field may be
signed.

2. Rounding during the conversion is controlled by the ROUND mode in effect (10.9.7,
9.2.4).

On input:

1. w must not be zero.

2. d specifies the number of decimal places in the input value if a decimal symbol
does not appear in the input field.

3. The input field may be

a. an IEEE exceptional value (10.5.2.4)

b. a string which has the form of an optionally signed integer or real literal
constant, possibly including an exponent

c. an optionally signed digit string followed by a sign followed by a digit string
treated as an exponent

d. an optionally signed digit string containing a decimal symbol followed by a
sign followed by a digit string treated as an exponent

4. None of the constants or digit fields may contain an underscore or kind parameter.

5. Blanks usually may be inserted freely anywhere in the input field, although they
may interact with the blank interpretation mode.

6. If the input field contains a decimal symbol, the value of d has no effect.

7. If there is no decimal symbol, it is as if a decimal symbol appeared in front of the
rightmost d digits of the nonexponent part, treating blanks as 0 digits or as if they

Input and Output Editing 385

were not there, according to the blank interpretation mode. If w > d, leading zeros
are supplied as necessary.

For example, with the format specification F5.1, the input data item

1bb99

is treated as the real number 19.9 if the BLANK interpretation mode is NULL; it is
treated as the real number 1009.9 if the BLANK interpretation mode is ZERO.

8. There may be more digits in the number than the processor can use.

9. The number may contain an E or D indicating an exponent value; a field with a D
exponent letter is processed identically to the same field with an E exponent letter.
If there is no exponent field on input, the number is processed as if the character
string were followed by an exponent with the value –k where k is the scale factor
established by a previous kP edit descriptor. If there is an exponent field, the scale
factor kP is ignored.

On output:

1. d specifies the number of digits after the decimal symbol, d must be less than w
unless w is zero.

2. If the value is an IEEE NaN or infinity it is processed as described in 10.5.2.4.

3. Except when w is zero, the form of the output field consists of w positions com-
prised of leading blanks, if necessary, and an optionally signed real value modified
by the scale factor in effect (10.9.5) with a decimal symbol, rounded to d digits after
the decimal symbol but with no exponent, underscore, or kind parameter. If the
number is positive, the sign is optional and is controlled by the sign mode in effect.

4. Leading 0s do not appear unless the number is less than 1 in absolute value, in
which case the processor optionally may place a 0 in front of the decimal symbol.

5. One zero will be output if no other digits would appear.

6. The form of the output field from an F0.d edit descriptor is the same as from an
Fw.d edit descriptor, where w is the smallest value such that all of the nonblank
characters that would be produced are produced and no optional blank or plus
sign appears. However, if the sign mode is PLUS, the leading sign is not optional and
will be produced.

Examples:

The statements

READ (*, 100) X, Y
100 FORMAT (F10.2, F10.3)

and input field of

386 Chapter 10

bbbb6.42181234567890

assigns to X and Y the values 6.4218 and 1234567.89, respectively. The value of d is ig-
nored for X because the input field contains a decimal symbol.

The statement

PRINT "(A, F0.4, A)", "X", -12.34567, "X"

produces the output record

X-12.3457X

10.5.2.2 E, EN, ES, and D Editing

The Ew.d[Ee], Dw.d, ENw.d[Ee], and ESw.d[Ee] edit descriptors convert to and from a string
occupying w positions. For these edit descriptors, the field representing the floating-point
number contains w characters, including an optional exponent field.

Rules and restrictions:

On both input and output:

1. w is the field width, d is the number of places after the decimal, and e is the expo-
nent width.

On input:

1. Each of the forms Ew.d[Ee], Dw.d, ENw.d[Ee], and ESw.d[Ee] is equivalent to an Fw.d
edit descriptor. e has no effect on input.

On output:

The forms of the output field for a scale factor of zero are:

[±] [0] . E or D

[±] yyy . EN

[±] z . ES

where:

• ± signifies a plus or a minus; the plus is optional for positive numbers and is con-
trolled by the sign mode (9.2.4).

• are the d digits after the decimal symbol of the rounded value.

• yyy (for EN) are the one, two, or three decimal digits representing the most signif-
icant digits of the value of the datum after rounding; that is, yyy is an integer such
that 1 ≤ yyy < 1000 or, if the output value is zero, yyy = 0.

x1x2…xd exp

x1x2…xd exp

x1x2…xd exp

x1x2…xd

Input and Output Editing 387

• z (for ES) is a decimal digit representing the most significant digit of the value of
the datum after rounding; that is, z is an integer such that 0 < z < 10 or, if the out-
put value is zero, y = 0.

• exp is a decimal exponent having one of the forms specified in Table 10-4, where
each is a decimal digit. For the EN descriptor, the exponent will be divisible by
three and the number of digits in yyy adjusted accordingly.

2. The sign in the exponent will be produced.

3. A plus sign is used for zero exponents.

4. If the exponent exceeds 999 in magnitude, the forms with Ee must be used with a
sufficiently large value of e to accommodate the exponent exp.

5. There is no way to force the processor to use a D in the exponent field.

6. For the Ew.d and Dw.d forms, a scale factor kP may be used to specify the number
of digits to the left of the decimal symbol, with the exponent adjusted accordingly;
that is, the scale factor k controls the decimal normalization. If –d < k ≤ 0, the out-
put field contains the decimal symbol, exactly |k| leading zeros, and d − |k| sig-
nificant digits. If 0 < k < d + 2, the output field contains exactly k significant digits
to the left of the decimal symbol and d − k + 1 significant digits to the right of the
decimal symbol. Other values of k are not permitted; that is, those values of k that
will produce no digits to the left of the decimal symbol or specify fewer than zero
digits to the right of the decimal symbol. The scale factor has no effect on ES or EN
editing.

7. The precise form of zero on output is not specified, except that it must contain a
decimal symbol, d zero digits, and an exponent of at least 4 characters whose digits
are not specified. However, the likely value of the exponent is zero. The EN and ES
descriptors will produce exactly one zero to the left of the decimal.

Table 10-4 Forms for the exponent exp in E and D editing

Edit descriptor Value of exponent ae Form of exp

Ew.d
ENw.d
ESw.d

|ae| ≤ 99
99 < |ae| ≤ 999

 or

Ew.dEe
ENw.dEe
ESw.dEe

|ae| ≤ 10e − 1

Dw.d |ae| ≤ 99

99 < |ae| ≤ 999

 or
or

zi

E z1z2± 0z1z2±
z1z2z3±

E z1z2…ze±

D z1z2± E z1z2±
0z1z2±

z1z2z3±

388 Chapter 10

Examples of real output:

If the value of Y is −21.2, Table 10-5 indicates the output for various edit descrip-
tors when the following statements are executed.

 PRINT 105, Y
105 FORMAT (edit descriptor)

Table 10-6 shows the effects of the different edit descriptors for values with differ-
ent magnitudes. The SS edit descriptor is used to suppress the optional plus sign in the
displayed values.

Note that other forms are allowed for the E12.3 edit descriptor. A processor is al-
lowed to produce a leading zero before the decimal point and may independently omit
the E from the exponent and produce a 3 digit exponent field.

10.5.2.3 Generalized Editing of Real Data

Gw.d[Ee] converts to or from a string using generalized editing. Except for IEEE infinity
and NaN values, the form for generalized editing is determined by the magnitude of the
value of the number.

Table 10-5 Values produced by various E, EN, ES, and D edit descriptors

Edit descriptor Values produced

E15.3 bbbbb-0.212E+02
or
bbbbbb-.212E+02

3PD15.3 bbbbb-212.0E-01
or
bbbbb-212.0D-01

EN15.3 bbbb-21.200E+00

ES15.3 bbbbb-2.120E+01

Table 10-6 Comparison between E, EN, and ES edit descriptors

Internal value Possible output
from SS, E12.3

Output from
SS, EN12.3

Output from
SS, ES12.3

6.421 bbbb.642E+01 bbb6.421E+00 bbb6.421E+00

–.5 bbb-.500E+00 -500.000E-03 bb–5.000E–01

.00217 bbbb.217E-02 bbb2.170E-03 bbb2.170E-03

4721.3 bbbb.472E+04 bbb4.721E+03 bbb4.721E+03

Input and Output Editing 389

Rules and restrictions:

On input:

1. The Gw.d[Ee] edit descriptor is the same as the Fw.d edit descriptor (10.5.2.1).

On output:

1. Let be the magnitude of a number to be printed using a G edit descriptor. If =
0 or is approximately between 0.1 and , Table 10-7 specifies the form of the out-
put. If N is outside this range, output editing with the edit descriptor kPGw.d[Ee] is
the same as that with kPEw.d[Ee]. A kP scale factor has no effect if F editing is select-
ed.

Table 10-7 The form of the output using a G edit descriptor for a number of magnitude

Magnitude of datum Equivalent conversion

F(w − n).(d − 1), n("b")

F(w − n).(d), n("b")

F(w − n).(d − 1), n("b")

F(w − n).(d − 2), n("b")

.

.

.

F(w − n).1, n("b")

F(w − n).0, n("b")

1. Note that zero is a special case.

2. n blanks are produced to the right of the digits. n is 4 for Gw.d output and
e+2 for Gw.dEe.

3. n must be chosen such that w – n will be positive.

4. R is a rounding term whose value depends on the rounding mode in effect.

Rounding mode: R

COMPATIBLE: 0.5
NEAREST: 0.5 if the higher value is even; −.5 if the lower value is even
UP: 1
DOWN: 0
ZERO: 1 if the internal value is negative; 0 if the internal value is positive

N N
10d

N

N 0=

0.1 R 10 d– 1–×– N≤ 1 R 10 d–×–<

1 R 10 d–×– N≤ 10 R 10 d– 1+×–<

10 R 10 d– 1+×– N≤ 100 R 10 d– 2+×–<

10d 2– R 10 2–×– N≤ 10d 1– R 10 1–×–<

10d 1– R 10 1–×– N≤ 10d R–<

390 Chapter 10

Although the rules and forms appear complicated, the simple result is that a G for-
mat descriptor will produce a value in a simple F form if the decimal symbol fits in the
field and use an exponential form for other values.

Table 10-8 shows the result if 123.456 is printed using different G formats.

Examples of G output:

The statement

PRINT "(G10.3E1)", 8.76E1

produces the output:

bbb87.6bbb

because n is 3 (=1+2) and the format reduces to F7.1,ʺbbbʺ.

The statement

PRINT "(G10.3)", 8.76E10

produces the output

b0.876E+11

because the value is too large to be produced with an F field, so E10.3 is used.
Note that the leading zeros, an initial plus sign, and the form of the exponent field

in the examples above are optional with the processor.

10.5.2.4 IEEE Exceptional Values

On processors that support the IEEE floating-point standard, the exceptional values
infinity and NaN are treated separately from ordinary numeric values. Denormalized
values are also IEEE exceptional values; however, they are treated as ordinary values for
input/output. This applies to all real and complex editing.

Table 10-8 The result of printing 123.456 with G edit descriptors

Format Selected format Possible output field

G 12.1 E 12.1 bbbbb0.1E+03

G 12.2 E 12.2 bbbb0.12E+03

G 12.3 F 8.3, "bbbb" bbbb123.bbbb

G 12.4 F 8.4, "bbbb" bbb123.5bbbb

G 12.5 F 8.5, "bbbb" bb123.46bbbb

G 12.6 F 8.6, "bbbb" b123.456bbbb

G 12.7 F 8.7, "bbbb" 123.4560bbbb

G 12.8 E 12.8 ************

Input and Output Editing 391

Rules and restrictions:

On input:

The input field consists of an optional series of blanks followed by either:

1. an optional sign, the characters INF or INFINITY, and optional trailing blanks,
which denotes a positive or negative IEEE infinity value, or

2. an optional sign, the characters NAN optionally followed by a string of zero or
more alphanumeric characters enclosed in parenthesis, optionally followed by
trailing blanks which denotes an IEEE NaN value. The effect of the optional sign is
processor dependent. If the input field is either NAN or NAN() the input value is
a quiet NaN; otherwise it is a processor-dependent NaN value.

The interpretation of NAN, INF, and INFINITY does not depend on the case of the
characters. The values may be used only on processors that support IEEE infinity or
NaN for the kind of the associated input variable.

On output:

1. For IEEE infinity

a. if w ≤ 2 (3 if a sign is required), the output field consists of asterisks

b. if 3 ≤ w ≤ 7 (4 ≤ w ≤ 8 if a sign is required), the output field consists of blanks as
necessary, a minus sign if the value is a negative infinity or an optional plus
sign and the characters Inf right justified in the field

c. if w ≥ 8 (9 if a sign is required), the output field consists of blanks as necessary,
a minus sign if the value is a negative infinity; or an optional plus sign and the
characters Infinity right justified in the field

2. For IEEE NaN

If w < 3 the output field consists of asterisks. Otherwise, the output field consists of
blanks as necessary followed by the characters NaN optionally followed by up to
w−5 processor dependent characters enclosed in parentheses. Some processors can
give additional information about the NaN in the parenthetical string.

10.5.3 Complex Editing

Complex editing converts complex values to or from strings of characters and follows the
rules for real editing (10.5.2). Editing of complex numbers requires two real edit
descriptors, the first one for the real part and the second one for the imaginary part.
Different edit descriptors may be used for the two parts. Control and character string edit
descriptors may be inserted between the edit descriptors for the real and imaginary parts.

392 Chapter 10

Example:

For the statements

COMPLEX CM(2)
READ "(4E7.2)", CM(1:2)

if the input record is:

bb55511bbb2146bbbb100bbbb621

the values assigned to CM(1) and CM(2) are 555.11 + 21.46i and 1 + 6.21i, respectively.

10.6 Logical Editing

Logical editing converts logical values to or from strings of characters. The edit
descriptors used for logical editing are:

L w
G w . d [E e]

Rules and restrictions:

On both input and output:

1. w is the field width and must be greater than zero.

2. Generalized logical editing Gw.d[Ee] follows the rules for Lw editing.

On input:

1. The input field for a logical value consists of any number of blanks, followed by an
optional period, followed by T or F (which may be in upper or lower case), for a true
and false value respectively, followed by any other characters, which are ignored.

Example: Using the READ statement:

READ "(2L8)", L1, L2

to read the input record:

.TRUE.bb.FALSE.b

will cause L1 and L2 to have the values true and false, respectively. The result would
be the same if the input record were:

TUESDAYbbbFRIDAY

On output:

1. The output field consists of leading blanks, followed by T or F, for a true and
false value, respectively, of the output item.

w 1–

Input and Output Editing 393

Example of logical output:

PRINT "(2L7)"), L1, L2

If L1 and L2 are true and false, respectively, the output record will be:

bbbbbbTbbbbbbF

10.7 Character Editing

Character editing converts character values to or from strings of characters. The edit
descriptors for character editing are:

A [w]
G w . d [E e]

Rules and restrictions:

On both input and output:

1. w is the field width measured in characters and must be greater than zero.

2. A Gw.d[Ee] general edit descriptor is the same as an Aw edit descriptor for charac-
ter data.

3. If w is omitted, the length of the character data object being transferred is used as
the field width.

4. If the character datum is of nondefault kind, the character used for “blank pad-
ding” is processor dependent.

On input:

1. If w is greater than or equal to the length of the character datum read,
rightmost characters of the input field are read.

2. If w is less than the length of the character data read, the w characters of the
character datum will be read from the input field and placed left justified in the
character variable followed by − w trailing blanks.

3. All characters in the input field must be the same kind as the input list variable.

On output:

1. If w exceeds the length of the character datum written, w − blank padding
characters are written followed by characters of the character datum.

2. If w is less than or equal to the length of the character data written, the w left-
most characters of the character datum will appear in the output field.

3. All characters in the output field will be the same kind as the output list item.

len len

len

len

len len
len

len

394 Chapter 10

Note that an A edit descriptor is very similar to an I0 edit descriptor.
For files connected for stream access, character output may cause the output to be

split into more than one record if the data contains a new line character. A new line
character is the character returned by the intrinsic function NEW_LINE, unless that
character is a blank, in which case the processor does not support new line record ter-
mination for that character kind. Each character in the output item is written to the file
in sequence until a new line character is encountered. At that point, the current record
is terminated, as if by a slash edit descriptor (10.9.2), and a new record begins. There
may be several new line characters in an output item.

Example: Given the declaration:

Character (Len=11) :: Name1, Name2, Name3

and an input file that contains the lines

RalphbSmithbbbb
RalphbSmithbbbb

RalphbSmithbbbb

the following READ statements

Read "(A)", Name1
Read "(A5)"), Name2
Read "(A15)", Name3

would assign the values

RalphbSmith
Ralphbbbbbb

hbSmithbbbb

to Name1, Name2, and Name3, respectively.

Example:

The statements:

CHARACTER (LEN = 14), PARAMETER :: SLOGAN = "SAVE THE RIVER"
PRINT "(A)", SLOGAN
PRINT "(A4)", SLOGAN
PRINT "(A20)", SLOGAN

produce the output records, respectively:

SAVEbTHEbRIVER
SAVE

bbbbbbSAVEbTHEbRIVER

Input and Output Editing 395

10.8 Defined Editing

Defined editing, called user-defined derived-type editing in the standard, allows user
written subroutines to control the input/output formatting for derived types, rather than
the intrinsic derived-type input/output formatting. The edit descriptor for defined editing
is:

DT [char-literal-constant] [(v-list)]

Neither the character literal constant nor any of the integer literal constants in v-list
may have a kind parameter.

User defined input/output subroutines are described in 9.5.1.4. The string

"DT"//char-literal-constant

is passed to the iotype argument and the v-list constants are passed as an array to the
v_list array argument. The user defined input/output subroutine uses these values to
control the formatting and processing of the values. A DT edit descriptor can be used
only if the corresponding list item is of derived type and there is an appropriate de-
rived-type input/output subroutine accessible.

Examples of defined editing:

The edit descriptor DT'my_type'(3,5,7,9) will invoke the appropriate subroutine
with the value of iotype set to DTmy_type; v-list will be [3 5 7 9].

For the plain edit descriptor DT, iotype will be set to DT, and v-list will be the emp-
ty array [].

Note also that derived-type values, for some types, can be read or written using
formatted input/output without using defined input/output subroutines, in which case
it is as if the derived-type components were listed in the input/output list and appro-
priate edit descriptors were provided for each value.

10.9 Control Edit Descriptors

No data is transferred or converted with the control edit descriptors. Control edit
descriptors affect skipping, tabbing, scale factors, rounding, decimal symbol appearance,
and optional signs. These edit descriptors may affect how the data is input or output
using the subsequently processed data edit descriptors in the format specification.

10.9.1 Position Editing

Position edit descriptors control relative tabbing left or right in the record before the next
list item is processed. The edit descriptors for tabbing are:

T n tab to position n
TL n tab left n positions
TR n tab right n positions
n X tab right n positions

396 Chapter 10

The tabbing operations to the left are limited by a position called the left tabbing
limit. This position is normally the first position of the current record or the current
position in a stream file, but, if the previous operation on the file was a nonadvancing
formatted data transfer, the left tabbing limit is the current position within the record
before the current data transfer begins. If the file is positioned to another record during
the data transfer, the left tabbing limit changes to the first position of the new record.

The Tn edit descriptor positions the record just before the character in absolute po-
sition n relative to the left tabbing limit. TRn and nX are equivalent and move right n
characters from the current position. TLn moves left n characters from the current posi-
tion, but is limited by the left tabbing limit. However, in a child data transfer statement,
it is the programmer’s responsibility to make sure that a TLn does not cause the record
position to move to the left of the position at the time the child transfer started. A child
data transfer cannot reprocess characters prior to where it started, whereas a parent data
transfer can use TLn to reprocess characters.

Rules and restrictions:

On both input and output:

1. n must be a positive integer constant with no kind parameter.

2. Left tabbing is always limited so that even if left tabbing specifies a position to the
left of the left tabbing limit, the record position is set to the left tabbing limit in the
record.

3. The left tabbing limit in the record is determined by the position in the record be-
fore any data transfer begins for a particular data transfer statement.

4. If a file is positioned to another record during a particular data transfer statement,
the left tabbing limit is the first position of the new record.

5. For internal files or external files that are not Unicode files, if any character that is
skipped over by position editing is a nondefault character type, the position is pro-
cessor dependent.

On input:

1. Moving to a position left of the current position allows input to be processed twice.

2. The X and Tr descriptors always move the position to the right and skip characters.

3. The file may be positioned arbitrarily far past the last character in the record; how-
ever, no characters may be transferred from this position, so it is not very useful.

On output:

1. The positioning does not transmit characters, and does not by itself cause the
record to be shorter or longer.

Input and Output Editing 397

2. Positions that are skipped and have not been filled previously behave as if they are
blank filled if data are written subsequently.

3. Positions previously filled may be replaced with new characters, but are not blank
filled if they are skipped subsequently using any of the position edit descriptors.

Example: If DISTANCE and VELOCITY have the values 12.66 and –8654.123,

PRINT 100, DISTANCE, VELOCITY
100 FORMAT (F9.2, 6X, F9.3)

produces the record:

bbbb12.66bbbbbb-8654.123

and

PRINT 100, DISTANCE, VELOCITY
100 FORMAT (F9.2, T7, F9.3)

produces the record:

bbbb12-8654.123

because T7 specifies the first position for VELOCITY as the seventh character in the
record.

10.9.2 Slash Editing

The slash edit descriptor consists of the single slash character (/), optionally preceded by
a repeat count. Data transfer to or from the current record is ended when a slash is
encountered in a format specification. Multiple slashes or a slash with a repeat count skip
multiple input records or create multiple output records.

Rules and restrictions:

On input:

1. If the file is connected for sequential or stream access, the file is positioned at the
beginning of the next record. The effect is to skip the remainder of the current
record.

2. For direct access, the record number is increased by one, and the file is positioned
at the beginning of the record with this increased record number, if it exists; it be-
comes the current record.

3. A record may be skipped entirely on input.

398 Chapter 10

On output:

1. If the file is connected for sequential or stream access, a new empty record is creat-
ed after the current record, and the file is positioned at the beginning of the new
record. In completing the previous record, no additional characters will be written
to the file.

2. For direct access, the current record is blank filled, the record number is increased
by one, and this record becomes the current record.

3. For an internal file, the current record is blank filled, and the file is positioned at
the beginning of the next array element.

Example: If ALTER, POSITION, and CHANGE have the values 1.1, 2.2, and 3.3, respec-
tively,

PRINT "(F5.1, /, 2F6.1)", ALTER, POSITION, CHANGE

produces two records:

bb1.1
bbb2.2bbb3.3

10.9.3 Colon Editing

The colon edit descriptor consists of the character colon (:). If the list of effective items in
a formatted READ or WRITE statement is exhausted, a colon stops format processing at
that point. If the list is not exhausted, the colon edit descriptor has no effect.

Example: If ALTER, POSITION, CHANGE, and DELTA have the values 1.1, 2.2, 3.3,
and 4.4, respectively,

PRINT 100, ALTER, POSITION, CHANGE
100 FORMAT (10(F5.1, :, ","))

produces:

bb1.1,bb2.2,bb3.3

and

PRINT 100, ALTER, POSITION, CHANGE, DELTA

produces:

bb1.1,bb2.2,bb3.3,bb4.4

10.9.4 Sign Editing

Sign editing applies to the output data transfer of positive numeric values only. It controls
the writing of the optional plus sign when an I, F, E, EN, ES, D, or G edit descriptor is
used. A sign edit descriptor overrides the sign mode (9.2.4) set by the data transfer

Input and Output Editing 399

statement or the OPEN statement. The sign edit descriptors are listed in Table 10-9.

Rules and restrictions:

1. The descriptors have effect until another sign edit descriptor is encountered in the
format specification or execution of the input/output statement terminates.

2. The descriptors have no effect during formatted input data transfers.

Example: If SPEED(1) and SPEED(2) are 1.46 and 2.3412 respectively,

PRINT 110, SPEED (1:2)
110 FORMAT (SP, 2F10.2)

produces the record:

bbbbb+1.46bbb+234.12

10.9.5 Scale Factors

The kP edit descriptor indicates scaling, where the scale factor k is a signed integer literal
constant with no kind parameter.

The scale factor is zero at the beginning of a formatted input/output statement.
When a kP descriptor occurs, the scale factor becomes k, and all succeeding numeric
fields processed with an F, E, EN, ES, D, or G edit descriptor will use this scale factor
until another kP edit descriptor occurs. Note that a comma between a kP descriptor and
a following real edit descriptor is optional. Both 1P4E10.0 and 1P,4E10.0 are acceptable
and have the same meaning.

The scale factor behaves the same way as the changeable mode values (9.2.4) with
respect to nonadvancing and defined input/output.

Rules and restrictions:

On input:

1. The scale factor has no effect if the input field has an exponent.

2. If the input field has no exponent, the internal value is the external value divided
by the scale factor . This is often the inverse of what is expected.

Table 10-9 Sign edit descriptors

Edit
descriptor

Sign
mode Effect

S Processor
defined

Appearance of the optional plus sign is
processor dependent.

SP Plus The optional plus sign will not appear.

SS Suppress The optional plus sign will appear.

10k

400 Chapter 10

3. If UP, DOWN, ZERO, or NEAREST rounding mode is in effect, the scale factor is
applied to the external value and then this value is rounded.

On output:

1. For the F edit descriptor, the external number equals the internal number multi-
plied by the scale factor .

2. For the E and D edit descriptors, the nonexponent part (significand) of the number
appearing in the output is multiplied by and the exponent is reduced by k.

3. For the G edit descriptor, the output value is not affected by the scale factor if the
number will print correctly with the appropriate F edit descriptor as described in
Table 10-7. Otherwise, the scale factor for the G edit descriptor has the same effect
as for the E edit descriptor.

4. EN and ES edit descriptors are not affected by a scale factor.

5. If UP, DOWN, ZERO, or NEAREST rounding mode is in effect, the internal value is
converted using the rounding mode and the scale factor is applied to the rounded
decimal result.

Example: If TREE has the value 12.96:

PRINT "(2PG10.1, TR3, F7.2)", TREE, TREE

produces:

bbb13.E+00bbb1296.00

Scale factors were traditionally used on input from punched cards to allow values
with large exponents to be represented in as few columns as possible and on output to
simulate the effects of the ES edit descriptor. Because the scale factor actually changes
the input or output value with F editing, they should be used with care. This is often a
problem with formats that mix E and F edit descriptors, such as: (1PE20.10, F10.0) or
(F12.0, 1P, E20.10). In the first case, the 1P carries over to the F10.0. In the second, the 1P
will carry back to the F12.0 if format reversion occurs and the format will be interpreted
as (F12.0, 1PE20.10,/,1PF12.0…).

Examples of scaling:

If the external value 1.2345 is read with an F6.3 descriptor with various scale factors,
the internal values will be:

 -2P 123.45
 -1P 12.345
 0P 1.2345
 1P 0.12345
 2P .012345

10k

10k

Input and Output Editing 401

If a variable with the value 1.2345 is printed using F10.3 and E9.3 descriptors with
various scale factors, the external values will be:

 F10.3 E9.3

-2P 0.012 0.001E+03
-1P 0.123 0.012E+02
 0P 1.235 0.123E+01
 1P 12.345 1.235E+00
 2P 123.450 12.35E-01
 3P 1234.500 123.5E-02
 4P 12345.000 1235.E-03

10.9.6 Blanks in Numeric Fields

Blanks other than leading blanks may be ignored or interpreted as zero characters in
numeric input fields as determined by the blank edit descriptors:

BN change the blank interpretation mode to NULL and treat nonleading
blanks in numeric input fields as nonexistent

BZ change the blank interpretation mode to ZERO and treat nonleading
blanks in numeric input fields as zeros

The interpretation is for input fields only when the field is processed using an I, B,
O, Z, F, E, EN, ES, D, or G edit descriptor; output fields are not affected. The blank in-
terpretation mode (9.2.4) from the data transfer statement or the OPEN statement is
used if no BN or BZ descriptor is used.

Rules and restrictions:

On input:

1. If the blank interpretation mode is NULL, nonleading blanks are ignored and treat-
ed as if they were not in the input field, although they are counted in determining
input field widths.

2. A field consisting of only blanks is given the value zero, regardless of the blank
interpretation mode.

3. If the blank interpretation mode is ZERO, nonleading blanks are interpreted as ze-
ros in succeeding numeric fields.

4. The BN and BZ edit descriptors remain in effect until a subsequent BN or BZ edit
descriptor is encountered within the format or execution of the statement
terminates.

Examples of blank interpretation:

READ 100, N1, N2
100 FORMAT (BN, I5, BZ, I5)

402 Chapter 10

If the input record is:

b9b9b8b8b8

the values assigned to N1 and N2 are 99 and 80808, respectively.
However, if the input record is

bbbbbbb5

the statement

READ (47, "(F8.4)") X

will assign the value 0.0005 to X regardless of the blank interpretation mode. When the
blank interpretation mode is NULL, it is as if all of the non-blank characters were shift-
ed to the right in the field before editing takes place. Once the conceptual shift has tak-
en place, the normal editing rules apply.

10.9.7 Round Edit Descriptors

The round edit descriptors control the rounding mode (9.2.4) used for real and complex
values with the D, E, EN, ES, F, and G edit descriptors. The rounding mode from the data
transfer statement or OPEN statement is used if no round edit descriptors appear. The
descriptors are shown in Table 10-10.

The round edit mode remains in effect until a subsequent round edit descriptor is
encountered in the format or execution of the statement terminates. The effect of round-
ing is described in 9.2.4.

10.9.8 Decimal Edit Descriptors

The decimal edit descriptors control the decimal edit mode (9.2.4) used during the
conversion of real and complex values with the D, E, EN, ES, F, or G edit descriptors. If
there are no decimal edit descriptors, the decimal edit mode from the data transfer
statement or the OPEN statement is used. The descriptors are shown in Table 10-11.

Table 10-10 Round edit descriptors

Edit descriptor ROUND mode

RC Compatible

RD Down

RN Nearest

RP Processor defined

RU Up

RZ Zero

Input and Output Editing 403

The decimal edit mode remains in effect until a subsequent decimal edit descriptor
is encountered or execution of the statement terminates.

If the decimal edit mode is COMMA, complex values will use a semicolon (;) as the
separator between the real and imaginary parts and list-directed and namelist in-
put/output will also use a semi-colon as a separator rather than a comma. This is re-
ferred to as a CS symbol.

10.9.9 Character String Edit Descriptors

Character string edit descriptors are used to transfer characters to an output record. The
character string edit descriptors must not be used on input. The character string edit
descriptors use apostrophe and quote as delimiters, and are respectively:

’ characters ’
" characters "

Rules and restrictions:

On output:

1. The apostrophe and quote edit descriptors have the form of literal character con-
stants with no kind parameter. The constants are placed in the output.

2. To print a quote in the output field when a quote is the delimiting character, use
two consecutive quotes; to print an apostrophe in the output field when an apos-
trophe is the delimiting character, use two consecutive apostrophes.

3. The field width is the length of the character constant, but does not include the ex-
tra character for each pair of doubled apostrophes or quotes.

Example: If TEMP has the value 32.120001,

PRINT 120, TEMP
120 FORMAT (’ TEMPERATURE = ’, F13.6)

produces the record:

bTEMPERATUREb=bbbbb32.120001

Table 10-11 Decimal edit descriptors

Edit descriptor DECIMAL mode

DC COMMA Use comma for the decimal
symbol

DP POINT Use period for the decimal symbol

404 Chapter 10

10.10 List-Directed Formatting

List-directed formatting is one of the implicit formatting methods in Fortran; list-directed
formatting may occur with files connected for sequential or stream access and with
internal files, but not for direct-access files. The input/output data transfer must be
advancing and there cannot be an ADVANCE specifier, even with the value YES. Almost
any form of a value that would be assignment compatible with the variable is suitable for
list-directed input. The processor has great freedom to choose an output format and there
is no programmer control over these choices.

The input/output statement uses an asterisk (*) instead of an explicit format speci-
fication. The editing is based on the type of the list item. The input and output data are
free field, without the rigid placement of explicit formatting.

The rules in 9.5.1 for formatted input/output also apply to list-directed input/out-
put.

Examples of list-directed input/output:

READ (input_unit, *) HOT, COLD, WARM

Print *, HOT, COLD, WARM

Rules and restrictions:

On both input and output:

1. Execution of a list-directed data transfer statement terminates when the input or
output item list is exhausted or an error condition is encountered.

2. List-directed data consist of values and value separators.

3. As with explicit formatting, the CS symbol and decimal symbol depend on the dec-
imal mode (9.2.4) in effect.

4. A derived-type variable is processed by defined input/output subroutines if an ap-
propriate one is accessible; otherwise, it is expanded into a sequence of compo-
nents.

5. List-directed formatting must not be specified for direct access or nonadvancing se-
quential-access data transfer.

6. If there are no effective list items and there is no current record, an input record is
skipped or an output record with one blank is written. If there are no effective list
items and there is a current record, the current record is skipped (the file is posi-
tioned at the end of the current record) or the current record is terminated at the
current position. (Recall that a current record exists only if the previous input/out-
put data transfer to the unit was nonadvancing.)

Input and Output Editing 405

10.10.1 List-Directed Input

Input values are generally accepted as list-directed input if they are the same as those
allowed for explicit formatting with an edit descriptor for a variable of the type of the
list item. A series of values is separated by value separators. A series of identical values
may be represented by a repeat count and a single value.

10.10.1.1 Value Separators

A value separator allowed in list-directed input is one of:

• the CS symbol, optionally preceded or followed by contiguous blanks

• one or more contiguous blanks between two values or following the last value

• a slash, optionally preceded or followed by contiguous blanks, which terminates the
input

This allows a great deal of flexibility in data layout. Spaces can be used to improve hu-
man readability, or commas (or semicolons) can be used if that seems more natural. For
example, the following two lines are equivalent for list-directed input.

2 4 6 8, who do we appreciate? tommy, that's who

 2, 4, 6, 8, who, do, we, appreciate?, tommy, that's, who

A list-directed input statement would specify four integer or real variables, four
character variables, two variables that could be either character or logical, and a char-
acter variable. Note that the apostrophe in “thatʹs” is not the start of a character value
because it is not preceded by a value separator.

10.10.1.2 Values

The values allowed in list-directed input data are:

where r, the repeat factor, is a nonzero digit string. Neither r nor c may have a kind
parameter. c, if numeric, may be signed.

The type of the input variable determines how the value is interpreted. For exam-
ple, if an input line is

17

then the input variable could be of type integer, real, or character. If the line contains

c a data value, including a undelimited character string

null a null value, specified by two consecutive CS separators (e.g., ,, or ;;)

r∗c r repetitions of the value c

r∗ r repetitions of the null value

406 Chapter 10

TRUE

then the input variable could be of type logical or character.

Rules and restrictions:

1. Execution of a list-directed input statement terminates when either an end-of-file is
encountered or a slash (/) is encountered as a value separator.

2. Binary, octal, and hexadecimal values must not appear in list-directed input data.

3. Blanks are never interpreted as zeros.

4. If the input variable is of type integer, the value must be of a form suitable for the
I edit descriptor.

5. If the input variable is of type real, the value must be of a form suitable for the F
edit descriptor. If no decimal symbol appears in the value, the value has no frac-
tional digits specified for it.

6. If the input variable is of type complex, the input must be a left parenthesis followed
by the real and imaginary values, separated by a CS symbol, followed by a right
parenthesis. Any number of blanks and end of records may be intermixed between
the parts of the complex representation. Values of type complex include the real-
imaginary separator and the parentheses.

7. If the variable is of type logical, the value must be of a form suitable for the L edit
descriptor. Logical values must not have value separators in the optional characters
following the T or F. That is, TTOO is allowed for the value true; T,TOO is not.

8. Embedded blanks are not allowed within a value, except within a delimited char-
acter value or within a complex value. Blanks may occur before or after the CS
symbol, and before or after the parentheses.

Examples are:

"NICE DAY"
(1.2, 5.666)

9. An end of record must not occur within a value, except a complex value or a de-
limited character string: for a complex value, the end of record may occur between
the real part and the CS symbol, or between the CS symbol and the imaginary part;
for a character string, the end of record may occur anywhere in the string except
between any consecutive (doubled) quotes or apostrophes in the string. The end of
record does not cause a blank or any other character to become part of the charac-
ter value. A complex or character value may be continued on as many records as
needed.

10. The end of a record has the same effect as a blank, unless it occurs within a delimited
character literal value.

Input and Output Editing 407

11. Value separators may appear in any delimited default character constant. They are,
however, not interpreted as value separators, but are characters in the delimited
character constant.

12. If len is the length of the corresponding input list variable, and w is the number of
effective characters in the character value, then if:

For example, consider the code:

CHARACTER (2) NAME (2)
. . .

READ *, NAME

where the input record is:

JONES, SMITH

After the READ statement, the values in NAME are JO and SM, because len (=2) is
less than w (=5). Note that JONES is the first undelimited character constant in the
list and is completely read before the second constant is read.

10.10.1.3 Undelimited Character Strings

In certain cases, delimiters are not required for character values on input. However,
undelimited character strings impose certain requirements in order to distinguish them
from other values. These requirements are:

1. The corresponding input variable must be of type default, ASCII, or ISO_10646
character.

2. The character string must contain at least one non-blank character and must not
contain a blank, CS symbol, or slash (because they are value separators).

3. The character string must not be continued across a record boundary.

4. The first nonblank character must be neither an apostrophe nor a quote.

5. The leading characters must not be a string of digits followed immediately by an
asterisk.

If all of these conditions are met, the character value represented by the character
string is terminated by the first value separator or end of record. Apostrophes and
quotes are not doubled in such a value. If any of these conditions are not met, the value
must be delimited with either apostrophes or quotes and value separators may appear
within the string.

the leftmost len characters of the value are used

the w characters of the value are left justified in the
input variable and the variable is blank filled on the right

len w≤

len w>

408 Chapter 10

10.10.1.4 Null Values

A null value is used to specify no change to the variable in the input list. A null value has
one of the forms:

1. no value between separators, such as 10,,20

2. a nonblank value separator as the first entity in the record; for example, a record
beginning with a CS symbol as the first nonblank character represents a null value,
as in ,4.56. Note that leading blanks on the first line do not represent a null value
unless they are followed by a CS symbol.

3. r∗ followed by a value separator as in:

7*,’TODAY’

which represents 7 null values, followed by a single value TODAY.

Rules and restrictions:

1. An end of record does not represent a null value.

2. The null value does not affect the definition status or value of the corresponding
list item.

3. For a complex variable, the entire value may be null, but not just one of the parts.

4. If a slash terminates input, the remaining characters in the record are ignored, and
the remaining variables are treated as though null values had been read. This ap-
plies to any remaining items in an implied-do or to any remaining elements of an
array, as well as to scalars.

Example of null input:

REAL AVERAGE (2)
READ (5, *) NUMBER, AVERAGE

If the input record is:

b6,,2.418

the result is that NUMBER = 6, AVERAGE (1) is unchanged, and AVERAGE (2) = 2.418.

10.10.1.5 Repeated Values

If the r*c or r* form appears in the input, it is as if the value c or the null value were
repeated r times. The associated variables do not all have to be of the same type. For
example, if the input record contains

2*17

Input and Output Editing 409

the corresponding variables could be integer and real, because 17 is an allowable input
form for both I and F editing. However, 17 is also an acceptable undelimited character
string, so the corresponding input variables could also be of type character.

To make implementation easier and to avoid potential ambiguities when reading
repeated undelimited character strings, the standard disallows mixing of character and
noncharacter variables when reading a repeated value. That is, the variables corre-
sponding to an r*c form must either all be of type character or must all be noncharac-
ter. Thus, in the example above the data could not be read into a character and integer
variable, nor into an integer and character variable.

10.10.2 List-Directed Output

List-directed output uses conventions similar to those used for list-directed input. The
processor selects suitable formatting for items in the output list based on their type and
value. The processor has great freedom in producing the output and there is no way to
force the processor to use a specific form or style. List-directed output is often suitable for
use as list-directed input; exceptions involve undelimited character strings and defined
editing.

Rules and restrictions:

1. One or more blanks or a CS symbol, optionally preceded or followed by one or
more blanks is used as a value separator.

2. The processor begins new records, as needed, at any point in the list of output
items. A new record will not begin in the middle of a value, except as noted below
for complex and character values. Each new record begins with a blank, except for
delimited character values.

3. Slashes are not used as terminators.

4. The processor has the option of using the repeat factor r∗c for two or more consec-
utive values that are identical.

5. The processor chooses reasonable widths and precisions for the output fields.
There is no way for the programmer to control the output forms chosen.

Specific types are processed as follows:

Integer. The effect is as though an Iw edit descriptor were used.

Real. The effect is as though an 0PFw.d or an 1PEw.dEe edit descriptor were used.
Which edit descriptor is chosen by the compiler depends on the magnitude of the
number written and is processor dependent except that a value of zero will be format-
ted with an F edit descriptor.

Complex. The real and imaginary parts are enclosed in parentheses and separated by a
CS symbol. If the length of the complex number is longer than an entire record, the
processor may divide the real and imaginary parts between two consecutive records

410 Chapter 10

with the real part in the first record. The only blanks in a complex value will be an op-
tional blank between the separator and the end-of-record and a required blank as the
first character of the next record.

Logical. List-directed output produces T or F.

Character. The form of the output for character values depends on the value of the DE-
LIM mode in effect (9.2.4).

1. If the value of the DELIM mode is NONE:

a. Character values are not delimited.

b. Character values are not surrounded by value separators.

c. Only one quote or apostrophe is produced for each quote or apostrophe in the
string transferred.

d. A blank is inserted at the beginning of new records for a continued character
value.

2. If the DELIM mode is QUOTE or APOSTROPHE:

a. Character values are delimited with the specified delimiter quote or
apostrophe.

b. All values are surrounded by value separators.

c. A character that is the same as the specified delimiter is doubled when written
to the output record.

d. No blank is inserted at the beginning of a continued record for carriage control
in the case of a character value continued between records.

If the DELIM mode is NONE and if a character value contains blanks, CS symbols
or slashes, the resulting output cannot be read using list-directed input because those
characters will act as value separators.

Derived type. If an appropriate defined input/output subroutine is accessible, it is
used; otherwise, the variable is expanded into a sequence of intrinsic values. Depend-
ing on the action of the defined output subroutine, the results may not be usable for
list-directed input.

Example of list-directed output:

REAL :: TEMPERATURE = -7.6
INTEGER :: COUNT = 3
CHARACTER(*), PARAMETER :: PHRASE = "This isn’t so"

OPEN(10, DELIM = ’NONE’)
WRITE(10, *) TEMPERATURE, COUNT, PHRASE

The output record on unit 10 could be:

Input and Output Editing 411

bb-7.6bbbb3bbbThis isn’t so

where the actual spacing and representation of the -7.6 is processor dependent and
might be -7.59999997 or -7.6000001.

10.11 Namelist Formatting

Namelist input/output uses a group name for a list of variables that are transferred. Before
the group name can be used in the transfer, the list of variables must be declared in a
NAMELIST statement (5.13). Using the namelist group name eliminates the need to
specify the list of input/output items in the namelist data transfer statement. Name-list
data transfer statements process the variables in the group as a set of name=value pairs.

Namelist input/output is convenient for initializing the same variables with differ-
ent values in successive runs or for changing the values of a few variables among a
large list of variables that are given default initial values. The formatting of the input
or output record is not specified in the program; it is determined by the contents of the
record itself or the items in the namelist group. Conversion to and from characters is
implicit for each variable in the list. As with list-directed input, essentially any input
form that would be assignment compatible with the variable is allowed. For output,
the processor chooses the output forms and there is no programmer control.

During namelist data transfer, data are transferred with editing between the file
and the entities specified by the namelist group name. The current record and possibly
additional records are read or written.

When a namelist input/output statement is executed, every allocatable object in the
group must be allocated and every pointer in the group must be associated with a tar-
get. But, subobjects of derived types that are processed by defined input/output do not
need to be allocated or associated. If a namelist object is polymorphic or has an ulti-
mate component that is either allocatable or a pointer, the object must be transferred
via a defined input/output subroutine.

Except as noted below, the rules in 9.5.1 for formatted input/output also apply to
namelist input/output.

Examples of namelist data transfer statements are:

READ(NML=NAME_LIST_23,IOSTAT=KN,UNIT=5)
WRITE(6,NAME_LIST_23,ERR=99)

Examples below use the namelist group MEETING defined as

NAMELIST /MEETING/ Joe, Jake, Jane

Namelist input and output consists primarily of an ampersand (&) immediately
followed by a namelist group name followed by a sequence of name=value pairs fol-
lowed by a slash (/).

Rules and restrictions:

1. Namelist input/output may span multiple records.

412 Chapter 10

2. Execution of a namelist data transfer statement terminates when an error condition is
encountered.

3. Namelist input/output may can be used with nonadvancing, asynchronous, and
stream input/output.

10.11.1 Namelist Input

Namelist input may start with a series of namelist comments and blanks before the
&group-name. Comments may also appear on the end of each line.

Rules and restrictions:

1. Execution of a namelist input statement terminates when an end-of-file is encoun-
tered, or a slash (/) is encountered as a value separator.

2. If any entities in the namelist group name have not been assigned a value when ex-
ecution of the statement terminates, it is as if they had been assigned null values.

3. Blanks may precede the ampersand or the slash.

4. Each name, or parent name, if it a subobject designator, appearing in a name=value
pair must be in the namelist group.

5. If an entity appears more than once within the input record for a namelist input
data transfer, the last value is the one that is used.

6. A lowercase letter is the same as an uppercase letter and vice versa when used in
the group name or object name.

An example of namelist input is:

READ (*, NML = MEETING)

The input might be:

&MEETING JAKE = 3500, JOE = 100, ! Jane on the next line
JANE = 0/

10.11.1.1 Names in Name=Value Pairs

There are rules and restrictions for the names used in the name=value pairs in namelist
input.

Rules and restrictions:

1. The name=value pairs may appear in any order in the input.

2. The name=value pairs are evaluated serially, in left-to-right order.

3. During input, a name in the namelist group may be omitted in which case neither
the value nor definition status of the object is changed.

Input and Output Editing 413

4. A name in the namelist group may be repeated, in which case the value of the last
name=value pair is used.

5. Each name must correspond with a name in the designated namelist group; a com-
ponent name, if any, must also be the name of a component of the structure named
in the namelist group.

6. When the name in the name=value pair is a subobject designator, it must not be a
zero-sized array, zero-sized array section, or a zero-length character string, nor can it
have a vector-valued subscript.

7. Optionally-signed integer literal constants with no kind parameters must be used
in all expressions that appear in subscripts, section designators, or substring desig-
nators.

8. The name of a structure or a subobject designator may be the name in a name=val-
ue pair.

9. A name must not contain embedded blanks. A name in the name=value pair may
be preceded or followed by one or more blanks.

10.11.1.2 Values in Name=Value Pairs

The value in a name=value pair must be in a form acceptable for a format specification for
the type of the name, except for restrictions noted below.

Each value is a null value or one of these forms:

where r is a repeat factor and is a nonzero digit string. Neither r nor c may have a kind
value. The value of c is interpreted as if it had the same kind value as the associated
variable has.

Null values have the forms:

1. no value between value separators

2. no value between the equal sign and the first value separator

3. the r∗ form, followed by one or more blanks.

Null values do not change the value of the named variable or its definition status.
An entire complex value may be null; neither of the parts can be. The end of a record
following a value separator does not specify a null value.

c a data value (optionally signed if it is integer or real)

r∗c r repetitions of the value c

r∗ r repetitions of the null value

414 Chapter 10

Rules and restrictions:

1. The form of a value must be acceptable to a format specification for an entity of the
type of the corresponding variable, except as noted below; for example, the value c
corresponding to a variable of type real can be of the forms:

1
1.0
1.0E0

but cannot be of the forms:

(1.0,0.0)
A0
1.0EN-3
2.2_QUAD
1.0_2

2. Blanks are never zero, and embedded blanks must not appear in numeric or logical
values. The exception is that a blank may appear as a character in a character val-
ue, or preceding or following the real or imaginary parts of a complex value.
Blanks may appear before or after the equal sign.

3. The number of values following the equals sign must not be larger than the num-
ber of elements of the array when the name in the name=value pair is an array, or
must not be larger than the ultimate number of components when the name in the
name=value pair is that of a structure. Any array or component that is an array is
filled in array element order.

For the example:

TYPE PERSON
INTEGER LEN
CHARACTER (10) NAME

END TYPE PERSON
TYPE (PERSON) PRESIDENT, VICE_PRES
NAMELIST/PERSON_LIST/PRESIDENT, VICE_PRES
READ (input_unit, NML = PERSON_LIST)

the input might be:

&PERSON_LIST PRESIDENT%LEN=4,
 PRESIDENT%NAME="LAMB",

VICE_PRES%LEN=6,
 VICE_PRES%NAME="MARTIN"/

4. If there are fewer values in the expanded sequence than array elements or structure
components, null values are supplied for the missing values.

5. If a slash occurs in the input (except within a character value or a namelist com-
ment), it is as if null values were supplied for the remaining variables, and the

Input and Output Editing 415

namelist input data transfer is terminated. Any remaining characters after the slash
within the current record are ignored.

6. An integer value is interpreted as if the data edit descriptor were Iw for a suitable
value of w.

7. Binary, octal, and hexadecimal values cannot appear.

8. A complex value consists of a pair of parentheses surrounding the real and imagi-
nary parts, separated by a CS symbol. Blanks may appear before and after these
values. The end of record may occur after the real part, or before the imaginary
part.

9. A logical value must not contain slashes, commas, semicolons, equals, or blanks as
part of the optional characters after the .T, .F, T, or F.

10. A character value may contain slashes, commas, semicolons, or blanks as part of
the string. Within the string, apostrophes or quotes must be doubled if they are the
same as the delimiting marks. A character value may be continued on as many
records as necessary until the matching delimiter is reached. The end-of-record in
a continued value has no effect on the value. If the value does not contain the same
number of characters as the variable, it is as if the value were assigned to the vari-
able using normal assignment. On namelist input, the DELIM mode is ignored;
character input must be delimited.

10.11.1.3 Separators

The name=value pairs and values in an array list are separated by value separators that
are of the form:

• a CS symbol, optionally preceded or followed by contiguous blanks

• a slash, optionally preceded or followed by contiguous blanks

• one or more contiguous blanks

Blanks on either side of the = in a name=value are allowed and have no effect.

10.11.1.4 Namelist Comments

A namelist comment may appear as the first nonblank character following a value
separator. It begins with an exclamation mark (!); note that an exclamation mark in a
character value does not begin a comment. A comment extends to the end of the namelist
input record. A slash within the comment does not end the input record; the comment
itself ends the input record. A namelist comment may start in the first nonblank position
of a namelist input record; in this case, the input record consists only of the comment.
Namelist comments are ignored.

416 Chapter 10

10.11.1.5 Blanks

Blanks are part of the value separator unless they appear

1. in a character value

2. before or after the parts of a complex value

3. before an equal sign

4. after an equal sign, unless they are followed immediately by a CS symbol or slash

5. before the ampersand indicating the namelist group name and after the namelist
group name

10.11.1.6 Use of Namelist Input

Namelist input requires the namelist group name, preceded by an ampersand, to be on
the first nonblank record read by the namelist READ statement unless the record is a
namelist comment record.

Example of namelist input:

REAL A (3), B (3)
CHARACTER (LEN = 3) CHAR
COMPLEX X
LOGICAL LL
NAMELIST / TOKEN / I, A, CHAR, X, LL, B
READ (*, NML = TOKEN)

If the input records are:

&TOKEN A(1:2) = 2*1.0 CHAR = "NOP" B = ,3.13,,
X = (2.4,0.0) LL = T /

results of the READ statement are:

Name Value

I Unchanged

A (1) 1.0

A (2) 1.0

A (3) Unchanged

B (1) Unchanged

B (2) 3.13

B (3) Unchanged

Input and Output Editing 417

10.11.2 Namelist Output

With a few exceptions, the form of namelist output is the same as that required for
namelist input. The names in the output will be in uppercase. The processor has the
freedom to select reasonable output forms. With the exception of undelimited character
values, value separators may be blanks, CS symbols, or a combination of blanks and CS
symbols. A new record may begin anywhere, except within a name or value, unless the
value is a character string or a complex value; a record may begin anywhere within a
character string, or may begin before or after the CS symbol, or left or right parenthesis of
a complex value. A blank may occur anywhere, except in a name or a noncharacter value.
The only blanks that may occur in a character value are those that are in the character
string; no additional blanks may be added.

10.11.2.1 Form of Namelist Output

A number of rules, similar to those for list-directed formatting, apply for namelist output.

Rules and restrictions:

1. Namelist output consists of a series of records. The first nonblank record begins
with an ampersand, followed by the namelist group name, followed by a sequence
of name=value pairs, one pair for each variable name in the namelist group object
list of the NAMELIST statement and ends with a slash. Execution of the statement
terminates when the namelist group object list is exhausted.

2. A logical value is either T or F.

3. An integer value is one that would be produced by an Iw edit descriptor using a
suitable value of w..

4. For real output, the rules for list-directed output are followed using reasonable val-
ues for the w, e, and d that appear in real data edit descriptors and are appropriate
for the output value.

5. The parts of a complex value are enclosed in parentheses and are separated by a
CS symbol. An end of record may occur after the CS symbol only if the value is
longer than the entire record. Blanks may be embedded after the CS symbol and
before the end of the record.

6. Character values follow the rules in 10.10.2 for list-directed output. As with list-di-
rected output, undelimited namelist output might not be usable as namelist input.

CHAR ʺNOPʺ

X (2.4, 0.0)

LL True

Name Value

418 Chapter 10

7. Repeat factors of the form r∗c are allowed, but not required, on output for succes-
sive identical values.

8. An output record will not contain null values.

9. Each record begins with a blank unless it is a continuation of a delimited character
string.

10. No values are written for zero-sized arrays.

11. For zero-length character strings, the name is written, followed by an equal sign,
followed by a zero-length character string, and followed by a value separator or
slash.

12. If defined output is involved, the output form is not specified and might not be
usable as namelist input.

Example:

NAMELIST / CALC / DEPTH, PRESSURE
DIMENSION DEPTH (3), PRESSURE (3)
WRITE (output_unit, NML = CALC)

&CALC DEPTH(1) = 1.2, DEPTH(2) = 2.2, DEPTH(3) = 3.2,
PRESSURE = 3.0, 3.1, 3.2 /

10.11.2.2 DELIM Specifier for Character Values

Character values are delimited with the specified delimiter, either quote or apostrophe.

Example: for LEFT and RIGHT with values SOUTH and NORTH, the program with the
DELIM specifier of QUOTE for unit 10:

CHARACTER (5) LEFT, RIGHT
NAMELIST / TURN / LEFT, RIGHT
WRITE (10, NML = TURN)

produces the output record:

&TURN LEFT = "SOUTH", RIGHT = "NORTH" /

Note that if the DELIM specifier is NONE in an OPEN statement, namelist output
will not be usable as namelist input if character values are transferred, because namel-
ist input of character values requires delimited character values.

11 Program Units

• A Program Unit is a sequence of Fortran statements; it may be a main program, a
module, an external subprogram, or a block data program unit.

• A Program consists of program units and possibly program elements written in lan-
guages other than Fortran. There must be one main program.

• A Main Program contains the first construct that is executed; it may or may not be a
Fortran main program.

• A Module is a nonexecutable program unit used to collect related declarations, type
definitions, procedure definitions, and procedure interfaces.

• A USE statement accesses this information outside the module.

• A Subprogram defines a procedure, which may be either a function or a subroutine.
A subprogram can be an external program unit or can be contained within a pro-
gram unit.

• A Block Data is used to initialize variables in named common blocks.

A program unit is a main program, module, external subprogram, or block data. This
chapter describes each of these and also introduces subprograms, which can be pro-
gram units or can be contained within program units. It also describes the closely relat-
ed concept of use association.

Procedures are discussed in 12.
Chapter 15 explains the interoperation of Fortran with other languages.

11.1 Overview

Each program unit is a collection of constructs and statements. The heading statement
identifies the kind of program unit; it is optional in a main program. An ending state-
ment marks the end of the unit. The categories of program units are:

main program (11.2)
module (11.3)
external subprogram (11.4)
block data (11.5)

Program execution begins with the first executable construct in the main program.
Chapter 2 explains the high-level syntax of Fortran. It shows how statements can be
combined to form a program unit.

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_11, © Springer-Verlag London Limited 2009

420 Chapter 11

The module program unit helps organize elements of the program. A module itself
is not executable but contains data declarations, derived-type definitions, procedure
interface information, and subprogram definitions.

A subprogram may be a program unit used to define an external procedure, but it
also may be a module subprogram or internal to either a main program, a module sub-
program, or an external subprogram.

Block data program units are also nonexecutable and are used only to specify ini-
tial values for variables in named common blocks. With the addition of modules to
Fortran, block data program units are no longer needed because modules can provide
global data initializations.

The basic structure of all program units and subprograms is the same:

[heading]
[specification-part]
[execution-part]

[CONTAINS

 subprogram
 [subprogram] . . .]
ending

The subprogram part consists of the CONTAINS statement and the subprograms.

Rules and restrictions:

1. The heading establishes whether this is a program, module, function, subroutine,
or block data. It also establishes its name. The form of the heading is different for
the different categories.

2. The heading is optional for a main program.

3. An execution part is prohibited for a module.

4. An execution part and a subprogram part are prohibited for a block data.

5. A subprogram part is prohibited for an internal subprogram (12.4.3).

6. If the PROGRAM, MODULE, FUNCTION, SUBROUTINE, or BLOCK DATA key-
word appears in the ending, the same keyword must appear in the heading, if
there is one. If the name of the program unit appears in the ending, the same name
must appear in the heading.

There are additional rules for each category.
The subprograms in a module define module procedures; the subprograms in a

main program, module subprogram, or external subprogram define internal proce-
dures.

Program Units 421

11.1.1 The Specification Part

The purpose of the specification part is to describe the nature of the environ-
ment—types and attributes of variables, initial values, procedure interfaces, etc. The
form of the specification part is given in 2.5.2.

11.1.2 The Execution Part

The execution part is a sequence of executable constructs, FORMAT statements, DATA
statements, and ENTRY statements as described in 2.5.3. A DATA statement in the ex-
ecution part is obsolescent.

11.1.3 The Subprogram Part

The CONTAINS statement and one or more subprograms comprise the subprogram
part. An internal subprogram must not have a subprogram part. Internal subprograms
are described in 12.4.3.

11.1.4 Example Program

The Fortran program in Figure 11-1 contains four program units: a main program, a
module, and two external subroutine subprograms.

Module STOCK_ROOM contains data and procedure information used by the
main program and subroutines MECHANIC and PARTS. The main program DRIVER
invokes the task represented by subroutine MECHANIC.

PROGRAM DRIVER
 USE STOCK_ROOM
 . . .
 CALL MECHANIC(TUNEUP)
 . . .
END PROGRAM DRIVER

SUBROUTINE PARTS &
 (PART, MODEL, YEAR)
 USE STOCK_ROOM
 . . .
END SUBROUTINE PARTS

MODULE STOCK_ROOM
 . . .
END MODULE STOCK_ROOM

SUBROUTINE MECHANIC (SERVICE)
 USE STOCK_ROOM
 . . .
 CALL PARTS (PLUGS, "CRX",1992)
 . . .
END SUBROUTINE MECHANIC

Figure 11-1 Four program units

422 Chapter 11

The USE statements in the example access the information in the module
STOCK_ROOM.

11.2 Fortran Main Program

A main program may be in another language. Most rules in this section apply to a
main program written in Fortran.

Execution of the program begins with the first executable construct in the main
program. Execution may terminate for several reasons; executing the END statement in
the main program causes normal termination (2.3.1).

The form of a main program (R1101) is:

[PROGRAM program-name]
[specification-part]
[execution-part]
[CONTAINS

 internal-subprogram
 [internal-subprogram] . . .]
END [PROGRAM [program-name]]

The form of a main program is a special case of the general form for a program
unit as given in 11.1.

Rules and restrictions:

1. There must be exactly one main program in an executable program; therefore, if
the main program is written in another language, no Fortran main program may
appear.

2. The PROGRAM statement is optional in a main program.

3. Main programs have no provisions for dummy arguments. However, the use of the
intrinsic subroutines GET_COMMAND and GET_COMMAND_ARGUMENT pro-
vides similar functionality.

4. OPTIONAL and INTENT attributes or statements must not appear in the specifica-
tion part of a main program; they are applicable only to dummy arguments.

5. The accessibility specifications, PUBLIC and PRIVATE, must not appear in a main
program; they are applicable only within modules.

6. An automatic object (2.2.4) must not appear in a main program.

7. The SAVE attribute or statement may appear, but it has no effect in a main pro-
gram.

8. The main program must not be referenced anywhere within the program—that is,
the main program must not be recursive (either directly or indirectly).

Program Units 423

9. The main program must not contain a RETURN or ENTRY statement (but an inter-
nal procedure in a main program may have RETURN statements).

The simplest of all programs is:

END

Of course, this is not a very interesting program! A more interesting simple program is:

program sine_calculation
print *, "The sine of 0.5 is", sin(0.5)

end program sine_calculation

The name of the main program is global to the program (16.1.1). There are no uses
for the main program name except in the END statement, but it might be used by other
operating systems software, such as a linker.

11.3 Modules

The module program unit packages data specifications and procedure specifications.
The name of a module is global to the program.

Fortran defines some intrinsic modules (13.6.1, 14.3, and 15.3) and allows user-de-
fined modules. Procedures and types defined in an intrinsic module are not intrinsic.
This means, for example, that they are available only by use association (11.3.8), type
specifiers have the form of derived-type specifiers, and there are subtle differences in
generic procedure resolution (12.8.1).

Module program units serve the following specific needs for Fortran:

1. They provide a reliable mechanism for specifying global data, including variables,
type definitions, and procedure interfaces.

2. They facilitate information hiding.

3. They facilitate the implementation of object-oriented concepts.

4. They reduce argument mismatch errors because they provide explicit interfaces
(12.5.1).

Anything required by other program units may be packaged in a module and
made available where needed. A module is not itself executable, although the module
procedures it contains are executable. A module may use any number of other mod-
ules as long as the access path does not lead back to itself.

11.3.1 The Form of a Module

The form of a module (R1104) is:

MODULE module-name
[specification-part]

424 Chapter 11

[CONTAINS

 module-subprogram
 [module-subprogram] . . .]
END [MODULE [module-name]]

The form of a module is a special case of the general form for a program unit as
given in 11.1.

Rules and restrictions:

1. The module subprograms may contain internal subprograms.

2. If a procedure declared in the scoping unit of a module has an implicit interface
(12.5.1), it must be given the EXTERNAL attribute in that scoping unit; if it is a
function, its type and type parameters must be declared explicitly in a type decla-
ration statement in that specification part.

3. If an intrinsic procedure is declared in the scoping unit of a module, it must be giv-
en the INTRINSIC attribute explicitly or be used as an intrinsic procedure in that
scoping unit.

Example:

module fish_or_fowl
 public :: fish, fowl, sqrt
 integer, external :: fish ! fish is a function because it has a type
 external :: fowl ! fowl is a subroutine because it has no type
 real :: sqrt ! sqrt is a variable because it does not have
 ! the EXTERNAL or INTRINSIC attribute
end module fish_or_fowl

11.3.2 The Specification Part

The form of the specification part (R204) of a module is similar to that for other pro-
gram units. The following rules and restrictions apply to the specification part of a
module; the specification parts of the module procedures, however, have the same
rules as those for external procedures.

Rules and restrictions:

1. PUBLIC and PRIVATE attributes and statements are allowed. The only place they
are allowed is the specification part of a module.

2. OPTIONAL or INTENT attributes or statements are not allowed.

3. ENTRY statements are not allowed.

4. FORMAT statements are not allowed.

5. Automatic objects are not allowed.

6. Statement function statements are not allowed.

Program Units 425

7. If an object appears that has a type with default initialization (4.4.9) and the object
has neither the ALLOCATABLE nor POINTER attribute, it must have the SAVE at-
tribute.

The SAVE attribute and statement may be used in the specification part of a mod-
ule to ensure that module data object values and status are retained. Without SAVE,
module data objects remain defined as long as any program unit using the module has
initiated, but not yet completed, execution. However, when all such program units be-
come inactive, any data objects in the module not having the SAVE attribute become
undefined. SAVE can be used to specify that module objects continue to be defined un-
der these conditions.

The following is an example of a simple module for providing global data:

module t_ford
save

 integer :: a, ka
real :: x = 7.14
real :: y(10,10), z(20,20)

end module t_ford

This module declares three scalar variables and two arrays. X is given an initial
value. These five variables selectively can be made available outside the module.

11.3.3 Module Subprograms

Module subprograms define module procedures, which are discussed in 12.4.2.

11.3.4 Identifiers in a Module

The following may be defined, declared, or specified in a module, and may be public
or private. If public, they may be accessed by a USE statement outside the module, and
any public entity, except an assignment interface, may be renamed (11.3.7.1) in the us-
ing program unit.

1. declared variables

2. named constants

3. derived-types

4. procedure interfaces

5. abstract interfaces

6. module, intrinsic, and external procedures

7. generic identifiers

8. namelist groups

Note that this list does not contain the implicit type rules of the module; these are not
accessible via a USE statement.

426 Chapter 11

An entity in a module accessed by use association from another module is treated
as an identifier in the module.

Common blocks may be placed in modules. The names of common blocks cannot
be accessed, but the names of the variables can be accessed and renamed.

11.3.5 Accessibility

Each identifier in a module has the PUBLIC or PRIVATE attribute (5.8.1), which deter-
mines the accessibility of that name in a program unit using the module. A private
identifier is not accessible (that is, is hidden) from program units using the module. A
public identifier is accessible. Accessibility is described in 5.8.1.

PUBLIC and PRIVATE attributes are specified by the module writer, and the mod-
ule user has no say in these decisions. However, both the ONLY option on the USE
statement and the renaming provisions give the module user additional forms of infor-
mation hiding and environment tailoring. Between PUBLIC and PRIVATE accessibility
and the USE...ONLY feature (11.3.7.3), the module facilities provide considerable flexi-
bility for program design that effectively employs information hiding.

11.3.6 The PROTECTED Attribute

A PROTECTED entity may be referenced (if it is public), but its value must not be
changed outside the module. Unlike accessibility, the PROTECTED attribute applies to
the entity, not to its identifier, so it is not permitted to modify a protected entity from
outside the module, even by means of an alias. The PROTECTED attribute is described
in 5.8.2.

11.3.7 The USE Statement

A scoping unit may use the specifications and definitions in a module by referencing
(using) the module. This is accomplished with a USE statement. Such access causes an
association between named objects in the module and the using scoping unit and is
called use association (16.2.1.2). USE statements must be the first statements in a speci-
fication part (2.5.2).

11.3.7.1 Form of the USE Statement

The general form of the USE statement (R1109) is:

USE [[, module-nature] ::] module-name [, rename-list]
USE [[, module-nature] ::] module-name , ONLY : [only-list]

where the module nature is either INTRINSIC or NON_INTRINSIC. Each item in a re-
name list (R1111) has one of the forms:

[local-name =>] module-entity-name
[OPERATOR (local-defined-operator) =>] OPERATOR (module-defined-operator)

The only list is described in 11.3.7.3.

Program Units 427

Rules and restrictions:

1. If the module nature is INTRINSIC, the module name must be the name of an in-
trinsic module.

2. If the module nature is NON_INTRINSIC, the module name must be the name of a
nonintrinsic module.

3. USE statements in a scoping unit must not access an intrinsic module and a nonin-
trinsic module of the same name.

4. If no module nature appears and the module name is the name of both an intrinsic
and a nonintrinsic module, the nonintrinsic module is accessed.

The next two sections discuss accessing some or all of the public entities in a mod-
ule. This is illustrated in Figure 11-2.

11.3.7.2 Accessing All Public Entities in a Module

The USE statement without the ONLY option gives the scoping unit access to all public
entities in the module.

The optional rename list allows any of the public entities in the module to be re-
named to avoid name conflicts or to blend with the naming conventions in the using
program unit.

Rules and restrictions:

1. Each module entity and module defined operator must be a public entity in the
module.

PUBLIC
entities

PRIVATE
entities

(not available
outside the

module)

USE
gets all of the

PUBLIC entities

USE ..., ONLY: ...
gets some of the
PUBLIC entities

Using

program

units

Module

Figure 11-2 Use association of module entities

428 Chapter 11

2. The module defined operator must not be a generic binding (4.4.11.2).

3. Each local defined operator must have the form of a defined operator (3.2.4).

Because there is only one symbol for assignment, it cannot be renamed.
A module entity name or module defined operator may appear more than once in

one or more USE statements referencing the same module. As a result, it is possible for
one entity to be accessible by more than one local identifier.

Examples of accessing all public entities:

USE FOURIER
USE S_LIB, PRESSURE => X_PRES
USE M_LIB, OPERATOR(.matrixmultiply.) => OPERATOR(.mm.)

With the USE statements in this example, all public entities in the respective modules
are made accessible. In the case of FOURIER, the names are those specified in the mod-
ule. In the case of S_LIB, the entity named X_PRES is renamed PRESSURE in the pro-
gram unit using the module. The other entities accessed from S_LIB have the same
name in the using program unit as in the module. Note the similarity between the re-
name syntax and pointer assignment (the only difference is that a rename is part of a
statement, not a complete statement itself); this is because the local name is conceptu-
ally similar to a local pointer to the module entity. In the case of M_LIB, the module
operator .mm. is renamed to .matrixmultiply.

11.3.7.3 Accessing Only Some of the Public Entities

Restricting the entities accessed from a module is accomplished with the ONLY form of
the USE statement (R1109). In this case, the using program unit has access only to those
entities explicitly identified in the ONLY clause of the USE statement. All items in this
list must identify public entities in the module. As with the unrestricted form of the
USE statement, named accessed entities may be renamed for local purposes. A rename
is described in the previous section. The possible forms for each item in the only list
(R1112) are:

generic-name
OPERATOR (module-defined-operator)
ASSIGNMENT (=)
dtio-generic-spec
module-entity-name
rename

Rules and restrictions:

1. Each generic specification and module name must be a public entity in the module.

2. A generic specification must not identify a generic binding (4.4.11.2).

3. A module defined operator must not identify a generic binding (4.4.11.2).

Program Units 429

The above constraints do not prevent accessing a generic specification that is de-
clared by an interface block, even if a generic binding has the same generic specifica-
tion.

Examples of accessing some of the public entities:

USE MTD, ONLY : X, Y, OPERATOR(.ROTATE.)
USE MONTHS, ONLY : January => Jan, May, June => Jun

In the case of MTD, only X, Y, and the defined operator .ROTATE. are accessed,
with no renaming. In the case of MONTHS, only Jan, May, and Jun are accessed from
the module. Jan is renamed January and Jun is renamed June.

11.3.7.4 Name Conflicts When Using Modules

There are two ways in which potential name conflicts can be avoided when using mod-
ules:

1. A public entity in a module might have the same name as a local entity in the us-
ing program. In this case, rename the module entity in the USE statement.

2. Two modules being used may each have a public entity with the same name. Such
a name conflict is allowed if and only if that name is never referenced in the using
program. If a name is to be referenced in the using program, potential conflicts in-
volving that name must be prevented via the rename or ONLY facilities of the USE
statement. This is the case even if the using program is another module.

For example:

module BLUE
integer A, B, C

end module BLUE

module GREEN
use BLUE, only : AX => A
real B, C

end module GREEN

PROGRAM RED
USE BLUE
USE GREEN, BX => B

. . .
END PROGRAM RED

In the program RED, integer A is accessed as AX or A; integer B is accessed as B
and real B is accessed as BX; C must not be referenced, because there is a name conflict.

11.3.8 Use Association

The USE statement gives a program unit access to other entities not defined or speci-
fied locally within the using program. As mentioned earlier, the association between a

430 Chapter 11

module entity and a local entity in the using program unit is termed use association,
which is described in 16.2.1.2.

An entity accessed by use association has the attributes specified in the module, ex-
cept that it may have a different accessibility attribute and it may have the ASYN-
CHRONOUS or VOLATILE attribute even if the module entity does not.

A local identifier in a USE statement must not appear in any other nonexecutable
statement that would specify any of its attributes, except that it may appear in a PUB-
LIC or PRIVATE statement and it may be given the ASYNCHRONOUS or VOLATILE
attribute.

11.3.9 Typical Applications of Modules

A number of different Fortran applications are easier to write and understand using
modules. Modules provide a way of packaging:

1. global data, including data structures and common blocks

2. user-defined types

3. user-defined operators

4. data abstraction

5. procedure libraries

These uses for modules are summarized in the following sections.

11.3.9.1 Global Data

A module provides an easy way of making type definitions and data declarations glo-
bal in a program. Notice that COMMON is not used in the example below, although it
could have been. Data in a module does not have an implied storage association or an
assumption of any form of sequence or any order of appearance, unless it is a sequence
structure or in a common block. Global data in a module may be of any type or combi-
nation of types.

Another advantage of using modules rather than COMMON is more attributes,
such as ALLOCATABLE, may be specified in a module.

Example:

MODULE MODELS
COMPLEX :: GTX (100, 6)
REAL, PROTECTED :: X (100)
REAL, SAVE, ALLOCATABLE :: Y (:), Z (:, :)
INTEGER :: CRX, GT, MR2

END MODULE

There are alternative ways to “use” this module. For example,

USE MODELS

Program Units 431

makes all the variables (and their attributes) of the module available.

USE MODELS, ONLY : X, Y

makes only the variables named X and Y and their attributes available.

USE MODELS, T => Z

makes the data object named Z available, but it is renamed to T. In addition, it makes
the other public entities of the module MODELS available with the same names they
have in the module.

One way of packaging common blocks is by putting them in a module. For exam-
ple:

MODULE LATITUDE
COMMON . . .
COMMON . . .
COMMON / BLOCK1 / . . .

END MODULE

SUBROUTINE ROUTE
USE LATITUDE
 . . .
END SUBROUTINE

PROGRAM NAVIGATE
USE LATITUDE

. . .
END PROGRAM

The USE statements in this example make all of the variables in the common blocks in
the module available. This technique minimizes errors in transcription and omission
when the common blocks are used in many routines in the program.

The variables in a common block can be accessed through a module in one subpro-
gram and declared directly in a common block in another. This may be useful as a tran-
sition stage between using common blocks and using modules.

11.3.9.2 User-Defined Types

A derived type defined in a module is a user-defined type that can be made accessible
outside the module. The same type definition can be referenced via a USE statement by
more than one program unit. This is important, for example, in order to allow the type
of an actual argument and a dummy argument to match.

Example:

432 Chapter 11

module new_type
type :: tax_payer

integer :: ssn
character(len=20) :: name

end type tax_payer
end module new_type

The module new_type contains the definition of a new type called tax_payer. Pro-
cedures using the module new_type may declare objects of type tax_payer.

11.3.9.3 User-Defined Operators

An interface block may declare new operators or give additional meanings to the in-
trinsic ones, such as +, .EQ., .OR., and //. In the following example, the addition oper-
ator (+) is extended, using a module procedure, to type MATRIX. The external function
MATRIX_INVERSE defines a desired operation and the interface is used to indicate
that it implements the operator .INVERSE. The operators .INVERSE. and + then may
be used in an expression with operands of type MATRIX. The module supplies the
function MATRIX_SUM, but INVERSE is an external function.

MODULE MATRIX_OPS
 INTERFACE OPERATOR (+)
 PROCEDURE MATRIX_SUM
 END INTERFACE

 INTERFACE OPERATOR (.INVERSE.)
 FUNCTION MATRIX_INVERSE (MATRIX_1)

 . . .
 END FUNCTION MATRIX_INVERSE

 END INTERFACE
 . . .
 CONTAINS
 FUNCTION MATRIX_SUM (X, Y)
 TYPE(MATRIX), INTENT(IN) :: X, Y
 TYPE(MATRIX) :: MATRIX_SUM
 MATRIX_SUM % VALUES = X % VALUES + Y % VALUES
 END FUNCTION MATRIX_SUM
END MODULE MATRX_OPS

An example of its use with variable A and B of type MATRIX might be

B + (.INVERSE. A)

11.3.9.4 Data Abstraction

Type definitions and operations may be packaged together in a module to facilitate
data abstraction. Program units using this module will have the convenience of a new
data type specific to a particular application. A simple example might be:

Program Units 433

MODULE POLAR_COORDINATES

TYPE POLAR
PRIVATE
REAL RHO, THETA

END TYPE POLAR

INTERFACE OPERATOR (*)
MODULE PROCEDURE POLAR_MULT

END INTERFACE

CONTAINS
FUNCTION POLAR_MULT (P1, P2)

 TYPE (POLAR), INTENT(IN) :: P1, P2
 TYPE (POLAR) POLAR_MULT

POLAR_MULT = POLAR (P1 % RHO * P2 % RHO, &
 P1 % THETA + P2 % THETA)

END FUNCTION POLAR_MULT
. . .

END MODULE POLAR_COORDINATES

In the function POLAR_MULT, the structure constructor POLAR computes a value
that represents the result of multiplication of two arguments in polar coordinates. Any
program unit using the module POLAR_COORDINATES has access to both the type
POLAR and the extended intrinsic operator ∗ for polar multiplication.

11.3.9.5 Procedure Libraries

An obvious way to build a procedure library is to put procedures and their related
data in a module. In some cases, instead of putting a collection of procedures in a mod-
ule, a module may be used to collect interface blocks for related procedures.

MODULE ENG_LIBRARY
INTERFACE

FUNCTION FOURIER (X, Y)
. . .

END
SUBROUTINE INPUT (A, B, C, L)

. . .
END SUBROUTINE INPUT

END INTERFACE
END MODULE ENG_LIBRARY

A program or subprogram that uses the module can call the procedures with op-
tional and keyword arguments (for example) and argument matching can be checked
because the interfaces for the procedures are explicit. This scheme looks to the pro-
grammer much like one that puts the procedures themselves in a module. A USE state-
ment gives access to all the procedure interfaces. Thus, this scheme has most of the
advantages of putting the procedures in a module and it also allows separate compila-

434 Chapter 11

tion of the individual procedures. One disadvantage of this method is that the proce-
dures cannot use host association (16.2.1.3) to share data and type definitions.

A third way to build a procedure library is to reference several modules in one
module.

module MATH_LIB
 use PDE_LIB
 use DIFFEQ_LIB
 . . .
end module MATH_LIB

11.4 External Subprograms

An external program unit is simply an external subprogram. It is global to the Fortran
program; the procedure it defines may be referenced or called anywhere. External sub-
programs are described in 12.4.1.

11.5 Block Data Program Units

A block data program unit initializes data values in named common blocks. The block
data program unit contains only data specifications and initial data values. There are
no executable statements in a block data program unit and the block data program unit
can be referenced only in EXTERNAL statements in other program units; its only pur-
pose is to initialize data. The module facility is a natural extension to the very limited
block data facility, making block data program units superfluous. The form of the
block data program unit is standardized; however, the mechanisms for incorporating
block data into the program are processor dependent. Therefore, the use of replace-
ments, such as modules, is recommended.

A block data program unit (R1116) has the following form:

BLOCK DATA [block-data-name]
[specification-part]

END [BLOCK DATA [block-data-name]]

The form of a block data program unit is a special case of the general from for a
program unit as given in 11.1.

An example of a block data program unit is:

BLOCK DATA SUMMER
COMMON / BLOCK_2 / X, Y
DATA X / 1.0 /, Y / 0.0 /

END BLOCK DATA SUMMER

The name SUMMER appears on the BLOCK DATA statement and the END state-
ment. X and Y are initialized in a DATA statement; both variables are in named com-
mon block BLOCK_2.

Program Units 435

Rules and restrictions:

1. There must be at most one block data program unit without a name.

2. The specification part may contain only the following statements.

ASYNCHRONOUS* PARAMETER*
BIND POINTER*
COMMON SAVE*
DATA TARGET*
DIMENSION* USE
EQUIVALENCE VOLATILE*
IMPLICIT derived-type definition
INTRINSIC* type declaration statement

3. The attribute specification list of a type declaration statement may contain only the
attributes marked with * above in (2).

4. A type declaration statement may contain initialization.

5. BIND can refer only to common block names, not variables.

6. A block data program unit may initialize objects in more than one named common
block.

7. It is not necessary to initialize an entire common block.

8. A common block must be completely specified, if any object in it is initialized.

9. A given named common block may appear in only one block data program unit.

10. Only an object in a named common block may be initialized.

12 Using Procedures

• A Procedure is a subroutine or function.

• A Defined Operator, Defined Assignment, and Defined Input/Output use
procedures to allow user extension of the language in a natural way.

• A Generic Procedure allows actual arguments to determine which procedure from
a specified group is selected for execution.

• A Pure Procedure has limitations on side effects so that it may be used in parallel
computations and in specification expressions.

• An Elemental Procedure is defined with scalar arguments but may be called with
array actual arguments.

• A Recursive Procedure is one that can directly or indirectly invoke itself.

• An Optional Argument is one that may be omitted.

• An Argument Keyword provides order independence of arguments and facilitates
the omission of optional arguments.

• An Explicit Interface is required for many of the above features. The interface of an
intrinsic, module, or internal procedures is always explicit. An explicit interface can
be created for an external procedure.

• The ENTRY Statement may be used to define an additional procedure in a subrou-
tine or function subprogram.

A procedure encapsulates a sequence of related computations.
A procedure reference is the appearance of program syntax that can cause the pro-

cedure to be invoked (executed). When a procedure is invoked, execution of the pro-
gram or procedure making the reference is suspended while the procedure is executed.
When execution of the procedure is completed, execution of the invoking program or
procedure is resumed.

A subroutine is the fundamental form of a procedure. The basic form of subroutine
reference is a CALL statement; other forms of reference are described in 12.1.2. When it
is invoked, the computations of the subroutine are executed and control then returns to
the invoking program or procedure. A subroutine can include any kind of computation.
Invocation of a subroutine will generally have effects such as modifying the values of
variables or performing input/output.

A function is much like a subroutine with the extra feature of returning a result
value, which can be used as a part of an expression. A function reference is in an ex-
pression and is either a primary or a defined operator. The main purpose of a function
is to compute its result value.
J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_12, © Springer-Verlag London Limited 2009

438 Chapter 12

A procedure can be defined intrinsically, by Fortran code, or by means other than
Fortran.

Intrinsically defined procedures include the standard intrinsic procedures de-
scribed in 13 and the procedures in the standard intrinsic modules described in 14 and
15.5.4. Compilers may define intrinsic procedures and modules in addition to those
specified by the standard, but code that uses them is nonportable.

A subprogram is a Fortran source code construct that defines one or more proce-
dures. It is either a subroutine subprogram or a function subprogram. The Fortran
standard distinguishes between a subprogram, which is a chunk of source code, and a
procedure, which is the abstract executable entity defined by the source code. Common
parlance uses the word subroutine or function to refer either to the procedure or the
source code for the procedure. For most purposes, the distinction is of little importance
and just adds an extra level of complexity to the terminology. Partly adopting the com-
mon parlance, this book refers to a subroutine or function definition instead of a sub-
program in most places. The main place where this terminology falls short is in the
discussion of the ENTRY statement, which allows a single subprogram to define multi-
ple procedures.

A procedure can be written in a language other than Fortran (C, for example). As
long as all references to such a procedure are consistent in terms of the properties of
the interface to this procedure, the referencing program remains standard conforming.
It might, however, not be portable, because the non-Fortran procedure or its method of
argument communication might differ across implementations.

If the non-Fortran procedure is written in C, portability is facilitated by using the
BIND(C) attribute, as described in 15.6.1. This also applies to a procedure written in
some other language, provided that it “looks like” a C function—that is, if it is capable
of being invoked as though it were written in C; for example, this applies to a C++
function that has the “extern C” attribute.

12.1 Subroutines

A Fortran procedure definition for a subroutine is a subroutine subprogram. When a
subroutine is invoked other than via an alternate entry (12.4.5), its execution begins
with the first executable construct in the subprogram. Data objects, procedures, and
other entities may be communicated to and from the subroutine through argument as-
sociation, host association, use association, or common storage association.

12.1.1 Subroutine Subprograms

A subroutine subprogram (R1221) has the form of a subprogram as described in 11.1,
with a heading of the form

[subroutine-prefix] SUBROUTINE subroutine-name &

[([dummy-argument-list]) [subroutine-suffix]]

Using Procedures 439

A subroutine prefix consists of one or more of:

RECURSIVE
PURE
ELEMENTAL

A subroutine suffix is:

[BIND (C [, NAME= scalar-character-initialization-expression])]]

A dummy argument is either a dummy argument name or an asterisk (∗), where
the asterisk designates an alternate return. When a subroutine is invoked, the dummy
arguments become associated as specified by the actual arguments in the subroutine
reference (12.6).

The BIND attribute for procedures is described in 15.6.1.
Examples of SUBROUTINE statements are:

subroutine initialize_database
SUBROUTINE CAMP (SITE)
SUBROUTINE TASK ()
SUBROUTINE LIGHT (INTENSITY, M, *)
PURE RECURSIVE SUBROUTINE YKTE (Y, KE)
subroutine send_buffer(buffer, buffer_len, status) bind(c)

An example of a subroutine subprogram is:

SUBROUTINE TROUT (STREAM, FLY)
CHARACTER (10) STREAM
OPTIONAL FLY
STREAM = . . .

. . .
END SUBROUTINE TROUT

Rules and restrictions:

1. No prefix may appear more than once in a given SUBROUTINE statement.

2. If the subroutine is recursive, that is, it calls itself either directly or indirectly, the
prefix RECURSIVE is required in the SUBROUTINE statement.

3. A subroutine must not be both recursive and elemental. (See additional notes for
pure and elemental procedures in 12.7.1 and 12.7.2.)

4. The ∗ dummy argument is an obsolescent feature (12.6.9).

5. Each named dummy argument is a local entity of the subroutine. The attributes of
the entity can be specified by separate statements in the specification part of the
subprogram.

440 Chapter 12

12.1.2 Subroutine References

The basic form of a reference to a subroutine is a CALL statement. The other forms of
reference can be described in terms of equivalent CALL statements; the other forms are
defined assignment, defined input/output, and finalizers. A subroutine reference
specifies the subroutine and actual arguments to be used.

The form of the CALL statement (R1218) is:

CALL procedure-designator [([actual-argument-specification-list])]

where a procedure designator (R1219) is one of:

procedure-name (procedure name, possibly a dummy or pointer)
scalar-variable % procedure-component-name (procedure pointer component)
designator % binding-name (type-bound reference)

A CALL statement using the designator%binding form of a subroutine designator
references a subroutine determined by the dynamic type of the designator. This is re-
ferred to as a type-bound reference. The example in 4.4.11.1 illustrates type-bound sub-
routine references.

An actual argument specification (R1220) has the form:

[keyword =] actual-argument

where a keyword is a dummy argument name in the accessible procedure interface
and each actual argument (R1221) is one of:

expression
variable
procedure-name
scalar-variable % procedure-component-name
* label (an alternate return specifier

Each actual argument must have a corresponding dummy argument. The corre-
spondence is, as described in 12.6.1, by its position in the argument list or the name of
its keyword.

Argument association is described in 12.6.

Rules and restrictions:

1. The procedure designator must designate a subroutine.

2. The binding name must be the name of a procedure binding for the declared type of
the designator.

3. The label in the alternate return specifier must be a branch target in the same scop-
ing unit as the reference.

Using Procedures 441

Examples of subroutine references:

CALL TEST (X = 1.1, Y = 4.4) ! SUBROUTINE TEST (Y, X)
CALL TYR (2.0*A, *99) ! SUBROUTINE TYR (R, *)

. . .
99 . . . ! Error recovery

. . .

Keyword arguments are used for X and Y in the first CALL statement; therefore, the
order of the actual arguments does not matter. In the second example, an alternate re-
turn to statement 99 in the calling program unit is the last argument.

Another way to reference a subroutine is with defined assignment (7.5.3, 12.5.4.3).
A defined assignment is an assignment statement that is implemented by a user-
written subroutine instead of intrinsically by the compiler. Defined assignment
requires an ASSIGNMENT interface to specify which subroutines implement which
assignments. A defined assignment reference has the form of an assignment statement:

arg1 = arg2

and is equivalent to a CALL statement with an actual argument list of (arg1, (arg2)).
The types, kinds, and rank of the arguments select the particular defined assign-

ment subroutine, as described in 12.8.

Example of defined assignment:

MODULE POLAR_COORDINATES

TYPE POLAR
REAL :: RHO, THETA

END TYPE POLAR

INTERFACE ASSIGNMENT (=)
MODULE PROCEDURE ASSIGN_POLAR_TO_COMPLEX

END INTERFACE

. . .

SUBROUTINE ASSIGN_POLAR_TO_COMPLEX (C, P)
COMPLEX, INTENT(OUT) :: C
TYPE (POLAR), INTENT(IN) :: P
C = CMPLX (P%RHO * COS (P%THETA), &

P%RHO * SIN (P%THETA))
END SUBROUTINE ASSIGN_POLAR_TO_COMPLEX

END MODULE POLAR_COORDINATES

442 Chapter 12

USE POLAR_COORDINATES
COMPLEX :: CARTESIAN

. . .
CARTESIAN = POLAR (R, PI/6)

This last assignment is equivalent to the subroutine call:

CALL ASSIGN_POLAR_TO_COMPLEX (CARTESIAN, (POLAR(R,PI/6)))

The structure constructor POLAR constructs a value of type POLAR from R and PI/6
and assigns this value to CARTESIAN according to the computations specified in the
subroutine.

A third way to reference a subroutine is through defined input/output. As with de-
fined assignment, an interface is required to specify which subroutines implement de-
fined input/output. The reference then takes the form of a READ, WRITE, or PRINT
statement. The details of defined input/output are described in 12.5.4.4 and 9.5.1.4.

The final way to invoke a subroutine is through finalization. Finalization requires
that the subroutine be specified in a final binding in a type definition. Finalization does
not have a specific syntactic form of reference. Instead, finalization occurs when a fi-
nalizable entity goes out of existence, which can happen in multiple ways. The details
of finalization are described in 4.4.11.3.

12.2 Functions

A function is similar to a subroutine, with the additional feature of returning a result
value that is used as a primary in an expression. Either a subroutine or a function can
return values through variables in its arguments or through other forms of association,
but the result value of a function is special in that it is directly used in evaluating an
expression. Thus a function reference appears as part of a statement, in contrast to a
subroutine call, which is always the whole of a statement. A Fortran procedure definition
for a function is a function subprogram or a statement function. Statement functions are
obsolescent and are described in 12.4.4.

12.2.1 Function Subprograms

A function subprogram has the form of a subprogram as described in 11.1, with a
heading of the form:

[function-prefix] FUNCTION function-name ([dummy-argument-name-list]) &
 [function-suffix]

A function prefix (R1227), if present, consists of one or more of:

type-spec
RECURSIVE
PURE
ELEMENTAL

which is the same list as that for subroutine prefix, with the addition of type specifier.

Using Procedures 443

A function suffix (R1229) consists of zero or more of:

RESULT (result-name)
BIND (C [, NAME= scalar-character-initialization-expression])

Note that, unlike in a SUBROUTINE statement, the parentheses are required in a
FUNCTION statement even when there are no dummy arguments. A function dummy
argument cannot be an asterisk because a function cannot have an alternate return; af-
ter a function returns, evaluation of the expression referencing it continues. When a
function is invoked, the dummy arguments become associated as specified by the actu-
al arguments in the function reference (12.6).

The BIND attribute for procedures is described in 15.6.1.
Example function statements are:

FUNCTION HOSPITAL (PILLS)
REAL FUNCTION LASER (BEAM)
FUNCTION HOLD (ME, YOU) RESULT (GOOD)
RECURSIVE CHARACTER(10) FUNCTION POLICE (STATION) RESULT (ARREST)
function handler() bind(c)

Rules and restrictions:

1. The type of the function result may be specified in the function statement or in a
type declaration statement, but not both. If the type is not explicitly specified in
one of these ways, the default typing rules apply.

2. If the function result is an array, a pointer, or an allocatable, these attributes must
be specified in the specification part. There is no syntax for specifying these at-
tributes in the FUNCTION statement.

3. No prefix or suffix may appear more than once in a given FUNCTION statement.

4. If the function is recursive, that is, it invokes itself either directly or indirectly, the
prefix RECURSIVE is required in the FUNCTION statement.

5. A function must not be both recursive and elemental. (See additional rules for pure
and elemental procedures in 12.7.1 and 12.7.2.)

6. Each dummy argument is a local entity of the function. The attributes of the entity
can be specified by separate statements in the specification part of the subprogram.

7. If there is no result suffix, the function name is also the name of the result variable.
In this case, all appearances of the function name in the execution part refer to the
result variable rather than the function.

8. If there is a result suffix, it specifies the name of the result variable; the name must
be different from the function name. In this case, all appearances of the function
name in the execution part refer to the function itself rather than the result vari-
able.

444 Chapter 12

9. If there is a result suffix, the result name rather than the function name must be
used in any specification statements that specify attributes of the result.

10. If the result of a function is not a pointer, its value must be defined when execution
of the function completes.

11. If the result is a pointer, its association status must be defined when execution of
the function completes.

Note that, in the case of direct recursion, both the RECURSIVE keyword and the
RESULT suffix must be specified; this is the only case in which the RESULT suffix is re-
quired.

12.2.2 Result Variable

Every function has a result variable. By default, the result variable has the same name
as the function. The RESULT suffix is used to specify a different name for the result
variable. The result variable may be declared, defined, and referenced as an ordinary
variable. The value of the function is the value that the result variable has when execu-
tion of the function completes.

Why is it sometimes necessary to distinguish between the function name and the
result name? If the function result is an array and the function is directly recursive, a
recursive reference to the function may be indistinguishable from a reference to the array
result. This ambiguity is resolved by providing one name for the result value and a
different name for recursive references. For example, if F is a recursive function that re-
turns a rank-one array of reals and has a single integer argument, in the statement

A = F(K)

F(K) could be interpreted as either a reference to the Kth element of the array result of
F or a recursive call to F with actual argument K. If there were no result suffix, this
would be interpreted as a reference to the array element, leaving no syntax to express
direct recursion.

The following is a simple example of a recursive function REVERSE, which revers-
es the words in a given phrase.

PROGRAM TEST_FLIPPED
PRINT *, REVERSE ("I have flipped for you.")
CONTAINS

Using Procedures 445

RECURSIVE FUNCTION REVERSE (PHRASE) RESULT (FLIPPED)
CHARACTER (*) PHRASE
CHARACTER (LEN(PHRASE)) FLIPPED
L = LEN_TRIM (PHRASE)
N = INDEX (PHRASE(1:L), " ", BACK=.TRUE.)
IF (N == 0) THEN

 FLIPPED = PHRASE
ELSE

 FLIPPED = PHRASE (N+1:L) // " " // REVERSE (PHRASE (1:N-1))
END IF

END FUNCTION REVERSE
END PROGRAM TEST_FLIPPED

Note that in this example there is a dynamic function result length, which requires an
explicit interface (12.5.1.2(6)).

12.2.3 Function References

A function reference always appears as a primary in an expression. It most commonly
has the form of a function designator followed by a parenthesized actual argument list. It
can alternatively have the form of a defined unary or binary operator. Invoking the
function returns a value which is then used in the expression. For example, in the ex-
pression

A + F(B)

where F is a function of one argument that delivers a numeric result, this result be-
comes the value of the right-hand operand of the addition operation.

The basic form of a function reference (R1217) is:

procedure-designator ([actual-argument-specification-list])

where a procedure designator and actual argument specification list have the same form
as in a CALL statement, except that the procedure designator must designate a function
and the actual argument list for a function must not contain an alternate return. This is
because a function dummy argument cannot be an alternate return. The rules and
restrictions for actual and dummy arguments are listed in 12.6.

Examples of function references are:

PRINT *, TIME (TODAYS_DATE) ! FUNCTION TIME (DATE)

Y = 2.3 * CAPS (size=4*12, kk=K) ! FUNCTION CAPS (SIZE,KK)

The other form of reference is with a defined operation (12.5.4.2). A number of arith-
metic, logical, relational, and character operators are predefined in Fortran; these are
called intrinsic operators. These operators may be given additional meanings, and new
operators may be defined. Functions define these operations; interface blocks or gener-
ic bindings connect them with operator symbols. A function may be invoked by using
one of its defined operators in an expression.

446 Chapter 12

The following is an example of a function reference via a defined operator:

INTERFACE OPERATOR (.BETA.)
FUNCTION BETA_OP (A, B)

. . . ! attributes of BETA_OP, A, and B
! (including intent IN for A and B)

END FUNCTION
END INTERFACE

. . .
PRINT *, X .BETA. Y

The presence of .BETA. in the expression in the PRINT statement invokes the
function BETA_OP, with X as the first actual argument and Y as the second actual ar-
gument. The function value is returned as the value of X .BETA. Y in the expression.

12.2.4 Function Side Effects

The main purpose of a function is to compute its result value. Like a subroutine, invo-
cation of a function can also have other effects such as modifying the values of vari-
ables or performing input/output. Any such other effect that outlasts a single
invocation of the function is called a function side effect. Comparable effects in a sub-
routine are not usually called side effects because they are the primary purpose of a
subroutine invocation.

Examples of function side effects include modifying the value of an argument or
other variable visible outside of the function. Modifying the value of a variable local to
the function is also a side effect if that variable is saved between invocations. Modify-
ing the value of an unsaved local variable is not a side effect because it does not outlast
a single invocation. Input/output on an external file is a side effect.

Some function side effects are disallowed. The most notable case relates to the fact
that a function invocation occurs as part of a statement instead of being a separate
statement like a subroutine call. A function invocation is not allowed to affect the exe-
cution of other parts of the statement (for instance, other function invocations in the
same statement). If such intra-statement effects were allowed, they would have signifi-
cant impact on optimization, in addition to being confusing. There are particular prohi-
bitions against intra-statement side effects in input/output, ALLOCATE, and
DEALLOCATE statements.

Even in cases where function side effects are allowed, a program is prohibited from
depending on them. If this prohibition is taken to its extreme, there are very few cases
where functions with side effects can be safely used. However, compilers do not tend
to take such extremes; there are many programs that rely on function side effects and
that work well in practice. Problems with function side effects become more likely with
highly aggressive optimization.

Suppose, by way of example, that get_value is a function that reads from a file, sets
its argument to the value read, and returns an error code as its function result value.
This is typical of some coding styles. If this function is invoked twice with code like

j = get_value(x)
j = get_value(y)

Using Procedures 447

an aggressive optimizer could conceivably optimize away the first invocation, giving
results other than intended. This example does not violate any of the prohibitions
against effects on other parts of the same statement because the two function invoca-
tions are in separate statements. However, if x or y is subsequently referenced, this
would violate the prohibition against depending on a function side effect.

For another example, suppose that my_random is a random number generator that
has a seed as its argument and returns a pseudorandom number as its function result.
The value of the seed is modified by the function. If this function is invoked twice in a
statement as in

x = my_random(seed) + my_random(seed)

an aggressive optimizer could conceivably evaluate this as

x = 2 * my_random(seed)

which would not have the intended statistical properties. Optimizations like this have
been known to cause problems for actual programs with actual compilers. This exam-
ple violates the prohibition against affecting other parts of the same statement because
both references to the function affect each other by changing the value of seed. This
problem is why the intrinsic random_number procedure is a subroutine instead of a
function.

The authors generally recommend that function side effects be avoided, even
where the standard allows them. They introduce potential sources of error, including
the possibility of accidentally using the functions in disallowed ways. A function with
a side effect can be recast as a subroutine with an additional argument. C
interoperation is, however, a major exception to this recommendation. All C procedures
are functions and the use of function side effects is ubiquitous in C.

12.3 RETURN Statement

A RETURN statement terminates execution of an instance of a procedure and returns
control to the invoking program or procedure. In the case of a recursive invocation, the
invoking procedure might be a different instance of the same procedure. A RETURN
statement is allowed only in a subprogram, which may be either a subroutine or func-
tion subprogram.

The form of the RETURN statement (R1236) is:

RETURN [scalar-integer-expression]

The scalar integer expression option is applicable only to subroutines and is used in
conjunction with alternate returns. If the expression is omitted from a return statement
in a subroutine, control returns to the statement following the subroutine invocation. A
return statement in a function always returns to the evaluation of the expression in
which the function invocation appeared.

Executing the END statement of a subprogram has the same effect as executing a
RETURN statement that has no scalar integer expression. It is purely a style choice as

448 Chapter 12

to whether to put an explicit RETURN statement instead of this implicit one. One must
use a RETURN statement in order to return from places other than at the end of the
subprogram or to specify an alternate return.

If the scalar integer expression appears, it must be of type integer. If its value is in
the range 1:n where n is the number of asterisks in the dummy argument list, it selects
which alternate return, counting from left to right in the actual argument list, is to be
used for this particular return from the procedure. If the value is outside that range, it
is as if the expression were omitted. The effect of an alternate return is the same as

CALL SUBR(..., IRET)
GO TO (label-list), IRET

where inside SUBR, the dummy argument corresponding to IRET is assigned the inte-
ger expression alternate return value prior to returning from SUBR. There are better
ways to achieve the functionality of alternate return, such as with a CASE construct
controlled by a return code with an appropriate mnemonic value; for this reason alter-
nate return is an obsolescent feature.

12.4 Procedure Definition

A procedure can be defined intrinsically, by Fortran code, or by means other than For-
tran. A procedure defined by Fortran code is further classified according to its means
of definition as an external procedure, module procedure, internal procedure, or state-
ment function.

In most cases, a procedure is defined by a subprogram. The context of the subpro-
gram determines the classification of the procedure.

12.4.1 External Procedures

An external subprogram is a stand-alone subprogram that is not part of any other pro-
gram unit. It defines an external procedure.

An external procedure may share information, such as data and procedures via ar-
gument lists, modules, and common blocks, but otherwise it does not share informa-
tion with any other program unit. It may be developed and compiled completely
independently of other procedures.

Alternatively, an external procedure can be defined by means other than Fortran.
The C interoperability features described in 15.6.1 facilitate the use of such procedures.

12.4.2 Module Procedures

A module subprogram is one that appears in the module subprogram part of a module
and is not internal to another module subprogram. It defines a module procedure.

A module procedure inherits the module’s environment via host association. The
accessibility of a module procedure outside of the module can be controlled with the
PUBLIC or PRIVATE attribute.

The syntax of a module subprogram has a restriction—its END statement must in-
clude the SUBROUTINE or FUNCTION keyword.

Using Procedures 449

Some module procedures are defined by intrinsic modules (14.3, 15.5.4).

12.4.3 Internal Procedures

An internal subprogram is one that appears in the internal subprogram part of some
other subprogram or main program, which is called its host. The host can be the main
program, a module procedure, or an external procedure. Notably, the host cannot be an
internal subprogram; this restriction is to facilitate simplicity of implementation. An in-
ternal subprogram defines an internal procedure.

An internal procedure can be referenced only from within its host; this includes
any internal procedures of the host. An internal procedure inherits its host’s environ-
ment via host association. An internal procedure can be a subroutine or function, re-
gardless of whether its host is a subroutine, function, or main program.

The syntax of an internal subprogram has the following restrictions in addition to
the general requirements of a subprogram.

Rules and restrictions:

1. Its END statement must include the SUBROUTINE or FUNCTION keyword.

2. It must not have an internal subprogram part.

3. It must not have any ENTRY statements.

4. An internal procedure cannot be passed as an actual argument or used as the tar-
get of a procedure pointer. This restriction avoids complications in the definition
and implementation of recursive procedures.

Although the context of an internal subprogram looks much like that of a module
subprogram, in that both of them follow a CONTAINS statement, they are not the
same thing. Thus, these restrictions do not apply to a module subprogram.

12.4.4 Statement Functions

A statement function (R1238) is a function whose definition consists of a single Fortran
statement in the specification part of a main program or subprogram. The subprogram
may be an external, module, or internal one. There is no subroutine counterpart to a
statement function.

A statement function has similarities to an internal procedure in that it is defined
within some other subprogram or main program, although the placement is different.
The restriction to a single statement is a significant limitation and has several conse-
quences.

The form of a statement function statement, which defines a statement function, is:

function-name ([dummy-argument-name-list]) = scalar-expression

Statement functions are obsolescent. A statement function statement can be re-
placed (except within an internal procedure) with the following equivalent three-line
internal function definition

450 Chapter 12

FUNCTION function-name ([dummy-argument-name-list])
function-name=scalar-expression
END FUNCTION

providing the function and its arguments have the same types in both the statement
function and the internal function.

Because a statement function is only a single statement, there is no place for decla-
rations inside of the statement function. Consequently, any declarations for entities ref-
erenced in the statement function have to be outside of the statement function, in its
host procedure, even if the only reference to the entity is in the statement function.
This is most notable for type declarations of the dummy arguments and of the state-
ment function. To explicitly declare the types of the dummy arguments or of the state-
ment function (as is recommended practice, and as is required if implicit none is in
effect), those declarations must be outside of the statement function. This is particular-
ly strange for the dummy arguments because a statement function dummy argument
has a scope limited to the statement function, so the type declaration is actually outside
of the scope of the entity it declares. Because the scope of a statement function dummy
argument is limited, the host scoping unit that the statement function is in may have a
different entity with the same name. In that case, a single type declaration declares the
types of two different entities. Although this confusing situation is allowed, it is not
recommended practice.

The syntax of a statement function statement is similar to that of an assignment
statement for an array element. Although they are technically distinguishable in proper
context, their similarity often results in user confusions. Such confusion is exacerbated
when there are errors in the context. A missing dimension attribute can cause a compil-
er to interpret an assignment statement as a statement function statement; this usually
causes compilation errors, but the error messages can be quite misleading.

Several of the following restrictions on statement functions seem arbitrary and
nonintuitive if considered out of context. The important context here is that statement
functions were made obsolescent as of Fortran 90. It was decided not to enhance the
feature at the same time as it was being made obsolescent. Therefore, many features
new to Fortran 90 are not allowed in statement functions. The rules make a little more
sense if statement functions are considered as a compatibility feature for old code,
rather than a feature that would be used in new code.

Rules and restrictions:

1. The function and all the dummy arguments are scalar.

2. The expression must not use any defined operations. This excludes both defined
operators and user-defined extensions of intrinsic operators.

3. Each primary in the expression must be a constant, a variable, a function reference,
or a parenthesized expression that meets the same requirements as a statement
function expression. This surprisingly limited list excludes array constructors,
structure constructors, type parameter inquiries, and subobjects of constants.

Using Procedures 451

4. If the expression references a function, neither the function nor the reference must
require an explicit interface unless the function is an intrinsic. A referenced intrin-
sic function must have a scalar result and must not be transformational. If a func-
tion argument in the expression is an array, it must be an array name; this rules out
array components, slices, and expressions.

5. A statement function is defined in the specification part of a program or subpro-
gram. Any statement function referenced in the expression must have been defined
earlier in the same specification part, and hence a statement function cannot be re-
cursive (either directly or indirectly).

6. If a named constant is used in the expression, it must have been declared earlier in
the specification part or made available by use or host association.

7. If an array element is used in the expression, the array must have been declared as
an array earlier in the specification part or made available by use or host associa-
tion.

8. The appearance of any entity in the expression that has not previously been typed
explicitly constitutes an implicit type declaration; any subsequent explicit type dec-
laration for that entity must be consistent with the implicit type. This same rule ap-
plies to the statement function name.

9. If the statement function is in a contained scoping unit and has the same name as
an entity in the host scoping unit, the type of the statement function must be de-
clared in a type declaration statement prior to the statement function statement.
This rule avoids a possible syntax ambiguity if the entity in the host is an array, but
the rule applies regardless of whether the particular case would be ambiguous or
not.

10. Statement function dummy arguments have a scope of the statement function
statement.

11. No function reference in the expression may change the value of any dummy argu-
ment of the statement function.

12. A statement function must not be used as an actual argument.

13. The interface of a statement function is always implicit, not explicit; see 12.5.1 for a
detailed discussion of implicit versus explicit interfaces.

14. A statement function is referenced in the same manner as any other function, ex-
cept that because statement function interfaces are implicit, the keyword form of
actual arguments is not allowed; the argument association rules are the same.

15. The type and type parameters of the expression do not have to be the same as
those of the statement function, but they must be compatible with intrinsic assign-
ment. The result of a statement function is obtained by evaluating the expression
and then converting it to the type and type parameters of the statement function.

452 Chapter 12

The following are examples of statement functions:

CHARACTER(5) ZIP_5 !Notice these are scalar
CHARACTER(10) ZIP_CODE ! character strings.
ZIP_5(ZIP_CODE) = ZIP_CODE(1:5)

INTEGER TO_POST, MOVE
TO_POST(MOVE) = MOD(MOVE, 10)

REAL FAST_ABS
COMPLEX Z
FAST_ABS(Z) = ABS(REAL(Z)) + ABS(AIMAG(Z))

12.4.5 Alternate Entries

Normally a subprogram defines a single procedure (not counting internal procedures
or statement functions, which can be used only within the subprogram). In fact, this
one-to-one correspondence is so ubiquitous that it is common to forget about the dis-
tinction between a procedure and a subprogram. A subprogram is a chunk of source
code; a procedure is the conceptual set of actions defined by the subprogram. The sub-
routine or function statement at the beginning of the subprogram defines the name of
the procedure and its dummy arguments. If a subprogram has ENTRY statements, it
defines multiple procedures, one for the function or subroutine statement and one for
each ENTRY statement. Each ENTRY statement specifies a procedure name, a set of
dummy arguments, and a place for execution of the procedure to begin; these are often
referred to as alternate entries.

The procedure specified by an ENTRY statement shares the same data environ-
ment as the procedure specified by the subroutine or function statement, except for the
dummy arguments.

When a procedure specified by an ENTRY statement is invoked, execution begins
with the first executable construct after the ENTRY statement; this might or might not
be the same as the first executable construct in the subprogram.

The procedure specified by an ENTRY statement is either an external or module
procedure, depending on whether it is in an external or module subprogram; ENTRY
statements are not allowed in internal subprograms. The procedure specified by an
ENTRY statement is either a subroutine or function depending on whether it is in a
subroutine or function subprogram. Such a procedure is referenced just like any other
external or module procedure; there is no way for a referencing scoping unit to tell the
difference. The only difference is in how the procedure is defined—not in how it is ref-
erenced.

 An ENTRY statement (R1235) has the form:

ENTRY entry-name [([dummy-argument-list]) [entry-suffix]]

Using Procedures 453

where an entry suffix is one of

subroutine-suffix
function-suffix

depending on whether it is in a subroutine or function subprogram.
Examples of ENTRY statements are:

ENTRY FAST(CAR, TIRES)

ENTRY LYING(X,Y) RESULT(DOWN)

The attributes of the dummy arguments and result variable are described in the
specification part of the subprogram. The dummy argument list of an ENTRY state-
ment must meet the same requirements as for a SUBROUTINE or FUNCTION state-
ment, as appropriate. For example, the dummy argument list in a function subprogram
must not have an alternate return specifier. Additionally, all of the entries in a function
subprogram must be compatible as described in rules 5 and 6 below.

If the RESULT suffix is omitted from an ENTRY statement in a function subpro-
gram, it is as though it were specified with the same name as the ENTRY name.

Note the absence of a prefix from the form of the ENTRY statement. The procedure
specified by an ENTRY statement is recursive, pure, or elemental according to whether
the procedure defined by the FUNCTION or SUBROUTINE statement has those prop-
erties; it is neither necessary nor allowed to respecify those on the ENTRY statement.
The type of the result variable for an ENTRY statement in a function is specified either
implicitly or by a separate type declaration statement.

One common application is for an alternate entry to initialize the shared data envi-
ronment. Another application is to share code. The example below illustrates a typical
code-sharing scenario. Because there is no RETURN statement before the last ENTRY,
execution of that starts at the first ENTRY continues at that point and shares the re-
maining code with execution that starts at the last ENTRY.

SUBROUTINE name-1 (dummy-argument-list-1)

. . .
RETURN

ENTRY name-2 (dummy-argument-list-2)

. . .
! This falls through past the next ENTRY statement.

ENTRY name-3 (dummy-argument-list-3)

. . .
RETURN

END

Rules and restrictions:

1. An ENTRY statement may appear only in an external or module subprogram; an
internal subprogram must not contain an ENTRY statement.

454 Chapter 12

2. An ENTRY statement must not appear in an executable construct or a nonblock
DO loop.

3. The entry names must be different from one another and from the original
subprogram name.

4. If a result name is specified, it must not be the same as any entry name or the func-
tion name in the subprogram. If a result name is specified, the entry name must
not appear in any specification statement in the subprogram; any attribute specifi-
cation must use the result name instead.

5. If all of the entry result variables in a function subprogram have the same type,
type parameters, and shape as the function result variable, all of them are aliases
for the same variable. In this case there is no restriction on the nature of the result.
For example, the result could be of derived type, either scalar or array, and could
have the pointer attribute.

6. If any of the result variables in a function subprogram do not have the same type,
type parameters, and shape as the function result variable, they must all be non-
pointer, nonallocatable scalars and must be of type default integer, default real, de-
fault logical, double precision real, or default complex. In this case, all the result
variables are storage associated with each other.

7. A dummy argument of an ENTRY statement must not appear before that ENTRY
statement either in an executable statement or in the expression of a statement
function statement, unless it is also a dummy argument of a preceding ENTRY,
FUNCTION, or SUBROUTINE statement, or the statement function statement. This
restriction is a little strange in that it depends on the physical order of statements in
the source code, but not on the logical order of execution.

8. If a dummy argument, or an object declared with a specification expression that
depends on the dummy argument, appears in an executable statement, then that
statement may be executed only if the dummy argument appears in the dummy
argument list of the referenced procedure.

The order, number, types, type parameters, and names of the dummy arguments in
an ENTRY statement may differ from those in the FUNCTION or SUBROUTINE state-
ment or any other ENTRY statement in that subprogram. Note, however, that all of the
entry result variables of a function subprogram must be as described in items 5 and 6
above.

The interface to a procedure defined by an ENTRY statement in an external sub-
program may be made explicit in another scoping unit by supplying an interface body
for it in a procedure interface block. In this case the procedure heading for the interface
body is not an ENTRY statement, but must be a FUNCTION or SUBROUTINE statement,
as appropriate.

Although the ENTRY statement is not formally designated as obsolescent in the
standard, similar ends can be achieved in a more structured way by using module pro-
cedures or internal procedures, with the shared data environment being in the host

Using Procedures 455

scoping unit. Those other approaches allow the data environment to be divided into
portions that are shared and other portions that are not. Alternate entries allow no
such division and consequently are prone to additional errors. Therefore, alternate en-
tries are deprecated by many practitioners.

12.5 Procedure Declaration

A procedure is usually referred to from a different scoping unit than the one that de-
fines it. Therefore, the referring scoping unit has no direct information about the prop-
erties of the procedure, or even that it is a procedure. Such information is necessary for
implementation. This section discusses the ways in which such information can be pro-
vided to a referring scoping unit. The necessary information is called the interface of
the procedure; it can be either explicit or implicit, with implications elaborated below.

Information about a procedure can be declared using an interface block, type dec-
laration statement (5.1), EXTERNAL statement (5.10.1), INTRINSIC statement (5.10.2),
or PROCEDURE declaration statement (5.11). The declarations can be in the referenc-
ing scoping unit or made accessible there by host or use association. This section pro-
vides an overview of the use of these procedure-related declarations. There are three
forms of interface blocks—specific, abstract, and generic—described in subsections be-
low; the details of the other relevant statements are described in 5.

If a scoping unit refers to an internal procedure or recursively refers to itself, then
the full source code for the procedure is at hand and no further information is needed.
If a scoping unit refers to a module procedure, then all the necessary information is au-
tomatically made available, either via a USE statement or because the scoping unit is in
the module. In all of these cases, the interface is explicit in the referring procedure.

If a scoping unit refers to a statement function, then the full source code for the
statement function is also at hand and no further information is needed. In this obso-
lescent case, the interface is implicit for historical reasons, even though everything
about the function is evident. There is no way to make the interface of a statement
function explicit.

If a scoping unit refers to an intrinsic procedure, then the compiler inherently has
all the information about that intrinsic procedure except possibly the fact that an in-
trinsic procedure is intended; if that fact is specified, the details of the procedure are
then known by the compiler. The fact that an intrinsic procedure is intended can be ex-
plicitly declared by an INTRINSIC statement or the INTRINSIC attribute in a type dec-
laration statement. In most cases, it is evident from the syntax that a procedure
reference is intended. Explicit declaration of the INTRINSIC attribute is optional in
those cases. A type declaration for an intrinsic function is also allowed, but it achieves
nothing useful; in particular, it does not disallow generic references that return types
other than the declared one.

If a scoping unit references an external or dummy procedure, then the compiler
does not necessarily have any information about that procedure, which might not be
written yet. In most cases, the fact that it is a procedure is evident from context. In
those cases no explicit declarations are required if there is no intrinsic procedure of the
same name and if nothing about the references requires an explicit interface. The fact

456 Chapter 12

that a nonintrinsic procedure is intended can be explicitly declared by an EXTERNAL
statement or the EXTERNAL attribute in a type declaration statement. The type of an
external or dummy function may be declared explicitly in a type declaration statement.
All these forms of declaration make it explicit that the interface is implicit (an unfortu-
nate confusion of terminology).

Alternatively, an external or dummy procedure can be declared by an interface
body, which provides an explicit interface, or by a PROCEDURE statement, which can
provide either an explicit or implicit interface.

If a scoping unit refers to a procedure pointer, then both the EXTERNAL attribute
and the POINTER attribute must be declared explicitly. This can be done with combi-
nations of interface bodies and type declaration, EXTERNAL, POINTER, and PROCE-
DURE statements. For a procedure pointer component, the declaration is in the type
definition. A procedure pointer can have either an implicit or explicit interface.

If a scoping unit refers to a nonintrinsic generic procedure, there must be an inter-
face block to specify that it is generic and to detail the specific procedures that are part
of the generic procedure. Defined operations, defined assignment, and defined in-
put/output are always generic and this requirement therefore applies to them.

If a scoping unit refers to a procedure type binding, that type binding is declared
in the type definition.

12.5.1 Implicit and Explicit Interfaces

The interface of a procedure is the information necessary for the compiler to imple-
ment invocation of the procedure. The information that constitutes the interface is de-
scribed in 12.5.1.1. If this information is provided to the compiler in a scoping unit, the
interface of the procedure is explicit in that scoping unit. If this information is not pro-
vided, it must be inferred from the form of the procedure reference; in that case, the in-
terface is implicit.

Many features of procedures require an explicit interface; the information neces-
sary to implement the features cannot be deduced solely from the form of the proce-
dure reference. The situations that require an explicit interface are described in 12.5.1.2.

Even in cases that do not require an explicit interface, having one is a significant
help in catching errors. The explicit interface allows the compiler to check that the pro-
cedure reference is consistent with the interface; an inconsistency should cause a com-
pilation error message. With an implicit interface, the compiler infers the interface
from the form of the reference, so there is no opportunity for independent verification;
an inconsistency between the reference and the procedure will often go undetected and
result in code that does not work correctly. Some compilers can detect errors in implicit
interfaces in some situations (for example, when a procedure and the reference to it are
in the same source file), but this cannot be relied on portably. Errors in procedure ref-
erences are very common sources of bugs in code that uses implicit interfaces.

12.5.1.1 Interface Properties

The properties that constitute a procedure interface are

1. Whether it is a function or a subroutine

Using Procedures 457

2. Whether it is pure or elemental

3. Whether it has the BIND attribute

4. The characteristics of the dummy arguments and result variable

5. The names of the dummy arguments

6. The name, generic identifiers, and binding label of the procedure

Items 1-4 constitute the characteristics of a procedure; there are contexts where
only the characteristics are important. Items 1-5 constitute an abstract interface, which
might apply to multiple procedures. The addition of item 6 makes the interface unique
to a specific procedure.

One characteristic of a dummy argument is its classification as a dummy data ar-
gument, dummy procedure, or alternate return.

Additional characteristics of a dummy data argument or result variable are

1. Its type, type parameters, rank, and shape

2. Whether it is polymorphic

3. All of the remaining attributes that could apply to a dummy data argument (AL-
LOCATABLE, ASYNCHRONOUS, INTENT, OPTIONAL, POINTER, TARGET,
VALUE, and VOLATILE)

4. The form of any dynamic dependence in specification expressions for type param-
eters or bounds

5. Which type parameters, shapes, sizes, or lengths are deferred or assumed

Additional characteristics of a dummy procedure argument are

1. Whether its interface is implicit or explicit

2. Its OPTIONAL or POINTER attributes

3. Its characteristics as a procedure, but only if its interface is explicit

It is notable that the characteristics of a dummy procedure with implicit interface
do not even include whether it is a function or subroutine.

A dummy asterisk argument has no additional characteristics.

12.5.1.2 Where an Explicit Interface is Required

Most of the features that were introduced after Fortran 77 and are related to procedure
invocation require explicit interfaces.

In particular, the following forms of reference require an explicit interface:

1. keyword actual argument

2. generic name

458 Chapter 12

3. defined operator

4. defined assignment

5. reference in a context that requires it to be pure.

If a procedure has any of the following, any reference to the procedure requires an
explicit interface:

1. dummy argument with the ALLOCATABLE, ASYNCHRONOUS, OPTIONAL,
POINTER, TARGET, VALUE, or VOLATILE attribute

2. assumed-shape dummy argument

3. dummy argument of parameterized derived type

4. polymorphic dummy argument

5. function result that is an array, pointer, or allocatable

6. function result with a length type parameter value that is determined dynamically

7. elemental attribute

8. BIND attribute

Some of these situations are elaborated on below.
An explicit interface is required for an optional dummy argument or keyword ac-

tual argument so that the proper correspondence between actual and dummy argu-
ments can be established.

An assumed-shape dummy argument is generally implemented quite differently
from an explicit-shape or assumed-size one. For compatibility with Fortran 77, almost
all implementations of explicit-shape or assumed-size dummy arguments expect the
invoking procedure to pass the address of a contiguous block of memory where the ar-
ray is stored. If the array to be passed is a discontiguous slice, the compiler must make
a temporary contiguous copy of the slice and pass the address of this copy; after the
procedure returns, data from the temporary array is copied back to the original loca-
tions. These copy operations can cause a significant performance penalty in some cas-
es; in extreme cases, the whole of a large array might be copied in and out in order to
operate on a single element. In contrast, an assumed-shape dummy array is generally
implemented in a way that allows a discontiguous slice to be handled directly without
copying; this requires that the invoking procedure pass information about how the ac-
tual argument elements are stored; this information is often referred to as a dope vec-
tor or descriptor, but it is handled internally by the compiler, without the user needing
to know about its details. When compiling a procedure that passes an array as an actu-
al argument, the compiler needs to know whether to pass a dope vector or just a stor-
age address. An implicit interface implies that the array will be passed in a way that is
compatible with an explicit-shape or assumed-size dummy; if the dummy is assumed

Using Procedures 459

shape, there needs to be an explicit interface so that the compiler knows to pass the ar-
ray in a way that is compatible with that.

If an actual argument is a pointer, then what is passed might be either the pointer
itself or the target. Which one is passed depends upon whether or not the dummy ar-
gument is a pointer. The explicit interface provides the required information. The de-
fault for implicit interfaces is to presume that the dummy argument is not a pointer;
thus the target is passed.

For a generic procedure reference there are multiple specific procedures that can be
referenced using the same generic name. The referencing routine must be able to figure
out which specific procedure is intended; the process of determining the correct specif-
ic procedure is called disambiguation. Disambiguation is based on comparing the actu-
al argument list with the multiple dummy argument lists to find one that matches.
Generic procedures, including the use of interface blocks for configuring generic
names, are discussed in detail in 12.5.4.

User operators and defined assignments are essentially special syntax for some
forms of generic procedure references. They require explicit interfaces for exactly the
same reasons as other generic procedure references. These topics are treated in detail
in 12.5.4.2 and 12.5.4.3.

A reference to an elemental procedure generally requires different implementation
from an identical-appearing reference to a nonelemental procedure. An explicit inter-
face is required for the elemental case so that the appropriate code is generated.

The requirements on pure procedures are designed to allow compile-time verifica-
tion of purity: if a procedure is used in a context that requires purity (such as in a
FORALL construct or a specification expression), the interface must be explicit so that
the compiler can verify that the interface meets this requirement.

12.5.2 Interface Bodies

An interface body defines an explicit interface for a procedure that does not otherwise
have one in the current scoping unit. It is important to understand, however, that an
interface body is not the only way for a procedure to have an explicit interface. It is a
common error to equate having an explicit interface with having an interface body. For
example, a module procedure has an explicit interface wherever it is accessible. It is
not necessary, or even allowed, to provide an interface body for a module procedure.

An interface body can appear in any of the three forms of interface block (12.5.3,
12.5.4, 12.5.5). It can never appear outside of an interface block. In isolation, the form of
an interface body is indistinguishable from that of a subprogram with no execution
part or internal subprogram part; it is distinguished only by the context of being in an
interface block.

The form of an interface body (R1205) is either:

subroutine-statement
 [specification-part]
END [SUBROUTINE [subroutine-name]]

or

460 Chapter 12

function-statement
[specification-part]
END [FUNCTION [function-name]]

The name of the interface body is the subroutine name or function name.

Rules and restrictions:

1. The interface body specifies all the properties of an interface.

2. An interface body also may specify attributes of entities that are not part of the in-
terface; such specifications have no effect. This provision is to facilitate copying
source code from the specification part of a subprogram into an interface body.
Such copied code may include declarations of local variables that are not relevant
to the interface.

3. An interface body must not contain an ENTRY, DATA, FORMAT, or statement
function statement, even though those statements are allowed in the specification
part of a subprogram.

4. An entry interface may be specified by using the entry name as the function or
subroutine name in an interface body. The property of being an entry is not part of
an interface.

5. An interface body does not inherit implicit type mappings from its host. It does not
inherit identifiers via host association, except as described below under the IM-
PORT statement.

6. An interface body may contain a USE statement to access entities via use associa-
tion.

An interface body is unique among contained scoping units in that it does not by
default inherit anything by host association. The original rationale for this was to facil-
itate coding an interface body by copying the specification part from an external proce-
dure. Host association from the host of the interface body could cause differences
between the properties of the interface body and the original procedure.

However, there are some situations where host association into an interface body is
highly desirable. Notable among these is an interface body that is in a module and
needs to access identifiers from the module. Such an interface body cannot access the
module identifiers via USE association because a module must not use itself; further-
more, some of the identifiers might not be public. The IMPORT statement accommo-
dates these situations.

The form of an IMPORT statement (R1209) is

IMPORT [[::] import-name-list]

Rules and restrictions:

1. An IMPORT statement is allowed only in an interface body.

Using Procedures 461

2. Each import name must be a name of an entity accessible in the host of the inter-
face body. If it is a local entity of the host, it must have been explicitly declared pri-
or to the interface body.

3. An entity named in an IMPORT statement is accessible via host association in the
interface body. The name must not appear in the interface body in any of the con-
texts described in 16.2.1.3 as preventing host association.

4. An IMPORT statement without an import name list makes every host entity acces-
sible by host association, except for those entities whose host association is pre-
vented as described in 16.2.1.3. If the interface body accesses a local entity of the
host by host association, that entity must have been explicitly declared prior to the
interface body. Note the subtle point that an entity that does not meet the require-
ment of prior explicit declaration is still said to be “made accessible” even though
it cannot actually be accessed, contradicting the normal English meaning of the
word “accessible”. The only effect of such “accessibility” is to block implicit decla-
ration of an entity of the same name in the interface body.

12.5.3 Specific Interface Blocks

A specific interface block provides explicit specific interfaces for procedures. A specific
interface is an interface for a specific procedure. A specific interface block also declares
the EXTERNAL attribute for the same procedures. It can be used for specific external
procedures, dummy procedures, and procedure pointers. It cannot be used for intrin-
sic, internal, and module procedures, because these already have explicit interfaces.
The form of a specific interface block is:

INTERFACE

 [interface-body] ...
END INTERFACE

If the name of an interface body is not that of a dummy procedure or a pointer, it
must be that of an external procedure; the characteristics of the interface must match
those of the external procedure, except that a nonpure interface may be specified for a
pure procedure. Note that the names of dummy arguments are not characteristics and
are not required to match.

A procedure must not have more than one explicit specific interface in the same
scoping unit. Also, the EXTERNAL attribute for a procedure must not be declared both
by an interface body and by other means in the same scoping unit.

12.5.4 Generic Interface Blocks

A generic interface block specifies a generic interface for a set of procedures. Also, it
can optionally specify explicit specific interfaces. Generic interface blocks can be used
for generic names, defined operators, defined assignment, and defined input/output.
The use of generic interfaces is described in the following subsections. The general
form of a generic interface block is:

462 Chapter 12

INTERFACE generic-spec
 [interface-spec] ...
END INTERFACE [generic-spec]

where a generic specification (R1207) is one of

generic-name
OPERATOR(defined-operator)
ASSIGNMENT(=)
READ (FORMATTED)
READ (UNFORMATTED)
WRITE (FORMATTED)
WRITE (UNFORMATTED)

and an interface specification (R1202) is one of

 interface-body
 procedure-statement

 The form of a procedure statement (R1206) (not to be confused with a procedure
declaration statement) is:

 [MODULE] PROCEDURE procedure-name-list

Rules and restrictions:

1. If the END INTERFACE statement has a generic specification, it must be the same
as the generic specification in the INTERFACE statement. For this purpose, the de-
fined operators <, <=, >, >=, ==, and /= are considered to be the same as .LT., .LE.,
.GT., .GE., .EQ., and .NE., respectively.

2. A procedure specified by a PROCEDURE statement must be an accessible proce-
dure with an explicit interface in the current scoping unit. It may be an external
procedure, module procedure, procedure pointer, or dummy procedure.

3. If a PROCEDURE statement has the optional MODULE keyword, then the proce-
dures specified by that statement must be module procedures.

4. A procedure specified by an interface body must be an accessible procedure that
would not otherwise have an explicit interface in the current scoping unit; the in-
terface body provides an explicit interface for the procedure, which may be an ex-
ternal procedure, procedure pointer, or dummy procedure.

5. A procedure may be part of multiple generics as long as it separately meets the re-
quirements for each one. Because of the previous rule, at most one may be speci-
fied by an interface body; the others must use PROCEDURE statements.

6. A procedure must not be specified by either a PROCEDURE statement or an inter-
face body if that procedure is previously specified to be part of the same generic in
the current scoping unit.

Using Procedures 463

7. There may be multiple interface blocks for the same generic in the same scoping
unit. Furthermore, the same generic identifier may be accessed via host association
and via use association from multiple modules. The procedures specified for the
generic by all such means are part of the same generic in the current scoping unit.

A procedure that is specified by either a PROCEDURE statement or an interface
body becomes part of the generic specified by the INTERFACE statement. Additionally,
a procedure specified by an interface body acquires an explicit interface in the same
manner as for a specific interface block.

Note that the MODULE keyword in the PROCEDURE statement has no effect ex-
cept to add a restriction. There is little reason to use this keyword in new code; it is pri-
marily for compatibility with existing code.

There is a subtlety in the interaction of rules 6 and 7 above. Rule 6 prohibits redun-
dant specification of a procedure that is previously specified to be part of the same ge-
neric in the same scoping unit. A specification accessed by host or use association
counts as a previous specification for this purpose. However, the prohibition of rule 6
applies only to interface blocks in the current scoping unit. There is no prohibition
against redundant specification via host and use association. Thus, if two different
modules specify the same procedure to be in the same generic, that does not prohibit a
scoping unit from accessing the generic from both modules under rule 7. This can be
useful in cases where the generics in the modules have partial overlap, as can reason-
ably happen. The following example illustrates this.

module intrinsic_types_module
 interface display
 procedure :: display_integer, display_real
 end interface
 ...
end module

module my_type_1_module
 use intrinsic_types_module
 interface display
 procedure :: display_my_type_1
 end interface
 ...
end module

module my_type_2
 use intrinsic_types_module
 interface display
 procedure :: display_my_type_2
 end interface
 ...
end module

464 Chapter 12

program main
 use intrinsic_types_module, my_type_1_module, my_type_2_module
 ...
end program

The first module defines a generic named display, with specific procedures for dis-
playing some intrinsic types. The next two modules independently extend the generic
to add specifics for two derived types. The main program uses all three modules,
merging their generics. The redundant specification of the specifics display_integer
and display_real is allowed because it is done via use association.

12.5.4.1 Generic Procedure Names

A simple example of a generic procedure name is provided by the intrinsic function
INT:

INT(R)
INT(D)

where R and D are respectively default real and double precision objects. It looks like
there is only one procedure involved here (INT), but there are really two. There is a
specific procedure lurking around that accepts a default real argument and another
one that accepts a double precision argument. Because the purpose of these two proce-
dures is so similar, it is desirable to refer to each of them with the same generic name.
This is sometimes referred to as overloading the name. The type of the argument is suf-
ficient to identify which of the specific procedures is involved in a given reference.

The term generic refers to a set of different specific procedures that all have the
same generic name. All of the intrinsic procedures are generic. Users can define addi-
tional generics or add additional specific procedures to intrinsic generics. The mecha-
nism for this is a generic interface block with a generic specification that is a generic
name.

A simple example of such a generic interface block is:

INTERFACE INT
MODULE PROCEDURE RATIONAL_TO_INTEGER
END INTERFACE INT

which adds a user-defined procedure to the intrinsic generic INT.
A generic name may be the same as one of the specific names of the procedures in-

cluded in the generic set, but the authors recommend against this practice as potential-
ly confusing.

A generic name may be the same as the name of a derived type. In this case, the
specific procedures must be functions. A reference to such a generic can appear identi-
cal in form to a structure constructor for the type (4.4.15), in which case the generic es-
sentially overrides the structure constructor. A form is interpreted as a structure
constructor only if it does not resolve to a generic function reference.

If two specific procedures are part of the same generic, the interfaces to those
procedures must be sufficiently different so that it can be uniquely determined which
specific procedure is referenced by any particular reference to the generic. This

Using Procedures 465

uniqueness must hold for all possible forms of invocation, including positional and
keyword actual argument specification and omitted optional arguments. Such
uniqueness is required even if the program does not reference the generic using all the
forms. The requirements are on the construction of the generic in the first place; once a
valid generic is constructed, there are no possible forms of reference that are ambiguous.
The limitations are conservative in that there are cases that are disallowed even though it
can be shown that they cannot possibly cause ambiguity. Thus, in order to determine
whether two procedures are sufficiently different to be allowed in the same generic, one
must check the particular limitations specified in the standard; it is not sufficient to
prove uniqueness by some other reasoning.

The essence of the standard’s limitations is uniqueness with respect to type, kind,
and rank patterns under both positional or keyword references. The precise rules are
as follows. Two specific procedures that have the same generic name in a scoping unit
must be distinguishable as specified by these rules, regardless of how they acquired
the generic names; for example, the procedures might have been specified in the same
generic interface block in the scoping unit in question, or they might have been given
the same generic name in two different modules, both of which are accessed by the
scoping unit in question.

The rules for distinguishability of specific procedures are built on the definition of
distinguishability of dummy arguments. Two dummy arguments are distinguishable if
neither is a subroutine and they differ in at least one of the following ways:

1. Neither is type-compatible (5.2) with the other. In the simple nonpolymorphic case,
this just means that the two types are different.

2. They differ in the value of a kind type parameter.

3. They differ in rank.

Two specific procedures with the same generic name in a scoping unit must differ
in at least one of the following ways:

1. Passed-object dummy. Both have passed-object dummy arguments (4.4.8), and
those are distinguishable.

2. Argument count. The idea of this way of distinguishing is that one has more non-
optional dummy arguments of a given pattern than the other has possible matches
for. Only dummy data objects are considered for this rule; also any passed-object
dummy argument is ignored. For the nonpolymorphic case, the pattern in question
consists of the type, kind parameter values, and rank.

The polymorphic case is more complicated. A dummy argument of one procedure
is selected. A count is made of the number of nonoptional dummy arguments in
that procedure that are type compatible with the selected dummy argument and
have matching kind type parameter values and rank; this count includes the select-
ed dummy argument if it is nonoptional. Then a count is made of the number of

466 Chapter 12

arguments in the other procedure that are distinguishable with the selected dum-
my argument. If there is any dummy argument for which the first count is greater
than the second, the procedures differ sufficiently.

3. Position and name. This criterion is the most complicated, but is also the most
common. For this criterion, one of the procedures must have both a dummy argu-
ment that disambiguates by position and a dummy argument that disambiguates
by name. Furthermore, the one that disambiguates by position must either be the
same as the one that disambiguates by name or be prior to it.

An argument disambiguates by position if it is nonoptional and either the argu-
ment in the corresponding position of the other procedure is distinguishable or
there is no such corresponding position. Any passed-object dummy arguments are
ignored for the purpose of evaluating this position correspondence.

An argument disambiguates by name if it is nonoptional and either the argument
of that name in the other procedure is distinguishable or there is no argument of
the same name.

For an example, consider a simple two-argument subroutine G (P, Q) with generic
name G, dummy argument names P and Q, and neither argument optional. A refer-
ence to G, with actual arguments X and Y, could take any of the following four forms:

CALLG(X,Y)
CALLG(X,Q=Y)
CALLG(P=X,Q=Y)
CALLG(Q=Y,P=X)

What subroutine H could be added to the generic set with G? The first of the above
four calls rules out any two-argument H whose first argument has the same type, kind,
and rank as the P argument of G and whose second argument has the same type, kind,
and rank as the Q argument of G. The third and fourth of these four calls rules out any
subroutine H of the form H (Q, P), whose first argument is named Q and has the same
type, kind, and tank as the Q (second) argument of G and whose second argument is
named P and has the same type, kind, and rank as the P (first) argument of G. The rea-
son for this last case is that a reference to H in which all the actual arguments had key-
words would look exactly like a call to G; such a reference would not be uniquely
resolvable to either a call to G only or to H only. Any other H could be included in the
generic set with G.

Giving a generic name to a procedure provides an additional name by which the
procedure can be referenced, but it does not remove any other names. A specific proce-
dure can be referenced by multiple generic names and also by its specific name. How-
ever, it is possible for a procedure to be accessible only by a generic name in some
scoping units; this can be achieved by making a module in which the specific name is
private, but a generic name is public.

Using Procedures 467

12.5.4.2 Defined Operations

An operator (7.1.1.1) can be viewed as a special syntax for special cases of function ref-
erences. An operator takes one or two values and computes a result that is then used in
an expression. A function can do that and more. Thus, a language could easily be de-
fined without operators. One could write something like negate(mult(add(a,b),c)) in-
stead of −(a+b)∗c, but the form using operators is simpler to work with and is far more
Fortran-like. Just as generic functions are useful, so are generic operators. In fact, all
operators are generic; there is no concept of a specific operator. Generic operators are
composed from specific functions.

The intrinsic operators come in two forms: symbols such as + and //, and forms
with dots and letter sequences such as .NOT. and .EQ. Users can define additional
generic operators or add additional specific procedures to intrinsic generic operators.
Additional user-defined operators must be in the form with dots and letter sequences;
there are no user-defined symbols, but the user can add specific procedures for the in-
trinsic symbols.

There are two mechanisms for specifying a defined operation: a generic binding
(4.4.11.2) or a generic interface block with a generic specification

OPERATOR (defined-operator)

The two mechanisms can be intermixed. Both mechanisms follow the same rules
except for scoping. A generic interface bock has local scope, most commonly in a
module. A generic binding for a type is accessible in any scoping unit where an entity of
the type is accessible.

An operator is either unary or binary. A unary operator operates on a single value,
which follows the operator in an expression. A unary operator is sometimes called a
prefix operator because it precedes its operand. The intrinsic operator .NOT. is an ex-
ample of a unary operator. An example of a user-defined unary operator is the .IN-
VERSE. operator in 11.3.9.3. A binary operator operates on two values, which precede
and follow it in an expression. A binary operator is sometimes called an infix operator
because it is in between its operands. The intrinsic operators * and .OR. are examples
of binary operators. Some operators have both unary and binary forms, distinguished
by parsing the expression they are in. The intrinsic operator − is an example of this; it
is a unary operator in the expression −x, but a binary one in x−y.

A specific procedure specified for a defined operator must meet several require-
ments in order to fit the ways in which operators are used:

1. The procedure must be a function. The function result is the result of the operation.

2. The function must have either one or two dummy arguments.

3. If the function has one dummy argument, it is a specific for a unary operator. The
single operand of the unary operator is the actual argument for the dummy.

468 Chapter 12

4. If the function has two dummy arguments, it is a specific for a binary operator. The
leftmost operand of the operator is the actual argument corresponding to the first
dummy argument; the rightmost operand corresponds to the second dummy argu-
ment.

5. If the operator is an intrinsic one, the number of dummy arguments must be con-
sistent with the intrinsic usage. That is, if the operator is an intrinsic unary opera-
tor, there must be exactly one dummy argument; if the operator is an intrinsic
binary operator, there must be two dummy arguments; if the operator is an intrin-
sic one with both unary and binary forms, there may be either one or two dummy
arguments.

6. All dummy arguments must be nonoptional data objects and have INTENT (IN).

7. The function result must not have assumed length because there is no way to spec-
ify the length in the referencing scope as is required for assumed-length functions
(4.3.5.1(4)(d)).

8. If the operator is an intrinsic one, the function dummy arguments must not be
compatible with the rules for an intrinsically defined operation. There must be a
difference in type, kind, or rank.

9. A defined operator identifier must have no more than 63 letters and must not be.TRUE. or .FALSE. Those identifiers are effectively reserved.

Rule 8 above means, for example, that “+” cannot be specified in an operator inter-
face for a function with a scalar integer argument and a scalar real argument, because
“+” already has a meaning for this type, kind, and rank pattern. Specifying such an op-
erator extension would mean that I+R, where I is a scalar integer and R is a scalar real,
would be ambiguous between the intrinsic meaning and the extended meaning. The
user is not allowed to override the intrinsic meaning.

This rule reflects a difference in philosophy on extending intrinsic procedures ver-
sus extending intrinsic operators. A user may override a specific intrinsic procedure,
but may not override a specific intrinsic operator. This is because the intrinsic opera-
tors are relatively few in number and are considered fundamental to the language. A
programmer can reasonably be expected to know all of the intrinsic operators so that
he can avoid conflicts with them when selecting names for user-defined operators. It
would likely cause great confusion and maintenance problems if a user redefined
something as fundamental as addition of default integers; if some special treatment of
such addition is needed, it is always possible to express it as a function, which would
make its special nature more obvious.

On the other hand, the number of intrinsic procedures is relatively large and rea-
sonably likely to increase with subsequent standards. It would be slightly inconvenient
to a programmer to make sure that he selects generic names that did not conflict with
any intrinsic generics, but there is no way for a programmer to make sure that he se-
lects generic names that will not conflict with any future intrinsic generics. The poten-

Using Procedures 469

tial for confusion caused by overriding intrinsic generic procedures is also lower than
that caused by overriding intrinsic operators.

The syntax for referencing functions via operators is more restrictive than the gen-
eral syntax for function reference. In particular, there are no optional arguments or
keyword forms to deal with. Therefore, the restrictions needed to ensure uniqueness of
generic operator resolution are simpler than the corresponding restrictions for generic
names. For each operator, no two specific procedures may have the same argument
type, kind, and rank pattern on the basis of argument position, but there are no re-
quirements relating to dummy argument names.

An example of a generic interface block for an operator is:

INTERFACE OPERATOR(+)
 FUNCTION INTEGER_PLUS_INTERVAL(X, Y)
 USE INTERVAL_ARITHMETIC
 TYPE(INTERVAL) :: INTEGER_PLUS_INTERVAL
 INTEGER, INTENT(IN) :: X
 TYPE(INTERVAL), INTENT(IN) :: Y
 END FUNCTION INTEGER_PLUS_INTERVAL
 PROCEDURE RATIONAL_ADD
END INTERFACE

which extends the “+” operator with two functions, a function INTEGER_PLUS_
INTERVAL which presumably computes an appropriate value for the sum of an
integer value and something called an “interval”, and a function RATIONAL_ADD
which probably computes the sum of two “rational numbers”. Both functions now can
be referenced in the form A+B, where A and B are the two actual arguments. An
example defining a new operator, rather than extending an existing operator, is:

INTERFACE OPERATOR(.INVERSETIMES.)
 PROCEDURE MATRIX_INVERSE_TIMES
END INTERFACE (.INVERSETIMES.)

Now the inverse of matrix A can be multiplied by B using the expression
A .INVERSETIMES. B, which produces A−1B, and in effect solves the system of linear
equations, Ax = B for x.

A function with an operator interface may be referenced with the operator form,
but it also may be referenced via the traditional functional form using the specific func-
tion name.

12.5.4.3 Defined Assignments

As with defined operators, an assignment can be viewed as a special syntax for a pro-
cedure reference. An assignment assigns a value to the variable; the value assigned de-
pends on the value of an expression. A subroutine can do that; one could write
something like “call assign(x,(y))” instead of x=y. Both forms are allowed. There is only
one assignment symbol, as opposed to the multiplicity of operators.

Assignment is not always the trivial matter that might be implied by its terminolo-
gy. The value assigned depends on the value of the expression, but is not necessarily
the same as the value of the expression. For example, in assigning a real expression to

470 Chapter 12

an integer variable, the value assigned is obtained by truncation and conversion; in as-
signing a scalar real expression to a real array variable, the value assigned is obtained
by replicating copies of the scalar value. The specifics of the assignment depend on the
types, kinds, and ranks of the expression and variable; this ought to bring generics to
mind.

A programmer can specify additional cases of assignment to be implemented by
specific procedures. There are two mechanisms for specifying defined assignment: a
generic binding (4.4.11.2) or a generic interface block with the generic specification

ASSIGNMENT (=)

As with defined operations, the two methods follow the same rules except for scope.
A specific procedure specified for a defined assignment must meet the following

requirements in order to be consistent with the ways in which assignment is used:

1. The procedure must be a subroutine.

2. It must have exactly two arguments, both of which must be nonoptional.

3. The first argument must have either INTENT (OUT) or INTENT (INOUT). The
variable in the assignment is the actual argument corresponding to this dummy ar-
gument.

4. The second argument must have INTENT (IN). The expression in the assignment is
the actual argument corresponding to this dummy argument.

5. The dummy arguments must not be compatible with the rules for intrinsic assign-
ment of intrinsic types (7.5.2). If both arguments are of intrinsic type, then their
types, kinds, or ranks must be incompatible with intrinsic assignment.

Rule 5 above means, for example, that the user cannot define assignment of a sca-
lar default integer expression to a rank 2 default real array variable; that assignment is
defined intrinsically and cannot be overridden. However, the user could define assign-
ment of a rank 2 default integer expression to a scalar default real variable, or assign-
ment of a scalar default integer to a scalar default character; neither of these
assignments are defined intrinsically. The user may define assignments involving de-
rived types, even where there is a conflicting intrinsic assignment; this overrides the in-
trinsic assignment for assignment statements.

The restrictions needed to ensure uniqueness of generic assignment resolution are
the same as those for generic operators. No two specific procedures may have the same
argument type, kind, and rank pattern on the basis of argument position, but there are
no requirements relating to dummy argument names.

Using Procedures 471

An example of an assignment interface block is:

INTERFACE ASSIGNMENT(=)
 SUBROUTINE ASSIGN_STRING_TO_CHARACTER(C,S)
 USE STRING_DATA
 CHARACTER(*), INTENT(OUT) :: C
 TYPE(STRING), INTENT(IN) :: S
 END SUBROUTINE ASSIGN_STRING_TO_CHARACTER
 PROCEDURE INTEGER_TO_RATIONAL
END INTERFACE ASSIGNMENT(=)

This interface block allows ASSIGN_STRING_TO_CHARACTER (which extracts
the character value) to be referenced in the form:

C = S

In addition, INTEGER_TO_RATIONAL may be referenced in the form

R = K

where R is of derived type RATIONAL and K is an integer. The purpose of
INTEGER_TO_RATIONAL presumably is to convert an integer value into the appro-
priate RATIONAL form.

A subroutine with an assignment interface may be referenced with the assignment
statement form, but it also may be referenced via the traditional CALL statement form
using the specific subroutine name.

12.5.4.4 Defined Input/Output

Defined input/output is described in detail in 9.5.1.4. It is similar to defined operators
and defined assignment in that it involves user-defined specific procedures for a gener-
ic whose use is tied to language features. In the case of defined input/output, the lan-
guage feature in question is input/output.

The mechanisms for specifying defined input/output are a generic binding (4.4.11.2)
or a generic interface block with a generic specification that is READ(FORMATTED),
READ(UNFORMATTED), WRITE(FORMATTED), or WRITE(UNFORMATTED).

The requirements for the specific procedures are detailed in 9.5.1.4. One aspect of
the requirements worth restating is that the DTV argument of the specific procedures
must be of derived type; defined input/output is not allowed for intrinsic types. The
standard defines input/output for intrinsic types and the user may not override the in-
trinsic definitions. The standard also defines input/output for derived types that meet
some restrictions (9.4.4), but the user can override those definitions. For other derived
types, there is no definition of input/output unless the user provides one.

The uniqueness requirement for defined input/output is based only on the type
and kind of the DTV argument; the rank of DTV is always zero, arrays being handled
as described in 9.4.4. For each of the four input/output generics, no two specific proce-
dures may have the same type and kind for the dtv argument. The other arguments are
all specified by the standard to be the same for each specific procedure.

472 Chapter 12

Examples of defined input/output are in 9.5.1.4.
As with other generic procedures, a procedure with a defined input/output inter-

face may also be referenced via the traditional CALL statement form using the specific
subroutine name. For the most part, defined input/output does little more than provide
an alternate syntax for functionality that is also otherwise available. There is one excep-
tion, which relates to input/output of multiple entities in the same record. Defined in-
put/output allows a single input/output statement to reference multiple specific
procedures, one for each effective list item, while processing a single record. For unfor-
matted input/output, if the multiple procedures are referenced via CALL statements,
they will necessarily process separate records.

12.5.5 Abstract Interface Blocks

An abstract interface block defines abstract interfaces. An abstract interface is an inter-
face that is defined on its own, independent of any particular procedure. It gives a
name to an interface so that the same interface can be subsequently specified for multi-
ple procedures without needing to duplicate the same lines of source code. It is
analogous in this sense to a type definition. It is particularly useful in declarations of
procedure pointers. The form of an abstract interface block is:

ABSTRACT INTERFACE
 [interface-body] ...
END INTERFACE

The keyword ABSTRACT is the only difference between this and the form of a spe-
cific interface block.

The name of an interface body in an abstract interface block is the name of the ab-
stract interface rather than the name of any procedure.

The following is an example of using an abstract interface to declare two procedure
pointers.

abstract interface
 function f(x)
 real, intent(in) :: x
 real :: f
 end function f
end interface
procedure(f), pointer :: p, q

12.6 Argument Association

An actual argument is specified in a procedure reference. An actual argument can be a
variable, an expression, a procedure designator, or an alternate return specifier. Different
references to the same procedure can use different actual arguments.

A dummy argument has no utility on its own. It is like a spirit, which must be linked
to a physical body to have concrete existence. When the procedure is referenced, an ac-
tual argument gives concrete meaning to the dummy. Within the procedure, the dum-

Using Procedures 473

my argument stands for the actual argument in some sense. Thus, during execution of a
procedure reference, the appropriate connection must be established between the actu-
al arguments specified in the reference and the dummy arguments defined within the
procedure. This connection is called argument association.

Argument association causes the dummy argument to act like a temporary local
name for the actual argument. There is a close parallel between argument association
and pointer association—in many respects a dummy argument is like a pointer, and an
actual argument is like a target. A dummy argument provides a name which can be
used to refer to its corresponding actual argument much in the same way that a pointer
provides a name which can be used to refer to its target.

In some cases, a dummy argument is implemented with separate storage all of its
own; data is copied from and to the actual argument as appropriate. In other cases, a
dummy argument is implemented as a reference to the storage location of the actual
argument. The standard intentionally defines argument association in such a way that
multiple implementation mechanisms are allowed. Different compilers may make dif-
ferent implementation choices for the same source code. The restrictions in 12.6.10 are
largely to ensure that standard-conforming code does not depend on which implemen-
tation method the compiler selects.

 The general model of the standard is that the actual and dummy arguments are
separate entities that are related by argument association. The relationship might be
very “close”, as in when they are different names for the same storage, or it might be
more distant, as when they have separate storage.

In most cases the actual argument is associated with the corresponding dummy ar-
gument as described above. There are two exceptions, where the entity associated with
the dummy argument is one other than the actual argument itself. The first exception
is where a pointer actual argument corresponds to a nonpointer dummy argument; in
this case, the entity associated with the dummy argument is the target of the point-
er—not the pointer itself. The second exception is where a dummy argument has the
VALUE attribute; in this case, the entity associated with the dummy argument is a
copy of the actual argument.

The standard is imprecise in its terminology in that it uses the term “actual argu-
ment” both for the entity that appears in the procedure reference and for the entity that
is associated with the dummy argument. In most cases these two entities are the same,
and in many other cases the distinction has no important consequences, but the ambig-
uous terminology has generated questions of interpretation of a few special situations.
In particular, if the actual argument is specified by an expression, it is always classified
as not definable; this is so even if the expression is a function reference that returns a
pointer to a definable target.

A variable is distinguished from a general expression in the context of an actual
argument in that a variable is definable, whereas other forms of expressions are not. This
affects the interpretation of the restrictions related to the INTENT attribute (5.9.1). For
example, the actual argument associated with an INTENT (OUT) dummy must be
definable and thus cannot be an expression other than a variable. Note that (A), where A
is a variable, is not a variable, but a more general expression.

474 Chapter 12

12.6.1 Argument Correspondence

In general there can be multiple dummy arguments in a procedure and multiple actual
arguments in a reference to the procedure. A correspondence must be established be-
tween the actual and dummy arguments. There are three ways of establishing such a
correspondence: positional, keyword, or passed object; mixtures of these three ways
can also be used.

The simplest and most common way of establishing argument correspondence is
positional. Positional argument correspondence is illustrated in Figure 12-1. The form of

a positional argument list in a reference is a comma-separated sequence of actual
arguments. The form of the argument list in a procedure definition is a comma-separated
list of dummy arguments. The arguments are numbered from left to right. The first
dummy argument corresponds to the first actual argument, the second dummy
argument corresponds to the second actual argument, and so on.

The actual argument list must not be longer than the dummy argument list. If the
actual argument list is shorter, it corresponds to the first part of the dummy argument
list; the remaining dummy arguments have no corresponding actual arguments and
must be declared optional. Positional argument correspondence can be used for any
procedure.

In Figure 12-1 the actual arguments are shown as solid boxes because these represent
concrete data values, variables, or other actual argument forms. The dummy arguments
are shown as dashed boxes to indicate that they are virtual. The dummy arguments
represent “empty names” until they become associated with actual arguments.

Keyword argument correspondence provides an order-independent way of con-
structing an actual argument list. The name of the dummy argument is used as a key-
word to specify which dummy argument corresponds to the actual argument. The
form of such a specification is:

CALL name (actual-argument-1, actual-argument-2, ...)

actual-argument-1 actual-argument-2 ...

...

...)SUBROUTINE name (dummy-argument-1, dummy-argument-2,

Figure 12-1 Actual and dummy argument lists

dummy-argument-1 dummy-argument-2

Using Procedures 475

dummy-argument-name = actual-argument

This form may be used to establish the correspondence of an actual argument with
any named dummy argument. It cannot be used with an alternate return because the
corresponding dummy argument has no name. In an actual argument list using key-
words, the arguments may be in any order.

Keyword actual argument specification can aid readability by decreasing the need
to remember the precise sequence of dummy arguments in dummy argument lists. The
order-independence also facilitates more flexible use of optional arguments by not re-
quiring omitted arguments to be at the end of the list. These functionalities, and the
forms that they take, are modeled after keyword specifiers in input/output statements.

Keyword argument correspondence can be used only where the interface of the
procedure is explicit; the explicit interface is needed to provide the dummy argument
names. If the explicit interface is provided by an interface body, the keywords are the
dummy argument names specified in the interface body, which can differ from those
specified in the procedure subprogram.

 A procedure reference may use a mixture of positional and keyword correspon-
dence, specifying keywords for some actual arguments but not for others. In this case,
all the actual arguments without keywords must appear prior to those with keywords
in the actual argument list. After the appearance of the first keyword actual argument,
all subsequent actual arguments in the list must use keywords. Examples are:

CALL GO(X, HT=40)

CALL TELL(XYLOPHONE, NET=10, QP=PI/6)

The actual arguments without keywords correspond positionally to the first argu-
ments in the dummy argument list. The actual arguments with keywords correspond
by keyword and may be in any order, except for the requirement that they must be af-
ter the positional arguments.

The third way of establishing argument correspondence involves a passed-object
dummy argument. A passed-object dummy argument applies only to references to a
procedure pointer component or a procedure type binding. The actual argument corre-
sponding to the passed-object dummy argument is not explicitly written in the actual
argument list, but is taken from the form of the reference as described in detail in 4.4.8.
A procedure reference can have at most one passed object. Any other actual arguments
must be specified using positional and/or keyword forms. The passed-object dummy
argument, having been separately handled, is omitted from the dummy argument list
used for positional and keyword correspondence.

Regardless of the means used to establish argument correspondence, each refer-
ence to a procedure must have one and only one actual argument corresponding to
each nonoptional dummy argument and at most one actual argument corresponding to
each optional dummy argument.

476 Chapter 12

12.6.2 Optional Arguments

A dummy argument may be specified to be optional. This means that an actual argu-
ment need not be supplied for it in a particular invocation. An optional dummy argu-
ment is so specified by giving it the OPTIONAL attribute (5.9.3). For a particular
invocation of a procedure, an optional dummy argument is said to be present if it is as-
sociated with an actual argument.

There are two ways for a procedure invocation to result in a dummy argument that
is not present. The first way is for the procedure reference to have no actual argument
that corresponds to the dummy argument. In a positional actual argument list, option-
al arguments at the end of the dummy argument list can be omitted by supplying an
actual argument list that is shorter than the dummy argument list; with keyword actu-
al arguments, an optional argument is omitted by not using its argument name as a
keyword.

The second way to have a dummy argument that is not present involves multiple
levels of procedure references with optional arguments, as illustrated in the following
example:

CALL TELL(1.3, T=F(K))
 ...
SUBROUTINE TELL(X, N, T)
 OPTIONAL N, T
 ...
 CALL WILLIAM(X, N, T)
END

SUBROUTINE WILLIAM(XX, NN, TT)
OPTIONAL NN,TT
 ...
END

In subroutine TELL, the dummy arguments X and T are present for the invocation
shown because they have corresponding actual arguments; the dummy argument N
has no corresponding actual argument and so is not present. In subroutine WILLIAM,
all three dummy arguments have corresponding actual arguments. However, the actu-
al argument corresponding to NN is N, which is, as just noted, not present for this in-
vocation. In this situation, NN is also not present. Even though the form of reference to
subroutine WILLIAM has an actual argument corresponding to NN, that actual argu-
ment is not present; nowhere is there anything concrete for NN to be associated with.
If N is present in a different invocation of TELL, then NN is also present in the result-
ing invocation of WILLIAM.

During execution of a procedure with an optional dummy argument, it is often
necessary to know whether the dummy argument is associated with an actual argu-
ment for the particular invocation. The PRESENT intrinsic function answers that ques-
tion. It is an inquiry function and has one argument, which must be an optional
dummy argument in the procedure. The result is a default logical, which has the value
true if the dummy argument is associated with an actual argument and false other-
wise. Note that the PRESENT intrinsic function must not be used on a nonoptional

Using Procedures 477

dummy argument; one might imagine that this would always return a result of true,
but instead it is disallowed. An example of the use of the PRESENT intrinsic is:

IF (PRESENT(NUM_CHAR)) THEN
 ! Processing if an actual argument has been
 ! supplied for optional dummy argument NUM_CHAR
 USABLE_NUM_CHAR = NUM_CHAR
ELSE
 ! Processing if nothing is supplied for NUM_CHAR
 USABLE_NUM_CHAR = DEFAULT_NUM_CHAR
END IF

This illustrates how the PRESENT function can be used to control the processing in the
procedure as is appropriate depending on the presence or absence of an optional argu-
ment.

An optional dummy argument that is not present is subject to several restrictions.
The restrictions mostly rule out things that would make no sense for a nonpresent
dummy; they could be summarized loosely by saying that you cannot do much in that
case. The programmer is responsible for following these restrictions; typically, but not
necessarily, the portions of the code that would violate these restrictions are bypassed
depending on the result of the PRESENT intrinsic. The restrictions that apply to a non-
present dummy argument are:

Rules and restrictions:

1. It must not be referenced or defined.

2. If it is of a type with default initialization, the initialization does not occur.

3. It must not be the target of a pointer assignment.

4. If it is a procedure, it must not be invoked.

5. It must not be supplied as an actual argument corresponding to a nonoptional
dummy argument, except in a reference to the PRESENT intrinsic function, a refer-
ence to the NULL intrinsic function that meets the requirements of 7.4.1(1)(g), or a
specification inquiry that meets the requirements of 7.4.1(7-8).

6. A subobject of it must not be supplied as an actual argument.

7. It must not be used to determine the shape of an elemental procedure reference.

8. If it is a pointer, it must not be allocated, deallocated, nullified, pointer-assigned, or
passed as an actual argument to a nonpointer dummy argument.

9. If it is allocatable, it must not be allocated, deallocated, or passed as an actual argu-
ment to a nonallocatable dummy argument.

10. If it has length type parameters, they must not be inquired about.

11. It must not be used as a selector in a SELECT TYPE or ASSOCIATE statement.

478 Chapter 12

There are a few fairly common things that can be done with an optional dummy
argument that is not present. It can be used as an actual argument corresponding to an
optional dummy argument. It can also be used as an actual argument to some intrinsic
functions as described in the exceptions in rule 5 above.

If a procedure has any optional arguments, then the interface of the procedure
must be explicit in any scoping unit where the procedure is referenced. This require-
ment holds regardless of whether or not any arguments are omitted from the actual ar-
gument list. It is possible for optional arguments to need special treatment by an
implementation; the explicit interface provides the information necessary to control
such special treatment.

12.6.3 Type and Type Parameters

A dummy data argument, like any data object, has a type and a set (possibly empty) of
type parameters. An actual argument corresponding to a dummy data argument must
be a data entity. The type and type parameters of the actual and dummy arguments
must agree as described below.

The dummy argument must be type compatible (5.2) with the actual argument.
This type compatibility requirement can be separated into four cases. In the simplest
and by far most common case, the dummy and actual arguments are both nonpoly-
morphic, in which case they must be of the same type. See 4.4.10 for a description of
exactly what it means to be of the same type, which is not always as obvious as one
might think. For a nonpolymorphic dummy argument with a polymorphic actual argu-
ment, the declared type of the actual argument must be the same as the type of the
dummy argument; the dynamic type of the actual argument can then be an extension
of the type of the dummy, in which case the dummy argument essentially operates on
the nonextended part of the actual argument. For a limited polymorphic dummy argu-
ment, the actual argument must have a declared type that is either the same as or an
extension of the declared type of the dummy argument; this ensures that the dynamic
type of the actual argument will be one that is allowed as a dynamic type of the dum-
my argument. For an unlimited polymorphic dummy argument, the actual argument
can be of any type.

If a dummy argument is a pointer or allocatable, then the requirements for type
agreement are more stringent. In either of these cases, the declared type of the actual
argument must be the same as the declared type of the dummy argument; further-
more, the actual argument must be polymorphic if and only if the dummy argument is.

In most cases, the values of the corresponding type parameters of actual and dum-
my arguments must agree. An assumed type parameter of a dummy argument gets its
value from that of the actual argument and thus always counts as agreeing for this pur-
pose. A pointer or allocatable dummy argument may have deferred type parameters. A
deferred type parameter for a dummy argument agrees only with a deferred type pa-
rameter for the actual argument. This is because the value of a deferred type parameter
may change during execution of the procedure; the actual argument must be capable of
accommodating the same change.

The exception to the requirement for type parameter agreement involves the length
parameter of character type. The exception is specific to default character kind and C

Using Procedures 479

character kind (which might or might not be the same kind as default). If a character
dummy argument of either of these kinds is a scalar, an explicit-shape array, or an as-
sumed-size array, then the length parameter of the actual argument need not agree
with that of the dummy argument. If the dummy argument is scalar, the actual argu-
ment must be at least as long as the dummy; the dummy argument is associated with
the leftmost characters of the actual. The array case is more complicated and is dis-
cussed in the next section.

For default character kind, this exception is largely historical. This exception was
extended to C character kind to facilitate interoperation with C as illustrated in 15.5.3.
Other character kinds might have representations that are incompatible with an excep-
tion like this; a character string of length n might not have the same representation as
an array of n characters of length 1. Therefore, the length parameters for other character
kinds must agree.

In most situations, it is strongly recommended that character dummy arguments
not be declared with explicit length; use assumed length or deferred length instead. If
an explicit-length character dummy is used, using a shorter actual argument is an er-
ror.

12.6.4 Array Arguments

There are several significantly different means of dealing with array arguments. Ele-
mental procedures have scalar dummy arguments, but allow conformable array actual
arguments to be used; they are described in 12.7.2. Pointer and allocatable dummy ar-
guments may be arrays and are described in 12.6.5 and 12.6.7, respectively. The associ-
ation of nonpointer, nonallocatable array arguments is called sequence association and
is based on array element order, as described in 6.6.6.

12.6.4.1 Sequence Association

For a nonelemental procedure, the general rule is that an actual argument and its
corresponding dummy argument must either both be scalar or both be arrays. There are
two exceptional cases of sequence association, where a scalar actual argument may be
treated essentially as though it were an array. There are exceptions described later, but in
the usual case, an array actual argument corresponds to an array dummy argument.

In sequence association, an actual argument array is treated as a linear sequence of
elements in array element order.

Similarly, the dummy array argument is treated as a linear sequence of elements, in
array element order. Each element in the dummy argument sequence is associated with
the corresponding element in the actual argument sequence.

In the simplest and most common case, the bounds of the actual and dummy argu-
ment arrays are the same. Each element of the dummy argument then corresponds to
the element with the same index values in the actual argument. Almost as simple is the
case where the shape of the actual and dummy arguments is the same, but the lower
bounds differ. In that case, the corresponding index values are offset by the difference
in the lower bounds. For example, if an actual array argument is declared as AA(5,5,5)
and the corresponding dummy array argument is declared as DA(2:6,1:5,0:4), the dif-
ference of the lower bounds is +1 for the first dimension, 0 for the second dimension,

480 Chapter 12

and -1 for the third dimension. Thus, the dummy element DA(2,1,0) corresponds to the
actual element AA(1,1,1), the dummy element DA(6,5,4) corresponds to the actual ele-
ment AA(5,5,5), and the dummy element DA(3,3,3) corresponds to the actual element
AA(2,3,4).

If the dummy argument is an assumed-shape array, the above simple cases are the
only ones that can occur. By definition, an assumed-shape array has the same shape as
its corresponding actual array, although the lower bounds may differ. The actual argu-
ment corresponding to an assumed-shape dummy must not be assumed size because
the needed shape information is not available to be assumed; however, a section of an
assumed-size array where the upper bound in the last dimension is specified is al-
lowed because the section has complete shape information.

If the dummy argument is an explicit-shape or assumed-size array, the shape of the
actual and dummy arguments can be different. The element correspondence is not
necessarily immediately evident without laboriously laying out the element sequences.
Such a layout is illustrated in Figure 12-2, in which a three-dimensional actual array is
associated with a two-dimensional dummy array. In this example, the actual argument
element AA(1,2,2) becomes associated with dummy argument element DA(4,2), for
example. The size of the dummy array must not exceed the size of the actual array; any
excess elements in the actual argument element sequence, such as AA(1,3,2) and
AA(2,3,2) in this example, are not associated with any dummy element. An assumed-size
dummy array extends to and “cuts off” at the end of the actual argument array
sequence.

If the actual argument is an array section, the actual argument sequence is formed
from the section, rather than the original array. For example, if the actual argument is
the section A(9:1:-2) then actual argument element sequence is A(9), A(7), A(5), A(3),
A(1). If the corresponding dummy array is declared as D(2,2) then A(9) is associated
with D(1,1), A(7) is associated with D(2,1), A(5) is associated with D(2,1), and A(3) is
associated with D(2,2). A(1) is not associated with a dummy element.

The first exceptional case of sequence association is largely historical, from ver-
sions of the language prior to the introduction of array section syntax. The use of this
exception is discouraged in new code, where the same ends can usually be achieved
with an array section as an actual argument. An actual argument that is an element of
an explicit-shape, assumed-size, or allocatable array may be sequence associated with a

AA1,1,1 AA2,1,1 AA1,2,1 AA2,2,1 AA1,3,1 AA2,3,1 AA1,1,2 AA2,1,2 AA2,2,2AA1,2,2 AA1,3,2 AA2,3,2

DA1,1 DA2,1 DA3,1 DA4,1 DA5,1 DA1,2 DA2,2 DA3,2 DA4,2 DA5,2

Actual array: REAL AA(2,3,2)

Dummy array: REAL DA(5,2)

Figure 12-2 Example of array element sequence association

Using Procedures 481

dummy array that is explicit shape or assumed size. The actual argument element se-
quence for this case begins with the specified array element and extends to the end of
the element sequence of the array. A problematic consequence of this case is that it is
not necessarily evident, when compiling the procedure reference, whether an array el-
ement is to be interpreted as such an element sequence or as a scalar; that determina-
tion depends on the rank of the dummy argument, which might not be available when
the reference is being compiled. The necessity for the compiled reference to work in ei-
ther case places significant restrictions on the implementation.

The second exceptional case of sequence association applies to the default charac-
ter and C character kinds. As mentioned previously, the actual and dummy arguments
for these character kinds may have different character length parameters. If a dummy
argument of either of these character kinds is an explicit-shape or assumed-size array,
the sequence association is on a character-by-character basis rather than element-by-el-
ement. The actual and dummy argument character sequences are formed by concate-
nating the characters in all the array elements, in array element order; the
corresponding characters in these sequences are associated. If the actual and dummy
character lengths are the same, this has the same effect as element-by-element associa-
tion; otherwise, it does not. The number of characters in the dummy character se-
quence must not exceed the number of characters in the actual character sequence.

Figure 12-3 illustrates character-by-character sequence association. The dummy ar-
gument element DA(4) to be associated with the last character of the actual argument
element AA(2,1) and the first two characters of actual argument element AA(1,2).

A combination of the two special cases applies if the dummy argument is an ex-
plicit-shape or assumed-size character array and the actual argument is an element or
a substring of an element of an explicit-shape, assumed-size, or allocatable array. The
actual character element sequence begins with the first character of the specified ele-
ment or substring and extends to the last character of the last element in the element
sequence.

AA1,1 AA2,1 AA1,2 AA2,2

Actual array: CHARACTER (5) AA(2,2)

DA1

Dummy array: CHARACTER (3) DA(6)

DA2 DA3 DA4 DA5 DA6

Figure 12-3 Array element sequence association for default characters

482 Chapter 12

12.6.4.2 Noncontiguous Arrays

Noncontiguous array actual arguments merit special attention. The main reason for the
importance involves interoperability with other languages. Other languages will not
generally be able to directly accommodate noncontiguous array arguments. For this
purpose, versions of Fortran prior to Fortran 90 also count as “another language” of
particular importance. Subsequent Fortran standards introduced the capability of han-
dling noncontiguous arrays, but did so in a way designed to facilitate interoperation
with older Fortran compilers. The same provisions also facilitate interoperation with
languages such as C.

Because of these interoperability considerations, compilers typically assume that a
dummy argument that is explicit shape or assumed size cannot directly handle a non-
contiguous array. These dummy argument array forms are the ones that were allowed
in Fortran 77. If a noncontiguous actual argument is to be associated with such a dum-
my argument, the compiler makes a temporary contiguous copy of the array. The dum-
my argument is then contiguous even though it is associated with a noncontiguous
actual argument. If appropriate, data from the contiguous dummy argument is copied
back to the noncontiguous actual argument after the invoked procedure returns. The
compiler handles this automatically, but there is an important consequence:

There can be considerable performance overhead associated with allocating and
deallocating space for a temporary array and copying the data. The resultant perfor-
mance penalty varies widely. In severe cases, if the array is very large, but the invoked
procedure is very small, the performance penalty can be many orders of magnitude. In
other cases, the performance overhead can be negligible and might even be out-
weighed by speed benefits of contiguity.

The exact conditions that trigger making a temporary copy are compiler depen-
dent. However, in practice, there are only a few variations. A significant variation is
that some compilers make the full determination at compile time, while others do a
run-time test. The compilers that make the determination at compile time often end up
making copies of arrays that turn out not to need it because they are actually contigu-
ous, but that contiguity could not be guaranteed from the information available at
compile time. Newer compilers are more likely to make a run-time test in such cases,
avoiding superfluous copying.

An array is noncontiguous if its elements are stored in memory out of order or
with gaps in memory between the elements. Strictly speaking, the standard does not
refer to memory storage and does not define a concept of contiguity. However, the re-
quirements of the standard are far simpler to understand when expressed in terms of
contiguity instead of in terms of syntax. This is because the requirements were derived
from considerations of contiguity, but then expressed in terms of syntax so as to avoid
unduly restricting implementations at a low level. In actual implementation, the con-
cept of contiguity described here might not translate into physical contiguity at the
hardware level. For example, storage that is contiguous in virtual memory space might
not be contiguous in physical memory. Such low-level implementation distinctions are
not made by the Fortran standard.

For current purposes, an array component or named array is considered to be con-
tiguous unless it is a pointer or an assumed-shape dummy argument. An array denot-

Using Procedures 483

ed by an array element using the first special case of sequence association described in
12.6.4.1 is also considered to be contiguous. An array section can potentially be non-
contiguous. A possibly noncontiguous array section could have any of the following
three forms

1. an array reference using a subscript triplet

2. an array reference using a vector subscript

3. a structure component reference in which a part other than the rightmost is an ar-
ray

An array pointer or assumed-shape dummy argument can potentially be associated
with a noncontiguous array section and thus is potentially noncontiguous.

One restriction that applies to the use of an array section as an actual argument, re-
gardless of the nature of the dummy argument, is that an array section generated by a
vector subscript is not definable—that is, it must not be assigned a new value by the
procedure. The associated dummy argument must not have intent OUT or intent IN-
OUT. If it has unspecified intent, it must not be defined by the procedure. The reason
for this is that, with a vector subscript, the same actual array element could be a part of
an array section more than once and thus become associated with more than one ele-
ment of the dummy array. If such an object could be defined, conflicting values might
be specified for the same actual array element.

12.6.5 Pointer Arguments

A dummy data or procedure argument may have the POINTER attribute. In this case,
the corresponding actual argument must also have the POINTER attribute. As dis-
cussed in 12.6.3, the requirements for type and type parameter agreement for pointer
dummy arguments are more stringent than for nonpointer ones.

On entry to a procedure, a dummy pointer acquires the same pointer association as
the actual argument, unless the dummy has INTENT (OUT), in which case it has an
undefined association status. Unless the dummy has INTENT (IN), the association of
the dummy pointer may be changed during execution of the procedure; the actual ar-
gument acquires the association of the dummy on return from the procedure.

A dummy data pointer argument may be an array. Dummy array pointers use
pointer association rather than sequence association. Therefore, the rank of the actual
argument corresponding to a dummy pointer must be the same as the rank of the
dummy. Furthermore, the bounds of the dummy argument are always the same as
those of the actual argument. This is different from an assumed-shape nonpointer
dummy argument, which assumes the shape but not the bounds of the actual argu-
ment. The following example illustrates this difference.

484 Chapter 12

program arrays
 real, target :: t(0:9)
 real, pointer :: p(:)
 p => t
 call sub(p,p)
contains
 subroutine sub(tt, pp)
 real :: tt(:)
 real, pointer :: pp(:)
 ...
 end subroutine
end program

The lower and upper bounds of the assumed-shape tt are 1 and 10, while those of the
pointer pp are 0 and 9.

The restrictions on dummy argument aliasing (12.6.10) are less stringent for point-
er dummy arguments than for nonpointer ones. This is because it is normal for multi-
ple pointers to have the same target; the compiler is expected to deal appropriately
with such aliasing, even if this impacts performance.

An actual argument may have the POINTER attribute, regardless of whether the
dummy argument does or not. The case where the dummy argument also has the
POINTER attribute is discussed above. If the dummy argument does not have the
POINTER attribute, then the pointer actual argument must be associated, and its target
is associated with the dummy argument using the same rules as if no pointers were in-
volved.

12.6.6 Target Arguments

A dummy argument may have the TARGET attribute, as may an actual argument. A
dummy argument and its corresponding actual argument are not required to agree in
this attribute; all four combinations are allowed of the dummy argument and its corre-
sponding actual argument having the TARGET attribute or not.

A procedure with a TARGET dummy argument must have an explicit interface
where it is referenced. Other than that, the only special considerations for TARGET ar-
guments relate to the status of pointers that are associated with them. Consider each of
the four combinations of attributes.

If neither the actual argument nor the dummy argument have the TARGET at-
tribute, no pointers can be associated with either one and there is therefore nothing to
be said on this topic.

If the dummy argument has the TARGET attribute and the actual argument does
not, pointers might become associated with the dummy argument during execution of
the procedure. Such pointers are not associated with the actual argument—only with
the dummy argument. Because the actual argument does not have the TARGET at-
tribute, no pointer can ever be pointer associated with it. When the procedure returns,
any pointers that are associated with the dummy argument become undefined. This is
comparable to any other case where a pointerʹs target goes away other than by deallo-
cating the pointer.

Using Procedures 485

If the actual argument has the TARGET attribute and the dummy argument does
not, no pointers can be associated with the dummy argument. The association of point-
ers with the actual argument is not affected by the procedure invocation or return. The
only variant of this combination worthy of note involves a second level of procedure
reference as in the following example.

module m
 integer, pointer :: p
contains
 subroutine sub_1
 integer, target :: x
 p => x
 call sub_2(x)
 end subroutine sub_1
 subroutine sub_2(y)
 integer :: y
 call sub_3(y)
 end subroutine sub_2
 subroutine sub_3(z)
 integer, target :: z
 ...
 end subroutine sub_3
end module m

The pointer p is associated with the actual argument x in the call to sub_2. Because
the dummy argument y does not have the TARGET attribute, p is not associated with
y. However, y is an actual argument corresponding to the TARGET dummy argument
z in sub_3. Thus there is an indirect relationship between the TARGET variables x in
sub_1 and z in sub_3. In this example, it is processor dependent whether or not p is as-
sociated with z on entry to sub_3. A strict reading suggests that on a processor where
p becomes associated with z on entry to sub_3, p would then become undefined on re-
turn from sub_3 because y does not have the target attribute. This scenario is confusing
at best; the safest portable practice would be treat p as though it became undefined on
any processor.

The combination where both the actual and dummy arguments have the TARGET
attribute is the most complicated in that the behavior also depends on several other
factors. To simplify the presentation, the condition that both the dummy and actual ar-
guments have the TARGET attribute is implied throughout the rest of this section rath-
er than being repeated multiple times.

The simple cases of this combination act somewhat as though the actual and dum-
my arguments are the same target. Any pointers associated with the actual argument
become associated with the dummy argument on entry to the procedure. Any pointer
that is associated with the dummy argument when the procedure returns remains as-
sociated with the actual argument unless the pointer is a nonsaved local or module
variable that becomes undefined on the return. These rules apply except in the follow-
ing cases.

If the dummy argument has the VALUE attribute, the argument association is be-
tween the dummy argument and a temporary copy of the actual argument. That tem-

486 Chapter 12

porary copy does not exist except during the execution of the procedure. Thus, any
pointers associated with the dummy argument on return become undefined.

If the actual argument is an array section with a vector subscript, it cannot have a
pointer associated with it, even if the array has the TARGET attribute. Thus, this case
acts as though the actual argument did not have the TARGET attribute.

If the dummy argument is an explicit-shape or assumed-size array, and the preced-
ing paragraph does not apply, the behavior is largely processor dependent. This allows
for the possibility that the processor might implement copy-in/copy-out in such cases.
In particular, it is processor dependent whether pointers associated with the actual ar-
gument become associated with the dummy argument on entry. Likewise, the associa-
tion status of pointers associated with the dummy argument on return is processor
dependent.

12.6.7 Allocatable Arguments

A dummy data argument may have the ALLOCATABLE attribute. In this case, the cor-
responding actual argument also must have the ALLOCATABLE attribute. As dis-
cussed in 12.6.3, the requirements for type and type parameter agreement for
allocatable dummy arguments are more stringent than for nonallocatable ones.

On entry to a procedure, a dummy allocatable acquires the same allocation status,
bounds, and value as the actual argument, unless the dummy has INTENT (OUT), in
which case it becomes unallocated. Unless the dummy has INTENT (IN), the allocation
of the dummy argument may be changed during execution of the procedure; the actual
argument acquires the allocation status, bounds, and value of the dummy on return
from the procedure.

The rank of the actual argument corresponding to a dummy allocatable must be
the same as the rank of the dummy. Furthermore, the bounds of the dummy argument
are always the same as those of the actual argument. Allocatable dummy arguments do
not use sequence association.

An actual argument may have the ALLOCATABLE attribute, regardless of whether
the dummy argument does or not. The case where the dummy argument also has the
ALLOCATABLE attribute is discussed above. If the dummy argument does not have
the ALLOCATABLE attribute, the allocatable actual argument must be allocated and it
is associated with the dummy argument using the same rules as if no allocatables were
involved.

12.6.8 Procedure Arguments

A dummy procedure argument may be a pointer or a nonpointer. A dummy procedure
must be specified to be a procedure by referencing it as a procedure or by declaring it
with an EXTERNAL statement, a PROCEDURE statement, or an interface body.

If it is a pointer, the general rules for pointer arguments apply. The actual argu-
ment must be a procedure pointer, a reference to a function that returns a procedure
pointer, or a reference to the NULL intrinsic function.

If it is not a pointer, the associated actual argument must be an external, module,
intrinsic, or dummy procedure.

Using Procedures 487

Rules and restrictions:

1. The actual argument must not be an internal procedure or a statement function.

2. The actual argument must not be a generic procedure. If there is a specific
procedure with the same name as a generic procedure, that name designates the
specific procedure when used as an actual argument.

3. The actual argument must not be an intrinsic procedure other than the specific in-
trinsic functions listed without an asterisk in 13.4.

4. The actual argument must not be a nonintrinsic elemental procedure.

5. If the interface of the dummy procedure is explicit, the associated actual procedure
must be consistent with this interface as described in 12.5.3.

6. If the dummy procedure is typed, referenced as a function, or has an explicit func-
tion interface, the actual argument must be a function.

7. If the dummy procedure is referenced as a subroutine or has an explicit subroutine
interface, the actual argument must be a subroutine.

8. A procedure actual argument must be pure if it is in a reference to a pure proce-
dure.

A dummy procedure argument may be optional. A dummy procedure that is not a
pointer must not have the INTENT attribute.

12.6.9 Alternate Returns

An alternate return is neither a data argument nor a procedure argument. It may ap-
pear only in a subroutine argument list. It is used to specify a return different than the
normal execution upon completion of the subroutine. As mentioned in 12.3, there are
usually superior ways of achieving the desired control, and therefore the alternate re-
turn is an obsolescent feature. It could be removed from the next revision of the For-
tran standard.

There may be any number of alternate returns in a subroutine argument list, and
they may appear at any position in the list. In the dummy argument list each alternate
return is designated by an asterisk. For example, the following dummy argument list
for subroutine CALC_2 has two alternate return indicators, in the second and fifth ar-
gument positions.

SUBROUTINE CALC_2(A,*,P,Q,*)

An alternate return dummy argument has no name. Consequently, it cannot be option-
al and cannot use the keyword method of establishing argument correspondence.

An actual argument associated with an alternate return dummy argument must be
an asterisk followed by the label of a branch target in the scope of the invoking scoping
unit. It specifies the return point for the corresponding alternate return. For example,
the following is a valid reference to CALC_2:

488 Chapter 12

CALL CALC_2(X,*330,Y,Z,*200)

provided the statements labeled 200 and 330 are valid branch targets in the invoking
scoping unit. The statement having the label 330 is the return point for the first alter-
nate return, and the statement having the label 200 is the return point for the second al-
ternate return.

An alternate return is taken when a RETURN statement (12.3) with an optional in-
teger expression is executed. The integer expression value selects which of the alternate
returns, counting from left to right, is to be utilized. Using the above example call:

RETURN 2 ! returns to statement 200
 ! in the calling program
RETURN (1) ! returns to statement 330
RETURN ! normal return from the call

12.6.10 Argument Aliasing

A dummy data object is aliased if any part of its actual argument can be accessed via a
name other than the dummy argument name while the procedure is executing. This
can happen in the following ways:

1. The actual argument or any subobject of it is associated with some other actual ar-
gument or a subobject of it in the same invocation. The simplest case of this is that
the same actual argument appears twice in the actual argument list. Other cases in-
volve one actual argument being a subobject of or associated with the other.

2. The actual argument is a variable accessed from common or a module, and the
same common or module variable is also accessed separately in the procedure or
any lower-level procedures that it invokes.

3. The actual argument is a variable that is also accessible via host association in the
procedure, or the actual argument is associated with or a subobject of such a vari-
able.

Unrestricted dummy argument aliasing could potentially cause performance prob-
lems. This is because the aliasing is not necessarily evident while compiling the proce-
dure. Therefore, the compiler would have to generate code that worked correctly in the
presence of aliasing. This would inhibit many basic forms of optimization such as stor-
ing values in registers. Also, ambiguities of meaning could arise with mixtures of argu-
ment aliasing and copy-in/copy-out implementations of argument association; if two
copies of a variable acquired different values, the results would depend on the order of
the copying. The standard deliberately leaves the implementation details of argument
association to the processor so as to facilitate optimization.

Any definition or undefinition of the value of a dummy argument during execu-
tion of the procedure must be done through the dummy argument rather than through
an alias, except in the cases detailed below. With the same exceptions, if the value be-
comes defined or undefined, it may not be referenced through an alias during execu-
tion of the procedure, either before or after the definition or undefinition.

Using Procedures 489

The following are the exceptions to the restrictions on definition and undefinition
of values:

1. The restrictions do not apply to a pointer dummy argument. Aliasing of pointer
targets is normal and the compiler is expected to deal with it correctly.

2. The restrictions do not apply if both the dummy and actual arguments have the
TARGET attribute, the dummy argument is scalar or assumed shape, and the actu-
al argument is not an array section with a vector subscript. In essence, the TARGET
attribute disallows argument copying in most cases; although the standard says it
indirectly, that is the model behind this exception. Argument copying is expected
in typical implementations of vector subscripts and some cases of explicit-shape
and assumed-size dummy arguments. This relates to the material in 12.6.6.

If a dummy argument or a subobject of it is allocatable, any allocation or deallocation
during execution of the procedure must be done through the dummy argument rather
than through an alias. If it is allocated or deallocated, it may not be referenced through
an alias during execution of the procedure, either before or after the allocation or
deallocation.

The restrictions described here do not disallow dummy argument aliasing. They
just restrict the behavior that is allowed when there is aliasing. In order to determine
whether a program violates these restrictions, it is necessary to examine both the pro-
cedure and its invocation. Examining the invocation is necessary to see whether any
aliasing occurs. Examining the procedure is necessary to see whether the restrictions
on aliased arguments are violated.

These restrictions have a subtle point relating to parenthesized expressions as actu-
al arguments. The following two sample invocations have an important difference.

call sub(x, x) !-- Aliased
call sub(x, (x)) !-- Not aliased

With the first of these sample calls, the two dummy arguments are trivially aliased;
with the second sample, they are not. This is because the (x) in the second sample is
not the variable x, but rather is an expression that references x. The expression is eval-
uated prior to invoking the subroutine and subsequent changes to the value of x do not
change the previously evaluated expression.

12.7 Special Categories of Procedures

This section describes special categories of procedures.

12.7.1 Pure Procedures

A pure procedure is one that may be used in contexts where some side effects would
be particularly problematic. A pure procedure definition must meet a stringent set of
constraints that allow the limitations on side effects to be verified at compile time. All
of the functions defined in the standard are pure, as are some of the subroutines (13.3,
14.3, 15.3).

490 Chapter 12

There are two basic situations where pure procedures are required—parallel pro-
cessing and specification expressions. If a procedure is referenced in a context that con-
ceptually allows multiple instances of the procedure to be executing in parallel, then
some side effects from those multiple instances could conflict and cause nondetermin-
istic behavior; to prevent this, such a procedure is required to be pure. This applies to
the FORALL statement and construct; it also applies to elemental references, as de-
scribed in 12.7.2. If a procedure is referenced in a specification expression, side effects
could cause complications; therefore, such a procedure is required to be pure. Second-
arily, a procedure is required to be pure if it is referenced in the body of a pure proce-
dure or is passed as an actual argument to a pure procedure.

The essence of the restrictions on a pure procedure is that it must not perform any
input/output to external files and must not modify the values of any variables accessi-
ble outside of the procedure except that a pure subroutine (but not a function) can
modify its actual arguments. A pure procedure cannot save the values of local vari-
ables. Each invocation of a pure procedure is independent of any other. The only useful
effect of a pure procedure is the computation of its result value if it is a function, or
modifications of its arguments if it is a subroutine.

The prefix specification PURE in a FUNCTION or SUBROUTINE statement speci-
fies that the procedure is pure. The prefix specification ELEMENTAL also implies puri-
ty, which can be confirmed by explicit declaration. A statement function is pure if it
references only pure functions.

If a procedure other than a statement function is used in a context that requires it
to be pure, its interface must be explicit and must specify that the procedure is pure.

Rules and restrictions:

1. A nonpointer dummy data argument of a pure procedure must have its intent
specified; if the procedure is a function, the specification must be INTENT (IN).

2. A local variable of a pure procedure must not have the SAVE attribute, either ex-
plicitly or implicitly. Note that this means that local variables in pure procedures
cannot have explicit initialization, because explicit initialization implicitly specifies
the SAVE attribute.

3. A procedure referenced in a pure procedure must be pure. A dummy or internal
procedure in a pure procedure must be pure, regardless of whether it is referenced.
Note that procedure references include defined assignments, defined operations,
defined input/output and finalization.

4. A pure procedure must not contain a STOP statement, an INQUIRE statement, or
an input/output statement, that specifies an external file.

5. In a pure procedure, any variable that is in common, is host associated, is use asso-
ciated, has INTENT (IN), or is storage associated with any such variable, must not
be used in the following contexts:

a. in a variable definition context (16.3.1)

Using Procedures 491

b. as the data target in a pointer assignment statement

c. as a pointer component of a structure constructor

d. as the right-hand side of an intrinsic assignment statement in which the left-
hand side has a pointer component (at any level)

e. as the actual argument corresponding to a pointer dummy argument

Example:

PURE FUNCTION DRIVEN_SNOW(CRYSTAL)
 INTEGER DRIVEN_SNOW
 INTEGER, INTENT(IN) :: CRYSTAL
 . . .
END FUNCTION DRIVEN_SNOW

12.7.2 Elemental Procedures

An elemental procedure is one that is defined with scalar dummy arguments, but may
be referenced with actual arguments that are of any rank, provided that the actual ar-
guments are conformable.

When an elemental procedure is invoked with array arguments, the effect is as if
the procedure had been invoked multiple times, with scalar arguments corresponding
to the individual elements of the actual argument arrays. If any of the original actual
arguments are scalar, those scalars are used as is for each of the invocations. A single
elemental procedure substitutes for writing multiple nonelemental procedures—one
for each rank.

Several of the procedures defined by the standard are elemental (13.3, 14.3). The
prefix specification ELEMENTAL in a FUNCTION or SUBROUTINE statement speci-
fies that the procedure is elemental.

An elemental procedure must be pure because the multiple invocations implied in
the array case are conceptually done in parallel. The ELEMENTAL prefix implies puri-
ty, which may be confirmed by a PURE prefix. All the rules for pure procedures apply.
An elemental procedure also must meet the additional requirements described below.

An elemental subprogram is defined with all of its dummy arguments scalar; an el-
emental function is also defined with a scalar result. The expressive power of elemental
procedures comes from the provision that the actual arguments may in general be of
any rank, as long as all of the actual arguments in a given invocation of an elemental
procedure are conformable. There are two exceptions to the allowance of array actual
arguments. First, the KIND actual argument of a standard intrinsic elemental must be
scalar. Second, if any of the actual arguments in an elemental subroutine reference is
an array, each actual argument corresponding to an INTENT (OUT) or INTENT (IN-
OUT) dummy must be an array.

The interface of an elemental procedure must be explicit in any scope in which it is
referenced.

492 Chapter 12

Rules and restrictions:

1. An elemental procedure must not be recursive.

2. A dummy argument of an elemental procedure must be a nonpointer, nonallocat-
able, scalar data object.

3. The result variable of an elemental function must be scalar and must not be a
pointer or allocatable.

4. A dummy argument of an elemental procedure must not be used in a specification
expression except as an argument to one of the intrinsic functions BIT_SIZE, KIND,
LEN, or a numeric inquiry function. This rather strange restriction is alleged to fa-
cilitate optimization, but since the same ends can be achieved with more compli-
cated syntax, it is not clear that the restriction actually achieves anything. The
workarounds are to either use an allocatable variable or write and use a lower-level
pure function.

Example:

ELEMENTAL FUNCTION VIP_CALC(X, Y)
 REAL VIP_CALC
 REAL, INTENT(IN) :: X, Y
 . . .
END FUNCTION VIP_CALC
 . . .
 Q = VIP_CALC(1.0, 2.0)
 ! A reference to VIP_CALC with scalar arguments
 A(1:N) = VIP_CALC(A1(1:N), 3.0)
 ! A reference with conformable arguments

12.7.3 Recursive Procedures

A recursive procedure is one that directly or indirectly invokes itself. A procedure
must be declared recursive explicitly if it is ever invoked recursively.

Because a recursive procedure can have multiple instances simultaneously active,
an additional definition of what it means for an entity to be local to the procedure is re-
quired. If a local entity has the SAVE attribute (either explicitly or implicitly), then all
instances of the procedure share a single copy of that entity. If a local entity does not
have the SAVE attribute, then each instance of the procedure has a separate copy of
that entity; changing the value of an unsaved variable in one instance has no effect on
the value in other instances.

12.7.4 Procedure Pointers

A procedure pointer is a pointer whose target must be a procedure. When the pointer
is associated with a target, the procedure pointer can be referenced, which causes the
target procedure to be invoked. A procedure pointer can be either a named entity or a
structure component.

Using Procedures 493

A named procedure pointer is declared by specifying both the EXTERNAL and
POINTER attributes. The EXTERNAL attribute can be specified using an EXTERNAL
statement, a PROCEDURE statement, or the EXTERNAL attribute in a type declaration
statement. The POINTER attribute can be specified using a POINTER statement or the
POINTER attribute in a PROCEDURE or type declaration statement.

A procedure pointer structure component is declared as described in 4.4.7.
Although a procedure pointer has much in common with a data pointer, there is a

subtle difference in terminology: a procedure pointer is not a variable. The association
of a procedure pointer can vary during execution, just like the association of a data
pointer. However, the Fortran definition of a variable requires that a variable be able to
have a value. A procedure does not have a value.

12.8 Resolving Procedure References

Procedure resolution is the process of determining what specific procedure is invoked
by a particular reference. Procedure resolution depends on the form of reference and
on the names, types, kinds, and ranks of the actual arguments. If a program has a pro-
cedure reference that does not resolve to any specific procedure, the program is in-
valid.

For a procedure reference in the form of an operator, assignment, defined in-
put/output, or type-bound reference, it is generally straightforward to resolve what
specific procedure is invoked. The only cases where more than one specific procedure
could apply are resolved as follows:

1. If both an elemental and a nonelemental specific procedure could be compatible
with the reference, the reference is to the nonelemental one. The nonelemental ref-
erence could be thought of as a more precise match.

2. If both an intrinsic and a defined derived-type assignment could apply, the refer-
ence is to the defined one. This is reasonably obvious in that otherwise such a de-
fined assignment could never be referenced.

3. A type-bound reference to a generic procedure is resolved to a type-bound specific
reference based on the generic bindings in the declared type of the data reference.

4. A type-bound reference to a specific procedure is resolved based on the specific
binding in the dynamic type of the data reference.

For a procedure reference by name, the large majority of the cases are trivial be-
cause there is only one compatible procedure. However, a single name can possibly
identify a specific procedure, a generic procedure, and an intrinsic procedure, all in the
same scoping unit. Most such cases can be resolved using the following simplified
guidelines:

494 Chapter 12

1. In the absence of any contrary declarations, a procedure reference using the name
of an intrinsic procedure is a reference to the intrinsic. A type declaration does not
count as conflicting with an intrinsic function, even if the intrinsic function has no
specific function with a result of that type.

2. If both an intrinsic and a user-specified generic could be compatible with the refer-
ence, the reference is to the user-specified generic.

3. If both an elemental and a nonelemental specific procedure could be compatible
with the reference, the reference is to the nonelemental one.

The precise rules depend on whether or not the name is established to be generic.

12.8.1 Resolving Generic Name References

A name is established to be generic in a scoping unit if the scoping unit

1. has a generic interface block for that name,

2. has an INTRINSIC specification for a generic intrinsic of that name, or

3. accesses a generic of that name via USE or host association.

The name might also be the name of a specific procedure in the same scoping unit,
but the generic resolution procedure is followed regardless. If a name is established to
be generic, candidate procedures are checked in the following order, with the resolu-
tion being to the first procedure that is consistent with the reference.

1. A nonelemental specific procedure of the generic.

2. An elemental specific procedure of the generic.

3. An intrinsic procedure.

4. A generic reference in the host scoping unit, checked in this same order.

The distinguishability restrictions on generic procedure names (12.5.4.1) ensure
that no more than one specific procedure can be consistent at each step.

The following example illustrates application of these rules:

INTERFACE GEN
 ELEMENTAL SUBROUTINE SP_E(X)
 REAL, INTENT(INOUT) :: X
 END SUBROUTINE
 SUBROUTINE SP_A(A)
 REAL, INTENT(OUT) :: A(:)
 END SUBROUTINE
END INTERFACE

Using Procedures 495

REAL B(10), C(10,10)
CALL GEN(B) ! Resolves to SP_A

12.8.2 Resolving Specific Name References

If a name is not established to be generic in a scoping unit, its resolution is as follows.
The resolution is explicitly established if the name is one of the following; no more than
one of these can apply in a scoping unit.

1. A dummy argument of the scoping unit.

2. A procedure defined by a subprogram or statement function in the scoping unit.

3. A procedure accessed by USE or host association.

4. An intrinsic procedure, if the name is explicitly given the INTRINSIC attribute.

5. An external procedure, if the name is explicitly given the EXTERNAL attribute and
is not a dummy argument.

If none of the above applies to the name, then

1. If it is a function reference using the name of an intrinsic function, or a subroutine
reference using the name of an intrinsic subroutine, the reference is to that intrin-
sic.

2. Otherwise, the reference is to an external procedure.

The procedure arguments play no role in the resolution of a nongeneric reference.
Once the steps above resolve to a procedure, that completes the resolution. If the reso-
lution is to a procedure whose arguments are not consistent with the reference, then
the program is invalid. For example, consider the following program.

program wrong
 write (*,*) cos('zero') !-- Invalid.
end program wrong

This program is invalid because the resolution is to the intrinsic function cos,
which has no specific function with a character argument. Even if there were an appro-
priate external function named cos, the resolution would not be to that external func-
tion.

496 Chapter 12

12.9 Procedure Properties

Table 12-1 summarizes the properties of Fortran procedures.

Table 12-1 Summary of Fortran procedure properties

Type of procedure

Property of procedure External Intrinsic Module Internal
Statement
function

Dummy arguments may be
optional

Yes Yes Yes Yes No

Reference may use keywords Yes Yes Yes Yes No

Reference may be recursive Yes N/A Yes Yes No

Definition may have
CONTAINS

Yes N/A Yes No No

May be passed as an actual
argument

Yes Yes Yes No No

May be described by an
interface body

Yes No No No No

Interface automatically explicit No Yes Yes Yes No

May be referenced elementally Yes Yes Yes Yes No

May be used to define
operators

Yes No Yes No No

May be a specific in a generic Yes No Yes No No

Definition may contain ENTRY
statements

Yes N/A Yes No N/A

13 Intrinsic Procedures and Modules

• A Standard Intrinsic Procedure is an intrinsic procedure defined by the standard.
Other intrinsic procedures may be specified by the processor. There are elemental
procedures, inquiry functions, and transformational functions. All intrinsic func-
tions are pure.

• A Standard Intrinsic Module is a module defined by the standard; it may be
required or may be optional. The standard intrinsic modules are a Fortran environ-
ment module, three IEEE arithmetic modules, and a C interoperability module.

• An Elemental Intrinsic Procedure is one that is defined with scalar arguments and
may be called with conformable arguments.

• An Inquiry Intrinsic Function is one whose result depends on the properties, other
than value, of its arguments. It returns information about the status, nature, or
attributes of its arguments.

• A Transformational Intrinsic Function is one that is neither an elemental nor
inquiry function. One argument is usually an array but the result value is not
related to the arguments in the same way as with elemental procedures.

• A Generic Intrinsic Procedure may be used to reference one of a group of intrinsic
procedures. The particular procedure selected is determined by the argument
attributes in the reference. Some generic intrinsic procedures have named specific
procedures.

• There is a Representation Model for each of the real and integer number systems
and for bits. Some of the intrinsic functions compute values based on how data is
represented with respect to these models. The physical representation is not
required to match the models exactly.

Procedures (functions and subroutines) that are part of the Fortran processor and are
not module procedures are called intrinsic; the standard specifies a collection of intrin-
sic procedures which are described in this chapter. Examples of standard intrinsic pro-
cedures are COS, SUM, RANDOM_NUMBER, and SHAPE.

There may be nonstandard intrinsic procedures that are supplied by a particular
Fortran processor but such procedures are not portable in the sense that they might not
be in all Fortran processors.

Intrinsic procedures are always “there”, and may be invoked from any program
unit. However, a user-written function or subroutine with the same name as an intrin-
sic function or subroutine might override the intrinsic procedure (12.5.4.2, 12.8).

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_13, © Springer-Verlag London Limited 2009

498 Chapter 13

All of the intrinsic procedures are described in 13.3 and each of these procedures is
described in detail in A.

The Fortran standard defines three categories of intrinsic modules (13.6). The first
is the Fortran environment intrinsic module ISO_FORTRAN_ENV; it is required and
specifies some aspects of the Fortran environment such as input/output logical unit
numbers and the size of the numeric storage unit in bits. It defines named constants for
these values.

A second category consists of three intrinsic modules which specify named con-
stants, derived types, exceptions, arithmetic modes, and module procedures to support
exception handling and arithmetic; these modules are compatible with the binary arith-
metic international floating-point standard [13]. Exceptions and arithmetic modes are
manipulated (signaled, recognized, enabled, and disabled) by calls to procedures pro-
vided by these modules. These intrinsic modules are optional for a standard conform-
ing processor and have the names IEEE_EXCEPTIONS, IEEE_ARITHMETIC, and
IEEE_FEATURES. They are described in 14.3.

A third category is the intrinsic module ISO_C_BINDING; it provides named con-
stants, derived types, and module procedures to support references to C programs
from Fortran programs and vice versa. This intrinsic module is required and is de-
scribed in 15.3.

The required intrinsic modules are always available, and are accessible in any
scoping unit via a USE statement referencing the name of the intrinsic module. The
module procedures in all these intrinsic modules are generic, have no specific names,
and therefore cannot be passed as actual arguments to dummy procedures. The mod-
ule functions have INTENT (IN) arguments only and are pure, with some being ele-
mental. Module procedures in intrinsic modules are not intrinsic procedures. This
affects generic resolution (12.8.1) and specification functions (7.4.2.2).

A user-defined module may have the same name as an intrinsic module, but to re-
fer to the intrinsic module, the USE statement must specify the INTRINSIC nature; the
program unit may specify the NON_INTRINSIC nature to refer to the user-defined
module but access to it is provided by default if it is accessible. Always specifying the
module nature (11.3.7.1) facilitates portability and may prevent conflicts with future
standards.

13.1 Properties of Intrinsic Procedures

Intrinsic procedures are “predefined” by the processor, but otherwise conform to the
principles and rules for procedures as described in 12. In particular, intrinsic proce-
dures are invoked in the same way as other procedures (12.1.2 and 12.2.3) and employ
the same argument association mechanisms (12.6). An intrinsic procedure’s interface is
explicit. The functionality and partial interfaces to the standard intrinsic procedures,
including the argument keywords (dummy argument names) and argument optionali-
ty, are described in 13.3, 13.4, and 13.5; the complete interfaces are provided in A.

Intrinsic Procedures and Modules 499

Generic Intrinsic Procedures. The intrinsic procedures listed in 13.3 are generic. Some
intrinsic procedures have two or more underlying specific intrinsic procedures, which
are listed in Table 13-1. The intrinsic functions LLT, LLE, LGT, and LGE each have one
underlying named specific function. Many, such as ALL, EPSILON, or SUM and all in-
trinsic subroutines, have no named underlying specific procedures.

Specific Intrinsic Procedures. For historical reasons some intrinsic procedures have
specific names related to the type of the argument. In most cases (except those marked
with an asterisk * in Table 13-1), such a procedure may be used as an actual argument
associated with a dummy procedure argument. For example, CSQRT is a specific in-
trinsic procedure for computing the complex square root of a default complex argu-
ment. Note that a specific intrinsic function may have the same name as the generic
intrinsic function; for example, SQRT is both the generic intrinsic function and the spe-
cific intrinsic function for a default real argument. Thus, when SQRT is used as an ac-
tual argument, is associated with a dummy procedure argument, and is given the
attribute INTRINSIC, the specific function SQRT is being passed; there are other ways
to have the specific function SQRT passed (12.6.8).

All specific intrinsic procedures have INTENT (IN) dummy arguments. All specific
intrinsic functions return results with a type that the corresponding generic function
would have if called with the same argument types, except the specific intrinsic func-
tions AMAX0, AMIN0, MAX1, and MIN1; the differences are specified in Table 13-1.

Elemental Intrinsic Procedures. Many of the intrinsic functions and one intrinsic sub-
routine (MVBITS) are elemental. This extends those intrinsic procedures to array argu-
ments and array results in a natural way.

Transformational Intrinsic Functions. A transformational intrinsic function is one that
is not elemental and not an inquiry function. Most of the transformational functions
have an array argument (for example, the SUM function) that is treated as a whole and
not elementally. The transformational categorization does not apply to subroutines.

Inquiry Intrinsic Functions. An inquiry intrinsic function returns information about
the status, nature, or attributes of its arguments. Unless stated otherwise, these argu-
ments need not have defined values. They may be unallocated allocatables or pointers
that are not associated. They may be array arguments whose shape is not defined.

A Pure Intrinsic Procedure is an intrinsic procedure that is pure as defined in 12.7.1.
All intrinsic functions are pure, but only one of the intrinsic subroutines (MVBITS) is
pure.

Keyword and Optional Arguments. Intrinsic procedure references may use keyword
arguments, as described in 12.6.1. Some arguments of intrinsic procedures are optional
(12.6.2), and the use of keywords makes possible the omission of actual arguments,
corresponding to optional dummy arguments. For example, in

CALL RANDOM_SEED (PUT=SEED_VALUE)

500 Chapter 13

the keyword form shown must be used because the optional first argument SIZE is
omitted.

Intrinsic Argument Intent. The intent of the dummy arguments of each intrinsic sub-
routine is specified in the description of the subroutine in A. The nonpointer dummy
arguments of intrinsic functions have INTENT (IN); the pointer dummy arguments
never change either their associated actual arguments or their targets.

13.2 Representation Models

Some of the intrinsic functions compute values related to how data is represented.
These values are based upon and determined by the underlying representation model.
There are three such models: the bit model, the integer number system model, and
the real number system model.

These models, and the corresponding functions, return values related to the mod-
els, allowing development of robust and portable code. For example, by obtaining in-
formation about the spacing of real numbers, the convergence of a numerical algorithm
can be controlled so that maximum accuracy may be achieved while attaining conver-
gence.

In a given implementation the model parameters are chosen to match the imple-
mentation as closely as possible, but an exact match is not required and the model does
not impose any particular arithmetic on the implementation.

13.2.1 The Bit Model

The bit model interprets a nonnegative scalar data object of type integer as a sequence
of binary digits (bits), based upon the model

where is the number of bits and each has a bit value of 0 or 1. The bits are num-
bered from right to left beginning with 0.

The bit computation functions in 13.3.4.3 are based upon the bit model. The model
deals only with nonnegative integers interpreted through these functions and the
MVBITS subroutine, and it is not necessarily related to the implementation of the inte-
ger data type. However, the bit model is identical to the integer model (13.2.2) for wz−1
= 0.

The interpretation of an integer with the first bit set is processor dependent; this is
typically a negative value. Such a negative value may be the result of assigning a neg-
ative integer value to a variable, but it also may be created by shifting an integer left so
that its first bit becomes 1. The interpretation of such an entity as an integer is not pro-
vided by this bit model. However, the bit model does predict the value as a string of
bits. For example, suppose on a processor with z = 32 an integer entity with positive
value 230 is left shifted one position using the intrinsic function ISHIFT. The interpreta-

wk2k

k 0=

z 1–
∑

z wk

Intrinsic Procedures and Modules 501

tion of this value as an integer is not specified by the model even though the model
predicts the result is a string of 32 bits, all of which are zero except the first one which
is one.

The BOZ literal constants (4.3.1.4) that are interpreted as integers are not necessar-
ily related to this model, regardless of the issue of negative integers.

A common model for processors where integers occupy 32 bits is for the value of z
to be 32.

13.2.2 The Integer Number System Model

The integer number system is modeled by

where

is the integer value
is the sign (+1 or –1)
is the base and is an integer greater than 1
is the number of digits and is an integer greater than 0
is the th digit and is an integer

A common model for processors that use 4 bytes for integers is: q = 31 and r = 2.

13.2.3 The Real Number System Model

The real number system is modeled by

where

is the real value
is the sign (+1 or –1)
is the base (real radix) and is an integer greater than 1
is an integer between some minimum and maximum value
is the number of mantissa digits and is an integer greater than 1
is the th digit and is an integer ,

but may be zero only if e and all the are zero

One common implementation is the IEEE binary floating-point standard [13],
which has single precision model numbers with:

 = 2
 = 24

i s wkrk

k 0=

q 1–
∑=

i
s
r
q
wk k 0 wk≤ r<

x sbe fkb k–

k 1=

p

∑=

x
s
b
e
p
fk k 0 fk≤ b<

f1 fk

b
p

502 Chapter 13

This IEEE standard does not represent , which is presumed to be 1. Thus, the
mantissa, including its sign, can be represented in 24 bits. The exponent, including its
sign, takes 8 bits, for a total of 32 bits in the single precision representation. What nor-
mally would be an exponent value of –127 or −126 is not included in the exponent
range; rather, IEEE uses these cases to identify the real value zero (the one case in
which is 0), out-of-range values (infinities), or NaNs (not a number—illegal values).
It should be noted that the specific model described above where b = 2, p = 24, emax =
128, and emin = −125 is not the specific model used in the Fortran 2003 standard where
b = 2, p =24, emin = −126, and emax = 127.

The numeric inquiry and manipulation functions return information about the real
number system model pertaining to an implementation. The IEEE intrinsic module
procedures permit a more precise manipulation of floating-point values that are of
IEEE (arithmetic) type (14.3.3). On the other hand, the numeric computation and ma-
nipulation intrinsic functions assume or in some cases specify that the results are pro-
cessor dependent when the result value would exceed the range of floating-point
representable values.

13.3 Intrinsic Procedures

The intrinsic procedures are grouped into subsections. Each subsection summaries the
classification of its intrinsic procedures and summarizes the functionality of each of the
procedures. The intent of the arguments of the functions is not stated for any of the
functions except PRESENT; for all but PRESENT, the intent is INTENT (IN). For
PRESENT and all intrinsic subroutines, the intent of each dummy argument of the in-
trinsic subroutines is given specifically.

Generic intrinsic subroutines that assign values to arguments of type character do
so in accordance with the rules of intrinsic assignment (7.5.2); this includes truncation
or blank padding as appropriate.

Intrinsic procedure argument keyword names (dummy argument names) are made
as consistent as possible. Dummy arguments that play a similar or identical role have
the same name. For example, these include such keyword dummy argument names as
KIND, DIM, MASK, and BACK.

KIND is an argument to specify the kind type parameter of the function result. The
KIND actual argument must be a scalar integer initialization expression, even in ele-
mental references; it is usually optional. It is used in conversion functions (13.3.3); it is
also used in functions, such as SIZE and LEN, whose results might not fit into a default
integer when applied to large arrays or large character strings.

DIM is used mostly in the array reduction functions (13.3.4.4) and in some of the
other array functions (13.3.1.4), to specify which dimension of the array is involved, if
not the whole array. DIM is a scalar integer and usually is optional.

MASK, when used in an array reduction function, selects elements of the array that
are to be involved in the operation. For example, in the function SUM, any element of
the array that is to be included in the sum of the elements can be selected by use of an

125– e 128≤ ≤

f1

f1

Intrinsic Procedures and Modules 503

appropriate mask. The MASK must be conformable with the array it is masking; it usu-
ally is an optional argument.

BACK is an optional logical argument used in several of the character intrinsic
functions. For example, if BACK=.TRUE. in the INDEX function, the search is for the
rightmost occurrence of the target rather than the leftmost.

The permitted argument types for each procedure are specified in the description
of each procedure in A. For many of these procedures, the permitted kinds are not
specified explicitly, following the convention that if the kinds are not specified, all
available kinds for a given type are permitted. The possible kinds for some intrinsic
procedures are restricted, and this is stated explicitly. For example, the arguments for
intrinsic function DPROD are restricted to default real kind.

The types and kinds of the results are always explicitly stated in A. In some cases
they are the same as one of the arguments, sometimes they are specified by a KIND ar-
gument, and sometimes they are of default kind.

13.3.1 Inquiry Functions

The inquiry functions, rather than performing some computation with their arguments,
return information concerning the status or nature of the argument; the returned value
is independent of the value of the argument so that the actual argument of a reference
to such a function need not be defined. Note however that the pointer association sta-
tus of arguments used in certain inquiry intrinsic functions, namely ASSOCIATED,
EXTENDS_TYPE_OF, and SAME_TYPE_AS, must be defined when referenced.

The inquiry functions are nonelemental. The inquiry function COMMAND_
ARGUMENT_COUNT is described in 13.3.5.3.

13.3.1.1 Character and Bit Inquiry Functions

The LEN intrinsic function returns the length type parameter (number of characters) of
the character string argument as defined in 7.2.2.1. The BIT_SIZE function returns the
number of bits z provided by the bit model (13.2.1). The NEW_LINE function returns
the new line character as specified in A.

Function Value returned
BIT_SIZE Number of bits in the bit model
LEN Length of a character string argument
NEW_LINE New line character for the character kind of the argument

13.3.1.2 Kind Functions

The KIND inquiry function returns the kind type parameter of its argument, which
may be of any intrinsic type. Somewhat related to the KIND function, but providing a
complementary functionality, are three transformational functions, SELECTED_REAL_
KIND, SELECTED_INT_KIND, and SELECTED_CHAR_KIND. The values of the argu-
ments to these functions must be defined. Also see 14.3.3.7 for a similar transforma-
tional function IEEE_SELECTED_REAL_KIND from the IEEE arithmetic module.

504 Chapter 13

Function Value returned
KIND Kind parameter
SELECTED_CHAR_KIND Kind parameter of a specified character set
SELECTED_INT_KIND Kind parameter of an integer data type, specified by a

minimum decimal range
SELECTED_REAL_KIND Kind parameter of a real data type, specified by a minimum

decimal precision and/or exponent range

13.3.1.3 Numeric Inquiry Functions

The environmental intrinsic inquiry functions together describe the numerical environ-
ment in terms of the integer model (13.2.2) and real model (13.2.3).

Function Value returned
DIGITS Number of model digits in a model number
EPSILON Value that is small relative to 1 for a real value
HUGE Largest number in the real or integer model
MAXEXPONENT Maximum value of the model exponent
MINEXPONENT Minimum value of the model exponent
PRECISION Decimal precision of a model number
RADIX Base of a model number
RANGE Decimal exponent range of a model number
TINY Smallest positive number in the real model

13.3.1.4 Array Inquiry Functions

Many of the intrinsic functions are related to arrays. A subset of these functions, called
array inquiry functions, allow certain properties of an array to be queried dynamically.
These properties include shape, extents, and size of arrays as well as the allocation sta-
tus of an allocatable array.

Function Value returned
ALLOCATED Allocation status of the argument
LBOUND Lower bound(s) of an array or a dimension of an array
SHAPE Number of elements in each dimension of an array
SIZE Number of elements of an array or a dimension of an array
UBOUND Upper bound(s) of an array or a dimension of an array

13.3.1.5 Inquiry of Dynamic Properties

Several of the intrinsic functions permit inquiry about dynamic properties of their ar-
guments. They include functions to inquire whether:

• an allocatable object is allocated.

• a pointer object is associated and with what it is associated.

• an argument is present or not.

Intrinsic Procedures and Modules 505

• a polymorphic object has the same type as another object or has a type that is an
extension of the type of another object.

Function Value returned
ALLOCATED Allocation status of the argument
ASSOCIATED Tests the association status of a pointer or its association

with a specific target
EXTENDS_TYPE_OF True if the dynamic type of the first argument is an

extension type (4.4.12) of the dynamic type of the second
argument

PRESENT True if an actual argument of a procedure is present
SAME_TYPE_AS True if two objects are of the same dynamic type

13.3.2 Numeric Manipulation Functions

The numeric manipulation functions manipulate parts of the floating-point representa-
tion, primarily relative to the real model (13.2.3). In contrast, the NEAREST function
returns a result in terms of the machine representation.

The numeric manipulation functions are elemental.

Function Value returned
EXPONENT Exponent of a real value
FRACTION Fractional part of a real value
NEAREST Nearest machine-representable number in a given direction
RRSPACING Reciprocal of model relative spacing near a specified value
SCALE Value scaled by a power of the radix
SET_EXPONENT Value with its exponent set to a specified value
SPACING Model absolute spacing near a specified value

13.3.3 Conversion Functions

Fortran has a number of intrinsic functions to transfer or convert data values from one
type and kind combination to another combination; most of these have been in Fortran
for a long time, although the optional KIND argument is relatively new.

The conversion functions ACHAR and IACHAR (and the character computation
functions LLT, LLE, LGT, and LGE) use the collating sequence specified in ISO/IEC
646:1991 (International Reference Version).

Where the functions are defined, ACHAR and IACHAR and CHAR and ICHAR
are inverses of one another. That is, for an example using the ASCII character func-
tions, for values of C where IACHAR (C, KIND (I)) is defined, ACHAR (IACHAR (C,
KIND (I)), KIND (C)) = C where I is of integer type with any integer kind. Similarly, for
values of I where ACHAR(I, KIND (C)) is defined, IACHAR (ACHAR (I, KIND (C)),
KIND (I)) = I where C is of character type with any character kind.

Where the functions are defined, ACHAR and IACHAR and CHAR and ICHAR
are inverses of one another. That is, for example using the ASCII character functions,
where C is of default character kind with values C for which IACHAR (C) is defined,

506 Chapter 13

ACHAR (IACHAR (C)) = C. Similarly, for I of default integer kind with values for
which ACHAR(I) is defined, IACHAR (ACHAR (I)) = I.

All conversion functions below are elemental.

Function Value returned
ACHAR Character in a specified position of the ASCII character set
AIMAG Imaginary part of a complex value
AINT Real value truncated to a whole number
ANINT Real value rounded to the nearest whole number
CHAR Character in a specified position of a character set
CMPLX Complex value
CONJG Complex conjugate of a complex value
DBLE Double precision value
IACHAR Position of a specified character in the ASCII character set
ICHAR Position of a specified character in a character set
INT Truncated integer value
LOGICAL Logical value
NINT Real value rounded to the nearest integer
REAL Real value

13.3.3.1 NULL and Transfer Procedures

The transformational function NULL is used in pointer assignment contexts and re-
turns a disassociated pointer (null pointer) or unallocated allocatable object.

The transformational function TRANSFER and pure subroutine MOVE_ALLOC
transfer data without changing any bits. The elemental subroutine MVBITS transfers a
sequence of bits from one integer to another.

Procedure Operation
MOVE_ALLOC Transfer an allocation from one object to another of the same type
MVBITS Copies a sequence of bits from one integer to another
NULL A disassociated pointer or unallocated allocatable component of a

structure constructor
TRANSFER Value transferred from an object to the result without conversion

13.3.4 Computation Procedures

The computation intrinsic procedures perform computational operations, delivering
the results as function results or INTENT (OUT) subroutine arguments.

13.3.4.1 Numeric Computation Procedures

The numeric computations include trigonometric, logarithmic, exponential, differenc-
es, products, maxima, minima, remainder, square root, absolute value operations, and
some matrix operations.

All of the numeric computation functions are elemental except DOT_PRODUCT,
and MATMUL, which are transformational.

Intrinsic Procedures and Modules 507

Function Value returned
ABS Absolute value
ACOS Arc cosine
ASIN Arc sine
ATAN Arc tangent
ATAN2 Angle in radians of a complex value X+Yi
CEILING Smallest whole number greater than or equal to a value
COS Cosine
COSH Hyperbolic cosine
DIM Difference of two values, if positive, or otherwise zero
DOT_PRODUCT Dot product of two rank-one arrays
DPROD Double precision product of two single precision values
EXP Natural exponential
FLOOR Greatest integer less than or equal to a value
LOG Natural logarithm
LOG10 Logarithm to the base 10
MATMUL Matrix multiplication
MAX Maximum of specified values
MIN Minimum of specified values
MOD Remainder function, having the sign of the first argument
MODULO Remainder function, having the sign of the second argument
SIGN Value with a specified sign
SIN Sine
SINH Hyperbolic sine
SQRT Square root
TAN Tangent
TANH Hyperbolic tangent

The subroutines RANDOM_NUMBER and RANDOM_SEED provide pseudoran-
dom number sequences and a means to specify and control them. They are not elemen-
tal, and not pure.

Subroutine Operation
RANDOM_NUMBER Generate pseudorandom scalar or array of real type
RANDOM_SEED Retrieve or set the seed of the pseudorandom number

generator

These procedures to create pseudorandom numbers can be implemented in many
ways. One of these ways creates an internal seed for the pseudorandom number gener-
ator from the value specified in the PUT argument. An immediately subsequent refer-
ence to RANDOM_SEED may return a value in the GET argument that is different than
that specified earlier. If these values do differ, use of either in the PUT argument of a
reference to RANDOM_SEED will generate the same sequence of pseudorandom num-
bers from calls to RANDOM_NUMBER. For example:

call RANDOM_SEED (PUT=SEED1)

508 Chapter 13

call RANDOM_SEED (GET=SEED2)

SEED2 might not equal SEED1. But in the code segment:

call RANDOM_SEED (PUT=SEED1)
call RANDOM_SEED (GET=SEED2)
call RANDOM_NUMBER (X1)
call RANDOM_SEED (PUT=SEED2)
call RANDOM_NUMBER (X2)

X1 must equal X2.
One typical implementation permitted by the standard is for the processor to ini-

tialize the pseudorandom number seed to the same value at the beginning of execu-
tion. This will produce the same sequence of random numbers each time the program
is executed. To avoid this behavior, the values from the real time clock can be used to
specify an initial seed that is likely different each time the program is executed.

A second typical implementation permitted by the standard is for the processor to
initialize the pseudorandom number seed to a different value at the beginning of each
execution. This will produce a different sequence of random numbers each time the
program is run. For debugging code, this may not be desirable; a solution is to retrieve
the seed when execution begins and record it so that the same seed can be used to ini-
tialize the pseudorandom number sequence when program is rerun.

13.3.4.2 Character Computation Functions

The character manipulation functions perform operations on character strings such as
adjustment, searching, scanning, indexing, trimming, comparing, maxima, minima,
and replication.

All of the character computation procedures, except LEN, REPEAT, and TRIM, are
elemental functions. The procedures REPEAT and TRIM are transformational func-
tions. LEN is an inquiry function.

Function Value returned
ADJUSTL Leading blanks removed and placed on the right
ADJUSTR Trailing blanks removed and placed on the left
INDEX Location of a given substring in a character string
LEN Length of a character string
LEN_TRIM Length of a string after trailing blanks have been removed
LGE Greater than or equal to comparison based on the ASCII

collating sequence
LGT Greater than comparison based on the ASCII collating sequence
LLE Less than or equal to comparison based on the ASCII collating

sequence
LLT Less than comparison based on the ASCII collating sequence
MAX Maximum of specified values
MIN Minimum of specified values
REPEAT Concatenation of several copies of a character string
SCAN Position in a string of any one of a given set of characters

Intrinsic Procedures and Modules 509

TRIM String without trailing blanks
VERIFY Position in a string of a character that is not one of a given set

13.3.4.3 Bit Computation Procedures

The bit computation procedures perform disjunction, conjunction, exclusive disjunc-
tion, bit setting and clearing, and bit shifting and bit moving in terms of the bit model
specified in 13.2.1.

Most of the bit computation procedures are elemental functions. All of their argu-
ments are of integer type. BIT_SIZE is an inquiry function. MVBITS is an elemental
subroutine. All of their arguments are of integer type. BIT_SIZE is an inquiry function.
MVBITS is an elemental subroutine. Because of the dependence on the number of bits
in the bit model, the bit manipulation procedures may yield nonportable results.

The BOZ literal constants are not directly permitted as arguments to these func-
tions. However, as illustrated in the examples for some of these procedures in A, the
function INT with a BOZ literal constant argument is permitted and provides this func-
tionality.

Function Value returned
BIT_SIZE Number of bits in the bit model
BTEST Test of the bit value in a specified position
IAND Logical AND of two integers
IBCLR Value with a specified bit set to zero
IBITS Specified bits extracted from an integer value
IBSET Value with a specified bit set to one
IEOR Logical exclusive-OR of two integers
IOR Logical inclusive-OR of two integers
ISHFT Logical end-off shift of an integer
ISHFTC Logical circular shift in a field of an integer
NOT Logical complement of an integer

Subroutine Operation
MVBITS Copies a sequence of bits from one integer to another

13.3.4.4 Array Functions

Array functions provide array operations such as sum, product, conjunction, disjunc-
tion, counting, shifting, dot product, matrix multiplication, matrix transposition, pack-
ing, unpacking, merging, reshaping, maxima, and minima. All are transformational
except MERGE, which is elemental.

The reduction functions ALL, ANY, COUNT, MAXVAL, MINVAL, PRODUCT, and
SUM reduce an argument array in one of two senses; either

• all or selected array elements are reflected in (reduced to) a scalar result, or

• the reduction takes place along a dimension specified by an optional argument
DIM.

510 Chapter 13

In the latter case the function result is in general an array whose rank is one less than
that of the argument array; it is a scalar if the array argument is of rank one. Because
the rank is reduced when DIM is present, the actual argument for DIM must not be an
optional dummy argument; otherwise the rank of the result could not be determined
and fixed at compile time because the presence or absence of DIM would depend on
the characteristics of the calling procedure.

The argument DIM that specifies the reduction along a particular dimension satis-
fies the same requirements for each of these reduction functions. Namely, DIM is an in-
teger of any kind in the range [1, n] where n is the rank of the array argument (ARRAY
for the functions MAXVAL, MINVAL, SUM, and PRODUCT and MASK for the func-
tions ALL, ANY, and COUNT). For two-dimensional arrays, the reduction operation is
performed down the columns if DIM=1 or across the rows if DIM=2. For example, if
ARRAY has a shape of [5 10], SUM (ARRAY, DIM=1) produces a ten element result ar-
ray, each element being the sum of the five corresponding column elements in ARRAY.
Similarly, MAX (ARRAY, DIM=2) produces a five element result array, each being the
maximum of the corresponding ten element row. For higher dimensional arrays, the ar-
rays can be thought of as a collection of pencils and the reduction is performed down
each hyperpencil. For example, an array of shape [3 4 5] can be reduced to a result ar-
ray of shape [4 5], [3 5], or [3 4], depending on the value of DIM being 1, 2, or 3, respec-
tively. All of the reductions functions, when DIM is specified, perform their operations
in this way.

The array over which the reduction is performed is the first argument. These func-
tions require this array and the masking array, if present, to be conformable. The de-
scriptions of the results treat these arrays as if the lower bound in each dimension of
each array is one. These arrays may be of size zero and the result for each function
when these arrays are of size zero is specified in the description of the function.

The array construction functions MERGE, PACK, RESHAPE, SPREAD, and UN-
PACK construct new array values from the elements of existing arrays.

The array manipulation functions CSHIFT, EOSHIFT, and TRANSPOSE rearrange
elements of an array. Although they have an optional DIM argument, the DIM argu-
ment does not change the rank of the result from that of the actual argument and so is
not restricted from being an optional dummy argument.

The location functions MAXLOC and MINLOC locate the maximum and minimum
values in the array or along a specified dimension.

Function Value returned
ALL True if all array elements are true
ANY True if any array elements are true
COUNT Number of true array elements
CSHIFT Circular shift of the elements of an array
DOT_PRODUCT Dot product of two rank-one arrays
EOSHIFT End-off shift of the elements of an array
MATMUL Matrix multiplication
MAXLOC Location of the first maximum element of an array
MAXVAL Maximum value of array elements

Intrinsic Procedures and Modules 511

MERGE Selection of values under control of a mask
MINLOC Location of the first minimum element of an array
MINVAL Minimum value of array elements
PACK Masked array packed into a vector
PRODUCT Product of array elements
RESHAPE Rank-one array reshaped to an array of a specified shape
SPREAD Array replicated by adding a dimension
SUM Sum of array elements
TRANSPOSE Matrix transpose
UNPACK Array unpacked from a vector under mask control

13.3.5 System Environment Procedures

Several intrinsic procedures provide information about the environment in which a
Fortran program is executing.

13.3.5.1 Time and Date Subroutines

The time and date subroutines are nonelemental and nonpure. The definitions of the
CPU_TIME and SYSTEM_CLOCK subroutines are imprecise because time measure-
ments are typically processor dependent; in general, the intention is that CPU_TIME
measures processor time to run a program and often does not include time consumed
by the processor for tasks other than the particular program. The procedure
SYSTEM_CLOCK measures elapsed time in units and typically measures the wall-
clock time taken to run the particular program.

Subroutine Operation
CPU_TIME Obtain the processor time
DATE_AND_TIME Obtain date and time information in various formats
SYSTEM_CLOCK Obtain data from the system clock

13.3.5.2 Testing Input/Output Status

These functions test input/output status values for end-of-file and end-of-record condi-
tions:

Function Value returned
IS_IOSTAT_END True if a value indicates an end-of-file IOSTAT condition
IS_IOSTAT_EOR True if a value indicates an end-of-record IOSTAT condition

These functions are elemental and thus pure.

13.3.5.3 Command Line Manipulation Procedures

The command line manipulation procedures are used to inquire about the environ-
ment that invoked the program. The procedure COMMAND_ARGUMENT_ COUNT
is an inquiry function whereas the procedures GET_COMMAND, GET_COMMAND_

512 Chapter 13

ARGUMENT, and GET_ENVIRONMENT_VARIABLE are subroutines. These proce-
dures depend upon the aspects of the operating system that invoked the program and
that are nonstandard and thus are processor dependent.

Procedure Operation
COMMAND_ARGUMENT_COUNT Number of command line arguments
GET_COMMAND Obtain the entire command initiating the

program
GET_COMMAND_ARGUMENT Obtain a specified command argument
GET_ENVIRONMENT_VARIABLE Obtain the value of a system environment

variable

These subroutines are not elemental.

13.4 Specific Names for Generic Intrinsic Procedures

Some of the intrinsic functions have specific names for specific argument types. These
functions may be invoked with the generic name or with the specific name for the ap-
propriate argument. A generic procedures must not be passed as an actual argument; a
specific procedure may be, except for ones marked with an asterisk in Table 13-1.

Table 13-1 List of intrinsic procedures with specific names

Generic name Specific name and arguments Specific argument types
ABS ABS (A)

CABS (A)
DABS (A)
IABS (A)

Default real
Default complex
Double precision real
Default integer

ACOS ACOS (X)
DACOS (X)

Default real
Double precision real

AIMAG AIMAG (Z) Default complex
AINT AINT (A)

DINT (A)
Default real
Double precision real

ANINT ANINT (A)
DNINT (A)

Default real
Double precision real

ASIN ASIN (X)
DSIN (X)

Default real
Double precision real

ATAN ATAN (A)
DATAN (A)

Default real
Double precision real

ATAN2 ATAN2 (A)
DATAN2 (A)

Default real
Double precision real

CHAR * CHAR (I) Default integer

Intrinsic Procedures and Modules 513

COS COS (X)
CCOS (X)
DCOS (X)

Default real
Default complex
Double precision real

CONJG CONJG (X) Default complex
COSH COSH (X)

DCOSH (X)
Default real
Double precision real

DIM DIM (X,Y)
IDIM (X,Y)
DDIM (X,Y)

Default real
Default integer
Double precision real

DPROD DPROD (X,Y) Default real
EXP EXP (X)

CEXP (X)
DEXP (X)

Default real
Default complex
Double precision real

ICHAR * ICHAR (C) Default character
INDEX INDEX (STRING, SUBSTRING) Default character
INT * INT (A)

* IFIX (A)
* IDINT (A)

Default real
Default real
Double precision real

LEN LEN (STRING) Default character
LGE * LGE (STRING_A, STRING_B) Default character
LGT * LGT (STRING_A, STRING_B) Default character
LLE * LLE (STRING_A, STRING_B) Default character
LLT * LLT (STRING_A, STRING_B) Default character
LOG ALOG (X)

CLOG (X)
DLOG (X)

Default real
Default complex
Double precision real

LOG10 ALOG10 (X)
DLOG10 (X)

Default real
Double precision real

MAX * MAX0 (A1, A2, A3, ...)
* AMAX1 (A1, A2, A3, ...)
* DMAX1 (A1, A2, A3, ...)

Default integer
Default real
Double precision real

* MAX1 (A1, A2, A3, ...) Default real
* AMAX0 (A1, A2, A3, ...) Default integer

MIN * MIN0 (A1, A2, A3, ...)
* AMIN1 (A1, A2, A3, ...)
* DMIN1 (A1, A2, A3, ...)

Default integer
Default real
Double precision real

* MIN1 (A1, A2, A3, ...) Default real
* AMIN0 (A1, A2, A3, ...) Default integer

Table 13-1 (Continued) List of intrinsic procedures with specific names

Generic name Specific name and arguments Specific argument types

514 Chapter 13

13.5 Alphabetical List of All Intrinsic Procedures

Table 13-2 lists the intrinsic procedures. The argument names shown are the keywords
for keyword argument calls. All of the optional arguments are noted as such. These
procedures are described in detail, in alphabetical order, in A.

13.6 Standard Intrinsic Modules

The standard specifies several intrinsic modules, called standard intrinsic modules,
some of which are required, namely, the modules ISO_FORTRAN_ENV and
ISO_C_BINDING, and some of which are optional, namely the modules

MOD MOD (A, P)
AMOD (A, P)
DMOD (A, P)

Default integer
Default real
Double precision real

NINT NINT (A)
IDNINT (A)

Default real
Double precision real

REAL * REAL (A)
* FLOAT (A)
* SNGL (A)

Default integer
Default integer
Double precision real

SIGN SIGN (A, B)
DSIGN (A, B)
ISIGN (A, B)

Default real
Double precision real
Default integer

SIN SIN (X)
CSIN (X)
DSIN (X)

Default real
Default complex
Double precision real

SINH SINH (X)
DSINH (X)

Default real
Double precision real

SQRT SQRT (X)
CSQRT (X)
DSQRT (X)

Default real
Default complex
Double precision real

TAN TAN (X)
DTAN (X)

Default real
Double precision real

TANH TANH (X)
DTANH (X)

Default real
Double precision real

Note:

MAX1 is equivalent to INT (MAX (. . .))

AMAX0 is equivalent to REAL (MAX (. . .))

MIN1 is equivalent to INT (MIN (. . .))

AMIN0 is equivalent to REAL (MIN (. . .))

Table 13-1 (Continued) List of intrinsic procedures with specific names

Generic name Specific name and arguments Specific argument types

Intrinsic Procedures and Modules 515

Table 13-2 List of intrinsic procedures and arguments

Procedure and arguments Optional arguments
ABS (A)
ACHAR (I, KIND) KIND
ACOS (X)
ADJUSTL (STRING)
ADJUSTR (STRING)
AIMAG (Z)
AINT (A, KIND) KIND
ALL (MASK, DIM) DIM
ALLOCATED (ARRAY)
ALLOCATED (SCALAR)
ANINT (A, KIND) KIND
ANY (MASK, DIM) DIM
ASIN (X)
ASSOCIATED (POINTER, TARGET) TARGET
ATAN (X)
ATAN2 (Y, X)
BIT_SIZE (I)
BTEST (I, POS)
CEILING (A, KIND) KIND
CHAR (I, KIND) KIND
CMPLX (X, Y, KIND) Y, KIND
COMMAND_ARGUMENT_COUNT ()
CONJG (Z)
COS (X)
COSH (X)
COUNT (MASK, DIM, KIND) DIM, KIND
CPU_TIME (TIME)
CSHIFT (ARRAY, SHIFT, DIM) DIM
DATE_AND_TIME (DATE, TIME, ZONE, VALUES) DATE, TIME, ZONE, VALUES
DBLE (A)
DIGITS (X)
DIM (X, Y)
DOT_PRODUCT (VECTOR_A, VECTOR_B)
DPROD (X, Y)

516 Chapter 13

EOSHIFT (ARRAY, SHIFT, BOUNDARY, DIM) BOUNDARY, DIM
EPSILON (X)
EXP (X)
EXPONENT (X)
EXTENDS_TYPE_OF (A, MOLD)
FLOOR (A, KIND) KIND
FRACTION (X)
GET_COMMAND (COMMAND, LENGTH, STATUS) COMMAND, LENGTH,

STATUS
GET_COMMAND_ARGUMENT
(NUMBER, VALUE, LENGTH, STATUS)

VALUE, LENGTH, STATUS

GET_ENVIRONMENT_VARIABLE
(NAME, VALUE, LENGTH, STATUS, TRIM_NAME)

VALUE, LENGTH, STATUS,
TRIM_NAME

HUGE (X)
IACHAR (C, KIND) KIND
IAND (I, J)
IBCLR (I, POS)
IBITS (I, POS, LEN)
IBSET (I, POS)
ICHAR (C, KIND) KIND
IEOR (I, J)
INDEX (STRING, SUBSTRING, BACK, KIND) BACK, KIND
INT (A, KIND) KIND
IOR (I, J)
ISHFT (I, SHIFT)
ISHFTC (I, SHIFT, SIZE) SIZE
IS_IOSTAT_END (I)
IS_IOSTAT_EOR (I)
KIND (X)
LBOUND (ARRAY, DIM, KIND) DIM, KIND
LEN (STRING, KIND) KIND
LEN_TRIM (STRING, KIND) KIND
LGE (STRING_A, STRING_B)
LGT (STRING_A, STRING_B)
LLE (STRING_A, STRING_B)

Table 13-2 (Continued) List of intrinsic procedures and arguments

Procedure and arguments Optional arguments

Intrinsic Procedures and Modules 517

LLT (STRING_A, STRING_B)
LOG (X)
LOG10 (X)
LOGICAL (L, KIND) KIND
MATMUL (MATRIX_A, MATRIX_B)
MAX (A1, A2, A3, ...) A3, ...
MAXEXPONENT (X)
MAXLOC (ARRAY, DIM, MASK, KIND) MASK, KIND
MAXLOC (ARRAY, MASK, KIND) MASK, KIND
MAXVAL (ARRAY, DIM, MASK) MASK
MAXVAL (ARRAY, MASK) MASK
MERGE (TSOURCE, FSOURCE, MASK)
MIN (A1, A2, A3, ...) A3, ...
MINEXPONENT (X)
MINLOC (ARRAY, DIM, MASK, KIND) MASK, KIND
MINLOC (ARRAY, MASK, KIND) MASK, KIND
MINVAL (ARRAY, DIM, MASK) MASK
MINVAL (ARRAY, MASK) MASK
MOD (A, P)
MODULO (A, P)
MOVE_ALLOC (FROM, TO)
MVBITS (FROM, FROMPOS, LEN, TO, TOPOS)
NEAREST (X, S)
NEW_LINE (A)
NINT (A, KIND) KIND
NOT (I)
NULL (MOLD) MOLD
PACK (ARRAY, MASK, VECTOR) VECTOR
PRECISION (X)
PRESENT (A)
PRODUCT (ARRAY, DIM, MASK) MASK
PRODUCT (ARRAY, MASK) MASK
RADIX (X)
RANDOM_NUMBER (HARVEST)

Table 13-2 (Continued) List of intrinsic procedures and arguments

Procedure and arguments Optional arguments

518 Chapter 13

RANDOM_SEED (SIZE, PUT, GET) SIZE, PUT, GET
RANGE (X)
REAL (A, KIND) KIND
REPEAT (STRING, NCOPIES)
RESHAPE (SOURCE, SHAPE, PAD, ORDER) PAD, ORDER
RRSPACING (X)
SAME_TYPE_AS (A, B)
SCALE (X, I)
SCAN (STRING, SET, BACK, KIND) BACK, KIND
SELECTED_CHAR_KIND (NAME)
SELECTED_INT_KIND (R)
SELECTED_REAL_KIND (P, R) P, R
SET_EXPONENT (X, I)
SHAPE (SOURCE, KIND) KIND
SIGN (A, B)
SIN (X)
SINH (X)
SIZE (ARRAY, DIM, KIND) DIM, KIND
SPACING (X)
SPREAD (SOURCE, DIM, NCOPIES)
SQRT (X)
SUM (ARRAY, DIM, MASK) MASK
SUM (ARRAY, MASK) MASK
SYSTEM_CLOCK (COUNT, COUNT_RATE, COUNT_MAX) COUNT, COUNT_RATE,

COUNT_MAX
TAN (X)
TANH (X)
TINY (X)
TRANSFER (SOURCE, MOLD, SIZE) SIZE
TRANSPOSE (MATRIX)
TRIM (STRING)
UBOUND (ARRAY, DIM, KIND) DIM, KIND
UNPACK (VECTOR, MASK, FIELD)
VERIFY (STRING, SET, BACK, KIND) BACK, KIND

Table 13-2 (Continued) List of intrinsic procedures and arguments

Procedure and arguments Optional arguments

Intrinsic Procedures and Modules 519

IEEE_EXCEPTIONS, IEEE_ARITHMETIC, and IEEE_FEATURES. These intrinsic mod-
ules define module procedures, derived types, and named constants. All of the module
functions of these intrinsic modules are pure, but only some of the module subroutines
of these modules are pure. The Fortran environment module ISO_FORTRAN_ENV is
described in this chapter whereas the IEEE modules and interoperability module are
described in 14 and 15, respectively.

13.6.1 The Fortran Environment Module

The Fortran environment module ISO_FORTRAN_ENV specifies named constants
only. The named constants are all of default integer type; their values specify quantities
related to the Fortran environment. The names and meanings of the named constants
are provided in Table 13-3.

The values of the INPUT_UNIT, OUTPUT_UNIT, and ERROR_UNIT may be nega-
tive, but will not be −1. The value of ERROR_UNIT may be equal to the value of
OUTPUT_UNIT. The values of IOSTAT_END and IOSTAT_EOR must be unequal and
negative.

Table 13-3 The ISO_FORTRAN_ENV Module Constants

Name Value
INPUT_UNIT The unit number of the processor-dependent

preconnected external unit identified by an asterisk in a
READ statement (9.1.6.2)

OUTPUT_UNIT The unit number of the processor-dependent
preconnected external unit identified by an asterisk in a
WRITE statement (9.1.6.2)

ERROR_UNIT The unit number of the processor-dependent
preconnected external unit used for error reporting

NUMERIC_STORAGE_SIZE The number of bits in a numeric storage unit (4.3.1.1)
CHARACTER_STORAGE_SIZE The number of bits in a character storage unit (4.3.5.1)
FILE_STORAGE_SIZE The number of bits in a file storage unit (9.1)
IOSTAT_END The value of the IOSTAT specifier (9.2.3) in an input

statement when an end-of-file condition occurs and no
error condition occurs (9.6)

IOSTAT_EOR The value of the IOSTAT specifier (9.2.3) in an input
statement when an end-of-record condition occurs and no
error condition occurs (9.6)

14 IEEE Exceptions and Arithmetic

• Three IEEE Intrinsic Modules are defined by the Fortran standard to support the
IEEE-style arithmetic and exceptions. Which intrinsic modules are provided is pro-
cessor-dependent; whether some or all of the IEEE features of a particular module
are provided is also processor-dependent. The three intrinsic modules
IEEE_FEATURES, IEEE_ARITHMETIC, and IEEE_EXCEPTIONS define the set of
specific IEEE features, arithmetic, modes, and exceptions that are supported by the
processor. None of the procedures in intrinsic modules are intrinsic procedures.

• IEEE Arithmetic is a term used by the Fortran standard to refer to the subset of the
features described in the IEEE international standard for floating-point arithmetic
[13] that is supported by the IEEE intrinsic modules. For a particular implementa-
tion, these modules determine the kinds of the real (or complex) data type that can
be used and the details of that support. In effect, the three modules define the term
“IEEE Arithmetic” for a particular implementation. The Fortran standard specifies a
minimum subset of the IEEE specifications that must be supported before the pro-
cessor can claim it is “supporting IEEE arithmetic”.

• An IEEE Exception is one of five anomalies that can occur during a floating-point
operation. These exceptions are overflow, divide-by-zero, invalid, underflow, and
inexact.

• An IEEE Exceptional Value is either a denormalized number, one of the infinities,
or one of the NaN (Not-a-Number) values. These values are typically the result of
an arithmetic operation that is anomalous or exceptional.

The three IEEE intrinsic modules supply derived types, named constants, and module
procedures which support the IEEE exceptions, arithmetic, and procedures, described
in [13]. The features of these modules have been provided in Fortran to support the
programming of computation that requires detailed control of the arithmetic and care-
ful response to exceptions. With these IEEE features, robust, reliable, accurate, and yet
very efficient algorithms can be implemented in a straightforward way.

The features are defined to be consistent with the IEEE floating-point binary stan-
dard [13]. This standard specifies the format for floating-point numbers in arithmetic
units and storage, the accuracy of the primary arithmetic operations, the arithmetic ex-
ceptions that can be raised by these operations, and the rounding, underflow, and halt-
ing modes that processors must follow to be compliant.

On the other hand, the IEEE features supported by these three intrinsic modules
may be difficult or nearly impossible to implement with sufficient efficiency to satisfy
the requirements of a Fortran implementation on a particular hardware processor.
Consequently, the IEEE modules and the features and details of each module are, in

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_14, © Springer-Verlag London Limited 2009

522 Chapter 14

many cases, optional to the Fortran processor. The possible options are constrained by
the Fortran standard; the intention is to encourage the implementation of as much as
possible of the arithmetic and exceptions support, following the intent and spirit of the
IEEE floating-point standards to an extent that is feasible and reasonable. This is why
these Fortran intrinsic modules are said to support the IEEE style of floating-point
arithmetic and exceptions rather than to require IEEE arithmetic and exceptions.

However, these modules, and thus the Fortran standard, also permit a conforming
processor to provide non-IEEE kinds of real and complex type that might provide sup-
port for only some of these features. For example, a processor might support most of
the IEEE features for a particular kind but not support the IEEE square root function or
the divide exception for that kind, say K. It would be nonconforming for the IEEE
module procedure IEEE_SUPPORT_DATATYPE (1.0_K) to return true when it does not
meet all the requirements.

14.1 Terms and Concepts

The following terms and concepts apply to each kind of real supported as an IEEE real.
The particular forms or representations of the term or concept depend on the kind of
real being used.

Not-a-Number (NaN) is a value that has no numerical significance. It usually is the re-
sult of an operation where no mathematical result is appropriate. For example, the re-
sult of 0.0/0.0 or 0.0 raised to the power 0.0 has no mathematical value and thus results
in a NaN. A NaN may also be generated by other means, such as by the procedure
IEEE_VALUE. A NaN is either a signaling NaN or a quiet NaN. A signaling NaN sig-
nals an invalid operation whenever it is used as an operand; a quiet NaN propagates
through almost every arithmetic operation without signaling an exception.

A normal number is a value that is neither a denormalized number, an infinity, nor a
NaN. Numbers, such as +0.0, -0.0, 1.0, and -1.0, are examples of normal numbers. A
number such as 3.1 is a normal number, even though it cannot be represented exactly
in binary IEEE format.

A signed zero is an IEEE real value that behaves like zero in all but a few special cases.
Some of the special cases include division of a nonzero finite divisor by a signed zero,
the intrinsic functions SIGN, ATAN2, and SQRT, and the IEEE module function
IEEE_COPY_SIGN.

Infinity (Inf) represents the mathematical concept of infinity, but also represents a val-
ue so large in magnitude that it cannot be represented as a precise processor value. It
can be signed. It is created by overflow, a division of a nonzero finite value by a zero
value, or the module function IEEE_VALUE. In relational comparisons with real types,
positive infinity tests larger than all other real values and negative infinity tests smaller
than all real values. An arithmetic operation on infinity is considered to return an exact
value and raises no exceptions, except for those operations that are invalid such as in-
finity minus infinity.

IEEE Exceptions and Arithmetic 523

Huge (huge) is the largest positive representable number in magnitude. The notation
+huge is the largest positive representable value and, because the IEEE representation
is a sign-magnitude representation, -huge is the smallest negative representable value.
Because the value of the intrinsic function HUGE is based on formulas related to a
“best-fit” model for processor numbers of a particular real kind, the IEEE value +huge
might not be the same value as the value returned by the intrinsic HUGE. However, for
IEEE kinds of real, they are likely the same values.

Tiny (tiny) is the smallest magnitude positive number representable with full preci-
sion. The notation +tiny is the smallest positive representable value with full precision
and -tiny is the smallest magnitude negative representable value with full precision.
Because the value returned by the intrinsic function TINY is based on formulas related
to a “best-fit” model for all (small and large) real processor numbers of a particular
real kind, the value +tiny might not be the same value as the value returned by the in-
trinsic TINY. However, for IEEE kinds of real, they are likely to the same values.

A denormalized number (denorm) is a number between +0.0 and +tiny or -0.0 and
-tiny that cannot be represented with full precision of the arithmetic. The smallest
denormalized number in magnitude has one bit of precision and the largest
denormalized number has one bit of precision less than +tiny. The notation +denorm
or -denorm is used to denote any positive or negative nonzero denormalized number,
respectively.

An exceptional value is a nonnormal number, that is, an infinity (either sign), a denor-
malized value (either sign), or a NaN (either signaling or quiet). An infinity can be cre-
ated by any operation that overflows or by division of a nonzero value by zero. A
denormalized value can be created by any arithmetic operation when the underflow
mode is gradual. A NaN is created by an invalid operation.

Divide by zero is an exception that occurs when a nonzero dividend is divided by a
zero divisor. The result of such a division is a correctly signed infinity.

Underflow is an exception that occurs when the result of an operation is a number
smaller in magnitude than the smallest nonzero number that has full precision but is
not exactly zero. That is, the result is a nonzero number strictly between -tiny and +ti-
ny.

Overflow is an exception that occurs when the result of an operation is a number so
large in magnitude that it is outside the range of representable numbers. That is, the
result is a number that exceeds +huge or is less than -huge.

Inexact is an exception that occurs when the exact result of an operation has to have its
precision reduced (or rounded) because the exact result is too precise to be represented
as a real value. In particular, the inexact exception is raised if the rounded result over-
flows, or if it underflows and the exact result is not equal to the returned result. As
well as floating-point operations, this flag may be raised when a real is converted to an
integer and is too large to be represented in the particular kind of integer.

524 Chapter 14

Invalid is an exception that occurs when an arithmetic operation is invalid. An opera-
tion is invalid when there is no mathematically meaningful value to provide for the re-
sult. Invalid operations include:

• zero divided by zero or infinity divided by infinity;

• zero times infinity;

• magnitude subtraction where both operands are infinite (for example, Inf−Inf);

• the square root of a value that is less than zero

• the IEEE remainder operation where the divisor is zero or the dividend is infinite;

• an arithmetic operation (except exponentiation) with a signaling NaN as an oper-
and; or

• IEEE comparisons, if they are supported.

An IEEE Mode is a state of the arithmetic processor; there is an IEEE mode that speci-
fies how rounding is performed, how underflow is handled, or the behavior or re-
sponses when an exception is handled. Modes are described in 14.2.8. Although other
modes in the processor are possible, such as input/output modes, the word “mode” in
the remainder of this chapter refers to an IEEE mode.

The concept “Supporting IEEE Arithmetic” means at least the following subset of fea-
tures of the IEEE standard [13]:

• the normalized numbers must be those of the IEEE floating-point formats;

• the operations of addition, subtraction, and multiplication with at least one of the
rounding modes must be supported;

• the functions IEEE remainder, copy sign, scaling by a power of the exponent, ex-
tracting the exponent, next-after value, and unordered must be provided (via the
function interfaces described in later sections);

• the inquiry function IEEE_SUPPORT_DIVIDE must be provided; and

• the addition, subtraction, and multiplication operations with normalized operands
produce the results specified by the IEEE standard when the result is also normal-
ized and within range.

All the features that constitute the concept “supporting IEEE arithmetic” must be
available for a particular kind of real X for the IEEE module inquiry function
IEEE_SUPPORT_DATATYPE (X) to return true. Many of the IEEE module procedures
must not be invoked with arguments for which IEEE arithmetic is not supported. In all
cases, this is a program requirement in the same sense that the intrinsic function SQRT
must not be invoked with a negative argument whose kind of real does not support
IEEE arithmetic; the processor is not required diagnose such a violation in a program.

Note that the support for NaNs and relational operations are not required in the
definition of supporting IEEE arithmetic but the unordered function which indicates

... ...

IEEE Exceptions and Arithmetic 525

whether operands are ordered is required. If a processor’s support for NaNs includes
the use of NaNs as arguments for the unordered function and IEEE exceptions are sup-
ported, but IEEE comparisons are not supported, then the IEEE comparisons can be
implemented by the programmer using procedures. Note that the definition of sup-
porting IEEE NaNs below requires IEEE comparisons to be supported as well, specifi-
cally with respect to NaNs as operands of relational operators (14.2.4).

Some other IEEE features are optional but support within the IEEE modules is pro-
vided for them if they are available; these are:

• denormalized numbers,

• infinities,

• NaNs,

• operations on these special values,

• gradual underflow,

• exceptional results for specific operations such as divide by zero, and

• the availability of an IEEE-conforming intrinsic SQRT function.

These features are, in a sense, extensions to the required features, encouraged by
the specification of the IEEE intrinsic modules and may be partially or completely im-
plemented by the processor. An example of partial support is the availability of an in-
quiry module function that detects whether the intrinsic SQRT function satisfies the
accuracy and functionality of the square root operation described in the IEEE standard
[13]. In addition, some of the IEEE module procedures have restrictions not specified in
the IEEE standard, mainly because some hardware implementations on which Fortran
is used cannot support these operations; the expectation is that on most current and fu-
ture hardware these restrictions are unnecessary; it is likely that most implementations
of the IEEE modules will remove these restrictions.

Other features specified in the IEEE standard [13] are not mentioned by the current
Fortran standard, for example IEEE traps and trap handlers. However, the features
specified by the Fortran standard and the IEEE intrinsic modules do not preclude these
features being implemented by a processor as an extension.

The concepts “Supporting IEEE Denormalized Numbers, Infinities, or NaNs” means
supporting the primary arithmetic (all except exponentiation) operations, relational
conditions, and assignments with IEEE denormalized numbers, IEEE infinities, and
IEEE NaNs, respectively. That is, support for the generation of these values and their
use as operands in all arithmetic operations and arguments to all procedures, and their
assignments to variables. In addition, the treatment of these numbers by the intrinsic
functions and the IEEE module functions must be consistent with the IEEE standard
[13]. If a primary arithmetic operation or intrinsic procedure produces a denormalized
value, the underflow and inexact exceptions are signaled if the value is not exact or no
exception is signaled if the result is exact. If a primary arithmetic operation or intrinsic
function produces a denormalized result and the result is not exact, the underflow and
inexact exceptions must be raised.

526 Chapter 14

The concept “Supporting IEEE Divide” means supporting a division operation that re-
turns the correctly rounded result, depending on the rounding mode, and that raises
the divide-by-zero signal and returns a correctly signed infinity when a finite nonzero
value is divided by zero.

The concept “Supporting IEEE Square Root” means supporting a square root function
that returns the correctly rounded result for nonnegative operands, as specified by the
rounding mode, that it returns a positive result for all positive operands (including the
result +0.0 for +0.0 as the argument and +Inf result for +Inf as the argument), that it
returns −0.0 for an operand of -0.0, and that it returns a NaN for any other negative
operand with the invalid exception flag signaled. The only other exception that can be
raised is inexact if the rounded result is not the exact square root.

The concept “Supporting IEEE Remainder Operation” means supporting the remain-
der operation defined as the exact remainder of x divided by y, provided y is nonzero
and x is finite, and otherwise a NaN. When the remainder is zero, it has the sign of x.

The concept “Supporting IEEE Formatted Input and Output” means supporting the
conversion of a value between an internal IEEE binary floating-point representation
and a decimal formatted value as specified by [13]. This means that correctly rounded
results are required for numbers with specific ranges for all formatted input/output
rounding modes (9.2.4, 10.9.7), and for numbers outside these ranges, the error in the
result for nearest rounding mode is at most 0.47 units in the last place, and in all other
rounding modes, the error is at most 1.47 units in the last place. The rounding modes
set by the IEEE module procedure IEEE_SET_ROUNDING_ MODE have no effect on
the input/output conversion modes; they only control rounding during an arithmetic
operation. It should be noted that unless the function IEEE_SUPPORT_IO is true, the
rounding mode NEAREST might not round the same way when the value is equidis-
tant between two representable or decimal numbers; see the input/output rounding
mode NEAREST in 9.2.4.

The concept “Signaling an Exception or Raising an Exception Flag” refers to the pro-
cess of informing a program that an exception has occurred. When an exception such
as overflow occurs, the overflow exception is raised. This typically is indicated in some
hardware register accessible by special instructions. To detect such an event in a pro-
gram, an IEEE intrinsic module procedure is referenced which sets a logical variable to
true; this is also referred to as “raising an exception flag”. From the software point of
view, the exception is not raised until it is tested by the IEEE module procedure; from
the hardware point of view, the exception is usually raised within a few cycles of the
occurrence of the exception.

The concept “Supporting the IEEE International Standard” refers to support for a
subset of features of the IEEE binary floating-point standard [13] defined by the three
IEEE intrinsic modules. The module procedure IEEE_SUPPORT_STANDARD inquiries
whether nine specific features are supported—see the description of IEEE_SUPPORT_
STANDARD and Note 5 in Table 14-9.

IEEE Exceptions and Arithmetic 527

14.2 IEEE Arithmetic and Exceptions—an Introduction

IEEE arithmetic and exceptions are a collection of the following major items:

• a set of formats (how a floating-point number is represented),

• a set of requirements for the accuracy of the basic floating-point arithmetic opera-
tions,

• a specification of supported rounding modes for the basic arithmetic operations,

• a set of exceptions that must be recognized, and

• a prescription on how these exceptions can be handled.

Hardware that is compliant with the IEEE standards has been available to varying
degrees for nearly 20 years. Some support for IEEE arithmetic was added in Fortran 95
and more complete support is specified in Fortran 2003.

Before describing the features of the Fortran IEEE intrinsic modules, consider the
basic problem that is presented by floating-point arithmetic. To support a wide range
of scientific and engineering computations, large number ranges must be provided, say
as large in magnitude as 10300 and as small in magnitude as 10−300. In order to handle
numbers of this size, either 600-700 decimal digits (or 1800-2100 binary digits) must be
maintained for all computations (which represents a large cost), or some form of com-
pact representation is needed, such as one that logically partitions a number into parts
that contain the exponent to some base, the fraction, and the sign of the number.

Because the range of numbers that can be represented is finite, one has to expect
and plan for handling the situation when a result of some computation exceeds the
representable range. When a result exceeds the range, an overflow (the result is too
large in magnitude) or an underflow (the result is too small in magnitude) occurs. Sim-
ilarly, because one may require more digits than are available to represent a result ex-
actly, one has to expect the result to be rounded (shortened) to fit into the available
space; when this shortening occurs, the result is said to be inexact and an inexact ex-
ception is raised. This rounding or shortening of the result is a consequence of the lim-
ited precision of the representation. Thus, when a range or precision limit is exceeded,
a floating-point exception occurs, which, in these cases, is an overflow, underflow or
inexact exception.

The IEEE standard specifies what are the limits for each floating-point container
(storage word or intermediate storage), what happens when the limits are exceeded,
and what tools (functions and modes) are available to make these limits more accept-
able and to diagnose unavoidable arithmetic problems in computations. That is, the
IEEE standard allows programmers to perform robust, efficient, and accurate computa-
tions where possible, despite these limits.

When the processor raises an exception, the programmer has the option of having
the program halt or continue execution. This capability is one of the computational
modes supported by the IEEE modules and is introduced in 14.2.8. However, the For-
tran standard does not specify traps and procedures to handle exceptions as described
in the IEEE standards.

528 Chapter 14

14.2.1 Floating-Point Formats

To understand the details of IEEE arithmetic and exceptions, consider first the repre-
sentation of IEEE floating-point numbers for single precision values, often referred to
as the IEEE 32-bit single precision format. A word of 32 bits is divided into 3 parts; a
sign, an exponent part, and a fractional part. This is shown in Figure 14-1.

The sign field is 1 bit wide and is either a 0 or 1, indicating a positive or negative
number, respectively. The exponent field is an unsigned integer of 8 bits, capable of
storing integers from 0 to 255. This field represents the exponent as a power of 2, but is
stored with a bias of 127; that is, if the true exponent of the number is 0 (that is, a num-
ber such as 20), it is stored as the integer 127 or a binary 0 followed by 7 binary 1’s. The
stored value in the exponent field is called the biased exponent. The remaining 23 bits
hold the fractional part with the binary point at the extreme left of the fraction field
(before the first binary bit of the fractional part).

But there is one more subtlety. Floating-point numbers are either zero or nonzero.
For all nonzero numbers, the fractional part must be nonzero and therefore has a first
nonzero bit (which of course is always 1 because there is no other nonzero bit value).
The representation is normalized (that is, the exponent adjusted) so that the first non-
zero bit is the first bit before the binary point and the remaining bits represent the frac-
tion. But now all normalized numbers are 1 in this first bit so why store it? Let it be
implied—it is always 1. Thus, while there are physically 23 fractional binary bits, they
represent a 24-bit mantissa; the first bit is always 1 and is not physically stored. Thus,
a floating-point nonzero number is represented as: s x 2e x (1 + f) where f is the faction-
al part, e is the exponent, called the unbiased exponent, and s is the sign. Thus, the
number 1.0 is represented as the bit pattern

0 01111111 000000000000000000000000

where the sign is 0 (positive), the biased exponent is 127 + 0 (that is, it represents 20)
and the fraction is zero with an implied bit representing a binary 1 digit before the bi-
nary point. (The blanks in the above display separate the sign part, exponent part, and
fractional part from one another.) The number 2 is represented by the bit pattern

0 10000000 000000000000000000000000

and the number 2 + 2−22 is represented by the bit pattern

Figure 14-1 Format for a 32-bit IEEE single precision word

sign
 biased

 1 2 9 32

Bit No.

 fractionexponent

10

IEEE Exceptions and Arithmetic 529

0 10000000 000000000000000000000001

Notice that the biased exponent exceeds 127 for all numbers 2 or larger in magnitude.
Because of the existence of the implied bit which is always 1, the value zero is rep-

resented by a reserved exponent, which is selected to be zero, with all bits in the frac-
tion set to 0. Thus, zero is represented as:

0 00000000 000000000000000000000000

And, of course, there can be a negative zero now, namely:

1 00000000 000000000000000000000000

Denormalized numbers, if they are allowed, are represented with the same biased
exponent as zero, namely 00000000, but have at least one binary 1 digit in the fractional
part. They may have an unbiased exponent that is in the range [−149, −127], depending
on the value of the denormalized number. For example:

0 00000000 100000000000000000000000

is a denormalized number that has the value tiny/2.0 or 2−127.

14.2.2 Floating-Point Exceptions

Before going on to the other special values, consider the anomalous results that can oc-
cur when computing with a format such as this. The numbers that are representable by
such a format are depicted as vertical bars or tick marks in Figure 14-2:

Notice that:

1. At the extreme left there is the region minus infinity (-Inf); -Inf denotes any num-
ber so large in magnitude that it cannot be represented (there is no room in the fi-
nite representation and the limits of the representation are exceeded; that is, the
exponent is too large, greater than 127 in the 32-bit format). In the above 32-bit for-
mat, -Inf is represented as a value with a negative sign, the largest biased exponent
possible and a zero fraction—that is, a number with nine initial 1 bits followed by
twenty-three 0 bits as in:

1 1111111 00000000000000000000000.

Figure 14-2 Representable numbers (ticks) and gaps in the floating-point representation

–2 –1 –0 +1

+tiny

+0
+denorm–denorm

–tiny–huge

–Inf

+2
+huge

+Inf

530 Chapter 14

2. Towards the left side, there are the negative numbers. Towards the middle of the
number system, the numbers are smaller in magnitude and closer together.

3. At the left of the middle, there is a gap, denoted -denorm, between the smallest
negative normalized number -tiny and -0—this is the location where the negative
denormalized numbers reside. That is, the numbers that are negative and are so
small in magnitude that the first 1 bit cannot be placed in the first (implied) posi-
tion and still have an unbiased exponent in the range [−126, 127].

4. Similarly, to the right of positive zero and the smallest positive normalized number
+tiny, there is a gap, denoted +denorm—this is the location where the positive de-
normalized numbers lie.

5. Similarly, to the right of +tiny, the numbers are distributed all the way to infinity,
with the numbers near zero closer together, and the numbers spreading apart as
they get larger.

6. At the extreme right, there is the region plus infinity (+Inf) with a large gap be-
tween the largest positive number, designated +huge, and +Inf.

7. NaN does not appear in this figure because it is not a number.

It should be noted here that the ticks in Figure 14-2 are representable numbers in
the 32-bit IEEE format. Model numbers, as described in 13.2.3, may or may not he the
same as representable numbers, and in general are not the same as the IEEE represent-
able numbers. For the IEEE 32-bit and 64-bit formats, this model can be made to in-
clude all of the IEEE normal numbers, except negative zero, but there may be some
IEEE representable numbers, namely denormalized numbers, that are not model num-
bers. As pointed out in 14.1, huge and tiny can be the same numbers that are returned
by the intrinsic HUGE and TINY (and will likely be) but are not required to be the
same in a particular implementation.

Now we are able to describe in detail what exceptions are. Each of the tick marks
in the above figure indicates a representable number, that is, a number that can be ex-
actly represented by the format. What happens when the result of a computation cre-
ates a value in between these tick marks, which is certainly possible, for example, 1/10?
Because of the finite representation, the processor cannot represent such a value and
when the arithmetic unit tries to create and store such a value, it creates what is called
an exception. There are five types of exceptions; four exceptions correspond to the four
types of gaps in the above figure and the fifth exception corresponds to a mathemati-
cally invalid operation.

1. If the result of an operation has no mathematical value (such as 0.0/0.0 or 0.00.0,

or Inf-Inf), an invalid exception occurs—there is no legitimate value to use. If the
operation is to complete without halting, the processor will create a NaN and raise
the invalid exception.

IEEE Exceptions and Arithmetic 531

2. If the generated result is so large in magnitude that it is to the right of +huge or the
left of -huge, an overflow exception occurs—that is, there is not enough space in
the exponent part of the format to represent a number with this large an exponent.
Such a situation could be generated, for example, by the computation huge*huge,
which generates a result which is too large to represent. When such an extreme re-
sult is generated, the overflow exception is raised. If the operation is to complete
without halting, the processor will create a value of +Inf or -Inf, depending on the
operator and the signs of its operands.

3. If the generated result is the result of a division of a nonzero value by zero, the re-
sult is so large again that it cannot be presented. However, in this case of a large re-
sult, a divide-by-zero exception is raised rather than an overflow exception and the
result created is either positive or negative infinity, depending on the signs of the
numerator and denominator.

4. If the generated result is between -tiny and -0 or between +0 and +tiny (but non-
zero), again the number cannot be represented. This time, an underflow exception
is raised. Such results may be set to a zero of the appropriate sign; this is called
abrupt underflow (or the abrupt underflow mode). Alternatively, such results can
be represented as denormalized numbers, still raising underflow, provided the
processor supports such numbers; this is called gradual underflow (or the gradual
underflow mode).

5. If the generated result is within range but it has a value that causes it to be between
the ticks in Figure 14-2 (for example, the computed result is 1.0+2-50 and the two
nearest neighbors or representable numbers are 1.0 and 1.0+2−23), an inexact ex-
ception occurs; that is, because the space to store the fraction is limited to 23 bits in
the IEEE single precision format, the number 1.0+2-50 cannot be represented—it
needs 50 bits in the fraction to represent it—so that the number has to be rounded,
causing an inexact exception. The inexact exception frequently occurs, because it
indicates that a rounding error has occurred in order to store the floating-point re-
sult; it is ignored in most computations.

Notice that the above discussion suggests that exceptions occur mostly in cases
where the operands of arithmetic operations are normal numbers. Indeed, that is the
case; the overflow, underflow, divide-by-zero, and inexact exceptions do not occur
when one of the operands is an infinity or a NaN. However, the invalid exception will
occur when, for instance, both operands are infinities in a division or a true subtrac-
tion. See the IEEE standard [13] for full description of these cases.

Exceptions sound ominous, and certainly were with early architectures. Modern
architectures, in many cases, raise these exceptions without skipping a beat (wasting a
cycle) but because of parallel and pipelined functional units, cannot stop the computa-
tion precisely at the point where the exception occurred. To do so would be prohibi-
tively expensive in terms of cycles used, for example, to back up and redo parts of the
computation that had no exception but had to be interrupted. In addition, whereas the
initial expectation is that exceptions are rare, the inexact exception probably occurs
more often than no exception because it essentially indicates a rounding error has oc-

532 Chapter 14

curred. Thus, because of the cost of interruption and the high frequency of occurrence
of at least some of these exceptions, the approach taken by most modern chips is to
record their occurrence in a flag and let the computation proceed uninterrupted until
the processor, program, and programmer are ready to handle them. This is the pre-
ferred approach because it avoids very time-consuming interrupts to the processor. It is
encouraged by the IEEE standard. The Fortran intrinsic modules specified below sup-
port this approach of delaying the fix-up action upon the occurrence of an exception to
a convenient point in the program and not when and where it happens.

The IEEE standard [13] specifies other formats for representing numbers. The other
one that is of particular importance in Fortran is the 64-bit IEEE format which is com-
monly used for the double precision real type. It has all of the same properties as the
32-bit format, except that the biased exponent is 11 bits rather than 8 bits and the frac-
tional part is 52 bits rather than 23 bits. NaNs, infinities, signed zeros, normalized
numbers, and denormalized numbers are representable, but there are considerably
more NaNs, normalized, and denormalized numbers than in the 32-bit format.

14.2.3 IEEE Arithmetic

Now, with an understanding of the formats and exceptions defined by the IEEE stan-
dard, we can now specify what the arithmetic must do. To be fully compliant with the
IEEE standards, the result of every operation must be defined as follows:

1. If the operands for an operation are such that the mathematical result is not de-
fined (e.g., 0.0/0.0), the invalid exception must be raised and the result is a NaN.

2. If the result is defined mathematically but cannot be represented because it is too
large in magnitude, the overflow exception must be raised and the result is an in-
finity of the appropriate sign.

3. If the result is defined mathematically but cannot be represented because it is too
small in magnitude, either a denormalized or zero result is returned with the un-
derflow exception raised. What the processor does depends on the magnitude of
the result and on the floating-point status (14.2.7) flags of the processor which can
be set or retrieved using certain module procedures described in 14.3.

4. If the result is valid and within range and if the mathematical result is a represent-
able value, that value becomes the result with no exception raised. If the mathe-
matical result is not representable, a representable result is returned, which is one
of the immediate neighbors to the exact result, and the inexact exception is raised.
Which neighbor is determined by the rounding mode in effect at the time of the
operation. For example, on an IEEE machine using the 32-bit format, if the mathe-
matical result is 1.0+2-40, the returned result is 1.0 if the rounding mode is round
to nearest, round down, or round towards zero and is 1.0+2-23 if the rounding
mode is round up.

IEEE Exceptions and Arithmetic 533

14.2.4 Quiet and Signaling NaNs

A NaN is not a number and may be generated when an invalid operation is performed.
There are two kinds of NaNs: quiet ones and signaling ones.

For a processor that supports NaNs and for an operation that returns a floating-
point result, a quiet NaN propagates through the operation without raising an invalid
exception. A signaling NaN, on the other hand in the same situation, signals an invalid
exception when used; the result of the operation is a quiet NaN. For relational opera-
tions, the result is not real. For the relational operators, if neither operand is a NaN, no
exception is signaled; if either one is a NaN (signaling or quiet) and the relational op-
erator is <, <=, >, or >=, an invalid exception is raised. If either operand of a relational
operator is a NaN, the result is false for all relational operators except /= and true for
/=; the result is false even for equal comparison of the same NaN.

14.2.5 The Programming Approach for the IEEE Standard

The IEEE approach encourages what many feel is an unnatural and rather special pro-
gramming approach to handling exceptions, namely, let the exceptions occur in large
grain computations, and once the computation is complete, inquire about what excep-
tions occurred and, depending on what occurred, rescale, or use a different algorithm
to avoid the erroneous computation, or abort the computation. Using the IEEE support
provided by this standard, robust and reliable software can be written to attain very ef-
ficient code in the presence of occasionally badly scaled data. The example in Figure
14-4 illustrates this approach.

14.2.6 What If the Processor Is Not Compliant with the IEEE Standard?

A Fortran processor that is running on hardware that is fully compliant with one of the
IEEE floating-point standards is expected to, and probably will, provide the IEEE mod-
ules described in 14.3. However, because some current hardware is partially compliant
with the IEEE standards or because insisting on full compliance incurs unacceptable
inefficiencies, it is expected that some Fortran processors will support selected features
of the IEEE modules.

What features are actually supported is processor dependent, but to conform with
the Fortran standard, the parts of the IEEE modules that are actually implemented are
partially constrained (14.6). For example, if the named constant IEEE_DATATYPE is ac-
cessible from the IEEE_FEATURES module, the processor must support IEEE arith-
metic (as defined in 14.1) for at least one kind of real; other specifications in the Fortran
standard require such support for the complex data type of the same kind. As a second
example, if either of the modules IEEE_EXCEPTIONS or IEEE_ARITHMETIC is acces-
sible, the overflow and divide-by-zero exceptions for all kinds of real and complex
data types must be supported. This accessibility approach means that at least a well
written program will generate a compile time error if it tries to use an unsupported
feature and will not have undetected run-time errors because an IEEE feature is not
supported.

534 Chapter 14

14.2.7 The Processor’s Floating-Point Status

The processor’s floating-point status is represented by the values of the supported ex-
ception flags and modes of the processor. Module subroutines are provided to inquire
about the floating-point status (IEEE_GET_STATUS) and to set the status to specific
values and modes (IEEE_SET_STATUS). Objects with values representing the floating-
point status are of the private type IEEE_STATUS_TYPE.

14.2.8 The Modes of the Floating-Point Processor

There are three processor features that have associated modes, provided the processor
can support them.

For the arithmetic rounding feature, there is the mode that determines what round-
ing algorithm is used when an inexact exception is raised; the possible rounding
modes are round to nearest, round up, round down, and round towards zero.

For the underflow feature, there is the underflow mode; the underflow mode is ei-
ther

• gradual in which case the result of an operation may be a denormalized number
that approximates the result or zero when the result is smaller in magnitude than
the smallest denormalized number, or

• abrupt in which case the result of an underflowed operation is always zero when
an underflow exception occurs.

For exceptions, there is the mode that specifies the processor’s action when an ex-
ception is raised; either the processor halts, aborting the computation, upon the occur-
rence of an exception, or it delivers a result, raises the exception flag, and continues
execution. What “aborting the computation” really means is processor dependent and
unspecified by either the IEEE or Fortran standard.

14.3 Descriptions of the Three Intrinsic Modules

To support IEEE arithmetic and exceptions, Fortran defines three intrinsic modules.
The modules are optional and their presence or absence, as well as the particular mod-
ule entities they define, determines the level of IEEE support on a particular processor.

The first module is the IEEE_FEATURES module; it defines a derived type
IEEE_FEATURES_TYPE and named constants of this type. The named constants are in-
dividually optional and each represents an IEEE feature; for example, the presence of
the named constant IEEE_NAN in this module indicates that the IEEE modules sup-
port IEEE NaNs for at least one kind of real. Table 14-2 lists each named constant and
the IEEE feature it represents.

The recommended practice is to provide a USE statement with the ONLY option
referring to the named constant for a particular feature that is desired; used in this
way, the USE statement acts like a compiler command line switch, accessing only the
IEEE feature(s) requested, and producing a diagnostic if the requested feature is not
supported. In this case, the compiler is expected to create efficient code that imple-

IEEE Exceptions and Arithmetic 535

ments only the features specified by the named constants and it need not be cognizant
of the other features.

Two other intrinsic modules IEEE_EXCEPTIONS and IEEE_ARITHMETIC define
the module procedures, named constants, and derived types that give detailed control
over the features selected from the IEEE_FEATURES intrinsic module. These modules
are described in detail in 14.3.2 and 14.3.3, respectively. The chapter concludes with the
discussion of some sample Fortran code illustrating the use of the IEEE arithmetic and
exception features.

The module procedures in the modules IEEE_EXCEPTIONS and IEEE_
ARITHMETIC have dummy arguments named CLASS, FLAG, FLAG_VALUE,
GRADUAL, HALTING, I, P, R, ROUND_VALUE, STATUS_VALUE, X, and Y; in this
collection of procedures, these arguments are used consistently and have essentially
the same requirements in all procedures. Their common properties are detailed in
Table 14-1.

In fact, although these procedures are not intrinsic procedures (that is, there are
made accessible only by a USE statement), they are classified as inquiry, transforma-
tional, elemental, nonelemental, functions, subroutines, and pure, and have the general
properties of these classifications of procedures described in 12.7 and 13.1. In particu-
lar, where the module procedure is elemental, the arguments are described as scalars
but, because of the elemental nature of the procedure, these procedures may be called
with array or scalar arguments in conformance with the usual rules for elemental pro-
cedure references (12.7.2). Where an entity is the actual argument of an inquiry func-
tion and is the object being inquired about, the corresponding actual argument need
not have a defined value and may be a scalar or an array. Otherwise, if a module pro-
cedure’s argument has the intent IN attribute, it must have a defined value.

The “optional” argument notation {X} (or {,X}) is used for the functions in Tables
14-4 and 14-9. In these cases, the argument X is not optional in the sense of an OP-
TIONAL argument in 12.6.2 but is a notation to specify the interfaces to two distinct
functions; one function has no argument X and the other has a nonoptional argument
X. The function with no argument X returns a result indicating a property of all kinds
of the real data type and the other function with the argument X returns a result indi-
cating a property of real objects of the specific kind of X. The subtle difference between
an optional argument X and the specification of two functions can best be explained by
considering the following example:

subroutine my_sub(x)
 use ieee_arithmetic
 real, optional :: x
 print *, ieee_support_datatype(x)
 print *, ieee_support_datatype()
end

Because IEEE_SUPPORT_DATATYPE has no optional argument, the two references to
IEEE_SUPPORT_DATATYPE are to two different functions; these references do not de-
pend on whether the actual argument corresponding to the dummy argument X is
present.

536 Chapter 14

Note that the function IEEE_SELECTED_REAL_KIND in Table 14-12 uses the
bracket notation, indicating the arguments are optional in the sense of OPTIONAL ar-
guments defined in 12.6.2.

14.3.1 The Intrinsic Module IEEE_FEATURES

The IEEE_FEATURES module defines a derived type IEEE_FEATURES_TYPE with pri-
vate components and named constants of this type. A particular implementation makes
accessible only those named constants corresponding to the IEEE-style features that it
supports; the set of named constants that are accessible is processor dependent.

Table 14-1 Properties of the actual arguments of the module procedures, specified by name

Argument name Description

CLASS Of type IEEE_CLASS_TYPE with INTENT (IN). It may have any value
of this type. It must conform with its companion argument X.

FLAG Of type IEEE_FLAG_TYPE. It may be a scalar or an array and of
INTENT (INTENT (INTENT (INTENT (INTENT (IN) or INTENT
(OUT). If it is of INTENT (IN) and a scalar, it may have any value of
this type; if it is of INTENT (IN) and an array, each element of the array
may have any value of this type, but no two elements may have the
same value.

FLAG_VALUE Of type default logical. It must conform with its companion argument
FLAG. It has INTENT (OUT) in the subroutine IEEE_GET_FLAG and
INTENT (IN) in the subroutine IEEE_SET_FLAG.

GRADUAL Of type default logical. It must be a scalar. It has INTENT (OUT) in the
subroutine IEEE_GET_UNDERFLOW_MODE and INTENT (IN) in the
subroutine IEEE_SET_UNDERFLOW_MODE.

HALTING Of type default logical. It has INTENT (OUT) in the subroutine
IEEE_GET_HALTING_MODE, and INTENT (IN) in the subroutine
IEEE_SET_HALTING_MODE and inquiry function
IEEE_SUPPORT_HALTING. It must conform with its companion
argument FLAG.

I, P, R Of type integer of any kind with INTENT (IN). I must conform with its
companion argument X. P and R must be scalars.

ROUND_VALUE Of type IEEE_ROUND_TYPE. It must be scalar. It has INTENT (OUT)
for subroutine IEEE_GET_ROUNDING_MODE and INTENT (IN) for
subroutine IEEE_SET_ROUNDING_MODE.

STATUS_VALUE Of type IEEE_STATUS_TYPE. It must be scalar. It has INTENT (OUT)
for subroutine IEEE_GET_STATUS and INTENT (IN) for subroutine
IEEE_SET_STATUS.

X, Y Of type real of any kind. Each is an INTENT (IN) argument.

IEEE Exceptions and Arithmetic 537

Table 14-2 provides the names and meanings of the named constants used to de-
note IEEE features supported by the IEEE modules. These constants may be used to as-
sign values to variables of type IEEE_FEATURES_TYPE, but are intended to be used in
statements such as USE IEEE_FEATURES: ONLY As such, they behave like com-
mand-line switches to specify which IEEE features are expected in the scoping unit
that is being compiled. The intention is that the programmer use the ONLY option on
the USE statement to insure that only the specified features are used. Where a feature
is not supported, the compiler provides a diagnostic or message to this effect.

There are no module procedures defined in the IEEE_FEATURES module. Howev-
er, inquiry module functions in the module IEEE_ARITHMETIC inquire about the ex-
tent of support for many of the IEEE features. For example, if the named constant

Table 14-2 The named constants in the module IEEE_FEATURES

Name1 Meaning, if accessible

IEEE_DATATYPE Specifies support for IEEE arithmetic for at least one kind of
real.

IEEE_DENORMAL Specifies support for IEEE denormalized numbers for at
least one kind of real.

IEEE_DIVIDE Specifies support for IEEE divide operation for at least one
kind of real.

IEEE_HALTING Specifies support for IEEE halting when an exception is
signaled for at least one kind of real and at least one
exception flag.

IEEE_INEXACT_FLAG Specifies support for the IEEE inexact exception for at least
one kind of real.

IEEE_INF Specifies support for IEEE infinities for at least one kind of
real.

IEEE_INVALID_FLAG Specifies support for the IEEE invalid exception for at least
one kind of real.

IEEE_NAN Specifies support for IEEE NaNs for at least one kind of real.

IEEE_ROUNDING Specifies support for the four IEEE rounding modes for at
least one kind of real.

IEEE_SQRT Specifies support for the IEEE square root operation for at
least one kind of real.

IEEE_UNDERFLOW_FLAG Specifies support for the IEEE underflow exception for at
least one kind of real.

Note 1: All the named constants are scalar of type IEEE_FEATURES_TYPE.

538 Chapter 14

IEEE_DATATYPE is accessible from module IEEE_FEATURES, the inquiry module
function IEEE_SUPPORT_DATATYPE from IEEE_ARITHMETIC must be accessible
and return true for at least one kind of real.

14.3.2 The Intrinsic Module IEEE_EXCEPTIONS

The IEEE_EXCEPTIONS module defines the derived types IEEE_FLAG_TYPE and
IEEE_STATUS_TYPE with private components and named constants of type
IEEE_FLAG_TYPE. The exceptions overflow, divide-by-zero, invalid, underflow, and
inexact are represented by named constants of type IEEE_FLAG_TYPE. The type
IEEE_STATUS_TYPE permits the declaration of variables used by the intrinsic module
subroutines IEEE_GET_STATUS and IEEE_SET_STATUS to retrieve and set the proces-
sor’s IEEE status (14.2.7).

If either IEEE_EXCEPTIONS or IEEE_ARITHMETIC is accessible, the overflow and
divide-by-zero exceptions must be supported for all kinds of real; for those exceptions
not supported, their flags are always quiet. The procedure IEEE_SUPPORT _FLAG can
be used to inquire about whether theses exceptions are supported.

The constants of Table 14-2 are available even if the corresponding feature is not
supported by the processor. These constants are normally used as arguments to certain
procedures such as IEEE_GET_FLAG and IEEE_SET_FLAG. No operations, including
equality or inequality comparisons, are defined for the types IEEE_FLAG_TYPE and
IEEE_STATUS_TYPE.

Table 14-3 The named constants for exceptions in the module IEEE_EXCEPTIONS

Name Attributes1 Meaning

IEEE_DIVIDE_BY_ZERO scalar The exception, indicating a division of a nonzero
finite value by zero

IEEE_INEXACT scalar The exception, indicating an arithmetic operation
is inexact

IEEE_INVALID scalar The exception, indicating an arithmetic operation
is invalid

IEEE_OVERFLOW scalar The exception, indicating the magnitude of a
result exceeds the processor’s upper range limit

IEEE_UNDERFLOW scalar The exception, indicating the magnitude of a
result is less than tiny but is not zero

IEEE_USUAL shape (3) The array of three exceptions [IEEE_OVERFLOW,
IEEE_DIVIDE_BY_ZERO, IEEE_INVALID]

IEEE_ALL shape (5) The array of five exceptions [IEEE_OVERFLOW,
IEEE_DIVIDE_BY_ZERO, IEEE_INVALID,
IEEE_UNDERFLOW, IEEE_INEXACT]

Note 1: All the named constants are of type IEEE_FLAG_TYPE.

IEEE Exceptions and Arithmetic 539

The IEEE_EXCEPTIONS module also defines module procedures to support in-
quiries concerning the exceptions, modes, and status of the processor. These module
procedures are classified as inquiry functions, or elemental or nonelemental subrou-
tines. Where the procedures are functions returning logical values, the returned type is
logical of default kind. All of these procedures are generic (with no specific names), all
of the functions are pure, and some of the subroutines are pure as noted in Tables 14-4
to 14-6.

These tables also provide a description of the procedures and their functionality.
Braces { } surrounding arguments indicate which arguments are optional in the sense
described in 14.3. Details relevant to particular procedures are provided as footnotes in
the tables.

.

Table 14-4 Inquiry functions in the module IEEE_EXCEPTIONS

Function1 and argument(s) Value returned (default logical)

IEEE_SUPPORT_FLAG2 (FLAG {, X}) True, if the processor supports the detection of the
exception FLAG for the data type and kind as X
(or for all kinds of the real data type, if X is
absent), and false, otherwise.

IEEE_SUPPORT_HALTING (FLAG) True, if the processor supports3 program control
(halting or continuation) for the exception FLAG
after the specified exception occurs for those kinds
of real that support the exception FLAG, and false,
otherwise.

Note 1: All functions in this table are pure.
Note 2: See 14.3 for the meaning of the optional notation {,X} used in this function.
Note 3: “Support” here implies that IEEE_SET_HALTING_MODE (FLAG) may be used to
change the halting mode.

Table 14-5 Elemental subroutines in the module IEEE_EXCEPTIONS

Subroutine1 and arguments Operation

IEEE_GET_FLAG (FLAG, FLAG_VALUE) Assigns to FLAG_VALUE the value
true if the exception specified by
FLAG is signaling and false
otherwise.

IEEE_GET_HALTING_MODE (FLAG, HALTING) Assigns to HALTING the value
true if raising the specified
exception FLAG will cause halting
and false otherwise.

Note 1: All subroutines in this table are pure.

540 Chapter 14

14.3.2.1 Raising Exceptions from Operations Not To Be Executed

There are cases in the execution sequence where certain code is not to be executed. For
example, the execution of if-then-else construct must not execute the else block when
the logical expression is true. Similarly, in the WHERE construct, the elements of the
expressions on the right hand side of an assignment statement in the where-block
where the logical mask is false must not executed. In these and similar cases in the lan-
guage, any exceptions that would be raised if such code were executed must not be
raised. For example:

WHERE(A > 0.0) x = 1.0/A

is not permitted to raise the divide-by-zero exception for elements of A that are zero.
This is an issue for optimization because on some architectures it is more efficient to
perform the operation that causes an exception and then ignore the exception rather
than to prevent the computation from occurring. Processors are allowed to perform un-
necessary, or even prohibited, operations as long as they have no effect on the pro-
gram status.

Table 14-6 Nonelemental subroutines in the module IEEE_EXCEPTIONS

Subroutine and argument(s) Operation

IEEE_GET_STATUS1 (STATUS_VALUE) Assigns to STATUS_VALUE the state of the
floating-point environment.

IEEE_SET_STATUS (STATUS_VALUE4) The state of the floating- point status is
restored to that specified by the variable
STATUS_VALUE.

IEEE_SET_FLAG (FLAG2, FLAG_VALUE) If FLAG is scalar and FLAG_VALUE is true,
the exception FLAG is set to signaling;
otherwise, it is set to quiet. If FLAG or
FLAG_VALUE is an array, they must be
conformable.

IEEE_SET_HALTING_MODE3 (FLAG2,
HALTING)

If FLAG is scalar and HALTING is true, the
halting mode is set to cause execution to halt
for all kinds of real that support halting
when the exception FLAG occurs; otherwise,
it is set to allow execution to continue. If
FLAG or FLAG_VALUE is an array, they
must be conformable.

Note 1: Only the subroutine IEEE_GET_STATUS is pure.
Note 2: If FLAG is an array, no two elements may have the same value.
Note 3: This subroutine may not be invoked for an argument FLAG for which
IEEE_SUPPORT_HALTING (FLAG) is false.
Note 4: The value of STATUS_VALUE must have been set by the subroutine
IEEE_GET_STATUS.

IEEE Exceptions and Arithmetic 541

14.3.3 The Intrinsic Module IEEE_ARITHMETIC

The IEEE_ARITHMETIC module defines derived types, named constants of these
types, and operator interfaces for == and /=. The derived types are IEEE_CLASS_TYPE
and IEEE_ROUND_ TYPE and have private components.

The IEEE_CLASS_TYPE is used to support the specification and testing of the dif-
ferent classes of floating-point values returned by the basic operations. A class is pro-
vided for each of the following values:

• a negative denormalized number,

• a negative infinity,

• a negative normal value,

• a negative zero,

• a positive denormalized value,

• a positive infinity,

• a positive normal value,

• a positive zero,

• a quiet NaN,

• a signaling NaN, and

• a value that is none of the above.

Table 14-7 provides the names and meanings of the named constants used to de-
note IEEE classes for floating-point values. Any of these constants can be used as an ar-
gument to the module function IEEE_VALUE to generate a value of a specified class.
The module function IEEE_CLASS (X) returns a value of type IEEE_CLASS_TYPE cor-
responding to the class of data values that X falls into. Operator interfaces for == and /=
are provided in the module to permit comparisons with scalar and array data entities
of type IEEE_CLASS_TYPE.

The Fortran standard is unclear whether a signaling NaN returned by the
IEEE_VALUE module function is preserved and/or raises an invalid exception when it
is assigned to a variable, or when it is an actual argument of a procedure. The IEEE
standard specifies that it is implementation dependent whether copying a signaling
NaN without a change of format raises an invalid exception. For this reason, use of
such a signaling NaN is considered processor dependent.

Also, the module functions IEEE_IS_FINITE, IEEE_IS_NAN, IEEE_IS_NORMAL,
and IEEE_IS_NEGATIVE are inquiry functions that return the value true if the argu-
ment has a value implied by the name of the function.

Table 14-8 provides the names and meanings of named constants used to designate
IEEE rounding modes. Any of these constants can be used as an argument to the pro-
cedure IEEE_SET_ROUNDING_MODE to set the rounding mode to the specified
mode, to the procedure IEEE_SUPPORT_ROUNDING_MODE to inquire whether the
specified rounding mode is possible for a specified data type and kind, and to test the

542 Chapter 14

result of the procedure IEEE_GET_ROUNDING_MODE to determine which rounding
mode is active. Operator interfaces for == and /= are provided in the module to permit
comparisons with scalar and array data entities of type IEEE_ROUND_TYPE.

The IEEE_ARITHMETIC module also defines other module procedures to support
the inquiries concerning the features and modes supported by the processor, kind val-
ues supporting IEEE arithmetic, the current modes, and the processor’s floating-point
status. Also, procedures to manipulate IEEE special values are defined. These module
procedures are classified as inquiry functions, or elemental or nonelemental subrou-
tines. Where the procedures are functions returning logical values, the returned type is
logical of default kind. All of these procedures are generic (no specific names speci-
fied), all of the functions are pure, and two of the four subroutines are pure as noted in
Tables 14-9, 14-10, 14-12, and 14-13. These tables provide a brief description of the pro-
cedures and their functionality; for more details and comparisons with related intrinsic
functions, see 14.3.3.1-14.3.3.7 or B. Braces surrounding arguments indicate which ar-
guments are optional in the sense described in 14.3. Details relevant to particular pro-
cedures are provided as footnotes in the tables.

Table 14-7 The named constants for IEEE classes of floating-point values in the module
IEEE_ARITHMETIC

Name1 Meaning

IEEE_NEGATIVE_DENORMAL Negative value that is a denormalized number

IEEE_NEGATIVE_INF Negative value representing negative infinity

IEEE_NEGATIVE_NORMAL Negative value that is not a NaN, infinity, nor
denormalized value

IEEE_NEGATIVE_ZERO Zero value that is negative in some operations.

IEEE_POSITIVE_DENORMAL Positive value that is a denormalized number

IEEE_POSITIVE_INF Positive value representing positive infinity

IEEE_POSITIVE_NORMAL Positive value that is not a NaN, infinity, nor
denormalized

IEEE_POSITIVE_ZERO Zero value that is positive in some operations.

IEEE_QUIET_NAN NaN value that if used in an operation propagates
appropriately without raising the IEEE_INVALID
exception

IEEE_SIGNALING_NAN NaN value that if used in an operation will signal the
exception IEEE_INVALID

IEEE_OTHER_VALUE Value that is not one of the other IEEE values specified
in this table

Note 1: All the named constants are scalar of type IEEE_CLASS_TYPE.

IEEE Exceptions and Arithmetic 543

In order to support denormalized values, the processor is likely to support many, if
not all, of the IEEE features in Table 14-9; however, it is possible that the underflow
control mode is gradual and cannot be set to abrupt in which case IEEE_SUPPORT_
UNDERFLOW_CONTROL returns false.

The module functions of Table 14-10 are defined even for arguments that are ex-
ceptional values. Where the treatment of such arguments is specific to the function, the
special treatment is described in 14-10, its footnotes, or in 14.3.3.1-14.3.3.7.

In general, exceptional values—denormalized numbers, infinities, and NaNs—are
permitted as values for X and/or Y. Denormalized numbers are treated like normal ar-
guments with a value that is very small in magnitude and participate in the computa-
tion of the module function in a usual mathematical way. For arguments that are
infinities, there are two cases to consider: if the infinite argument is considered a valid
argument to the function, the operation of the function is considered exact and no
overflow or inexact exceptions are raised, even when the infinity may be the result of
the function; if the argument is considered an invalid argument, an invalid exception
must be raised and the result must be a NaN. For NaNs are arguments, there are again
two cases: either the NaNs are quiet or one of the arguments is a signaling NaN. If
none are signaling, the result is one of the NaN arguments with no exception raised; if

Table 14-8 Named constants for the IEEE rounding modes in the module IEEE_ARITHMETIC

Name1 Meaning

IEEE_DOWN Rounding mode specifying that the exact value is rounded down to the
nearest representable number. If the exact value is less than −huge but
not infinite, the result is −Inf; if the exact value is greater than +huge but
not infinite, the result is +huge.

IEEE_NEAREST Rounding mode specifying that the exact value is rounded to the nearest
representable number. If there are two nearest results, the one whose
least significant bit is 0 is returned. For an exact value larger than
2emax×(2−2−p) in magnitude using the model parameters in 13.2.3 for
IEEE formats, the result is an infinity of the same sign as the exact value.

IEEE_TO_ZERO Rounding mode specifying that the exact value is rounded towards zero
to the nearest representable number. If the magnitude of the exact value
is larger than huge, the result is huge with the same sign as the exact
value.

IEEE_UP Rounding mode specifying that the exact value is rounded up to the
nearest representable number. If the exact value is greater than +huge,
the result is +Inf; if the exact value is less than −huge but not infinite, the
result is −huge.

IEEE_OTHER Rounding mode specifying that the exact value is rounded in a way that
does not follow any of the other four IEEE rounding modes in this table.

Note 1: All the named constants are scalar of type IEEE_ROUND_TYPE.

544 Chapter 14

one or more is signaling, the result is a signaling NaN. This general behavior is the be-
havior specified by the IEEE standard [13].

For the IEEE_ARITHMETIC module functions IEEE_CLASS, IEEE_LOGB,
IEEE_NEXT_AFTER, IEEE_SCALB, and IEEE_SELECTED_REAL_KIND in Tables 14-10

Table 14-9 Inquiry functions in the module IEEE_ARITHMETIC

Function1 and argument(s)2 Value returned6

IEEE_SUPPORT_DATATYPE ({X}) True if the processor supports IEEE arithmetic.

IEEE_SUPPORT_DENORMAL
({X})

True if3 the processor supports denormalized numbers.

IEEE_SUPPORT_DIVIDE ({X}) True if the processor supports divide with the accuracy
specified by the IEEE standard.

IEEE_SUPPORT_INF ({X}) True if the processor supports the IEEE infinities.

IEEE_SUPPORT_IO ({X}) True if the processor supports IEEE base conversion
rules during formatted input/output for rounding
modes UP, DOWN, ZERO, and NEAREST.

IEEE_SUPPORT_NAN ({X}) True if the processor supports IEEE NaNs.

IEEE_SUPPORT_ROUNDING
(ROUND_VALUE {,X})

True if the processor supports4 a particular rounding
mode ROUNDING_VALUE.

IEEE_SUPPORT_SQRT ({X}) True if the processor supports the intrinsic function
SQRT satisfies the requirements of IEEE standard.

IEEE_SUPPORT_STANDARD
({X})

True if the IEEE inquiry functions IEEE_SUPPPORT_...5
return true.

IEEE_SUPPORT_UNDERFLOW_C
ONTROL ({X})

True if the processor supports control of the underflow
mode. Note that if the inquiry function
IEEE_SUPPORT_STANDARD returns true, it does not
imply support for underflow control.

Note 1: All functions in this table are pure.
Note 2: See 14.3 for the meaning of the optional notation {X} or {,X} used in these functions.
Note 3: And if IEEE_SUPPORT_DATATYPE (X) is true.
Note 4: “Support” includes the ability to change the rounding mode by a call to
IEEE_SET_ROUNDING_MODE (ROUND_VALUE {,X}).
Note 5: The IEEE inquiry functions are: IEEE_SUPPORT_DATATYPE,
IEEE_SUPPORT_DENORMAL, IEEE_SUPPORT_DIVIDE, IEEE_SUPPORT_FLAG,
IEEE_SUPPORT_HALTING, IEEE_SUPPORT_INF, IEEE_SUPPORT_NAN,
IEEE_SUPPORT_ROUNDING, and IEEE_SUPPORT_SQRT. The functions must return true
for any exception or rounding mode. Notice that IEEE_SUPPORT_UNDERFLOW_CONTROL
is not included in this list.
Note 6: If the argument X appears, the returned value relates only to the real kind that is the
same as the kind as X, or otherwise for all real kinds.

IEEE Exceptions and Arithmetic 545

and 14-12, the details are too lengthy to provide in a tabular format; they are described
in 14.3.3.1-14.3.3.7.

Several of the module functions in IEEE_ARITHMETIC have a similar functionality
to one or more intrinsic functions. Generally, they are different but for some implemen-
tations when the Fortran models are:

For the 32-bit IEEE real data type: b = 2, p = 24, emin = −125, emax = 128

For the 64-bit IEEE real data type: b = 2, p = 53, emin = −1021, emax = 1024

they may produce the same results. These seven module functions are compared and
contrasted with the relevant intrinsic functions below.

One difference that is common to all but one of the module functions is that, if an
argument X and/or Y is used in an IEEE module function, it must be one for which
IEEE_SUPPORT_DATATYPE(X) and/or IEEE_SUPPORT_DATATYPE(Y) is true. The
corresponding intrinsic functions have no such restriction.

Table 14-10 Elemental functions in the module IEEE_ARITHMETIC

Function1 and argument(s) Value returned

IEEE_CLASS (X) The IEEE class of a specified value X

IEEE_COPY_SIGN (X, Y) The value X with the sign of Y

IEEE_IS_FINITE (X) True if X is finite

IEEE_IS_NAN (X) True if X is an IEEE NaN

IEEE_IS_NEGATIVE (X) True if X is negative

IEEE_IS_NORMAL (X) True if X is normal

IEEE_LOGB (X) The unbiased IEEE exponent of X

IEEE_NEXT_AFTER (X, Y) The next representable neighbor of X towards Y

IEEE_REM (X, Y) The IEEE remainder

IEEE_RINT (X) The rounded integer value of X

IEEE_SCALB (X, I) The value Xx2I

IEEE_UNORDERED (X, Y) True if the X or Y or both are NaNs

IEEE_VALUE (X, CLASS) An IEEE value specified by the value of CLASS with the
same kind as X

Note 1: All functions in this table are pure. None of these functions may be invoked for arguments X
and Y for which IEEE_SUPPORT_DATATYPE (X) or IEEE_SUPPORT_DATATYPE (Y) is false. This
is a requirement on a program; it is not a requirement on an implementation to check this restriction.

546 Chapter 14

14.3.3.1 Module Function IEEE_COPY_SIGN Versus Intrinsic Function SIGN

Each function copies the sign of the second argument to the first argument, maintain-
ing the magnitude of the first argument, except possibly for exceptional argument val-
ues as noted below. The intrinsic function SIGN accepts integer arguments of the same
kind as well as real arguments of the same kind whereas IEEE_COPY_SIGN accepts
only real arguments X and Y, possibly of different kinds. A possible other difference is
that the function SIGN is not required to operate on exceptional arguments X and Y
whereas the functionality of IEEE_COPY_SIGN is specified for all exceptional argu-
ments; that is, for all arguments X, ABS (X) = IEEE_COPY_SIGN (X, 1.0), even if X is a
NaN.

14.3.3.2 Module Function IEEE_LOGB Versus Intrinsic Function EXPONENT

Each function returns an integer related to the exponent of the argument X. The intrin-
sic function EXPONENT returns a value of type integer and default kind which is the
exponent of X to the base b in the form of values used by the real model (13.2.3), and if
the base of the Fortran model for values of the kind and type of X is 2, EXPONENT al-
ways returns a value one larger than IEEE_LOGB, that is, EXPONENT (X) =
IEEE_LOGB (X) + 1 for all nonzero and finite values for X. The module function
IEEE_LOGB returns a value of the type and kind of X; its value is the unbiased expo-
nent of X when represented in an IEEE format (14.2.1).

14.3.3.3 Module Function IEEE_NEXT_AFTER Versus Intrinsic Function
NEAREST

Each function returns the representable neighbor closest to X in a direction indicated
by the second argument but the details are quite different. The module function
IEEE_NEXT_AFTER (X, Y) returns X if Y is equal to X; otherwise, the closest represent-
able neighbor to X, but not equal to X, toward Y. The intrinsic function NEAREST (X, S)
returns a nearest neighbor to X, never equal to X, to the left if S is negative and nonze-
ro, and to the right if S is positive and nonzero. S is not allowed to be zero. For
IEEE_NEXT_AFTER and NEAREST, both arguments have to be real but may be of dif-
ferent kinds. However, for IEEE_NEXT_AFTER, both arguments have to be of a kind
such that IEEE_SUPPORT_DATATYPE is true. In addition, for IEEE_NEXT_AFTER, ex-
ceptions must be raised when X is huge or -huge and Y is of the same sign as X, or
when the result is a denormalized number; see 14.3.3.10 for the details. However, for
the intrinsic function NEAREST, such exceptions are not required nor specified, but are
allowed.

14.3.3.4 Module Function IEEE_REM Versus Intrinsic Functions MODULO or MOD

All three functions compute a “remainder” upon division but have different defini-
tions for the quotient which in general causes different values for the result. The argu-
ments of IEEE_REM must be of type real and can have different kinds but those of
MOD and MODULO must have the same kinds but may be of type integer or real.

The intrinsic function MOD (A, P) for real arguments defines the quotient Q to be
INT (A/P), and the result is A − QxP; the intrinsic function MODULO (A, P) for real ar-

IEEE Exceptions and Arithmetic 547

guments defines the quotient to be FLOOR(A/P), and the result is A − QxP; the IEEE
function IEEE_REM (X, Y) defines the quotient Q to be the integer nearest the exact
quotient X/Y and when there are two such nearest integers, the even integer Q where
|Q−X/Y|=0.5, and the result is exactly X−QxY. Also, for IEEE_REM, if the result is zero,
it will have the sign of X.

Table 14-11 illustrates the differences in the results of these functions when their
arguments are real.

14.3.3.5 Module Function IEEE_RINT Versus Intrinsic Functions AINT or ANINT

All three functions “round” a real value to an integer value represented as a real value
with the type and kind of the argument. However, they use different rounding rules.
IEEE_RINT rounds according to the current IEEE rounding mode and follows IEEEʹs
rules for rounding. The intrinsic function AINT in effect always uses the IEEE round-
ing mode DOWN. The intrinsic function ANINT always uses the rounding rule COM-
PATIBLE as specified in 10.5.2.3, which is like the IEEE NEAREST rule except when the
value is halfway between two integers in which case the integer furthest away from
zero is returned by ANINT.

14.3.3.6 Module Function IEEE_SCALB Versus Intrinsic Function SCALE

Both functions scale their first argument X by a power of the base raised to the second
argument; IEEE_SCALB computes X×2I whereas the intrinsic function SCALE com-
putes X×bI. Where the Fortran model for numbers of the type and kind of X uses b=2,
the functions compute the same values except possibly when the result is an exception-
al value, but when b≠2, the results are different; see 14.3.3.11 for the details. For excep-
tional arguments, the results for the function SCALE are processor-dependent whereas
the module function IEEE_SCALB specifies precisely the exception signals and the ex-
ceptional returned values. Lastly, the IEEE standard specifies the scaling be performed
without forming 2I explicitly; the scaling is performed by adjusting the biased expo-
nent appropriately.

14.3.3.7 Module Function IEEE_SELECTED_REAL_KIND Versus Intrinsic
Function SELECTED_REAL_KIND

Both functions have two optional arguments P and Q and return a kind number of a
real data type satisfying the same minimum precision and range requirements. The dif-

Table 14-11 Comparison of results of the remainder functions IEEE_REM, MOD, and
MODULO

Arguments IEEE_REM MOD MODULO

5.0 3.0 −1.0 2.0 2.0

5.0 −3.0 −1.0 2.0 −1.0

−5.0 3.0 1.0 −2.0 1.0

−5.0 −3.0 1.0 −2.0 −2.0

548 Chapter 14

ference is that the kind number for the IEEE function must be an IEEE real data type
(that is, one that supports IEEE arithmetic and thus a kind of real data type for which
IEEE_SUPPORT_DATATYPE returns true). Secondly, the intrinsic function
SELECTED_REAL_KIND has an additional return value of −4, whereas the IEEE mod-
ule function IEEE_SELECTED_REAL_KIND is not required to return this value. A re-
turned value of −4 indicates the processor has a different kind of real for the P and R
specification separately but not a single kind value that satisfies for the requirements
for both precision and range simultaneously.

Table 14-12 Kind transformational function in the module IEEE_ARITHMETIC

Function1 and arguments Value returned

IEEE_SELECTED_REAL_KIND ([P, R]2) Kind type parameter value for an IEEE real
data type with given minimum precision P
and range R

Note 1: The function IEEE_SELECTED_REAL_KIND is pure.
Note 2: This optional notation means either just P is present, just R is present, or both P and R
are present, with the keyword arguments as appropriate. The interface is the same as that for
the intrinsic function SELECTED_REAL_KIND.

Table 14-13 Nonelemental subroutines in the module IEEE ARITHMETIC

Subroutine and argument Operation

IEEE_GET_ROUNDING_MODE1 (ROUND_VALUE) Store the current IEEE rounding
mode2 into ROUND_VALUE.

IEEE_SET_ROUNDING_MODE4 (ROUND_VALUE) Set the IEEE rounding mode to
ROUND_VALUE.

IEEE_GET_UNDERFLOW_MODE1,3 (GRADUAL) Set GRADUAL to true if the current
IEEE underflow mode is gradual or
false if the underflow mode is
abrupt.

IEEE_SET_UNDERFLOW_MODE3 (GRADUAL) Set the IEEE underflow mode to
gradual underflow if GRADUAL is
true, or otherwise, set the IEEE
underflow to abrupt underflow.

IEEE Exceptions and Arithmetic 549

14.3.3.8 Details of Returned Results for Module Function IEEE_CLASS

The result of IEEE_CLASS (X) is the class of X, specified by values of type
IEEE_CLASS_TYPE as follows:

Otherwise, if the value is not one of these values or the appropriate support inquiry
module function is false for the type and kind of X, the returned result is
IEEE_OTHER_VALUE.

14.3.3.9 Details of Returned Results for Module Function IEEE_LOGB

The Fortran standard additionally specifies the result value of IEEE_LOGB(X) for X==0
to be -inf when IEEE_SUPPORT_INF (X) is true, or −HUGE (X) otherwise, and in ad-

Note 1: The subroutines IEEE_GET_ROUNDING_MODE and
IEEE_GET_UNDERFLOW_MODE are pure.
Note 2: If the current rounding mode is not IEEE_NEAREST, IEEE_UP, IEEE_DOWN, or
IEEE_TO_ZERO, the value IEEE_OTHER is returned.
Note 3: This subroutine must not be invoked unless
IEEE_SUPPORT_UNDERFLOW_CONTROL (X) is true for some X. This is a requirement on a
program; it is not a requirement on an implementation to check this restriction.
Note 4: The subroutine IEEE_SET_ROUNDING_MODE must not be invoked unless
IEEE_SUPPORT_ROUNDING (ROUND_VALUE, X) and IEEE_SUPPORT_DATATYPE (X) are
true for some X. This is a requirement on a program; it is not a requirement on an
implementation to check this restriction.

Value of X Result Value

Quiet NaN IEEE_QUIET_NAN, if IEEE_SUPPORT_NAN (X) is true.

Signaling NaN IEEE_SIGNALING_NAN, if IEEE_SUPPORT_NAN (X) is true.

+Inf IEEE_POSITIVE_INF, if IEEE_SUPPORT_INF (X) is true.

−Inf IEEE_NEGATIVE_INF, if IEEE_SUPPORT_INF (X) is true.

+denorm IEEE_POSITIVE_DENORMAL if IEEE_SUPPORT_DENORMAL (X) is true.

−denorm IEEE_NEGATIVE_DENORMAL, if IEEE_SUPPORT_DENORMAL (X) is true.

+normal IEEE_POSITIVE_NORMAL.

−normal IEEE_NEGATIVE_NORMAL.

+zero IEEE_POSITIVE_ZERO.

−zero IEEE_NEGATIVE_ZERO.

Table 14-13 (Continued) Nonelemental subroutines in the module IEEE ARITHMETIC

Subroutine and argument Operation

550 Chapter 14

dition requires divide-by-zero to signal. The IEEE standard [13] requires that when X is
finite and positive, IEEE_SCALB (X, −IEEE_LOGB (X)) be strictly in the open interval
(0,2) and that it be less than 1 only when X is denormalized.

14.3.3.10 Details of Returned Results for Module Function IEEE_NEXT_AFTER

The result of IEEE_NEXT_AFTER (X, Y) is the nearest representable IEEE number to X
toward Y and so applies to normal and exceptional values. When X=Y, the result is X
with no exception raised. If X≠Y but X is zero, the result is the smallest representable
number in magnitude toward Y; if denormalized numbers are supported, the result is
the smallest denormalized number in magnitude of the sign of Y, and both underflow
and inexact exceptions are signaled; if denormalized numbers are not supported, then
the result is TINY (X) of the appropriate sign and no signals are raised. If, for large X
in magnitude where infinities are supported, the result is infinite, then overflow and
inexact exceptions are raised; this can only happen when Y is an infinity. See 14.3.3.3.

14.3.3.11 Details of Returned Results for Module Function IEEE_SCALB

The result of IEEE_SCALB (X, I) is exactly X×2I when the result is a normal number; if
the result is too large, an overflow exception occurs and the result is an infinity of the
sign of X if IEEE_SUPPORT_INF (X) is true, and SIGN (HUGE (X), X) otherwise; if the
result is too small and the result is not exact, the underflow and inexact exceptions are
raised, and the result is the nearest representable number to X×2I, which maybe a de-
normalized number if they are supported; if X is an infinity, the result is X, with no ex-
ception raised.

14.3.3.12 Details of Returned Results for Module Function
IEEE_SELECTED_REAL_KIND

The result of IEEE_SELECTED_REAL_KIND ([P,R]) is an integer specified by the fol-
lowing table:

Value Meaning

Positive integer The kind number of a real type that supports IEEE data types.

−1 No kind number is available that supports the minimum precision P
as defined by the intrinsic function PRECISION and meets IEEE data
type requirements.

−2 No kind number is available that supports the minimum exponent
range R as defined by the intrinsic function RANGE and meets the
IEEE data type requirements.

−3 No kind number is available that supports either the minimum pre-
cision P as defined by the intrinsic function PRECISION or the mini-
mum exponent range R as defined by the intrinsic function RANGE
and meets the IEEE data type requirements.

IEEE Exceptions and Arithmetic 551

14.4 Initial and Final Status Requirements Entering and Leaving Any Procedure

Recall that the floating-point status of a processor is a combination of the states of the
exception flags, the rounding mode, the underflow mode, the halting mode, and possi-
bly other modes and flags determined by the processor. The floating-point status may
change as the program executes because of references to various procedures, including
the intrinsic procedures, intrinsic operations, format processing, and IEEE module pro-
cedures. The Fortran standard specifies what the status is initially, how the status
changes on entry to and exit from procedures, and what has to be reported about the
final status upon normal termination of the program.

In case the main program or any user-written procedure accesses any IEEE intrin-
sic modules, Table 14-14 summaries the changes in the floating-point status for the
IEEE flags and modes when events, such as exiting and entering a procedure or main
program, occurs. In this case, the status of non-IEEE floating-point flags and modes is
processor dependent.

Table 14-14 Floating-Point Status on Entry and Exit From Procedures, Accessing Any IEEE
Module.

Location in the execution of a
program Exception flags and status

IEEE modes: rounding,
underflow, halting

On entry to main program Quiet Processor-dependent

On entry to any procedure except
intrinsic and special procedures

Set to quiet No change to mode on
entry

On exit from any procedure
except intrinsic and special
procedures

Restore any flag signaling
on entry and add any flags
raised

Restore to entry mode

On entry to intrinsic procedures Set to quiet No change to mode on
entry

On exit from intrinsic procedures Reset to entry OV, DV, IV
flags1. May signal OV if
result is too large; may
signal IV if result is a NaN.
Whether the UN and IE
flags are set to the entry
values, set quiet, or passed
on is processor dependent

Restore to entry mode

On exit from special IEEE module
procedures:
IEEE_SET_STATUS
IEEE_SET_FLAG
IEEE_SET_ROUNDING_MODE
IEEE_SET_UNDERFLOW_MODE
IEEE_SET_HALTING_MODE

Set to STATUS_VALUE2

Set to FLAG_VALUE3

Unchanged
Unchanged
Unchanged

Set to STATUS_VALUE2

Unchanged
Set to ROUND_VALUE4
Set to GRADUAL5

Set to HALTING6

552 Chapter 14

The consequences of Table 14-14 are that initially at the start of a main program
that accesses an IEEE module, all exception flags are quiet but the rounding, halting,
and underflow modes are processor dependent; to make the program portable, the
programmer should initially set these modes. As execution continues, flags will signal
as a result of intrinsic operations and the invocation of intrinsic procedures. On entry
to procedures defined by the programmer, exception flags will be set quiet but all
modes will be inherited from the caller. If the procedure needs special modes to com-
pute robustly, the programmer must set them initially to the needed modes; these
modes will be reset to the status at entry to the procedure on exit. On the other hand,
exception flags are sticky in the sense that both the exception flags on entry and the
flags raised during execution of the procedure become the exception flags on exit. If
the programmer does not wish to have exception flags raised from the execution of the
procedure to be communicated on exit from the procedure, these flags should be
cleared explicitly by invoking IEEE_SET_FLAGS before the return.

In case the main program or any user-written procedure accesses no IEEE intrinsic
module, the floating-point status is processor dependent when entering or leaving the
main program or any procedure, except that any flags raised on entry to a procedure
or main program remain signaling on exit. The consequences are that modes and flags
are initially processor dependent, and essentially remain so throughout a computation.
It is expected although that the exception flags are sticky in the sense that once raised
by any procedure, they remain raised at the termination of the program. However, the
standard, when IEEE modules are not accessed, essentially treats this whole issue as
processor dependent by being silent on what happens.

Upon termination of the program by a STOP statement, the processor is required
to indicate which exception flags are signaling by writing to the logical unit specified
by the named constant ERROR_UNIT in the ISO_FORTRAN_ENV intrinsic module. To
avoid this warning, the programmer should clear all flags before the termination of the
program. Whether the exceptions are reported on a normal termination that is not
caused by the execution of a STOP statement is processor dependent.

Note 1: OV, DV, IV, UN and IE are the flags IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO,
IEEE_INVALID, IEEE_UNDERFLOW, and IEEE_INEXACT, respectively.
Note 2: STATUS_VALUE is the STATUS_VALUE argument of the procedure
IEEE_SET_STATUS.
Note 3: FLAG_VALUE is the FLAG_VALUE argument of the procedure IEEE_SET_FLAG.
Note 4: ROUND_VALUE is the ROUND_VALUE argument of the procedure
IEEE_SET_ROUNDING_MODE.
Note 5: GRADUAL is the GRADUAL argument of the procedure
IEEE_SET_UNDERFLOW_MODE.
Note 6: HALTING is the HALTING argument of the procedure IEEE_SET_HALTING_MODE.

Table 14-14 (Continued) Floating-Point Status on Entry and Exit From Procedures, Accessing
Any IEEE Module.

Location in the execution of a
program Exception flags and status

IEEE modes: rounding,
underflow, halting

IEEE Exceptions and Arithmetic 553

14.5 Interoperability Issues for IEEE Arithmetic and Exceptions

The Fortran standard supports interoperability of C code with Fortran and as such the
IEEE floating-point status flags and modes must also be interoperable. However, the
requirements are very limited and are listed below, but do not require the C processor
to support any of the derived types, modes, or flags described above; the C processor
is permitted to support them. The restrictions on interoperability are:

1. The C procedure is not permitted to use the C signal capability to change the han-
dling of an exception that is being handled by the Fortran processor.

2. The C procedure must not alter the floating-point status, other than setting an ex-
ception flag to signaling; because of the restriction above, the floating-point status
must not be changed by using the C signal capability but may be changed by exe-
cuting a C operation, such as floating-point multiplication.

3. The values of the floating-point exception flags on entry to the C procedure are
processor dependent.

Although stated above in terms of procedures written in C, the same restrictions apply
to a procedure defined by any means other than Fortran. In such a case, if a signal ca-
pability is available in the other language, it must not meddle with Fortran’s floating-
point status and modes.

14.6 A Summary of the Optional Features

The three IEEE intrinsic modules are individually optional. One might expect the fol-
lowing combinations:

• No IEEE intrinsic modules are provided.

• The modules IEEE_FEATURES and IEEE_EXCEPTIONS only are provided. For this
case, a subset of the named constants of IEEE_FEATURES would be accessible
where the subset represents some or all of the features of IEEE exceptions.

• All three IEEE modules are provided with some or all of the named constants of
IEEE features accessible.

With the latter two combinations, the named constants in IEEE_FEATURES can
and will likely be used as compiler switches in the program to specify the IEEE fea-
tures needed. In this case, the processor will execute the program only if the features
specified in a program are accessible.

From the programmerʹs point of view, programming in a portable manner in the
presence of this apparent optionality could become a nightmare. To ameliorate the sit-
uation, the standardʹs implementation model appears to be that except for
IEEE_FEATURES, the IEEE modules must define all the types, named constants, and
module procedures specified in the Fortran standard. For example, all of the named
constants for the IEEE exceptions will be provided, even though the processor may not

554 Chapter 14

support all exceptions; the IEEE_SUPPORT... procedures will return false for those ex-
ceptions not supported. Also, all of the module procedures will be provided so that a
reference can be present to any of them without compilation or linking failing because
of an unresolved symbol. However, a program is non-conforming if it invokes a mod-
ule procedure when its corresponding support procedure returns false. For example, a
condition for invoking the procedure IEEE_IS_NAN (X) is that the procedure
IEEE_SUPPORT_NAN (X) return true. If IEEE_SUPPORT_NAN returns false and yet
IEEE_IS_NAN is invoked, the program is nonconforming.

To illustrate how a portable program can be written using this model, consider the
following program segment. The segment references IEEE_SCALB to perform scaling
of the variable x if the module IEEE_ARITHMETIC supports IEEE arithmetic for the
kind of x. This scaling by IEEE_SCALB must be performed without forming 2 raised to
the power i. On the other hand, if IEEE arithmetic is not supported for the kind of x,
the code still needs to scale x. This can be done with the intrinsic function SCALE.
However, this intrinsic function potentially forms this power and if i is large enough,
scale can overflow computing the wrong result. Consequently, the alternative code
scales x twice when i is too large, thus avoiding a potential overflow exception.

use IEEE_FEATURES, only: IEEE_DATATYPE
use IEEE_ARITHMETIC, only: IEEE_SCALB, IEEE_SUPPORT_DATATYPE
 . . .
if(IEEE_SUPPORT_DATATYPE(x)) then
 y = IEEE_SCALB (x, i)
else
 y = x
 if(i > maxexponent(x)) then
 y = scale(x, maxexponent(x))
 i = i - maxexponent(x)
 endif
 y = scale (y, i)
 endif

The above code avoids an overflow whether or not IEEE arithmetic is supported or
whether or not the intrinsic function forms the factor 2i. Also, in the situation that all
module names are defined, the code segment compiles and links whether or not the
module function IEEE_SCALB has been implemented to conform with the IEEE stan-
dard, provided the modules IEEE_FEATURES and IEEE ARITHMETIC are accessible.

There are, however, other constraints and conditions on the program and processor
concerning the accessibility and use of IEEE features. They have been described
throughout the previous sections but are summarized here; violation of these con-
straints and conditions generally results in processor-dependent programs.

• Which IEEE modules are provided is processor dependent.

• Which named constants of the IEEE_FEATURES module are provided is processor
dependent.

IEEE Exceptions and Arithmetic 555

• If a scoping unit does not have access to any of the IEEE modules, the level of sup-
port of IEEE features is processor dependent.

• If a scoping unit accesses IEEE_EXCEPTIONS or IEEE_ARITHMETIC without
accessing IEEE_FEATURES, the supported subset of IEEE features is processor de-
pendent.

• If IEEE_EXCEPTIONS or IEEE_ARITHMETIC is accessible, the overflow and
divide-by-zero exception will be supported for all kinds of real and complex. The
invalid, underflow, and inexact exceptions are optional; the module procedure
IEEE_SUPPORT_FLAG returns true for those exceptions that are supported. Also,
the accessibility of the IEEE_FEATURESʹs named constants IEEE_INEXACT_FLAG,
IEEE_INVALID_FLAG, and IEEE_UNDERFLOW influences the extent of the sup-
port of these exceptions.

• Control of the halting mode after a particular exception is processor dependent. If
IEEE_HALTING is accessible, halting control must be supported for at least one
exception; an exception FLAG supports halting control if IEEE_SUPPORT_
HALTING (FLAG) returns true. The halting mode can be determined by
IEEE_GET_HALTING_MODE and altered with the procedure IEEE_SET_
HALTING_MODE or IEEE_SET_STATUS.

• If IEEE_UNDERFLOW_FLAG of IEEE_FEATURES is accessible within a scoping
unit, the underflow exception must be supported for at least one kind of real with-
in that scoping unit, and the procedure IEEE_SUPPORT_FLAG (IEEE_
UNDERFLOW, X) must return true for a variable X of a supported kind. Similarly,
for the inexact or invalid exception, if the corresponding named constant
IEEE_INEXACT_FLAG or IEEE_INVALID_FLAG is accessible, the corresponding
exception must be supported for at least one kind of real and the corresponding
reference to IEEE_SUPPORT_FLAG must return true. The signaling of a particular
exception can be determined by IEEE_GET_FLAG and altered with the procedure
IEEE_SET_FLAG or IEEE_SET_STATUS.

• If IEEE_DATATYPE of IEEE_FEATURES is accessible within a scoping unit, IEEE
arithmetic must be supported for at least one kind of real within that scoping unit,
and the procedure IEEE_SUPPORT_DATATYPE (X) must return true for a variable
X of that supported kind. Similarly, for IEEE_DENORMAL, IEEE_DIVIDE,
IEEE_INF, IEEE_NAN, IEEE_ROUNDING, and IEEE_SQRT of IEEE_FEATURES,
the processor must support the feature for at least one kind of real, and the corre-
sponding inquiry function must return true for each kind of real supported. In ad-
dition, if IEEE_ROUNDING is accessible, the rounding modes IEEE_NEAREST,
IEEE_TO_ZERO, IEEE_UP, and IEEE_DOWN must be supported.

• The ability to alter the rounding mode is processor dependent. The rounding mode
can be altered to a particular rounding mode for a particular kind if
IEEE_SUPPORT_ROUNDING returns true for that rounding mode and kind, using

556 Chapter 14

the procedures IEEE_SET_ROUNDING_MODE or IEEE_SET_STATUS; the current
rounding mode can be determined with the procedure IEEE_GET_
ROUNDING_MODE.

• The availability of rounding for base conversion in formatted input/output (9.2.4,
10.9.7) is processor dependent. The inquiry function IEEE_SUPPORT_ IO returns
true for a particular kind of real if such conversion is available.

• The ability to alter the underflow mode is processor dependent. If the processor
supports the control of the underflow mode for a particular real data type,
IEEE_SUPPORT_UNDERFLOW_CONTROL (X) must return true for a variable X
of that supported kind. The underflow mode may be determined with the proce-
dure IEEE_GET_UNDERFLOW_MODE and set with the procedure IEEE_SET_
UNDERFLOW_MODE or IEEE_SET_STATUS.

• The ability to determine or generate exceptional values is processor dependent.
The inquiry function IEEE_SUPPORT_DENORMAL, IEEE_SUPPORT_INF, or
IEEE_SUPPORT_NAN is true, respectively, if denormalized numbers, infinities, or
NaNs are supported. The functions IEEE_IS_FINITE, IEEE_IS_NAN, IEEE_IS_
NEGATIVE, and IEEE_IS_NORMAL can be used to determine the particular ex-
ceptional value and its sign, if appropriate.

• Whether IEEE arithmetic or the IEEE standard is supported for any kind is proces-
sor dependent. If the processor supports either of these concepts, the correspond-
ing inquiry function IEEE_SUPPORT_DATATYPE or IEEE_SUPPORT_STANDARD
for a particular real kind returns true.

• In a sequence of code with no invocations of IEEE_GET_FLAG, IEEE_SET_FLAG,
IEEE_GET_STATUS, IEEE_SET_STATUS, or IEEE_SET_HALTING_MODE, if there
is no variable that depends on an operation in which an exception occurred, the
signaling of that exception is processor dependent. For example, in the code seg-
ment:

X = sqrt(Z)
X = 3.0

the raising of the invalid exception when Z is negative and nonzero is processor
dependent because the value of X is 3.0 at the end of the code segment whether or
not the invalid exception is raised.

14.7 Examples of the Use of IEEE Features, Arithmetic, and Exceptions Modules

This section discusses two examples of the use of the IEEE intrinsic modules. First, the
simple example program below is briefly discussed in the next subsection. Secondly, a
more thorough and significant use of these intrinsic modules is presented that pro-
vides a robust and accurate computation of dot product, despite the fact that overflow,

IEEE Exceptions and Arithmetic 557

underflow, inexact, and invalid exceptions may occur in a naive version of this compu-
tation.

14.7.1 Discussion of the Simple Example

The program example in Figure 14-3 is a portable program to determine whether the
multiplication x*y overflows. It is somewhat more complicated than necessary in order
to illustrate various features of the IEEE intrinsic modules.

The USE statements at the beginning of the program are used as compiler switches
to ensure that the needed IEEE features are available. For example, if any of the three

program Has_overflow_occurred
 ! This simple program illustrates the detection of overflow.
 use, intrinsic :: IEEE_FEATURES, only : IEEE_DATATYPE
 use, intrinsic :: IEEE_ARITHMETIC, only : IEEE_SUPPORT_DATATYPE
 use, intrinsic :: IEEE_EXCEPTIONS, only : IEEE_OVERFLOW, &
 IEEE_GET_FLAG, IEEE_SET_HALTING_MODE
 real :: x, y, z; logical :: overflow_flag, IEEE_SUPPORT_HALTING

 ! Is there IEEE arithmetic support for entities of the
 ! type and kind of x and is halting supported for overflow?
 if(IEEE_SUPPORT_DATATYPE(x) .and. &
 IEEE_SUPPORT_HALTING(IEEE_OVERFLOW)) then
 ! There is support for IEEE exceptions, including overflow.
 ! It is unnecessary to set overflow to nonsignaling
 ! as the processor is required to set the initial overflow
 ! flag to quiet at the start of execution of a program.
 ! Read in two values and check for overflow of their product.
 read *, x, y
 ! Set the halting mode to continue execution after overflow.
 call IEEE_SET_HALTING_MODE(IEEE_OVERFLOW, .false.)
 ! Multiply x and y and check for overflow.
 z = x * y
 call IEEE_GET_FLAG(IEEE_OVERFLOW, overflow_flag)
 if(overflow_flag) then
 print "(a/3G16.8)", "An overflow occurred in the product" // &
 " x*y: x, y and x*y:", x, y, z
 else
 print "(a/3G16.8)", "No overflow occurred in the product" // &
 " x*y: x, y and x*y:", x, y, z
 endif
 else
 print *, "There is no arithmetic or exceptions support for" // &
 " detecting overflow"
 endif

end program Has_overflow_occurred

Figure 14-3 A simple Fortran program to test for an overflow exception

558 Chapter 14

intrinsic modules or named constant IEEE_DATATYPE are not accessible, compilation
of this program will abort.

The program first checks that there is IEEE support for the data type of X, which,
in this case is of type default real and checks that there is support for the halting mode
for the overflow exception. If the result of this inquiry function is true, then the signal-
ing of overflow, when it occurs, is supported for the default real type. Next, the pro-
gram sets the halting mode for the overflow exception to continue execution after the
occurrence of any overflow by calling the module subroutine IEEE_SET_
HALTING_MODE. The operation x*y is next performed and assigned to z. After this
operation, the status of the overflow exception flag is examined using the intrinsic sub-
routine IEEE_GET_FLAG. Finally, a message is printed indicating whether or not over-
flow has occurred and the program terminates.

14.7.2 Computing a Dot Product Carefully

A more realistic use of the IEEE modules is to create a robust, efficient implementation
of the dot product of two vectors, despite the scaling of the two vectors. It is actually a
difficult problem to compute the correct answer in general, as will soon be appreciated.

To begin the discussion, consider the computing the sum:

Mathematically, this function is computing the product of the norms of the two vectors
times the angle between the vectors; that is:

From this mathematical formulation, one can see that the result can be very small or
very large, depending on the norms of x and y and the cosine of the angle between
them, which of course can be small when the vectors are orthogonal or nearly so. On
the other hand, the sum formulation can exhibit several computational anomalies, such
as overflow (products or sums too large), underflow (products too small or subtraction
causing a complete loss of accuracy, resulting in underflow), or, even worse, invalid
computations (the product of two elements can overflow to positive infinity, making
the partial sum infinite, followed by the product of the next two elements being nega-
tive infinity, causing the next partial sum to be invalid—not a number is the result of
+Inf-Inf). Checking for all of these conditions when they happen in this application
(and more so in a real application) is a nightmare.

Consider instead the following approach. Ignoring all exceptions, compute the dot
product using the sum formulation. Check to see if the overflow flag raised. If it has
been raised, scale the vectors x and y so that their largest element in magnitude is near
one. Recompute the sum as before, but this time with the scaled vectors x and y; no
overflow or invalid operations can occur. Because the computed result can overflow or

xkyk
k 1=

n

∑

x y x y,〈 〉cos

IEEE Exceptions and Arithmetic 559

underflow, return the result as an integer power of two and a significant part. Figure
14-4 gives a listing of the subroutine that performs this computation as a module sub-
routine mult in the module dot.

Instead of computing it twice, why not just scale the vectors x and y in the first
place? The reason is that this can be inefficient for data that is well scaled. The strategy
above makes the computation costly only when the vectors are badly scaled; for the ex-
pected usual case where the vectors are nicely scaled, the computation is quick and ef-
ficient.

module dot

 ! Module for dot product of two real arrays of rank 1.

 use, intrinsic :: ieee_features, only : &
 IEEE_DATATYPE, IEEE_HALTING
 use, intrinsic :: ieee_arithmetic, only : ieee_get_flag, &
 ieee_set_flag, ieee_set_halting_mode, ieee_logb, &
 ieee_scalb, IEEE_OVERFLOW, IEEE_ALL

 private
 logical, public :: matrix_error = .false.
 public mult

 contains

 subroutine mult(a, b, x, i)
 real, intent(in) :: a(:),b(:)
 real, intent(out) :: x
 integer, intent(out) :: i
 ! Local variables.
 integer exp_a, exp_b
 real max_a, max_b
 logical overflow
 intrinsic abs, maxval, size, sum

 if(size(a)/=size(b)) then
 matrix_error = .true.
 return
 endif

 ! The processor ensures that flags, particularly
 ! IEEE_OVERFLOW, are quiet on entry to a procedure.
 ! Set the halting mode for all exceptions to continue
 ! execution. Assume the calling program has checked that IEEE
 ! arithmetic and exceptions are supported for the default
 ! real type.

560 Chapter 14

 call ieee_set_halting_mode(IEEE_ALL, .false.)
 x = sum(a*b)
 i = 0
 call ieee_get_flag(IEEE_OVERFLOW, overflow)

 if(overflow) then

 ! An overflow has occurred. Clear all exception flags.

 call ieee_set_flag(IEEE_ALL, .false.)

 ! Scale x and y so that the element of maximum magnitude is
 ! near 1.

 max_a = maxval(abs(a))
 max_b = maxval(abs(b))
 exp_a = ieee_logb(max_a)
 exp_b = ieee_logb(max_b)
 x = sum(ieee_scalb(a, -exp_a)*ieee_scalb(b, -exp_b))
 i = exp_a + exp_b
 endif
 end subroutine mult
end module dot

Figure 14-4 A robust, efficient subroutine to compute a scaled dot product

15 Interoperability with C

• A Companion Processor is a mechanism for defining procedures and using data. It
is most often a C compiler. The provisions for interoperation are described in terms
of C.

• Interoperability is the property of being usable with both the Fortran processor and
a companion processor.

• A Binding Label is a global identifier which bridges the gap in syntax between For-
tran names and C identifiers. A Fortran procedure, module variable, or common
block can be given a binding label, possibly different from its Fortran name.

• The BIND Attribute is used to specify interoperability of a derived type, procedure,
procedure interface, or common block. It is also used to specify a binding label for a
procedure, module variable, or common block.

Interoperability allows processing to be done using a mixture of languages. Fortran
supports the following aspects of interoperability with C:

1. Procedures. A Fortran program can incorporate functions written in C. The Fortran
code can invoke those C functions; conversely, the C functions can invoke Fortran
procedures.

2. Data. The Fortran and C portions of a Fortran program can communicate data by
argument passing or global data.

3. Files. Separate Fortran and C programs can communicate by means of files.

This chapter covers interoperability of procedures and data in a program that has a
mixture of Fortran and C code. Interoperability of files is facilitated by stream access,
discussion of which is integrated into the chapters on input/output.

A Fortran and a C entity are interoperable with each other if they have correspond-
ing properties. The details of how their properties must correspond depend on whether
the entities are types, data objects, or procedures. In some contexts, the interoperability
of an entity in one language is discussed, regardless of whether there is a corresponding
entity that it is interoperable with. An entity is interoperable in this sense if it has the
properties necessary for interoperation.

The BIND attribute has multiple roles. For a derived type, the BIND attribute
specifies interoperability. For a procedure, procedure interface, or common block, the
BIND attribute specifies interoperability and a binding label. For a variable, the BIND
attribute specifies a binding label; a variable without the BIND attribute may be
interoperable, but it does not have a binding label.

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_15, © Springer-Verlag London Limited 2009

562 Chapter 15

15.1 Companion Processors

The interoperability features of Fortran are designed around interoperation with C, but
can indirectly support other languages as well. Each processor has one or more com-
panion processors with which it can interoperate. The particular set of companion pro-
cessors and the means of selecting among them are processor-dependent.

In order to be constructively useful, a companion processor must be capable of
working with data and procedures that can be described in terms of C. The obvious
case of a candidate companion processor is a C compiler. Compilers for other languag-
es can also be companion processors if they are capable of interoperating with C. It
might be said that C serves as the “lingua Franca” of programming languages.

For example, C++ compilers can use the “extern C” attribute to interoperate with C
functions. Therefore, interoperation between Fortran and C++ can be achieved through
the common ground of C. Likewise, Ada compilers can interoperate with C and thus
could conceivably serve as companion processors. One simple case that is easy to over-
look is that the companion processor could be a Fortran compiler. The interoperability
facilities of the language could be used to facilitate interoperation of multiple Fortran
compilers.

As a trivial case, a Fortran compiler could serve as its own companion processor;
this trivial case allows a vendor to meet the requirement of supporting one or more
companion processors even in an environment where there might be no other proces-
sors. Although the interoperability features have little direct relevance to such an envi-
ronment, their support facilitates portability of code that might be used in other
environments.

15.2 Binding Labels

Fortran and C have different rules on the validity and uniqueness of identifiers. In par-
ticular, C identifiers are case sensitive, but Fortran identifiers are not. The concept of a
binding label bridges this gap and provides a means for Fortran code to refer to C
identifiers. A binding label follows the rules for C identifiers.

A binding label is the global identifier by which a Fortran variable, common block,
or procedure is known to the C compiler. If an entity has a binding label, it can be re-
ferred to by that identifier in C code. A variable or procedure that has no binding label
has no global identifier in C, but can still be interoperable and used in ways that do not
require a global identifier. For example, a global identifier is not needed for a proce-
dure argument.

The BIND attribute specification for a variable, common block, procedure, or pro-
cedure interface confers a binding label, either explicitly or implicitly. If the BIND at-
tribute specification includes a NAME specifier, then the binding label is the character
value so specified, with any leading or trailing blanks removed; the case of the letters
is significant in a binding label specified this way. If there is no NAME specifier, the
binding label is the name of the variable, common block, procedure, or procedure in-
terface, with all letters in lower case.

Interoperability with C 563

However, the character value in a NAME specifier may be zero-length or entirely
blank, in which case there is no binding label. This allows multiple instances of such
NAME specifications, which otherwise would be disallowed by the prohibition, de-
scribed below, against duplication of binding labels.

This special rule allows the specification of a procedure that is interoperable, but
has no binding label. This is useful for a procedure that is passed as an actual argu-
ment to a C function. Such a procedure must be interoperable, but there might be no
need for it to have a global identifier. The BIND attribute specification for a procedure
normally specifies both interoperability and a binding label. For consistency, the spe-
cial rule for the blank case also applies to the BIND attribute specification of a variable
or common block, but it is not obvious that it serves any useful function in those cases.

Binding labels are global identifiers (16.1.1) of a program and are required to be
unique. Having two Fortran variables or procedures with the same binding label does
not establish a linkage between those entities; instead, it is disallowed. If multiple
scoping units have declarations of the same COMMON block, all the declarations must
specify the same binding label or all of them must have no binding label. A binding la-
bel may be the same as another global identifier such as an external procedure name; it
is likely to be common for an interoperable external procedure to have a binding label
the same as its procedure name.

15.3 The ISO_C_BINDING Intrinsic Module

The ISO_C_BINDING intrinsic module includes named constants, derived types, and
module procedures to support interoperability. Most of the named constants designate
interoperable kind values for Fortran intrinsic types; these are described in 15.4.1. Oth-
er named constants designate character values that correspond to C characters with
special semantics such as the new line character; these are described in 15.5.3. The de-
rived types, module procedures, and remaining named constants provide support for
interoperation with C pointers, as described in 15.5.4.

The standard permits this module to have other public entities. However, a stan-
dard-conforming program must not use any such processor-dependent entities.

15.4 Interoperability of Types

Interoperability of data depends on the more abstract matter of interoperability of
types and type parameters. C has no concept like a Fortran type parameter; rather, the
notion of a C type corresponds to that of a Fortran type with a particular set of type
parameter values. For example, Fortran has a single integer type with a type parameter,
which distinguishes multiple representations; C, on the other hand, has a different type
for each integer representation.

A C type is interoperable with a Fortran type with a particular set of type parame-
ter values if the C and Fortran objects take the same amount of space and if the same
representations have corresponding meanings. These principles apply to both kind and
length type parameters.

564 Chapter 15

Each language has some type constructs that have no direct correspondences in the
other language. For example, there is no Fortran type that corresponds to a C union type
or a C struct type with a bit field; there is no C type that corresponds to a Fortran type
with an allocatable component. Types using these constructs are not interoperable.

15.4.1 Intrinsic Types

Table 15-1 shows the correspondence between C types and intrinsic Fortran types and
type parameters. A C type in the first column corresponds to the Fortran type specifi-
ers in the same row of the second column. The names used for the kind values in the
second column are all named integer constants from the ISO_C_BINDING intrinsic
module. For example, C type int corresponds to the Fortran type integer with kind
C_INT.

The C types given in the above table are standard C types. Any unqualified C type
that is compatible with one of these types also corresponds to the same Fortran type
and type parameter values. For example, a C type derived from int via a C typedef cor-
responds to INTEGER(C_INT). A Fortran type with a particular kind value may corre-
spond to more than one C type.

Fortran has no unsigned types. C has unsigned integer types, each of which corre-
sponds to the same Fortran integer kind as the signed C integer of the same size. The C
standard requires unsigned integers to have the same representation as nonnegative
integers.

Note that the C char kind corresponds to a Fortran character with length 1. There
is a further requirement that this length be specified by an initialization expression or
by omission. Fortran characters with lengths other than 1 are not directly interopera-
ble, but there are special provisions for using them in conjunction with C (15.5.3).

The values of the three kind type parameters for complex are required to be the same
as the corresponding values for real.

All the named constants in the above table are public entities in the
ISO_C_BINDING module, but this does not imply that all these C types will be in-
teroperable. If the value of one of these named constants is positive, it will be a valid
kind value for the intrinsic type; the corresponding C type is interoperable with the
Fortran intrinsic type of that kind. If the value of one of these named constants is neg-
ative, there is no interoperable Fortran kind for the corresponding C type. The named
constant C_INT is required to be positive; all the others may be negative.

The particular negative value indicates the reason why there is no interoperable
Fortran kind for a particular C type. Table 15-2 provides a description of the meaning
of the various negative values.

15.4.2 C Enum Types

Fortran provides a facility for interoperation with C Enum types. This facility is de-
scribed in 4.6.

Interoperability with C 565

15.4.3 C Pointer Types

C pointers and Fortran pointers are different in several fundamental ways, two of
which have implications for interoperability. One is that a Fortran pointer is of the same
type as its target, while a C pointer is a separate type. The other is that a Fortran array
pointer includes information about shape and bounds, which means that its represen-
tation is not directly compatible with the simple address form of a C pointer.

The ISO_C_BINDING module includes the public derived types C_PTR and
C_FUNPTR. The type C_PTR is interoperable with any C data pointer type;
C_FUNPTR is interoperable with any C function pointer type.

Table 15-1 Interoperable intrinsic types

C Type Fortran Type and Type Parameter Values
int INTEGER(C_INT)
short int INTEGER(C_SHORT)
long int INTEGER(C_LONG)
long long int INTEGER(C_LONG_LONG)
signed char INTEGER(C_SIGNED_CHAR)
unsigned char INTEGER(C_SIGNED_CHAR)
size_t INTEGER(C_SIZE_T)
int8_t INTEGER(C_INT8_T)
int16_t INTEGER(C_INT16_T)
int32_t INTEGER(C_INT32_T)
int64_t INTEGER(C_INT64_T)
int_least8_t INTEGER(C_INT_LEAST8_T)
int_least16_t INTEGER(C_INT_LEAST16_T)
int_least32_t INTEGER(C_INT_LEAST32_T)
int_least64_t INTEGER(C_INT_LEAST64_T)
int_fast8_t INTEGER(C_INT_FAST8_T)
int_fast16_t INTEGER(C_INT_FAST16_T)
int_fast32_t INTEGER(C_INT_FAST32_T)
int_fast64_t INTEGER(C_INT_FAST64_T)
intmax_t INTEGER(C_INTMAX_T)
intptr_t INTEGER(C_INTPTR_T)
float REAL(C_FLOAT)
double REAL(C_DOUBLE)
long double REAL(C_LONG_DOUBLE)
float _Complex COMPLEX(C_FLOAT_COMPLEX)
double _Complex COMPLEX(C_DOUBLE_COMPLEX)
long double _Complex COMPLEX(C_LONG_DOUBLE_COMPLEX)
_Bool LOGICAL(C_BOOL)
char CHARACTER(1, C_CHAR)

566 Chapter 15

All components of these derived types are private; user programs cannot directly
manipulate the components of objects of these types.

A single Fortran type interoperates with all C data pointer types; this implies that
the C compiler must have the same representation for all data pointer types. Likewise,
the C compiler must have the same representation for all function pointer types. The C
standard does not require this, but all current C compilers meet the restrictions.

An entity of type C_PTR cannot be dereferenced directly in Fortran. Instead, the
features discussed in 15.5.4 can be used to achieve these ends.

15.4.4 Derived Types

A Fortran derived type is defined to be interoperable if it has the BIND(C) attribute.
An interoperable derived type is nonextensible (4.4.12) by definition. The following re-
strictions apply to a type with the BIND(C) attribute.

1. It must not have the SEQUENCE attribute. BIND(C) types have properties similar
to those of SEQUENCE types—so much so that BIND(C) types might be thought of
as a category of SEQUENCE types, but they are not categorized that way in the
standard.

2. It must not have the EXTENDS attribute.

3. It must not have type parameters.

4. It must not have procedure bindings.

Table 15-2 The meaning of negative values

For Intrinsic Types Value Meaning

INTEGER −1 The C type exists but there is no Fortran kind that
interoperates with it.

−2 The C type is not defined by the C processor.

REAL or COMPLEX −1 The C type exists but there is no Fortran kind that has the
same precision.

−2 The C type exists but there is no Fortran kind that has the
same exponent range.

−3 The C type exists but there is no Fortran kind that has the
same precision and exponent range.

−4 There is no interoperable Fortran kind for some reason other
than precision or range requirements.

LOGICAL −1 There is no Fortran kind that interoperates with the C type.

CHARACTER −1 There is no Fortran kind that interoperates with the C type.

Interoperability with C 567

5. Each component must be a nonpointer, nonallocatable data component with in-
teroperable type and type parameters.

The restriction against Fortran pointer components might seem severe at first
glance, but recall that the Fortran types C_PTR and C_FUNPTR are interoperable with
C pointer types. An interoperable derived type must not have Fortran pointer compo-
nents, but it may have components of type C_PTR and C_FUNPTR.

A Fortran derived type is interoperable with a C struct type if:

1. the Fortran type is interoperable,

2. the Fortran type and the C type have the same number of components,

3. the type and type parameters of each Fortran component are interoperable with
the type of the corresponding C component,

4. each scalar Fortran component corresponds to a scalar C component, and

5. each array Fortran component corresponds to an array C component and the shape
matches as described in 15.5.2.

The last two rules above are not specified explicitly in the standard, but they are nec-
essary. It is likely that they were so obvious that the need to specify them was over-
looked.

The component correspondence in these rules is according to position in the type
declarations.

The component names of the Fortran and C types are not required to agree. This
avoids problems relating to the difference in case sensitivity in the two languages.
Component names of the Fortran type may be private. If so, the PRIVATE attribute has
no effect on C.

The following Fortran derived type and C struct type are interoperable with each
other.

type, bind(c) :: real_node_type
 real(c_float) :: data
 type(c_ptr) :: next_node
end type

typedef struct {
 float data;
 nodeType *nextNode;
} nodeType

15.5 Interoperation of Data

A Fortran variable is interoperable if it has interoperable type and type parameters and
also meets other conditions detailed below.

568 Chapter 15

It is notable that having the BIND attribute is not one of those conditions. There is
no need to explicitly specify that a variable is interoperable; if it has the needed prop-
erties then it is interoperable without further specification. The only purpose of the
BIND attribute for variable is to give it a binding label (15.2). A binding label is needed
for communication with C via a global variable, but it is not needed for communication
via procedure arguments.

An interoperable Fortran variable cannot be polymorphic because extensible types
cannot be interoperable.

15.5.1 Scalar Variables

A scalar Fortran variable is interoperable if it has interoperable type and type parame-
ters and is neither allocatable nor a pointer. An interoperable scalar Fortran variable is
interoperable with a scalar C variable if the type and type parameters of the Fortran
variable are interoperable with the type of the C variable.

15.5.2 Array Variables

An array Fortran variable is interoperable if it has interoperable type and type param-
eters, is neither allocatable nor a pointer, and has either explicit shape or assumed size.
The prohibition against being allocatable or a pointer is redundant with the require-
ment for explicit shape or assumed size; it is included in this definition for parallelism
with the scalar case.

The requirement for explicit shape or assumed size rules out assumed-shape and
deferred-shape arrays, plus all array sections. This requirement ensures contiguity in
memory, as required by C. However, one should not misinterpret this to mean that an
array passed as an actual argument to a C function must be explicit shape or assumed
size. See 15.7 for an explanation of why such an interpretation would be incorrect.

An interoperable Fortran array of rank 1 is interoperable with a C array if the types
of their elements are interoperable and their sizes match. For this purpose, the size of a
rank 1 Fortran assumed-size array matches that of a C array of unspecified size. How-
ever, C has no zero-sized arrays, so a Fortran array of size zero is not interoperable
with any C array.

C arrays of rank greater than 1 are formally constructed as arrays whose elements
are arrays. However, this formalism obscures more than it helps the description of in-
teroperability. Instead, consider such a C array to be described by the type of the final
elements and the sizes of each dimension. An interoperable multi-dimensional Fortran
array is interoperable with such a C array if the types of their elements are interopera-
ble and the size of each dimension of the Fortran array (also known as the extent)
matches the size of the corresponding dimension of the C array. The matching of sizes
is as described above for the rank 1 case, except that only the last dimension of an as-
sumed-size array follows the assumed-size rule. The dimensions of the Fortran array
correspond to those of the C array in reverse order.

For example, arrays declared as follows in Fortran and C are interoperable.

Interoperability with C 569

Fortran C
real(c_float) :: x(5,6,7) float y[7][6][5];
real(c_double) :: xx(-10:10) double yy[21];
integer(c_int) :: i(8,9,*) int i[][9][8];

The double example illustrates that the Fortran lower bounds do not directly mat-
ter except as they are used to compute the extents. Recall that C arrays always have
lower bounds of zero. Thus, the double C array in this example has elements num-
bered 0 through 20, which correspond to the Fortran elements numbered −10 through
10. Similar index correspondence rules apply to each dimension of a multi-dimensional
array.

A common idiom in C is to use a rank-1 array of pointers to represent a two-di-
mensional array. This construct is not interoperable with a rank-2 Fortran array. In-
stead, it can interoperate with an array of type C_PTR.

15.5.3 Character Data

A single C character is interoperable with a single Fortran character of length 1. How-
ever, C has nothing that directly corresponds to Fortran character strings of lengths
other than 1; such a Fortran character string is not interoperable. A character string in
C is represented as an array of character elements; this is interoperable with a Fortran
array of single-character elements, but not with a scalar Fortran string.

It is usually most natural for multi-character Fortran data to use scalar strings in-
stead of arrays. For example, it would be untenably awkward to have to write the ar-
ray [ʹYʹ_c_char, ʹeʹ_c_char, ʹsʹ_c_char] instead of the more natural ʹYesʹ_c_char.

Because character data is so basic and ubiquitous, a special-case feature was intro-
duced to alleviate the awkwardness of the differences between C and Fortran in this
regard. As detailed in 12.6.4.1, argument association is character-by-character sequence
association if the dummy argument is an explicit-shape or assumed-size array of the C
character kind. This special rule overrides the normal distinction between arrays and
strings; it allows a Fortran string to be passed as an actual argument to a C function
that expects an array of characters. An example of the application of this rule is shown
in 15.7.

To further facilitate portable interoperation with C character data, the
ISO_C_BINDING module includes several named character constants with values cor-
responding to characters with special meaning in C. Table 15-3 lists these named con-
stants. The specifications of the values depend on whether or not there is a Fortran
character kind interoperable with C char. Normally there is such a Fortran character
kind, in which case these named constants are of that kind and have values specified in
terms of C as shown in the last column of the table. If there is no such Fortran charac-
ter kind, these named constants are of default character kind and have values specified
in terms of the character intrinsic functions as shown in the next-to-last column.

15.5.4 Pointers

Fortran pointers and C pointers are not directly interoperable with each other. A For-
tran array pointer must include information about the bounds and strides of the array;
this invariably forces the physical representation of a Fortran array pointer to be differ-

570 Chapter 15

ent from the simple address form of a C pointer. Fortran scalar pointers are often im-
plemented with a representation like that of a C pointer, but such similarity is not
guaranteed by the standard.

Instead, a C pointer type is interoperable with one of the Fortran types C_PTR or
C_FUNPTR, as described above. The ISO_C_BINDING module has procedures for con-
version between the Fortran and C pointer forms. The module functions C_LOC and
C_FUNLOC convert Fortran pointers into C ones or directly generate C pointers to
specified Fortran targets. The module subroutines C_F_POINTER and
C_F_PROCPOINTER convert C pointers into Fortran ones. Additionally, the module
function C_ASSOCIATED provides functionality corresponding to that of the ASSOCI-
ATED intrinsic for Fortran pointers. The named constants C_NULL_PTR and
C_NULL_FUNPTR provide convenient shorthand forms for a C null data pointer and
function pointer, respectively.

C_LOC (X) Inquiry Function

A C data pointer to the argument.

X A suitable target for a C data pointer. X must either have the TARGET
attribute or be an associated pointer. If X is an array, it must have nonzero
size and either be an interoperable variable or an allocated allocatable
variable with interoperable type and type parameters. X must not be
polymorphic. X must not have a length type parameter unless it is of type
character with length 1.

Result Characteristics. Scalar of type C_PTR.

Result Value. The result is a C pointer to the argument or, if the argument is a pointer,
to the target of that pointer. If the target of the pointer is not interoperable, the result-
ing C pointer cannot be dereferenced in C, but it can be converted to a Fortran pointer
by C_F_POINTER.

Table 15-3 Named constants for special C characters

Named Constant C Character
Character Value

C_CHAR=−1 C_CHAR>0

C_NULL_CHAR null character CHAR(0) ’\0’

C_ALERT alert ACHAR(7) ’\a’

C_BACKSPACE backspace ACHAR(8) ’\b’

C_FORM_FEED form feed ACHAR(12) ’\f’

C_NEW_LINE new line ACHAR(10) ’\n’

C_CARRIAGE_RETURN carriage return ACHAR(13) ’\r’

C_HORIZONTAL_TAB horizontal tab ACHAR(9) ’\t’

C_VERTICAL_TAB vertical tab ACHAR(11) ’\v’

Interoperability with C 571

C_FUNLOC (X) Inquiry Function

A C function pointer to the argument.

X An interoperable procedure or an associated pointer to one.

Result Characteristics. Scalar of type C_FUNPTR.

Result Value. The result is a C pointer to the argument.

C_F_POINTER (CPTR, FPTR [, SHAPE]) Subroutine

Converts a C data pointer to a Fortran data pointer.

CPTR A scalar INTENT (IN) argument of type C_PTR. It must either point to an
interoperable data entity or be the result of a reference to C_LOC. Note
that, in either case, it cannot point to a Fortran variable that does not have
the TARGET attribute. The target of CPTR must not have been
deallocated and must not have become undefined as the result of
termination of a procedure.

FPTR An INTENT (OUT) pointer suitable for pointing to the target of CPTR. If
CPTR points to an interoperable data entity, FPTR must have type and
type parameters interoperable with the type of the C entity. If CPTR is the
result of a reference to C_LOC with a noninteroperable target, FPTR must
be a nonpolymorphic scalar pointer with the same type and type
parameters as the target. FPTR will be set to point to the specified target.
If FPTR is an array, its lower bounds will be set to 1 and its shape will be
as specified by the SHAPE argument.

SHAPE An INTENT (IN) rank-1 integer array. It must be present if and only if
FPTR is an array. Its size must equal the rank of FPTR. It specifies the
shape of FPTR.

C_F_PROCPOINTER (CPTR, FPTR) Subroutine

Converts a C function pointer to a Fortran procedure pointer.

CPTR A scalar INTENT (IN) argument of type C_FUNPTR. It must point to an
interoperable procedure.

FPTR An INTENT (OUT) procedure pointer suitable for pointing to the target
of CPTR. The interface of FPTR must be interoperable with a C prototype
describing the procedure. FPTR will be set to point to the specified target.

C_ASSOCIATED (C_PTR_1 [, C_PTR_2]) Inquiry Function

Association status of a C pointer or whether two C pointers are associated with the
same target.

C_PTR_1 A scalar of type C_PTR or C_FUNPTR.

572 Chapter 15

C_PTR_2 An optional scalar of the same type as C_PTR_1

Result Characteristics. Default logical scalar.

Result Value. If C_PTR_2 is absent, the result is true if C_PTR_1 is not a C null pointer.
If C_PTR_2 is present, the result is true if both arguments point to the same target and
are not C null pointers.

15.5.5 Global Data

Global data in C is stored in a variable with external linkage, which roughly means ei-
ther a variable declared as extern or a file scope variable declared without an explicit
storage class. Such a C global variable can be linked to either a Fortran common block
or a Fortran module variable. Although the syntax used for linking a module variable
would also appear to fit and to make sense for a local variable in a procedure, that is
not allowed.

Linkage between a C variable and a Fortran variable or common block is a form of
association. Modifications to the values of the C variable cause corresponding modifi-
cations to the values of the linked Fortran entity, and vice versa. In practice, this is im-
plemented by assigning them to the same memory locations; other implementations
are allowed in theory, but are unlikely to happen.

The BIND attribute for a variable or common block specifies a binding label either
explicitly or implicitly. The forms for specifying the BIND attribute for a variable or
common block are described in 5.1 and 5.8.3.

If there is a C variable with external linkage that has an identifier the same as the
binding label of the Fortran variable or common block, that C variable is linked to the
Fortran variable or common block. A binding label must be valid as the form of a C iden-
tifier, but it is not required that there be such a C variable with that identifier; if there is
none, the Fortran variable or common block stands on its own.

Both C and Fortran provide ways to specify initialization for a variable. If a Fortran
variable or common block is linked to a C variable, initialization may be specified by
Fortran, by C, or by neither, but it must not be specified by both.

If a Fortran variable is linked to a C variable, they must be interoperable with each
other.

If a Fortran common block is linked to a C variable, one of the following must
hold:

1. The common block contains only a single variable, which is interoperable with the
C variable.

2. The C variable is a structure and each of the variables in the common block is in-
teroperable with the corresponding component of the C structure.

The following is a simple example of linkage between a C and Fortran variable.

integer(c_int), bind(c) :: status = 0

int status;

Interoperability with C 573

In this example, the Fortran declaration must be in the specification part of a module
and the C declaration must be outside of any functions. The Fortran declaration initial-
izes the variable, so the C declaration must not.

Linkage to a C variable with a mixed- or upper-case name requires that the name
be explicitly specified with a NAME specifier in the BIND attribute as in the following
example.

real(c_double), bind(c,name='ElapsedTime') :: ElapsedTime

double ElapsedTime;

Even though the declaration of the Fortran variable in this example uses the same
mixed case as the C declaration, the case in the Fortran declaration is insignificant.
Without the explicit NAME specifier, the binding label of the Fortran variable would
be all lower case. The linkage to this C variable could alternatively be done with a com-
mon block instead of a module variable. The Fortran declarations for such a common
block might look like:

common /ElapsedTime/ ElapsedTime
real(c_double) :: ElapsedTime
bind(c,name='ElapsedTime') :: /ElapsedTime/

In this example, the name of the single variable in the common block is the same as
the name of the common block. Such duplication of the name of a common block and
a variable is allowed but is not required. It is sometimes considered poor style, but is
fairly common in cases like this where the common block has only a single variable.
The default binding label comes from the name of the common block rather than that
of the variable, although in this example the default binding label is not used.

15.6 Interoperation of Procedures

An interoperable Fortran procedure is potentially invocable from C. An interoperable
C function is potentially invocable from Fortran. Such inter-language invocation re-
quires interoperability between Fortran interfaces and C prototypes.

A C function that is not interoperable cannot be invoked directly from Fortran, but it
can be invoked indirectly by invoking an interoperable C function which in turn invokes
the non-interoperable one. Conversely, a noninteroperable Fortran procedure can be in-
voked indirectly from C by means of an interoperable intermediary procedure.

15.6.1 Interoperable Fortran Procedures and Interfaces

The BIND attribute specification in the SUBROUTINE or FUNCTION statement of a
subprogram or in an ENTRY statement specifies that the procedure named in that
statement is interoperable.

The BIND attribute specification in the SUBROUTINE or FUNCTION statement of
an interface body specifies that the interface is interoperable.

574 Chapter 15

Rules and restrictions:

1. An interoperable procedure must not be defined by an internal subprogram; it
must be defined by an external or module subprogram.

2. A Fortran reference to an interoperable procedure requires an explicit interface. It
is possible that the implementation mechanisms for interoperable procedures
might be different from those for non-interoperable ones. The explicit interface
provides the information necessary to guarantee that the appropriate mechanisms
are used.

3. An interoperable procedure or interface must not be elemental.

4. A dummy argument of an interoperable procedure or interface must not be option-
al and must not be an alternate return.

5. Each dummy argument of an interoperable procedure or interface must be an in-
teroperable variable or an interoperable procedure. This restriction indirectly pro-
hibits several things. For example it implies that a dummy argument must not be a
pointer, an allocatable object, an assumed-shape array, or a character string with
length other than 1. See 15.5.3 for more on the character length issue.

6. The result variable of an interoperable function procedure or interface must be an
interoperable scalar variable.

7. A binding label (15.2) must not be specified for a dummy procedure or an abstract
interface. A binding label would make no sense in these cases because a binding la-
bel specifies a particular procedure. For a dummy procedure, the particular proce-
dure involved is specified by the actual argument, not by the dummy. The whole
point of an abstract interface is that it is an interface that is defined on its own
without being tied to a particular procedure.

8. A Fortran procedure must not be invoked as a C signal handler, even if it has an
appropriate interface.

15.6.2 Interoperability of Fortran Interfaces and C Prototypes

Fortran procedure interfaces are comparable to C function prototypes. A particular
Fortran procedure interface is interoperable with a particular C function prototype if
the following conditions hold.

1. The Fortran interface must be interoperable; that is it must have the BIND at-
tribute. This condition implies several others, as described in the preceding section.

2. If the Fortran interface describes a subroutine, the C prototype must have a result
type of void.

3. If the Fortran interface describes a function, the result variable of the function must
be interoperable with the result of the C prototype.

Interoperability with C 575

4. The number of Fortran dummy arguments must equal the number of C formal pa-
rameters.

5. Each Fortran dummy argument that has the VALUE attribute (5.9.2) must be in-
teroperable with the corresponding C formal parameter.

6. Each Fortran dummy argument without the VALUE attribute must correspond to a
C formal parameter that is a pointer; the Fortran dummy argument must be in-
teroperable with a target of the C pointer.

The correspondence between Fortran dummy arguments and C formal parameters
is positional; the names do not matter. The syntax for invoking a C procedure may use
keyword forms of argument specification; the keyword names for such usage are those
of the Fortran interface—not the C function.

The standard separately specifies that the C function prototype must not have vari-
able arguments denoted by an ellipsis, although that condition seems implied by the
others. In any case, it is notable that there is no support for interoperation of a proce-
dure with a variable number of arguments. The closest available approximation to that
functionality would be to have a single argument that is an array of C pointers as in
the following example.

type(c_ptr), allocatable :: args(:)
 . . .
allocate(args(3))
args(1) = c_loc(something)
args(2) = c_loc(something_else)
args(3) = c_null_ptr
call sub(args)

15.6.3 Interoperable C Functions

A C function is interoperable if it has external linkage and can be described by a C pro-
totype that is interoperable with some Fortran interface. This definition also applies to
procedures in companion processor languages other than C. For example, a C++ func-
tion must be describable by a C prototype in order to be interoperable.

15.6.4 Restrictions on C Functions

The definition of an interoperable C function focuses on the issues directly involved in
invoking the function and passing arguments to it. For the most part, once a C function
is invoked, its internal operations are determined by the C compiler or other compan-
ion processor. The Fortran standard has little to say about the matter. However, the
Fortran standard places several restrictions on what a C function may do internally.

These restrictions apply to any C function invoked during execution of a Fortran
program, even if the C function is not interoperable.

1. The C setjmp and longjmp functions have semantics that do not mix well with For-
tran. These functions may be invoked internally within a C function, but only sub-
ject to the following conditions, which avoid needing special treatment by the

576 Chapter 15

Fortran compiler. Neither setjmp nor longjmp may be invoked directly from For-
tran. If a C function invokes either setjmp or longjmp, that C function must not
also invoke a Fortran procedure, either directly or indirectly. In essence, these two
restrictions require isolation of the effects of setjmp and longjmp to portions of the
C code that do not involve Fortran.

2. A C function must not use the C signal function to change the handling of any ex-
ception that is being handled by Fortran. Because it is not specified what excep-
tions are handled by the Fortran compiler, this restriction essentially prohibits
portable programs from using the C signal to change the handling of any excep-
tions.

3. A C function may cause a floating-point exception flag (14.4) to be set to signaling.
A flag that is signaling on entry to the C function must also be signaling on return.
The values of the flags on entry to a C function invoked from Fortran are processor
dependent.

4. If Fortran and C code both have the same external file open at the same time, the
results are compiler-dependent. The two compilers are not required to co-ordinate
their input/output handling of a single file. Such mixed-language access might
work as expected with some compiler combinations, but is not portable. It is advis-
able to have all input/output operations for a single file done in a single language
at a time. There is no problem with having input/output in both Fortran and C as
long as each file is handled by one language at a time; any Fortran connection to the
file should be closed before opening the file in C, and vise versa.

In addition to these specific restrictions, there is a general principle which is not
explicitly stated as an issue of interoperation. The Fortran standard has many restric-
tions that are stated in sufficiently general terms that they apply without regard to the
language in which a particular procedure is written. This implies restrictions on what
may be done in a C function in a Fortran program. In many such cases, violations of
these restrictions are likely to go undetected by the compiler, but a program with such
violations is nonstandard. In short, although the inner workings of a C function are de-
fined by C, its externally visible effects on Fortran entities must meet the same require-
ments as if the C function were a Fortran procedure.

The following are some notable cases of such implied restrictions.

1. A dummy argument that has INTENT (IN), or whose actual argument is not
definable, must not be modified while its procedure is executing. That restriction
applies to any means of modification, whether in Fortran or in C.

2. There are restrictions on modifying dummy arguments that are aliases. Those
restrictions also apply to modification done in C.

3. A C function must not use pointer arithmetic to access memory outside of the
bounds of its arguments.

Interoperability with C 577

15.6.5 Connecting Fortran Procedures and C Functions

Invocation of a Fortran procedure or a C function from the other language requires a
means to identify the intended procedure or function. There are two means of accom-
plishing such identification: directly using binding labels or indirectly using procedure
pointers.

The binding label of a C function with external linkage is the C identifier of the
function. The binding label of an interoperable Fortran procedure is given, either im-
plicitly or explicitly, by the BIND attribute specification in the subroutine or function
statement (12.1.1, 12.2.1).

An interoperable C function may be referred to directly in Fortran if it has been
given an explicit interface with the same binding label. The Fortran interface must be
interoperable with the C function prototype.

If a Fortran procedure has a binding label, the procedure may be referred to direct-
ly in C code using that binding label as its C identifier. Such a Fortran procedure may
also be referred to from other Fortran code. Having a BIND attribute is one of the con-
ditions that requires an explicit interface for references from Fortran code (12.5.1.2).

Pointers provide an indirect means of cross-language identification. A datum of type
C_FUNPTR can point to a Fortran procedure or C function. Such a datum can be com-
municated between Fortran and C via argument passing or as global data. The target of
such a pointer need not have a binding label.

15.7 Examples of Interoperation

It is important to understand that the definitions of interoperability do not stand alone,
but integrate with the rest of the language. A Fortran procedure reference to a C func-
tion still follows all the rules for a Fortran procedure reference. A narrow focusing
solely on the requirements of interoperability misses the bigger picture.

For example, an interoperable Fortran interface must not have a dummy argument
that is allocatable. If one looks too narrowly, this might sound like a restriction against
passing an allocatable array as an argument to an interoperable procedure. But that
conclusion would be incorrect because the restriction against allocatable objects applies
to the dummy arguments of an interoperable procedure. The normal rules for the asso-
ciation of actual and dummy arguments still apply. Those rules allow an allocated allo-
catable object to be the actual argument for a nonallocatable dummy argument.
Likewise, the restrictions against assumed-shape and pointer dummy arguments of in-
teroperable procedures do not mean that an actual argument must not be an assumed-
shape array or a pointer.

A particularly important case of this principle relates to character strings. A For-
tran character string with a length other than 1 is not interoperable. A C character
string is done as an array and is thus interoperable with a Fortran array of characters
rather than with a Fortran character string. It would be unacceptably awkward if this
implied that Fortran character strings could not be passed to C functions. However, the
rules for argument association include a special case specifically to allow this. As de-
scribed in 12.6.3, for characters of kind c_char, a scalar character string actual argument

578 Chapter 15

of length n may be associated with a dummy argument that is an array of size n as in
the following example.

use :: iso_c_binding, only :: c_char, c_null_char
interface
 subroutine copy (in, out)
 import c_char
 character(kind=c_char) :: in(*), out(*)
 end subroutine copy
end interface

character(len=11 ,kind=c_char) :: &
 digit_string = c_char_'0123456789' // c_null_char
character(kind=c_char) :: digit_array(11)

call copy(digit_string, digit_array)

A C function described by the prototype

void copy(char in[], char out[]);

would be interoperable with the interface in this example.
The following example illustrates interoperation of procedure pointers. One com-

mon use of procedure pointers is for callback procedures in event-driven graphic user
interfaces. The definition of a graphic element might include a procedure that will be
called when that graphic element is selected interactively. A simple example is a button
with a procedure to be called when the button is clicked on.

module m
 interface
 subroutine define_button(text, text_len, proc) bind(c)
 use iso_c_binding
 character, intent(in) :: text(text_len)
 integer, value :: text_len
 type(c_funptr) :: proc
 end subroutine define_button
 subroutine poll_for_events(status) bind(c)
 integer, intent(out) :: status
 end subroutine poll_for_events
 end interface
contains
 subroutine graphic_interface
 type(c_funptr) :: proc
 integer :: status
 proc = c_funloc(do_button)
 call define_button('Push me', 7, proc)
 ...!-- Define other graphic elements.

Interoperability with C 579

 event_loop: do
 call poll_for_events(status)
 if (status/=0) exit event_loop
 end do graphics_loop
 end subroutine graphic_interface
 subroutine do_button() bind(c)
 write(*,*) 'The button was pushed.'
 return
 end subroutine do_button
end module m

The procedures define_button and poll_for_events are presumed to be part of a graph-
ics interface library.

16 Scope, Association, and Definition

• The Scope of an identifier is the part of the program in which the identifier is
known and accessible. A scope may encompass an entire program or be limited to a
part of a single statement; usually it is something in between. Often it is desirable to
limit the scope of an identifier to avoid name conflicts.

• Association provides communication among entities in the same or different
scopes. In a sense it performs a function opposite to limiting the scope of an identi-
fier. It allows an entity to be identified by different names in a scope or by the same
or different names in different scopes. There are various forms: name association,
pointer association, storage association, and inheritance association. Name associa-
tion includes argument association, use association, host association, linkage associ-
ation, and construct association.

• Definition is the state of having a value. An entity may be initialized. Various
events may occur during execution, such as assignment or input, that result in enti-
ties acquiring or changing values. Other events such as an error condition or execu-
tion of a RETURN or DEALLOCATE statement may cause an entity to become
undefined. An undefined entity must not be referenced.

The topics of scope, association, and definition are related. Scope specifies the part of a
program where an identifier is known and accessible. Association is the pathway along
which entities in the same or different scopes communicate. Definition characterizes
the ways in which variables are given values. Its opposite, undefinition, characterizes
the way values become unpredictable.

Various aspects of scope, association, and definition have already been discussed
throughout the earlier chapters of this handbook. If simple programming disciplines
are followed, correct programs can be created without concern for the subtle issues re-
lated to these topics, but there are situations in which it is necessary to know the de-
tails, particularly when modifying or maintaining programs. This chapter provides
many of those details and indicates where the others may be located in the earlier
chapters.

16.1 Scope

The scope of an identifier is that part of a Fortran program in which that identifier has
a given meaning and can be used, defined, or referenced. With the possibility that dif-
ferent parts of a program are developed by different programmers, it is reasonable to
allow and expect that something named X in one module or external subprogram, for
example, has nothing to do with something named X in another program unit. This
permits different programmers to work independently. The concepts of scope and
J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_16, © Springer-Verlag London Limited 2009

582 Chapter 16

classes of identifiers are some of the mechanisms that support this capability. Of
course, some identifiers will have the scope of the entire program so that, in a large
project with nested scopes, the usage of identifiers of global entities must be managed
carefully. The scope of an identifier may be

• a program

• a scoping unit

• a construct

• a statement

• a part of a statement

A global identifier has the scope of a program; a local identifier has the scope of a
scoping unit; the identifier of a construct entity has the scope of a construct; and the
identifier of a statement entity has the scope of a statement or part of a statement. An
entity may be identified by

• a name (3.2.2)

• a statement label (3.2.5)

• an external input/output unit number (9.1.6)

• an identifier of a pending data transfer operation (9.7)

• a generic specification (12.5.4)

• a binding label (15.2)

Note that Fortran keywords are not reserved and may be used as identifiers, with
the exception of some type names as noted in 4.2.1.

16.1.1 Global Identifiers

The global entities of a program are

• program units

• external procedures

• common blocks

• entities with binding labels

• external input/output units

• pending data transfer operations

Each of these has a global identifier. Although an external subprogram is one form
of program unit, it may specify more than one external procedure. The names of exter-

Scope, Association, and Definition 583

nal procedures specified by ENTRY statements are global names. That is why both pro-
gram units and external procedures appear in the list above.

Within a program:

• The name of a program unit, external procedure, or common block must not be the
same as the name of any other such entity, except that an intrinsic module may
have the same name as a program unit, external procedure, or common block.

• An entity of the program must not be identified by more than one binding label.

• The binding label of an entity must not be the same as the binding label of another
entity.

• Ignoring differences in case, a binding label must not be the same as the name of
another global entity unless the other global entity is an intrinsic module. A bind-
ing label may be the same as the name of a global entity that identifies the same
entity.

Note that module procedure names are not global. One module may contain a
module procedure that has the same name as a module procedure in a different mod-
ule. The same is true for internal procedures in different hosts. An implementation
may choose to assign global designators to these entities; if so, it is the responsibility of
the processor to ensure that none of these are the same as those of external procedures,
other global entities, or each other. This might be done by including in each such des-
ignator added characters that are not allowed in a Fortran name or by using such char-
acters together with the global name of the program unit in which the entity appears.

16.1.2 Local Identifiers

A local identifier has the scope of a scoping unit. The scoping units are:

• a derived-type definition

• a procedure interface body, excluding any derived-type definitions and procedure
interface bodies contained within it

• a program unit or subprogram, excluding derived-type definitions, procedure in-
terface bodies, and subprograms contained within it

To visualize the concept of scope and scoping units, consider Figure 16-1. The out-
er rectangle bounds the pieces of an executable Fortran program; it is not a scoping
unit but could be said to represent global scope. Within the executable program four
other rectangles depict program units. One is the main program, two others are exter-
nal subprogram units, and the fourth one is a module program unit.

All four of these program unit rectangles represent scoping units, excluding any
rectangles within them. The main program in this example encloses no rectangle and
so is an integral scoping unit without holes. External subprogram A has two internal
subprograms within it, and therefore subprogram A’s scoping unit is this rectangle, ex-
cluding internal subprograms B and C. External subprogram D has an interface block
in it and no internal subprograms. Its scoping unit is subprogram D, excluding the in-

584 Chapter 16

terface block. Module E has a derived-type definition and two module subprograms
within it. Its scoping unit is similarly the module program unit, excluding the derived-
type definition and the module subprograms.

In addition, the interface block, the derived-type definition, and each of the inter-
nal and module subprograms are scoping units. In this example, these latter scoping

 .
 .
 .

 . . .

Main program
 .
 .
 .

External subprogram D

External subprogram A
 .
 .
 .
CONTAINS

 Internal subprogram B . . .

 Internal subprogram C . . .

 .
 .
 .

Figure 16-1 Scoping units denoted as boxes

Module E

 Derived-type definition

 .
 .
 .
CONTAINS

 Module subprogram F . . .

 Module subprogram G . . .

Fortran program

 Interface block . . .

Scope, Association, and Definition 585

units have no holes, as they do not themselves contain internal scoping units although,
in general, the subprograms and the interface block could do so.

16.1.2.1 Classes of Local Identifiers

Within a scoping unit, there are three classes of local identifiers. The entities whose
identifiers fall in each of the classes are listed below:

Class 1 Identifiers

named constants, named constructs, statement functions, internal procedures, module
procedures, dummy procedures, intrinsic procedures, abstract interfaces, generic inter-
faces, derived types, namelist groups, external procedures accessed via USE, statement
labels, and named variables that are not statement or construct entities

Class 2 Identifiers

type parameters, components, and type-bound procedure bindings of a derived
type—there is a separate class for each derived type, which means that two different
derived types can have the same identifiers

Class 3 Identifiers

argument keywords—there is a separate class of names for each procedure with an ex-
plicit interface, which means that two different procedures can have the same argu-
ment keywords

Rules and restrictions:

1. A local identifier of one class may be the same as a local identifier of another class.

2. A local identifier of one class must not be the same as another local identifier of the
same class with one exception for generic names as explained below.

16.1.2.1.1 Class 1 Identifiers
Most local identifiers fall into Class 1. There are several special considerations for enti-
ties of this class.

A generic name may be the same as the name of a specific procedure. A generic
name may also be the name of a derived type. A derived-type name is used in a struc-
ture constructor to construct values of the type, but the form of a structure constructor
and the form of a function reference are identical. The form

name (. . .)

is interpreted as a generic function reference if possible; it is interpreted as a structure
constructor only if it cannot be interpreted as a generic function reference.

A Class 1 local identifier must not be the same as a global identifier if the global
identifier is used in the scoping unit unless the global identifier either

• appears only in a USE statement that renames it

586 Chapter 16

• is an external function (or entry) name appearing in the function definition to spec-
ify a function result

• is an external procedure name that is also a generic name

• is a common block name

The name of a common block must not be the same as the name of a constant or an
intrinsic procedure referenced in the scoping unit. If the common block name is the
same as another local identifier, any appearance of the name in a context other than as
a common block in a COMMON or SAVE statement is an appearance of the local iden-
tifier. Note that the name of a module or internal procedure (which is a local identifier
of Class 1) may be the same as the name of a common block (which is a global identi-
fier).

Within the scope of a definition of a subprogram, the subprogram name (or entry
name) may appear if the procedure it defines is invoked recursively. If the subprogram
is an external subprogram, the appearance of the name in this context is a global refer-
ence. If the subprogram is an internal or module subprogram, this is a local reference
in the scoping unit of its host.

16.1.2.1.2 Class 2 Identifiers
Entities that have the scope of a derived-type definition are its parameters, its compo-
nents, and its type-bound procedures.

Outside the type definition (4.4.2), a type parameter name may appear only as a
keyword in a derived-type specification or as a type parameter inquiry (6.3).

Outside the type definition, a component name may appear only in a designator
for the component or as a keyword in a structure constructor for an object of the type.

Outside the type definition, the binding name (4.4.11) of a type bound procedure
may appear only in a procedure reference.

A component name or binding name may appear only where the name is accessi-
ble (4.4.5).

16.1.2.1.3 Class 3 Identifiers
A dummy argument name may be used as a keyword in a reference to a procedure.
Such a name that is specified in an internal procedure, module procedure, or interface
body has the scope of the host of the procedure or interface body. It may appear only
as a keyword in a reference to the procedure for which it is a dummy argument. The
same is true for an argument name of an intrinsic procedure; it has the scope of the
scoping unit in which the intrinsic procedure is referenced. If a procedure or interface
body is accessible by use or host association in a scoping unit, a dummy argument
used as a keyword is permitted in a procedure reference in that scoping unit.

16.1.2.2 Resolution of Generic Identifiers

In most scoping units, generic identifiers (including names, operators, and the assign-
ment symbol) are specified in interface blocks accessible to the scoping unit. In a type
definition, they are the generic bindings for that type including any from a parent type.

Scope, Association, and Definition 587

If a generic procedure is accessed from a module, the rules for resolution apply to
all the specific names even if some of them are inaccessible by their specific names. If a
generic procedure reference applies to both a specific procedure from an interface and
an accessible generic intrinsic procedure, it is the specific procedure from the interface
that is referenced. If a generic name is the same as the name of a generic intrinsic pro-
cedure, the generic intrinsic procedure is not accessible if the procedures in the inter-
face and the intrinsic procedure are not all functions or not all subroutines. The
resolution of procedure references is covered in 12.8.

Resolution depends on the ability to distinguish among the dummy arguments of
procedure references. Two arguments are distinguishable if neither is a subroutine
and they differ in type, kind, or rank; otherwise, they are compatible and do not con-
tribute to resolution. The detailed rules for distinguishability may be found in 12.5.4.1.

16.1.3 Statement and Construct Identifiers

The following identifiers have the scope of a statement or part of a statement and are
known as statement entities:

• a DO variable in a DATA statement or array constructor

• an index variable in a FORALL statement

• a dummy argument in a statement function

The following identifiers have the scope of a construct and are known as construct
entities

• an index variable in a FORALL construct

• an associate name in a SELECT TYPE or ASSOCIATE construct

The DO variable in an implied-do loop in a DATA statement or array constructor
has the scope of the implied-do loop; that is, its scope is part of a statement. On the
other hand, the DO variable of an implied-do loop in an input/output list has the scope
of the subprogram in which the input/output statement appears.

Both the DO variables in DATA statements and array constructors and the index
variables in FORALL statements and constructs must be of type integer; they have no
other attributes. If the scoping unit that includes the DATA statement, array construc-
tor, FORALL statement or construct also includes an IMPLICIT NONE statement or
there are contrary implicit typing rules in effect, the statement and construct entities
must be explicitly declared in that scoping unit.

A statement function dummy argument is a scalar with the type and type parame-
ters it would have if it were a variable in the scoping unit of the statement function; it
has no other attributes.

Within the single block of an ASSOCIATE construct and each separate block of a
SELECT TYPE construct, the entity identified by an associate name has the declared
type, dynamic type, type parameters, rank, and bounds of the selector; it has the scope
of the block.

588 Chapter 16

Rules and restrictions:

1. Within the scope of a statement entity, no other statement entity may have the
same name.

2. If a global or local identifier in the scoping unit of a statement has the same name
as a statement entity in that statement, the name in the scope of the statement enti-
ty is interpreted as the statement entity. Elsewhere it is interpreted as the global or
local identifier.

3. If a global or local identifier in the scoping unit of a FORALL construct has the
same name as an index variable in that construct, the name in the scope of the
FORALL construct is interpreted as the index variable. Elsewhere it is interpreted
as the global or local identifier.

4. In rules 2 and 3, the global or local identifier must not have the same name as the
statement entity or index variable unless it is the name of a common block or a sca-
lar variable.

5. The name of an index variable of a nested FORALL statement or construct must
not be the same as the name of an index variable of an outer FORALL construct.

6. If a global or local name in the scoping unit of a SELECT TYPE or ASSOCIATE
construct is the same as an associate name, the name in the scope of the construct
is interpreted as that of the associate name. Elsewhere it is interpreted as the global
or local identifier.

16.2 Association

Association is the mechanism used to establish a relationship between entities and
identifiers. It permits an entity to be identified by different names in the same scoping
unit or by the same or different names in different scoping units. Storage association may
cause different entities to share the same storage. There are four forms of association:

1. Name association involves the use of names to establish an association.

2. Pointer association allows dynamic association of names within a scoping unit and
is essentially an aliasing mechanism.

3. Storage association involves the use of storage sequences to establish an associa-
tion between data objects. The association may be between two objects in the same
scoping unit (EQUIVALENCE) or in different scoping units (COMMON).

4. Inheritance association is the association between the inherited components and
the parent component in an extended type.

16.2.1 Name Association

There are five forms of name association: argument, use, host, linkage, and construct.

Scope, Association, and Definition 589

16.2.1.1 Argument Association

Argument association is explained in detail in 12.6. It establishes a correspondence be-
tween the actual argument in the scoping unit containing the procedure reference and
the dummy argument in the scoping unit defining the procedure. An actual argument
other than an alternate return may be the name of a variable or procedure, a designator
or subobject, or an arbitrary expression. The dummy argument name is used in the
procedure definition to refer to the actual argument.

The association of an array actual argument, that is not a pointer or allocatable ar-
ray, may be based on array element order; this form of argument association is called
sequence association (12.6.4.1). Sequence association is also used for arguments of de-
fault character or C character kind. It is the form of association used for interoperabili-
ty (15.5.3).

When execution of a procedure terminates, the actual and dummy argument asso-
ciation terminates. A dummy argument of the procedure often will be associated with
a different actual argument in a subsequent execution of the procedure.

16.2.1.2 Use Association

Use association causes an association between entities in the scoping unit of a module
and the scoping unit containing a USE statement referring to the module. It provides
access to entities specified in the module. The default situation is that all public entities
in the module are accessed by the name used in the module, but entities can be re-
named selectively in the USE statement and excluded with the ONLY option. When an
entity is renamed by a USE statement, the original name in the module can be used as
a local name for a different entity in the scoping unit containing the USE statement.
There would be no name conflict. Use association is explained in 11.3.8.

16.2.1.3 Host Association

Host association permits entities in a host scoping unit to be accessible in an internal
subprogram, module subprogram, or derived-type definition. An interface body has
access via host association only to those entities named in IMPORT statements in the
interface body. Unlike use association, with host association there is no mechanism for
renaming entities. The accessed entities are known by the same name and have the
same attributes as in the host, except that the VOLATILE or ASYNCHRONOUS at-
tribute may be added to the attributes of an accessed entity that, otherwise, would not
possess the attribute. Furthermore, a generic entity accessed from the host may be
extended in the local scope. The entities that can be accessed by host association are
named data objects, derived types, abstract interfaces, procedures, generic identifiers,
and namelist groups.

The program unit containing an internal subprogram is called the host of the inter-
nal subprogram. The program unit (which must be a module) containing a module
subprogram is called the host of the module subprogram. Because the internal (or
module) subprogram also has a local data environment, rules are needed to determine
whether a given reference inside that subprogram identifies a host entity or one local
to the subprogram.

590 Chapter 16

Rules and restrictions:

1. A name (of a variable or other identifiable object) is local if it is declared explicitly
(other than in an ASYNCHRONOUS or VOLATILE statement) in the contained sub-
program, regardless of any declarations in the host. A dummy argument in a con-
tained subprogram is an explicit local declaration. Variables accessed by use
association are considered to be explicitly declared in the contained scoping unit.

2. An entity not declared explicitly in a contained subprogram is nevertheless local
(via implicit declaration) if and only if it is neither explicitly nor implicitly declared
in the host nor accessed by use association.

3. If it is not local based on rules 1 and 2 above, the entity is host associated.

4. If a derived-type name in a host is inaccessible, data entities of that type or subob-
jects of such data entities still can be accessible.

5. If a host entity is inaccessible only because a local variable with the same name is
wholly or partially initialized in a DATA statement, the local variable must not be
referenced or defined prior to the DATA statement.

6. Local identifiers of a subprogram are not accessible to its host

7. The type of the function name (entry name or statement function name) in an inter-
nal or module function is determined by the explicit declaration, if any, or the im-
plicit type rules of the function. The type for such a function is also the type in the
host scoping unit.

In a language in which the attributes of all entities must be declared explicitly, the
typing rules are very simple. In such languages, local declarations typically override
host declarations, and any host declarations not overridden are available in the con-
tained subprogram. Fundamentally these are the rules used in Fortran, and this clean
situation can be simulated by using IMPLICIT NONE in both the host and the con-
tained procedure; IMPLICIT NONE forces explicit declaration of all entities, and is
highly recommended. In this case, each variable declared in the host is available in the
host and in each contained subprogram in which it is not overridden by a local decla-
ration; a variable declared in a contained subprogram is local to that subprogram and
locally replaces any host variable with that name.

However, Fortran allows implicit declarations—use of an entity name in the execu-
tion part without an explicit declaration of that name in the specification part—and
that complicates the situation. For example, suppose the variable TOTAL is referenced
in an internal subprogram, and neither the internal subprogram nor its host explicitly
declares TOTAL. Is TOTAL a host or local entity? Or worse, suppose that TOTAL is
used in two internal subprograms in the same host, without declaration anywhere. Is
there one TOTAL in the host or are there two local TOTALs? The possibilities are
shown in Figure 16-2.

If TOTAL is referenced in the host, it becomes declared implicitly there and is
therefore a host entity. In this case, any internal subprogram use of TOTAL accesses the

Scope, Association, and Definition 591

host entity. The situation is the same (TOTAL is a host entity) if it is declared but not
referenced in the host and not declared in the internal subprogram. If TOTAL is de-
clared in an internal subprogram, then TOTAL is local regardless of whether TOTAL is
declared or referenced in the host.

Implicit declarations are governed by the implicit typing rules and the use of the
IMPLICIT statement. The rules governing implicit typing are given in 5.3. The rules
governing implicit typing within a contained subprogram are explained below. A par-
ticular example is detailed in Figure 16-3.

host implicit typing rules = host default implicit rules
+ host IMPLICIT statements

contained procedure typing rules = host implicit typing rules
+ contained procedure IMPLICIT statements

A particularly interesting case of the host associated implicit rules is when the host
has IMPLICIT NONE. With IMPLICIT NONE, no other implicit statements are allowed
in that scoping unit, and explicit typing is required for all data objects in the host. IM-
PLICIT NONE is therefore the default in the contained subprogram, although this may
be modified by IMPLICIT statements actually in the contained subprogram. This can
result in some of the letters designating implicit types in the contained subprogram
and some not. For example, suppose that the host has IMPLICIT NONE and the con-
tained subprogram has the following IMPLICIT statements:

IMPLICIT COMPLEX(C,Z)
IMPLICIT LOGICAL(J-L)

Internal-1 Internal-2

 TOTAL=Y+X TOTAL=Y+Z

Internal-1 Internal-2

TOTAL=Y+X TOTAL=Y+Z

Host Host

(a) A single host TOTAL (b) Two local TOTALs

Figure 16-2 Is there one TOTAL in the host or two local TOTALs?

 TOTAL=0.0

592 Chapter 16

Then data objects in the contained subprogram with names starting with C or Z may
be declared implicitly of type complex; data objects with names starting with J, K, or L
may be declared implicitly of type logical. IMPLICIT NONE continues to apply to let-
ters A–B, D–I, and M–Y, and data object names beginning with these letters must be ex-
plicitly declared.

16.2.1.4 Linkage Association

Linkage association is between a module variable with the BIND attribute and the C
variable with which it interoperates, or between a Fortran common block and the C
variable with which it interoperates (15.5). Such an association is in effect throughout
the execution of the program.

16.2.1.5 Construct Association

Construct association is effective only within the blocks of the SELECT TYPE and AS-
SOCIATE constructs. Execution of a SELECT TYPE statement establishes an association
between the selector and the associate name of the construct. Execution of an ASSOCI-

 Real Real Integer Real

 Logical Logical

 Real Integer Real

Figure 16-3 How the mapping of implicit typing progresses from host to
contained procedure

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Default implicit in host

IMPLICIT LOGICAL (E-J) ... in host ...

 Real Logical Integer Real

Implicit typing in host
and default implicit in
contained procedure

IMPLICIT REAL (F-I) ... in contained procedure ...

Implicit typing rules in
contained procedure

Scope, Association, and Definition 593

ATE statement establishes an association between each selector and the corresponding
associate name of the construct. The association is established before execution of any
block within these constructs and is not affected by any subsequent changes to vari-
ables that were used in subscripts or substring ranges in the selector. The association
persists throughout the execution of the executed block. Within the block, each selector
may be accessed by the associated associate name. Upon termination of the construct,
the association is terminated.

Rules and restrictions:

1. If the selector is allocatable, it must be allocated. The associate name is associated
with the data object and does not have the ALLOCATABLE attribute.

2. If the selector has the POINTER attribute, it must be associated. The associate
name is associated with the target of the pointer and does not have the POINTER
attribute.

3. If the selector is a variable other than an array section having a vector subscript,
the association is with the data object specified by the selector; otherwise, the asso-
ciation is with the value of the selector expression.

16.2.2 Pointer Association

Pointer association occurs when a variable with the POINTER attribute becomes asso-
ciated with a target. A reference to the pointer name is then a reference to the target. A
pointer is associated by pointer assignment, intrinsic assignment to an object of de-
rived type with a pointer component, or allocation. If the pointer has deferred type pa-
rameters or shape, they are assumed from the target. If the pointer is polymorphic, its
dynamic type is the dynamic type of the target. A pointer has both an association sta-
tus and a definition status.

16.2.2.1 Pointer Association Status

The association status of a pointer is either defined or undefined. If the status is de-
fined, it is either associated or disassociated. Unless a pointer is initialized (explicitly
or by default), it has an initial association status of undefined. A pointer may be initial-
ized to have an initial status of disassociated. During execution of a program, the asso-
ciation status may change. Whatever its association status, a pointer may always be
nullified (disassociated), allocated, or pointer assigned. If the association status is dis-
associated or undefined, the pointer must not be referenced or deallocated. A pointer
with an undefined association status must not be supplied as an argument to the AS-
SOCIATED intrinsic function.

There are situations where the target of a pointer may cease to exist, leaving the
pointer “dangling”. This can happen in several ways: a pointer specified in an outer
scope may become associated in a subprogram with a nonsaved local entity that disap-
pears when the subprogram completes execution; or, a pointer may be associated with
a whole or part of a previously allocated object that is deallocated. Such dangling

594 Chapter 16

pointers have an undefined association status. They must not be used until their status
is reestablished. A processor is not required to detect when a target ceases to exist.

16.2.2.1.1 Events that Cause a Pointer to Become Associated
1. successful execution of an ALLOCATE statement (which results in the pointer be-

ing allocated)

2. pointer assignment to a target that is either associated or has the TARGET at-
tribute. (If the target is allocatable, it must be allocated.)

16.2.2.1.2 Events that Cause a Pointer to Become Disassociated
1. The pointer is nullified (6.7.2).

2. The pointer is deallocated (6.7.3.2).

3. The pointer is pointer-assigned (7.5.5) to a disassociated pointer.

4. The pointer is an ultimate component of an object of a type for which default ini-
tialization is specified for the component and

a. the object is allocated.

b. a procedure is invoked with the object as an actual argument corresponding to
a nonpointer nonallocatable dummy argument with INTENT (OUT).

c. a procedure is invoked with the object as a nonsaved nonpointer
nonallocatable local object that is not accessed by use or host association.

16.2.2.1.3 Events that Cause the Association Status of a Pointer to Become
Undefined

1. pointer assignment to a target that has an undefined association status

2. deallocation of the target of the pointer other than through the pointer

3. execution of MOVE_ALLOC (the allocation transfer procedure) with the pointer
associated with the argument FROM and an object without the TARGET attribute
associated with the argument TO

4. execution of a RETURN or END statement that causes the pointer’s target to be-
come undefined

5. execution of a RETURN or END statement that terminates a procedure defined by
a subprogram in which the pointer was defined or accessed unless the pointer

a. has the SAVE attribute

b. is in blank common

c. is in a named common block that appears in at least one other scoping unit
that is in execution

Scope, Association, and Definition 595

d. is in the scoping unit of a module if the module also is accessed by another
scoping unit that is in execution

e. is accessed by host association, or

f. is the return value of a function declared to have the POINTER attribute

6. invocation of a procedure with a pointer actual argument corresponding to a point-
er dummy argument with INTENT (OUT)

7. invocation of a procedure with an actual argument that has an ultimate component
for which default initialization is not specified corresponding to a dummy argu-
ment with INTENT (OUT)

16.2.2.1.4 Other Events that Change the Association Status of a Pointer
The effects on the association status of a pointer that becomes associated with another
pointer by argument association, construct association, or host association are specified
in 16.2.5. While two pointers are name associated, storage associated, or inheritance as-
sociated and the association status of one of the pointers changes, the status of the oth-
er changes accordingly. If a pointer has the VOLATILE attribute, its status may be
changed by a means not specified by the program.

16.2.2.2 Pointer Definition Status

An associated pointer may be defined (have a value) or undefined depending on
whether its target is defined or undefined. When a pointer is allocated, it becomes as-
sociated but undefined unless there is a SOURCE option (6.7.1) in the ALLOCATE
statement for the pointer. When a pointer is pointer assigned, its association and defini-
tion status become those of the data or procedure target.

16.2.3 Storage Association

To explain the effects of some Fortran statements, such as COMMON and EQUIVA-
LENCE, the concepts of storage and storage association are needed. These concepts are
based on an abstract model of a simple, arbitrarily large computer memory, consisting
of sequential memory locations.

Storage is a sequence (2.4) whose elements are called storage units. There are sev-
eral categories of storage: numeric storage, character storage, file storage (9.1.2), and
unspecified storage. The elements of numeric storage are called numeric storage units
and similarly for the other categories of storage.

16.2.3.1 Storage Sequence

A storage sequence is a contiguous subsequence of storage units. It can be specified by
its initial point and its size. A storage sequence may have size zero.

When storage association applies, each Fortran data object occupies a storage se-
quence, whose size is defined as follows.

• A nonpointer, nonallocatable scalar data object of type default integer, default real,
or default logical occupies one numeric storage unit; that is, its storage sequence is

596 Chapter 16

size one. Default complex and double precision real objects occupy two contiguous
numeric storage units. For default complex, the storage unit for the real part pre-
cedes the storage unit for the imaginary part.

• A nonpointer scalar default character object of length len occupies len contiguous
character storage units.

• A nonpointer scalar character object with the C character kind(15.5.3) of length len
occupies len contiguous unspecified storage units.

• A nonpointer scalar object of sequence type (4.4.10) with no type parameters occu-
pies a sequence of storage sequences corresponding to the sequence of its ultimate
components.

• A nonpointer scalar object of any type not specified above occupies a single un-
specified storage unit that is different for each type and each set of type parameters
and different from the unspecified unit for a character of C character kind.

• A nonpointer contiguous array occupies a sequence of contiguous storage sequenc-
es, one for each array element, in array element order (6.6.6).

• A pointer occupies a single unspecified storage unit that is different from that of
any nonpointer object and is different for each combination of type, type parame-
ters, and rank.

• Each common block has a storage sequence as described in 5.14.2.

• Each ENTRY statement in a function subprogram specifies a result that has a stor-
age sequence as described in 12.4.5(6).

• EQUIVALENCE statements create storage sequences from the storage units of the
objects making up the equivalence lists.

16.2.3.2 Association of Storage Sequences

Two storage sequences are associated if the initial point i of either sequence satisfies
the relationship , where j and size are the initial point and the size of the
other sequence. They are totally associated if they are the same storage sequences; oth-
erwise, they are partially associated. For nonzero-sized storage sequences, this means
that the sequences share at least one storage unit.

Two data objects are associated, totally associated, or partially associated if their
storage sequences are associated, totally associated, or partially associated.

Partial association applies to character data and also to other composite objects in
COMMON and EQUIVALENCE statements. It may exist only between

1. objects of default character or character sequence type

2. an object of default complex, double precision real, or numeric sequence type and
an object of one of the default types (integer, real, logical, complex), or double pre-
cision real, or numeric sequence type

j i j size+<≤

Scope, Association, and Definition 597

For noncharacter entities, partial association may occur only through the use of
COMMON, EQUIVALENCE, or ENTRY statements. For character entities, partial asso-
ciation may occur only through argument association or the use of COMMON or
EQUIVALENCE statements.

The effect of certain Fortran statements is described in terms of storage association.
For example

EQUIVALENCE (X,Y)

causes the initial points of the storage sequences of X and Y to be the same.
In turn, the concept of storage association is used to describe the effects of defining

or undefining one of the associated entities. Thus, in the example, assigning a value to
X will have an effect on Y as described in 16.3.2(13) and 16.3.3(1).

If a storage unit in a storage sequence has default initialization, that storage unit
must be of the same type and have the same default initialization in all associated stor-
age sequences.

16.2.3.3 Examples of Storage Association

First, a simple example involving numeric storage units is:

COMPLEX :: C
REAL :: X(0:5)
EQUIVALENCE (C, X(3))

The storage sequence occupied by C consists of two numeric storage units, one for the
real part and one for the imaginary part.

The storage sequence occupied by X consists of six numeric storage units, one for each
element of the array.

The EQUIVALENCE statement indicates that X(3) and the real part of C occupy the
same storage unit, creating the following association; items above and below each oth-
er are storage associated.

Next, consider an example with character data. If two character objects are to be-
come associated, they must have the same kind type parameter.

Cr Ci

X(0) X(1) X(2) X(3) X(4) X(5)

X(0) X(1) X(2) X(3) X(4) X(5)

Cr Ci

598 Chapter 16

CHARACTER(KIND=GREEK) :: A(2,2)*2 ,B(2)*3, C*5
EQUIVALENCE (A(2,1)(1:1), B(1)(2:3), C(3:5))

A, B, and C occupy unspecified character storage sequences of size 8, 6, and 5 respec-
tively, and the EQUIVALENCE statement sets up the following associations.

16.2.4 Inheritance Association

Inheritance association is between the inherited components and the corresponding
components of the parent in an extended type (4.4.12). It is not affected by the accessi-
bility of the inherited components.

16.2.5 Establishing Associations

When two entities become associated by argument, construct, or host association, the
associating entity acquires some of the characteristics of the pre-existing entity. For ar-
gument association, the associating entity is the dummy argument, and the pre-exist-
ing entity is the actual argument. For construct association, the associating entity is
identified by the associate name, and the pre-existing entity is the selector. For host as-
sociation, the associating entity is the entity in the contained scoping unit, and the pre-
existing entity is in the host. If the host is a recursive procedure, the pre-existing entity
that participates in the association is the one from the innermost instance that invoked,
directly or indirectly, the contained procedure.

The following rules apply for an association established by argument, construct, or
host association:

1. If the associating entity is neither a pointer nor allocatable, its definition status and
value (if it is defined) become the same as those of the pre-existing entity. If the en-
tities are arrays and the association is not argument association, the bounds of the
associating entity become the same as those of the pre-existing entity.

2. If the associating entity has the POINTER attribute, the pointer association status
becomes the same as that of the pre-existing entity. If the pre-existing entity has an
association status of associated, the associating entity becomes pointer associated
with the same target, and, if they are arrays, the bounds of the associating entity
become the same as those of the pre-existing entity.

3. If the associating entity has the ALLOCATABLE attribute, the allocation status be-
comes the same as that of the pre-existing entity. If the pre-existing entity is allocat-
ed, the definition status, value (if it is defined), values of any deferred type
parameters, and bounds (if it is an array) become the same as those of the pre-ex-
isting entity. If the associating entity is polymorphic and the pre-existing entity is

A(1,1)(1:1) A(1,1)(2:2) A(2,1)(1:1) A(2,1)(2:2) A(1,2)1:1) A(1,2)(2:2) A(2,2)(1:1) A(2,2)(2:2)

B(1)(1:1) B(1)(2:2) B(1)(3:3) B(2)(1:1) B(2)(2:2) B(2)(3:3)

C(1:1) C(2:2) C(3:3) C(4:4) C(5:5)

Scope, Association, and Definition 599

allocated, the dynamic type of the associating entity becomes the same as that of
the pre-existing entity.

16.3 Definition

During the execution of a program, variables are defined or undefined. If a variable is
defined, it has a value. If a variable is undefined, it either does not have a value or its
value is unpredictable and thus not portable. Because a processor cannot always check
for undefined conditions, or it might be too costly to do so, the responsibility for avoid-
ing the use of undefined values rests with the programmer.

An array is defined if and only if all of its elements are defined. A complex or char-
acter scalar object is defined if and only if all of its subobjects are defined. An object of
user-defined type is defined if and only if all of its nonpointer components are defined.
When it is necessary to refer to the components of an object as well as the components of
any subobject of the object (6.5), the term subcomponents is used. (This term is slightly
misleading as it includes all components—the top-level components as well as the
components of components.)

Some variables are always defined; they are zero-sized arrays and zero-sized char-
acter strings. All other variables are initially undefined unless they are initialized. They
may be initialized in DATA statements, in type declaration statements, by default ini-
tialization, or by means other than Fortran. For example, a variable may be declared in
a module, but acquire an initial value from a C code. As execution proceeds, events
may occur that cause a variable to become defined or undefined (see the somewhat
lengthy lists below). An undefined variable must not be referenced.

16.3.1 Variable Definition Contexts

A variable may appear in contexts where it must be capable of being defined or unde-
fined; these are called variable definition contexts and are listed below:

1. the variable in an assignment statement

2. an input item in a READ statement

3. a DO variable in a DO statement or an implied do variable in an input/output
statement

4. a variable name in a NAMELIST statement

5. an internal file variable in a WRITE statement

6. an ID, IOMSG, IOSTAT, or SIZE specifier in an input/output statement

7. a definable variable in an INQUIRE statement

8. an allocate object in an ALLOCATE statement and a STAT variable, or ERRMSG
variable in an ALLOCATE or DEALLOCATE statement

600 Chapter 16

9. an actual argument in a reference to a procedure with an explicit interface if the as-
sociated dummy argument has the INTENT (OUT) or INTENT (INOUT) attribute

10. a variable that is the selector in a SELECT TYPE or ASSOCIATE construct if the as-
sociate name of that construct appears in a variable definition context

11. an object in a DEALLOCATE statement

12. a pointer in a NULLIFY statement

13. a data or procedure pointer on the left side of a pointer assignment statement

The last three are contexts in which variables may become undefined. Some vari-
ables are prohibited from appearing in a variable definition context (5.9.1, 12.7.1).

16.3.2 Events that Cause Variables to Become Defined

Variables become defined as follows:

1. Execution of an intrinsic assignment statement other than a masked array assign-
ment or FORALL assignment causes the variable on the left of the equal sign to be-
come defined. Execution of a defined assignment statement may cause all or part
of the variable that precedes the equal sign to become defined.

2. Execution of a masked array assignment or FORALL assignment may cause some
or all of the array elements in the assignment statement to become defined.

3. As execution of an input statement proceeds, each variable that is assigned a value
from the input file becomes defined at the time that data is transferred to it. Execu-
tion of a WRITE statement whose unit specifier identifies an internal file causes
each record that is written to become defined. (But see 16.3.3(4).)

4. Execution of a DO statement causes the DO variable, if any, to become defined.

5. In a FORALL construct or statement, the index name becomes defined when the in-
dex name value set is evaluated.

6. Beginning execution of the action specified by an implied-do in a synchronous in-
put/output statement causes the implied-do variable to become defined. (But see
16.3.3(5).)

7. A reference to a procedure causes the entire dummy argument data object to be-
come defined if the dummy argument does not have the INTENT (OUT) attribute
and the entire associated actual argument is defined. If only a subobject of the ac-
tual argument is defined, only the corresponding subobject of the associated dum-
my argument is defined.

8. Execution of an input/output statement containing an IOSTAT specifier causes the
specified integer variable to become defined.

Scope, Association, and Definition 601

9. Execution of a synchronous READ statement containing a SIZE specifier causes the
specified integer variable to become defined.

10. Execution of a wait operation corresponding to an asynchronous input statement
containing a SIZE specifier causes the specified integer variable to become defined.

11. Execution of an INQUIRE statement causes any variable that is assigned a value
during the execution of the statement to become defined if no error condition ex-
ists.

12. If an error, end-of-file, or end-of-record condition occurs during execution of an in-
put/output statement that has an IOMSG specifier, the specified variable becomes
defined.

13. When a character storage unit becomes defined, all associated character data ob-
jects become defined.

14. When a numeric storage unit becomes defined, all associated storage units of the
same type become defined.

15. When an entity of double precision real type becomes defined, all totally associat-
ed entities of double precision real type become defined.

16. When an unspecified storage unit becomes defined, all associated unspecified stor-
age units become defined.

17. When a default complex entity becomes defined, a default real entity associated
with a part of the complex entity becomes defined.

18. When both parts of a default complex entity become defined as a result of partially
associated default real or default complex entities becoming defined, the default
complex entity becomes defined.

19. When all components of a structure of numeric sequence type or character se-
quence type become defined as a result of associated objects becoming defined, the
structure becomes defined.

20. Execution of an ALLOCATE or DEALLOCATE statement with a STAT specifier
causes the variable specified by the STAT specifier to become defined.

21. If an error condition occurs during execution of an ALLOCATE or DEALLOCATE
statement with an ERRMSG specifier, the specified variable becomes defined.

22. Allocation of an object that has a nonpointer default initialized subcomponent
causes that component to become defined.

23. Execution of a pointer assignment statement that associates a pointer with a target
that is defined causes the pointer to become defined.

24. Allocation of a zero-sized array causes the array to become defined.

602 Chapter 16

25. Invocation of a procedure causes each automatic object of zero size in that proce-
dure to become defined.

26. Invocation of a procedure that contains a nonsaved nonpointer nonallocatable local
object causes all nonpointer default-initialized subcomponents of the object to be-
come defined.

27. Invocation of a procedure that has a nonpointer nonallocatable INTENT (OUT)
dummy argument causes all nonpointer default-initialized subcomponents of the
dummy argument to become defined.

28. Invocation of a nonpointer function of a derived type causes all nonpointer de-
fault-initialized subcomponents of the function result to become defined.

29. An object with the VOLATILE attribute that is changed by a means not specified
by the program becomes defined (5.7.6).

16.3.3 Events that Cause Variables to Become Undefined

Variables become undefined as follows:

1. When a variable of a given type becomes defined, all associated variables of differ-
ent type become undefined. However, when a variable of type default real is asso-
ciated with a part of a variable of type default complex, the complex variable does
not become undefined when the real variable becomes defined and the real vari-
able does not become undefined when the complex variable becomes defined.
When part of a variable of type default complex is associated with a different part
of a variable of type default complex, definition of one does not cause the other to
become undefined. When variables of type default complex are associated,
definition of one does not cause the other to become undefined

2. If the evaluation of a function may cause a variable to become defined, and if a ref-
erence to the function appears in an expression in which the value of the function
is not needed to determine the value of the expression, the variable becomes unde-
fined when the expression is evaluated.

3. When execution of an instance of a subprogram completes,

a. its nonsaved local variables become undefined.

b. nonsaved variables in a named common block that appears in the subprogram
become undefined if they have been defined or redefined, unless another
active scoping unit is referencing the common block.

c. nonsaved finalizable local variables of a module may be finalized at the option of
the processor if no other active scoping unit is referencing the module. In either
case they become undefined.

d. nonsaved nonfinalizable local variables of a module become undefined unless
another active scoping unit is referencing the module. Note that a module is in
use whenever any of its module procedures are active even if no other active

Scope, Association, and Definition 603

scoping units reference the module. This can happen for a type-bound
procedure, or a procedure invoked via a procedure pointer or a companion
processor.

4. When an error condition or end-of-file condition occurs during execution of an in-
put statement, all of the variables specified by the input list or namelist group of
the statement become undefined.

5. When an error condition, end-of-file condition, or end-of-record condition occurs
during execution of an input/output statement, all of the implied-do variables in
the statement, if any, become undefined.

6. Execution of a defined assignment statement may cause all or part of the variable
on the left the equal sign to be undefined.

7. Execution of a direct access input statement that specifies a record that has not
been written previously causes all of the variables specified by the input list of the
statement to become undefined.

8. Execution of an INQUIRE statement may cause the variables specified in the
NAME, RECL, and NEXTREC specifiers to become undefined.

9. When a character storage unit becomes undefined, all associated character storage
units become undefined.

10. When a numeric storage unit becomes undefined, all associated numeric storage
units become undefined unless the undefinition is a result of defining an associat-
ed numeric storage unit of a different type (see Item 1 above).

11. When an entity of double precision real type becomes undefined, all totally associ-
ated entities of double precision real type become undefined.

12. When an unspecified storage unit becomes undefined, all associated unspecified
storage units become undefined.

13. When an allocatable entity is deallocated, it becomes undefined.

14. When the allocation transfer procedure MOVE_ALLOC is executed and causes the
allocation status of an allocatable entity to become deallocated, the entity becomes
undefined.

15. Successful allocation of a nonzero-sized object for which default initialization has
not been specified for an subcomponent causes the subcomponent to become unde-
fined unless there is a SOURCE option (6.7.1) in the ALLOCATE statement for the
object.

16. Execution of an INQUIRE statement causes all inquire specifier variables to be-
come undefined if an error condition exists, except for the variable in an IOSTAT or
IOMSG specifier.

604 Chapter 16

17. When a procedure is invoked:

a. An optional dummy argument that is not associated with an actual argument
becomes undefined.

b. A dummy argument with INTENT (OUT) becomes undefined, except for those
nonpointer subcomponents of the argument for which default initialization is
specified.

c. An actual argument associated with a dummy argument with INTENT (OUT)
becomes undefined, except for those nonpointer subcomponents of the
argument for which default initialization is specified.

d. A subobject of a dummy argument that does not have INTENT (OUT)
specified becomes undefined if the corresponding subobject of the actual
argument is undefined.

e. The result variable of a function becomes undefined except for those
nonpointer subcomponents of the result for which default initialization is
specified.

18. When the association status of a pointer becomes undefined or disassociated, the
pointer becomes undefined.

19. When the execution of a FORALL construct or statement completes, the index
names become undefined. Note that if there is a variable in the program unit with
the same name as an index name, it retains its value.

20. Execution of an asynchronous READ statement causes all of the variables specified
by the input list or SIZE specifier to become undefined. Execution of an asynchro-
nous namelist READ statement causes any variable in the namelist group to be-
come undefined if that variable will subsequently be defined during the execution
of the READ statement or the corresponding WAIT operation.

21. When execution of a RETURN or END statement causes a variable to become un-
defined, any variable of type C_PTR becomes undefined if its value is the C ad-
dress of any part of the variable that becomes undefined.

22. When a variable with the TARGET attribute is deallocated, any variable of type
C_PTR becomes undefined if its value is the C address of any part of the variable
that is deallocated.

23. An object with the VOLATILE attribute may become undefined by a means not
specified by the program (5.7.6).

A Standard Intrinsic Procedures

This appendix contains detailed specifications of the standard intrinsic procedures. The
title of each description gives the name of the procedure and the names of its dummy
arguments, with an indication of which arguments are optional. On the right side of
each title line, the classification of each procedure is given; it indicates whether the
procedure is an inquiry, transformational or elemental function, or an elemental or
nonelemental subroutine.

Whether an actual argument is optional is indicated by braces { } in the section ti-
tles; the braces indicate that each argument within the braces is optional and may ap-
pear as an argument with or without any of the other optional arguments. The
arguments within the braces follow all the rules for optional arguments (12.6.2) and
their positional order is the order given in the braces. Some procedures such as
SELECTED_REAL_KIND and RANDOM_SEED have additional constraints on the op-
tional arguments; such constraints are not implied by the braces notation but are given
explicitly in the description.

The text following each title follows several conventions. For functions, a descrip-
tion of the requirements for types and kinds of each argument are given. If the specifi-
cation for an argument specifies a type but not a kind, any acceptable kind parameter
value for that type is permitted. However, for inquiry functions, the arguments need
not have defined values, pointer arguments need not have a defined association status,
and allocatable arguments need not be allocated. For all functions, all arguments have
intent IN but this intent is not stated explicitly. When a function returns an array, the
array has lower bounds of 1 and strides of 1 in each dimension. In some of the descrip-
tions of the result values and examples, these result values are described in terms of el-
ements of the function’s dummy arguments which have lower bounds of 1 and strides
of 1.

For subroutines, the intent of each dummy argument is specified in the descrip-
tion; if those arguments have intent OUT or INOUT, the value returned by the subrou-
tine is specified in the description of the argument.

For all elemental procedures, the type and possibly the kind of the dummy argu-
ments are specified; whether the argument is scalar or array follows the rules for ele-
mental procedure references (12.7.2), except for the argument named KIND which is
always a scalar and specified as such.

Examples of references to each of the procedures are provided and use the follow-
ing conventions:

1. The default real type has seven decimal digits of precision.

2. The mathematical notation [a, b] or (a, b) is used for closed or open intervals, re-
spectively; such intervals are used to specify ranges of values, where closed inter-
vals include the end points and open intervals do not.

606 Appendix A

3. The character b indicates a blank in a character string.

4. NaN is the IEEE designation for “not a number”.

All real values cannot be represented exactly in any processor; therefore, when the
following text says something like “ACOS (0.1) has the value 1.4706289056333”, it
means that the value is a processor approximation to 1.4706289056333. The Fortran
standard does not specify how accurate the approximation must be.

Many of the intrinsic functions have kind parameter arguments, named KIND. For
these intrinsic functions are referenced, the actual argument corresponding to these
dummy arguments named KIND must be scalar integer initialization expressions with
values limited to the kind parameter values supported by the processor for the partic-
ular types.

Some of the array intrinsic functions have optional logical mask arguments, that is,
actual arguments associated with dummy arguments named MASK that select the ele-
ments of one or more array arguments to be operated on. For these functions, the oper-
ations are performed only on the elements of other array arguments corresponding to
the elements of the mask argument that are true. The elements corresponding to the
false values of the mask arguments need not be defined. However, the mask argument
affects only the value of the function; it does not affect the evaluation of the arguments
that are array expressions, prior to invoking the function. Note that for the MERGE in-
trinsic function, the argument MASK is not optional; therefore, the preceding discus-
sion does not apply.

ABS (A) Elemental Function

Absolute value.
A Of any integer, real, or complex type.
Result Characteristics. The same as A except that if A is complex, the result is real.
Result Value. The value of the result is |A|; if A is of type complex with value x + yi,

this is equal to .

Examples. ABS (–1) has the value 1. ABS ((3.0, 4.0)) has the value 5.0.

ACHAR (I {, KIND}) Elemental Function

Character in a specified position of the ASCII character set.
I Of type integer. Its value must be in the range of the collating values

for the appropriate ASCII or processor collating sequence.
KIND Scalar integer initialization expression whose value is a character kind

value.
Result Characteristics. Of type character, length 1 with kind KIND if KIND is present,
or otherwise, with the kind of default character.

x2 y2+

Standard Intrinsic Procedures 607

Result Value. The result is the ASCII character whose position in the ASCII collating
sequence is I, provided I is in the range [0, 127] and the processor is capable of repre-
senting that character in the character type of the result; otherwise, the result is proces-
sor dependent. ACHAR(IACHAR(C)) has the value C for any character C
representable in the default character type.
Examples. ACHAR (120) is x and ACHAR (120, SELECTED_CHAR_KIND
(ʺISO_10646ʺ)) is x represented as a character of the ISO 10646 character kind.

ACOS (X) Elemental Function

Arc cosine.
X Of type real such that |X| ≤ 1.
Result Characteristics. Same as X.
Result Value. The result is the arc cosine of X, expressed in radians, in the range [0, π].
Examples. ACOS (1.0) is 0.0; and ACOS (−1.0d0) is π with double precision kind.

ADJUSTL (STRING) Elemental Function

Leading blanks removed and placed on the right.
STRING Of type character.
Result Characteristics. Of the type and type parameters of STRING.
Result Value. The result is the argument value with leading blanks removed and the
same number of trailing blanks inserted.
Example. ADJUSTL (ʺbbinput.f90bbbʺ) returns the string input.f90bbbbb.

ADJUSTR (STRING) Elemental Function

Trailing blanks removed and placed on the left.
STRING Of type character.
Result Characteristics. Of the type and type parameters of STRING.
Result Value. The result is the argument value, adjusted to the right with all trailing
blanks removed and the same number of leading blanks inserted.
Example. ADJUSTR (ʺbbinput.f90bbbʺ) returns the string bbbbbinput.f90.

AIMAG (Z) Elemental Function

Imaginary part of a complex value.
Z Of complex type.
Result Characteristics. Of type real with the kind of Z.
Result Value. The result is the imaginary part of the complex object Z.

608 Appendix A

Example. AIMAG ((1.0, 2.0)) is 2.0.

AINT (A {, KIND}) Elemental Function

Real value truncated to a whole number.
A Of type real.
KIND Scalar integer initialization expression whose value is a real kind value.
Result Characteristics. Of type real with kind KIND if KIND is present, or otherwise,
with the kind of A.
Result Value. The largest whole number whose magnitude is less than or equal to |A|
and whose sign is the same as A.
Examples. AINT (3.7) is 3.0; AINT (−3.7, P) is −3.0 with kind P.

ALL (MASK {, DIM}) Transformational Function

True if all array elements are true.
MASK Array of type logical.
DIM Scalar of type integer with a value in the range [1, n] where n is the

rank of MASK. The corresponding actual argument must not be an op-
tional dummy argument.

Result Characteristics. Logical of the kind of MASK. If DIM is absent or MASK has
rank one, it is a scalar; otherwise, it is a rank n−1 array whose shape is that of MASK
with the DIM dimension removed.
Result Value. If DIM is absent, or MASK has rank one, the result is the scalar equal to
the conjunction (“and-ing”) of all the elements of MASK or true if MASK is zero sized.
If DIM is present and MASK has rank n ≥ 2, the result is a rank n−1 array where the
value of the element (, , ..., , , ...,) is the value of ALL (MASK
(, , ..., , :, , ...,)).
Examples. ALL ([.true., .false.]) is a scalar of default logical type with value false. If B

is the array and C is the array , ALL (B/=C,DIM=1) is [true false false],

ALL (B/=C,DIM=2) is [false false], and ALL (B/=C) is false.

ALLOCATED (ARRAY) or ALLOCATED (SCALAR) Inquiry Function

Allocation status of the argument.
ARRAY An allocatable array of any type.
SCALAR An allocatable scalar of any type.
Result Characteristics. Scalar of type default logical.
Result Value. The result is true if the argument is allocated and false if unallocated.

s1 s2 sDIM 1– sDIM 1+ sn
s1 s2 sDIM 1– sDIM 1+ sn

1 3 5
2 4 6

0 3 5
7 4 8

Standard Intrinsic Procedures 609

ANINT (A {, KIND}) Elemental Function

Real value rounded to the nearest whole number.
A Of type real.
KIND Scalar integer initialization expression whose value is a real kind value.
Result Characteristics. Of type real with kind KIND if KIND is present, or otherwise,
with the kind of A.
Result Value. The result is the nearest whole number to A; if there are two such whole
numbers, the one of greater magnitude is returned.
Examples. ANINT (3.1) is 3.0 and ANINT (−3.5) is −4.0.

ANY (MASK {, DIM}) Transformational Function

True if any array elements are true.
MASK Array of type logical.
DIM Scalar of type integer with a value in the range [1, n] where n is the

rank of MASK. The corresponding actual argument must not be an op-
tional dummy argument.

Result Characteristics. Logical of the kind of MASK. If DIM is absent or MASK has
rank one, it is a scalar; otherwise, it is a rank n−1 array whose shape is that of MASK
with the DIM dimension removed.
Result Value. If DIM is absent, or MASK has rank one, the result is a scalar equal to
the disjunction (“or-ing”) of all the elements of MASK or false if MASK is zero sized. If
DIM is present and MASK has rank n ≥ 2, the result is a rank n−1 array where the val-
ue of the element (, , ..., , , ...,) is the value of ANY (MASK (,

, ..., , :, , ...,)).
Examples. ANY ([.true., .false.]) is a scalar of default logical type with value true. If B

is the array and C is the array , ALL (B/=C,DIM=1) is [true false false],

ALL (B/=C,DIM=2) is [false false], and ALL (B/=C) is true.

ASIN (X) Elemental Function

Arc sine.
X Of type real such that |X| ≤ 1.
Result Characteristics. Same as X.
Result Value. The result is the arc sine of X, expressed in radians, in the range [−π/2,
π/2].
Example. ASIN (1.0) is π/2 and ASIN (−1.0d0) is −π/2 with double precision kind.

s1 s2 sDIM 1– sDIM 1+ sn s1
s2 sDIM 1– sDIM 1+ sn

1 3 5
2 4 6

0 3 5
7 4 8

610 Appendix A

ASSOCIATED (POINTER{, TARGET}) Inquiry Function

Association status of a pointer or its association with a specific target.
POINTER A pointer of any type. It may be a procedure pointer. It must have a

defined association status.
TARGET Any procedure or data target allowed in a pointer assignment state-

ment (7.5.5) of the form POINTER => TARGET. If TARGET is a pointer,
its pointer association status must be defined.

Result Characteristics. Scalar of type default logical.
Result Value. If POINTER is disassociated, the result is false regardless of whether
TARGET is present. If TARGET is absent, the result is true if the pointer POINTER is
associated with a target.
If TARGET is present and:
TARGET Conditions Result

procedure POINTER is associated with TARGET true

POINTER is not associated with TARGET false

procedure
pointer

POINTER and TARGET are associated with the same procedure true

POINTER and TARGET are not associated with the same procedure or
either POINTER or TARGET is disassociated

false

scalar the target associated with POINTER occupies the same storage units as
the scalar target and TARGET is not a zero-sized storage sequence

true

the target associated with POINTER does not occupy the same storage
units, TARGET is a zero-sized storage sequence, or POINTER is
disassociated

false

array TARGET and the target associated with POINTER have the same shape,
occupy the same storage units in array element order, and neither is
zero-sized nor an array whose elements are zero-sized storage
sequences

true

TARGET and the target associated with POINTER do not have the same
shape, do not occupy the same storage units in array element order, or
one of them is zero-sized or an array whose elements are zero-sized
storage sequences, or POINTER is disassociated

false

scalar
pointer

the targets associated with POINTER and TARGET occupy the same
storage units, and neither of the targets is a zero-sized storage sequence

true

Standard Intrinsic Procedures 611

Examples. Consider the type declarations:
type node_type
 integer :: value
 type(node_type), pointer :: next => null ()
end type
type(node_type) :: node

ASSOCIATED (node%next) is false initially but after the allocation:
ALLOCATE (node%next)

ASSOCIATED (node%next) is true.
Consider a rank one array B with the TARGET attribute and bounds 1:N, and a pointer
B_PTR of rank-one of the same type. After the execution of the statement:

B_PTR => B(:N)

ASSOCIATED (B_PTR, B) is true whereas after the execution of the statement:
B_PTR => B(N:1:-1)

ASSOCIATED (B_PTR, B) is false.

ATAN (X) Elemental Function

Arc tangent.
X Of type real.
Result Characteristics. Same as X.
Result Value. The result is the arc tangent of X, expressed in radians, in the range
[−π/2, π/2].
Examples. ATAN (1.0) is π/4 and ATAN (−1.0d0) is −π/4 with double precision kind.

the targets associated with POINTER and TARGET occupy different
storage units, either one or both of the targets associated with
POINTER or TARGET is a zero-sized storage sequence, or either one or
both of POINTER or TARGET is disassociated

false

array
pointer

the targets associated with POINTER and TARGET have the same
shape, occupy the same storage units in array element order, and
neither is zero-sized nor an array whose elements are zero-sized storage
sequences

true

the targets associated with POINTER and TARGET do not have the
same shape, occupy different storage units in array element order, or
one or both of them is zero-sized or an array whose elements are zero-
sized storage sequences, or either one or both of POINTER or TARGET
is disassociated

false

TARGET Conditions Result

612 Appendix A

ATAN2 (Y, X) Elemental Function

Angle in radians of a complex value X + Yi.
Y, X Of type real but with the same kind. Y and X must not both be zero.
Result Characteristics. Same as Y.
Result Value. The result is the principal value of the arc tangent of the complex value
X + Yi, expressed in radians, in the range [−π, π]. For special values, the following table
specifies the results:

Note 1: Denotes the case where the processor cannot distinguish between +0 and −0.
Examples. ATAN2 (1.0, 1.0) is π/4 and ATAN2 (0.0d0, −1.0d0) is π with double precision
kind.

BIT_SIZE (I) Inquiry Function

Number of bits in the bit model.
I Scalar or array of type integer.
Result Characteristics. Scalar of the type and kind of I.
Result Value. The result is the number of bits z provided by the bit model.
Example. Using the particular bit model for default integer described in 13.2.1,
BIT_SIZE (I) where I is of default integer type is 32.

BTEST (I, POS) Elemental Function

Test of the bit value in a specified position.

Y X ATAN2 (Y, X)

>0 any >0

>0 =0 π/2

<0 any <0

<0 =0 −π/2

01 >0 0

01 <0 π

+0 >0 +0

+0 <0 π

−0 >0 −0

−0 <0 −π

Standard Intrinsic Procedures 613

I Of type integer.
POS Of type integer. Its value must be in the range [0, BIT_SIZE (I)−1].
Result Characteristics. Of type default logical.
Result Value. The result is true if the bit position POS of I is 1 and false otherwise.
Example. Using the particular bit model for default integers described in 13.2.1,
BTEST (16, 4) is true.

CEILING (A {, KIND}) Elemental Function

Smallest whole number greater than or equal to a value.
A Of type real.
KIND Scalar integer initialization expression whose value is an integer kind

value.
Result Characteristics. Of type integer with kind KIND if KIND is present, or other-
wise, with the kind of default integer.
Result Value. The result is the smallest whole number greater than or equal to A.
Examples. CEILING (3.1) is 4; CEILING (3.0) is 3; and CEILING (−4.1, P) is −4 of inte-
ger kind P.

CHAR (I {, KIND}) Elemental Function

Character in the specified position of a character set.
I Of type integer. Its value must be in the range of the collating values

for the processor collating sequence.
KIND Scalar integer initialization expression whose value is a character kind

value.
Result Characteristics. Of type character, of length 1, and with the kind KIND, if
KIND is present, or otherwise, with the kind of default character.
Result Value. The result is the character whose position is I in the collating sequence
for characters of the kind of the result.
Examples. CHAR (100) is the character d if the default character set uses the ASCII
collating sequence. CHAR (107, SELECTED_CHAR_KIND (ʺISO_10646ʺ)) is the charac-
ter in position 107, namely k, of the ISO 10646 character set, provided the processor
supports this ISO character set.

CMPLX (X {, Y, KIND}) Elemental Function

Complex value.

614 Appendix A

X, Y Of type integer, real, or complex, or a BOZ literal constant. Y is option-
al, need not be of the same type or kind as X but must not be present if
X is complex. The actual argument corresponding to Y must not be an
optional dummy argument.

KIND Scalar integer initialization expression whose value is a real kind value.
Result Characteristics. Of type complex of kind KIND, if KIND is present, or other-
wise, with kind default real.
Result Value. If Y is absent, the result is the value X if X is complex, or the complex
value REAL (X, KIND) + 0i, if X is not complex; if Y is present, the value is that of the
complex number REAL (X, KIND) + REAL (Y, KIND)i. If X or Y is a BOZ literal con-
stant, the argument corresponding to X or Y is treated as if it were a constant of the
type and kind of the result whose bit pattern is that given by the BOZ literal constant;
the interpretation of the bit pattern is processor dependent.
Examples. CMPLX (10.0) is the complex value 10; CMPLX (10, 1) is the complex value
10 + i; CMPLX ((10.0, 2.0), Q) is 10 + 2i of real kind Q.

COMMAND_ARGUMENT_COUNT () Inquiry Function

Number of command line arguments.
Result Characteristics. Scalar of type default integer.
Result Value. The result is the number of command arguments used to invoke the ex-
ecution of the program containing the reference to this function. If the processor does
not support command arguments, the result is zero. If the processor has a concept of
command name, the count does not include the command name.
Example. Consider the command:

prog -c file.f90

On many systems, if the program prog executed the statement:
number = COMMAND_ARGUMENT_COUNT ()

the value of number is 2. It could be 0 or 3 on some systems.

CONJG (Z) Elemental Function

Complex conjugate of a complex value.
Z Of complex type.
Result Characteristics. Of type complex of the kind of Z.
Result Value. The result is the complex conjugate of Z.
Examples. CONJG ((1.0, −10.0)) is 1 + 10i. CONJG ((−2.0, 1.0_Q)) is −2 + i of kind Q
where Q is a real kind parameter value of a real type with higher precision than the de-
fault real type.

Standard Intrinsic Procedures 615

COS (X) Elemental Function

Cosine.
X Of type real or complex.
Result Characteristics. Same as X.
Result Value. The result is the cosine of X. If X is real, X is in radians. If X is complex,
the real part of X is expressed in radians.
Examples. COS (0.0) is 1; COS (B) where B is π/3 and of type default real is 0.5; and
COS (A) where A is −π/2 − i and of type complex with kind Q is the complex value
1.54308 with kind Q.

COSH (X) Elemental Function

Hyperbolic cosine.
X Of type real.
Result Characteristics. Of the type of X.
Result Value. The result is the hyperbolic cosine of X.
Examples. COSH (0.0) is 1 and COSH (−0.5d0) is 1.127626 with double precision kind.

COUNT (MASK {, DIM, KIND}) Transformational Function

Number of true array elements.
MASK Array of type logical.
DIM Scalar of type integer with a value in the range [1, n] where n is the

rank of MASK. The corresponding actual argument must not be an op-
tional dummy argument.

KIND Scalar integer initialization expression whose value is an integer kind
value.

Result Characteristics. Of type integer with kind KIND if KIND is present, or other-
wise, with the kind of default integer. If DIM is absent or MASK has rank one, it is a
scalar; otherwise, it is a rank n−1 array whose shape is that of MASK with the DIM di-
mension removed.
Result Value. If DIM is absent or MASK has rank one, the result is the count of all the
true elements of MASK or 0 if MASK is zero sized. If DIM is present and MASK has
rank n ≥ 2, the result is a rank n−1 array; the value of the element (, , ..., ,

, ...,) is the value of COUNT (MASK (, , ..., , :, , ...,)).
s1 s2 sDIM 1–

sDIM 1+ sn s1 s2 sDIM 1– sDIM 1+ sn

616 Appendix A

Examples. COUNT ([.true., .false.]) is 1. If B is the array and C is the array

, COUNT (B/=C,DIM=1) is [2 0 1], COUNT (B/=C,DIM=2) is [1 2], and COUNT

(B/=C) is 3.

CPU_TIME (TIME) Subroutine

Obtain the processor time.
TIME Scalar of type real with INTENT (OUT). It is assigned the processor

time in seconds. If the processor cannot return a meaningful time,
TIME is assigned a processor-dependent negative value.

Example. Consider the following code segment:
call CPU_TIME (start_time)
 . . .
call CPU_TIME (end_time)
elapsed_time = end_time - start_time

The first reference to CPU_TIME saves the start time for the code segment and the sec-
ond reference saves the completion time; the difference in the two times provides an
estimate of the execution time, subject to an error dependent on the resolution of the
timer used by the procedure CPU_TIME.
CPU time is not consistently available or interpreted on existing processors. The stan-
dard leaves the definition of CPU_TIME imprecise, permitting an implementation to
define the result for CPU_TIME in a way useful for its uses. For example, when a sin-
gle result on a parallel machine is not adequate, the processor might choose to return
an array of times, one for each processor. Also, the start time is left imprecise so that a
particular processor might measure time from midnight or from the beginning of the
year. In addition, the time measured might include system overhead and might not
measure anything related to “wall clock time”.
The purpose of CPU_TIME is to permit the comparison of different algorithms on the
same processor or to return a measure of time that determines what parts of a compu-
tation are most time consuming and to compare different methods of improving the
performance of various segments of software. An implementation of CPU time is thus
encouraged to return a result that permits these uses of CPU_TIME.

CSHIFT (ARRAY, SHIFT {, DIM}) Transformational Function

Circular shift of the elements of an array.
ARRAY Array of any type.

1 3 5
2 4 6

0 3 5
7 4 8

Standard Intrinsic Procedures 617

SHIFT Scalar or array of type integer. If ARRAY is of rank 1, it is a scalar; if
ARRAY is an array of rank n>1, SHIFT may be an array of rank n−1
whose shape is the shape of ARRAY with the DIM dimension removed.

DIM Scalar of type integer with a value in the range [1, n] where n is the
rank of ARRAY. If DIM is absent, it is as if it were present with the val-
ue 1.

Result Characteristics. Same as ARRAY.
Result Value. If SHIFT or an element of SHIFT is positive, elements of the array are shifted
left; if it is negative, elements are shifted right; and, if it is zero, no shift occurs.
If ARRAY is of rank one, the ith element of the result is ARRAY (1+MODULO
(i+SHIFT−1, SIZE (ARRAY))); if ARRAY is of rank greater than 1, the section (, , ...,

, :, ,,) of the result has the value CSHIFT (ARRAY (, , ...,
, :, ,,), , 1), where is either SHIFT if SHIFT is a scalar or

SHIFT (, , ..., , , ...,), if SHIFT is an array.
Examples. If V is the array [1 2 3 4 5 6], the effect of shifting V circularly to the left by
two positions is achieved by CSHIFT (V, SHIFT = 2) which has the value [3 4 5 6 1 2];
CSHIFT (V, SHIFT = –2) achieves a circular shift to the right by two positions and has
the value [5 6 1 2 3 4].
The rows of an array of rank two may all be shifted by the same amount or by different

amounts. If M is the array , the value of CSHIFT (M, SHIFT = –1, DIM = 2) is

, and the value of CSHIFT (M, SHIFT = [–1, 1, 0], DIM = 2) is .

DATE_AND_TIME ({DATE, TIME, ZONE, VALUES}) Subroutine

Obtain date and time information in various formats.
DATE Scalar of type default character with INTENT (OUT). If DATE is

present, it is assigned the current date in the form of the string
CCYYMMDD of type default character where the two characters CC
are the two decimal digit century, the two characters YY are the two
decimal digit year, the characters MM are the two decimal digit month
(01-12), and the characters DD are the two decimal digit day (01-31)
within the month. If the processor has no date available, DATE is as-
signed blanks.

TIME Scalar of type default character with INTENT (OUT). If TIME is
present, it is assigned the current time in the form of a string
hhmmss.sss of type default character where the two characters hh are
the two decimal digit hour of the day (00-23), the characters mm are the

s1 s2
sDIM 1– sDIM 1+ sn s1 s2
sDIM 1– sDIM 1+ sn sh sh

s1 s2 sDIM 1– sDIM 1+ sn

1 2 3
4 5 6
7 8 9

3 1 2
6 4 5
9 7 8

3 1 2
5 6 4
7 8 9

618 Appendix A

two decimal digits for the minute in the hour, the characters ss.sss are
the seconds ss and milliseconds sss in the hour. If no time is available,
TIME is assigned blanks.

ZONE A scalar of type default character with INTENT (OUT). If ZONE is
present, it is assigned the time zone in the form of a string +hhmm or −
hhmm where the two characters hh and mm represent the difference be-
tween Coordinated Universal Time (UTC) and the current time zone in
hours and minutes, respectively. If this information is not available,
ZONE is assigned blanks.

VALUES Rank-one array of type default integer with INTENT (OUT) whose size
is at least 8. If VALUES is present, its elements are set to the following
values:
Element Value

1 The year (e.g., 2008)
2 The month of the year (e.g., 12)
3 The day of the month (e.g., 15)
4 The zone as a difference from UTC in minutes (e.g., −360)
5 The hour of the day, in the range [0, 23] (e.g., 23)
6 The minutes of the hour, in the range [0, 59] (e.g., 12)
7 The seconds of the minute, in the range [0, 60] (e.g., 59)
8 The milliseconds of the second, in the range [0, 999]

In case any one of these values is not available, it is assigned −HUGE (0). UTC is de-
fined by the ISO standard ISO 8601:1998.
Examples. The code segment:

integer :: time(8)
call date_and_time (values = time)
print "(a, i5, 2i3, i5, 3i3, i4)", "The date and time are:", time

produces a date and time such as:
The date and time are: 2008 6 25 -420 13 37 48 747

DBLE (A) Elemental Function

Double precision value.
A Of type integer, real, or complex, or a BOZ literal constant.
Result Characteristics. Of type real with double precision kind.
Result Value. The result is REAL (A, KIND (0.0d0)). If A is a BOZ literal constant, the
argument corresponding to A is treated as if it were a constant of the type real with
double precision kind whose bit pattern is that given by the BOZ literal constant; the
interpretation of the bit pattern is processor dependent.

Standard Intrinsic Procedures 619

Example. DBLE (1.23) is the default real value 1.23 converted to the real type with
double precision kind by extending the default representation to a real representation
with double precision kind. In general, it is not equal to 1.23d0.

DIGITS (X) Inquiry Function

Number of model digits in a model number.
X Scalar or array of type integer or real.
Result Characteristics. Scalar of default integer type.
Result Value. If X is of type integer, the result is q where q is a parameter for the inte-
ger model (13.2.2) for the kind of X; if X is of type real, the result value is p where p is
a parameter of the real model (13.2.3) for the kind of X.
Examples. If q=31 in the integer model (13.2.2), DIGITS (0) has the value 31; if p=24 in
the real model (13.2.3), DIGITS (0.0) has the value 24.

DIM (X, Y) Elemental Function

Difference of two values if positive, or zero otherwise.
X, Y Of type integer or real, but both with the same type and the same type

parameter.
Result Characteristics. Same as X.
Result Value. The result is the difference X−Y if the difference is positive; otherwise,
zero.
Examples. DIM (2, 3) is 0 and DIM (2.2_Q, −3.3_Q) is 5.5 of real kind Q.

DOT_PRODUCT (VECTOR_A, VECTOR_B) Transformational Function

Dot product of two rank-one arrays.
VECTOR_A, VECTOR_B Rank-one arrays of type integer, real, complex, or logical

with the same size. They must both be of numeric type or both be of
logical type.

Result Characteristics. Scalar with the same type and kind of the expression
VECTOR_A*VECTOR_B if the actual arguments are both of numeric type, or of the ex-
pression VECTOR_A .AND. VECTOR_B if both actual arguments are of type logical.
Result Value. The result is the dot product of the vectors VECTOR_A and VECTOR_B.
If the actual arguments are of numeric type (integer, real, or complex), the result is
SUM (VECTOR_A∗VECTOR_B). If the actual arguments are of type logical, the result
is ANY (VECTOR_A .AND. VECTOR_B). Note that if the rank-one arrays are of zero
size, the result is zero if they are of numeric type or false if they are of logical type.

620 Appendix A

Examples. DOT_PRODUCT ([1.0, 2.0], [2.0, 3.0]) is 8.0; DOT_PRODUCT ([.false.,
.true.], [.true., .true.]) is true; DOT_PRODUCT (A(1:0), B(10:9)) is 0 with double preci-
sion kind where A is of type default real, and B is of type double precision real.
DOT_PRODUCT ([(1.0, 2.0), (2.0, 3.0)], [(1.0, 1.0), (1.0, 4.0)]) is 17+4i.

DPROD (X, Y) Elemental Function

Double precision product of two single precision values.
X, Y Of default real type.
Result Characteristics. Of type real with double precision kind.
Result Value. The result is the product X×Y.
Examples. DPROD (3.0, 2.1) is 6.3 with double precision kind.

EOSHIFT (ARRAY, SHIFT {, BOUNDARY, DIM}) Transformational Function

End-off shift of the elements of an array.
ARRAY Array of any type.
SHIFT Scalar or array of type integer. If ARRAY is rank one, it is a scalar. If

ARRAY is an array of rank n>1, it may be an array of rank n−1 whose
shape is the shape of ARRAY with the DIM dimension removed.

BOUNDARY Of the type and type parameters of ARRAY. It is either a scalar or and
array of rank n−1 where n>1 is the rank of ARRAY and of the shape of
ARRAY with the DIM dimension removed. BOUNDARY is an optional
dummy argument. It may be absent only if ARRAY is of one of the in-
trinsic types integer, real, complex, logical or character; if it is absent, it
is assumed to have the value 0, 0.0, 0+0i, false, or the blank character
with the corresponding kind and length parameter of ARRAY, respec-
tively.

DIM Scalar of type integer with a value in the range [1, n] where n is the
rank of ARRAY. If DIM is absent, it is as if it were present with the val-
ue 1.

Result Characteristics. Same as ARRAY.
Result Value. If SHIFT or an element of SHIFT is positive, elements of the array are
shifted left; if it is negative, elements are shifted right; and, if it is zero, no shift occurs.
The element (, , ...,) of the result is ARRAY (, , ..., , ,

, ...,) where sh is SHIFT, if SHIFT is a scalar, or SHIFT (, , ..., ,
, ...,) if SHIFT is an array provided LBOUND (ARRAY,DIM) ≤ sDIM + sh ≤

UBOUND (ARRAY,DIM) and is otherwise BOUNDARY or BOUNDARY (, , ...,
, , ...,) if BOUNDARY is an array.

s1 s2 sn s1 s2 sDIM 1– sDIM sh+
sDIM 1+ sn s1 s2 sDIM 1–
sDIM 1+ sn

s1 s2
sDIM 1– sDIM 1+ sn

Standard Intrinsic Procedures 621

Examples. If V is the array [1 2 3 4 5 6], the effect of shifting V end-off to the left by 3 posi-
tions is achieved by EOSHIFT (V, SHIFT = 3) which has the value [4 5 6 0 0 0]; EOSHIFT (V,
SHIFT = –2, BOUNDARY = 99) achieves an end-off shift to the right by two positions with the
boundary value of 99 and has the value [99 99 1 2 3 4].
The rows of an array of rank two may all be shifted by the same amount or by different
amounts and the boundary elements can be the same or different. If M is the character

array , the value of EOSHIFT (M, SHIFT = –1, BOUNDARY = ’*’, DIM = 2) is

, and the value of EOSHIFT (M, SHIFT = [–1, 1, 0], BOUNDARY = [’*’, ’/’, ’?’],

DIM = 2) is .

EPSILON (X) Inquiry Function

Value that is small relative to 1 for a real value.
X Scalar or array of type real.
Result Characteristics. Scalar of the type and kind of X.
Result Value. The result is the number which is a number that is almost negligi-
ble with respect to 1, for real numbers of the type of X (13.2.3).
Examples. If b = 2 and p = 24 in the real model (13.2.3), EPSILON (0.0) has the value 2−
23; if b=2 and p=53 in the double precision model (13.2.3), EPSILON (0.0d0) has the val-
ue 2−52 with double precision kind.

EXP (X) Elemental Function

Natural exponential.
X Of type real or complex.
Result Characteristics. Same as X.
Result Value. The result is eX. If X is complex, the imaginary part of X is in radians.
Examples. EXP (0.0) is 1.0 with default real kind; EXP ((1.0, 2.0d0)) is −1.13 + 2.47i with
double precision kind.

EXPONENT (X) Elemental Function

Exponent of a real value.

A B C
D E F
G H I

∗ A B
∗ D E
∗ G H

∗ A B
E F /
G H I

b1 p–

622 Appendix A

X Of type real.
Result Characteristics. Of type default integer.
Result Value. The result is the exponent e of the model representation of X as deter-
mined by the model for real numbers (13.2.3) of the kind of X. If X is zero, the result is
zero. If X is an IEEE infinity or NaN, the result is HUGE (0).
Examples. If b=2 in the real model (13.2.3), the values 1.0 and 0.125 are represented as
21×f and 2−2×f where f is the fraction one half. EXPONENT (1.0) and EXPONENT
(0.125) have the values 1 and −2, respectively, of default integer kind.

EXTENDS_TYPE_OF (A, MOLD) Inquiry Function

True if the dynamic type of the first argument is an extension type (4.4.12) of the dy-
namic type of the second argument.
A, MOLD Of any extensible type. If either is a pointer, it must have a defined as-

sociation status.
Result Characteristics. Scalar of type default logical.
Result Value. Except when A or MOLD is unlimited polymorphic, and either A or
MOLD is a disassociated pointer or unallocated allocatable, the result is true if and
only if the dynamic type of A is an extension type of the dynamic type of MOLD. In
the exceptional cases:
• if MOLD is unlimited polymorphic and is either a disassociated pointer or unallo-

cated allocatable, the result is true. Otherwise,
• if A is unlimited polymorphic and is either a disassociated pointer or unallocated

allocatable, the result is false.
Note that the dynamic type of a disassociated pointer or unallocated allocatable is its
declared type.
Examples. Consider the example of 7.5.4 where the types painted_line_type and
labeled_line_type are extensions of the type line_type and the following declarations:

type(line_type) :: line, divider
type(painted_line_type) :: a
type cartesian; real :: x, y; end type cartesian
type(cartesian) :: point

EXTENDS_TYPE_OF (a, line), EXTENDS_TYPE_OF (a, a), and EXTENDS_TYPE_OF
(divider, line) are all true, but EXTENDS_TYPE_OF (line, a) and EXTENDS_TYPE_OF
(point, line) are false; see 4.4.12 for the definition of type extension.

FLOOR (A {, KIND}) Elemental Function

Greatest integer less than or equal to a value.
A Of type real.
KIND A scalar integer initialization expression whose value is an integer kind

value.

Standard Intrinsic Procedures 623

Result Characteristics. Of type integer with kind KIND if KIND is present, or other-
wise, with the kind of default integer.
Result Value. The result is the greatest integer less than or equal to A.
Examples. FLOOR (3.7) is 3; FLOOR (3.0) is 3; and FLOOR (−4.1, P) is −5 of integer
kind P.

FRACTION (X) Elemental Function

Fractional part of a real value.
X Of type real.
Result Characteristics. Same as X.
Result Value. The result is the fraction as determined by the model for real
numbers (13.2.3). If X is zero, the result is zero. If X is an IEEE infinity, the result is X;
if X is a IEEE NaN, the result is a NaN.
Examples. If b=2 in the real model, the values 1.0 and −0.125 are represented by 21×f
and −2−2×f where f is the fraction one half. FRACTION (1.0) and FRACTION (−0.125)
are 0.5 and −0.5, respectively, of kind default real.

GET_COMMAND ({COMMAND, LENGTH, STATUS}) Subroutine

Obtain the entire command initiating the program.
COMMAND Scalar of type default character with INTENT (OUT). If COMMAND is

present, COMMAND is assigned the entire command that invoked the
program or blanks if the command cannot be determined; the entire
command includes all arguments.

LENGTH Scalar of type default integer with INTENT (OUT). If LENGTH is
present, LENGTH is assigned the significant length of the command,
defined as the number of characters specifying the command, includ-
ing any significant trailing blanks if the processor supports significant
trailing blanks. This length is determined by the command and not the
length of the COMMAND argument of this procedure. If the command
length cannot be determined, LENGTH is assigned zero.

STATUS Scalar of type default integer with INTENT (OUT). If STATUS is
present, STATUS is assigned the value −1 if the COMMAND argument
is present and has a length less than the significant length. It is as-
signed a processor-dependent positive value if the command retrieval
fails and zero otherwise.

X b e–×

624 Appendix A

Example. Consider the code segment:
integer :: stat, leng
character(len=100) :: cmd
call get_command (cmd, leng, stat)
print *, "command:", trim (cmd)
print *, "length:", leng
print *, "status", stat

Executing this code segment (called sample) with the command:
sample xx.f90 < yy

might print the following output:
command:sample xx.f90
length: 13
status: 0

It is processor-dependent whether redirection (that is, < yy) is part of the command
The relationship between what is written as a command and what is interpreted as the
command by this procedure is processor dependent; redirection is one example, and
use of wildcards is another.

GET_COMMAND_ARGUMENT Subroutine
 (NUMBER {, VALUE, LENGTH, STATUS})

Obtain a specified command argument.
NUMBER Scalar of type default integer with INTENT (IN). It specifies the ordinal

number of the argument whose properties are to be determined. To be
useful it should have a value between 0 and the number of arguments
of the command; if there is an argument numbered 0, it is the com-
mand name that invoked the program if there is one. Except for argu-
ment number 0, the ordering of the arguments is processor dependent.

VALUE Scalar of type default character with INTENT (OUT). If VALUE is
present, it is assigned the command argument specified by NUMBER.
If the value of the command argument cannot be determined, VALUE
is assigned blanks.

LENGTH Scalar of type default integer with INTENT (OUT). If LENGTH is
present, it is assigned the significant length of the command argument
specified by NUMBER, defined as the number of characters specifying
the command argument, including any significant trailing blanks if the
processor supports significant trailing blanks. This length is deter-
mined by the command argument and not the length of the VALUE ar-
gument of this procedure. If the command argument length cannot be
determined, zero is assigned to LENGTH.

Standard Intrinsic Procedures 625

STATUS Scalar of type default integer with INTENT (OUT). STATUS is assigned
the value −1 if the VALUE argument is present and has a length less
than the significant length of the command argument. It is assigned a
processor-dependent positive value if the argument retrieval fails and
zero otherwise.

Example. Consider the code segment:
integer :: stat, leng
character(len=100) :: val
call get_command_argument (1, val, leng, stat)
print *, "argument 1:", trim (val)
print *, "length:", leng
print *, "status", stat

Executing this code segment (called sample) with the command:
sample xx.f90 < yy

might print the following output:
argument 1:xx.f90
length: 6
status: 0

GET_ENVIRONMENT_VARIABLE Subroutine
(NAME {, VALUE, LENGTH, STATUS, TRIM_NAME})

Obtain the value of a system environment variable.
NAME Scalar of type default character with INTENT (IN). The interpretation

of the case of its value is processor dependent. It specifies the name of
the environment variable whose value is to be determined.

VALUE Scalar of type default character with INTENT (OUT). If VALUE is
present, it is assigned the character value of the environment variable
specified by NAME or blanks if the processor can not determine the
value or the value of the environment variable NAME does not exist.

LENGTH Scalar of type default integer with INTENT (OUT). If LENGTH is
present, it is assigned the length of the value of the environment vari-
able if the environment variable NAME exists and 0 otherwise.

STATUS Scalar of type default integer with INTENT (OUT). It is assigned values
as shown in Table A-1.

TRIM_NAME Scalar of type logical with INTENT (IN). If TRIM_NAME is true or is
not present, the trailing blanks are not considered part of the name of
the environment variable; if TRIM_NAME is present with the value
false, it specifies that trailing blanks in NAME are considered signifi-
cant if the processor supports trailing blanks in the name of an envi-
ronment variable.

626 Appendix A

Example. Consider the code segment:
integer :: stat, leng
character(len=100) :: val
call get_environment_variable (“SSH_ASKPASS, val, leng, stat)
print *, "value of SSH_ASKPASS:", trim (val)
print *, "length:", leng
print *, "status", stat

Executing this code segment (called sample) with the command:
sample

might print the following output:
value of ASK_PASS:/usr/libexec/openssh/gnome-ssh-askpass
length: 38
status: 0

HUGE (X) Inquiry Function

Largest number in the real or integer model.
X Scalar or array of type integer or real.
Result Characteristics. Scalar of the type and kind of X.
Result Value. The result is the number rq−1 for integers (13.2.2) or for
real numbers (13.2.3) of the type and kind of X, namely the largest model number of
the type and kind of X.

Examples. If r=2 and q=31 in the integer model (13.2.2), HUGE (0) has the value 231−1
of default integer type; if b=2, p=24 and emax=128 in the real model (13.2.3), HUGE (0.0)
has the value (1−2−24)2128 or 0.3403×1039, of default real type.

IACHAR (C {, KIND}) Elemental Function

Position of a specified character in the ASCII character set.
C Of type character and of length one.

Table A-1 Values assigned to STATUS

Value Condition

−1 The VALUE argument is present and has a length less than
the significant length of the environment variable value.

0 The environmental variable NAME exists and either has no
value or its value was successfully retrieved.

1 The specified environment variable NAME does not exist.

2 The processor does not support environment variables.

>2 Some other error condition occurs.

1 b p––()b
emax

Standard Intrinsic Procedures 627

KIND Scalar integer initialization expression whose value is an integer kind
value.

Result Characteristics. Of type integer with kind KIND if KIND is present, or other-
wise, with the kind of default integer.
Result Value. If C is a character in the ASCII collating sequence, the result is the posi-
tion of the character C in the ASCII collating sequence and is an integer value in the
range [0, 127]; otherwise, the result is a processor-dependent integer value. The results
are consistent with the results returned by the character intrinsic functions LGE, LGT,
LLE, and LLT; that is, for example, if LLT(C1,C2) is true, IACHAR (C1) < IACHAR
(C2).
Examples. IACHAR (ʺaʺ) is 97; IACHAR (ʺaʺ, P) is 97 with integer kind P.

IAND (I, J) Elemental Function

Logical AND of two integers.
I, J Of type integer with the same kind.
Result Characteristics. Same as I.
Result Value. The result is the value obtained by “and-ing” corresponding bit posi-
tions of I and J; that is, the kth bit position of the result is 1 if the kth bit positions in
both I and J are 1, and 0 otherwise.
Examples. Using the particular bit model for default integers described in 13.2.1,
IAND (16, 8) is 0. IAND (INT (B”1010”), INT (B”1100”)) is 8, which is the same value
as INT (B”1000”).

IBCLR (I, POS) Elemental Function

Value with a specified bit set to zero.
I Of type integer.
POS Of type integer. Its value must be in the range [0, BIT_SIZE (I)−1].
Result Characteristics. Same as I.
Result Value. The result is the integer obtained by setting the bit position POS of I to
zero.
Example. Using the particular bit model for default integers described in 13.2.1, IBCLR
([24,16], 4) is [8 0] of kind default integer; IBCLR (INT (B’1111’), 0) is 14 which has the
same value as the BOZ literal constant B’1110’.

IBITS (I, POS, LEN) Elemental Function

Specific bits extracted from an integer value.
I Of type integer.
POS Of type integer. Its value must be in the range [0, BIT_SIZE (I)−LEN−1].

628 Appendix A

LEN Of type integer with a nonnegative value.
Result Characteristics. Same as I.
Result Value. The result is the integer value obtained by extracting the sequence of
LEN bits from I starting in bit position POS, right adjusting them in the result, and set-
ting all other bits in the result to zero.
Example. Using the particular bit model for default integers described in 13.2.1, IBITS
(16, 4, 2) is 1; IBITS (INT (B’10110’), 1, 2) is 3 which has the same value as the BOZ lit-
eral constant B’11’.

IBSET (I, POS) Elemental Function

Value with a specified bit set to one.
I Of type integer.
POS Of type integer. Its value must be in the range [0, BIT_SIZE (I) − 1].
Result Characteristics. Same as I.
Result Value. The result is the integer value obtained by setting the bit position POS of
I to one.
Examples. Using the particular bit model for default integers described in 13.2.1, IB-
SET (24, [4, 2]) is [24 28] of kind default integer; IBSET (INT (B”0000”), 2) is 4 which
has the same value as the BOZ literal constant B”0100”.

ICHAR (C {, KIND}) Elemental Function

Position of a specified character in a character set.
C Of type character and of length one. It must be a character capable of

being represented in the character type and kind of C.
KIND Scalar integer initialization expression whose value is an integer kind

value.
Result Characteristics. Of type integer with kind KIND if KIND is present, or other-
wise, with the kind of default integer.
Result Value. The result is the position of the character C in the collating sequence for
characters of the kind of C. Additionally, for any two characters C1 and C2 with the
same kind capable of being represented by the processor, C1≤C2 if and only if ICHAR
(C1) ≤ ICHAR (C2), and C1=C2 if and only if ICHAR (C1) = ICHAR (C2).
Examples. ICHAR (ʺaʺ) is 97, if the processor uses the ASCII representation in its de-
fault character kind. On the same processor, ICHAR (ʺaʺ, P) is the integer 97 of integer
kind P.

IEOR (I, J) Elemental Function

Logical exclusive-OR of two integers.
I, J Of type integer with the same kind.

Standard Intrinsic Procedures 629

Result Characteristics. Same as I.
Result Value. The result is the value obtained by “exclusive or-ing” corresponding bit
positions of I and J; that is, the kth bit position of the result is 1 if exactly one of the kth
bit positions in I and J is 1, and 0 otherwise.
Examples. Using the particular bit model for default integers described in 13.2.1, IEOR
(24, 16) is 8; IEOR (INT (B”1100”), INT (B”0110”)) is 10, which has the same value as
the BOZ literal constant B”1010”.

INDEX (STRING, SUBSTRING {, BACK, KIND}) Elemental Function

Location of a given substring in a character string.
STRING, SUBSTRING Of type character with the same kind.
BACK Of type logical.
KIND Scalar integer initialization expression whose value is an integer kind

value.
Result Characteristics. Of type integer with kind KIND, if KIND is present, or other-
wise, with the kind of default integer.
Result Value. The result is the beginning index position in STRING of the substring
SUBSTRING, or 0 if there is no such position. If BACK is present with the value false
or is absent, the result is:
• the beginning index position of the first occurrence of substring SUBSTRING in

STRING.
• 0 if the length of STRING is less than the length of SUBSTRING.
• 1 if the length of SUBSTRING is 0.

If BACK is present with the value true, the result is:
• the beginning index position of the last occurrence of substring SUBSTRING in

STRING.
• 0 if the length of STRING is less than the length of SUBSTRING.
• LEN (STRING) + 1 if the length of SUBSTRING is 0.

Examples. INDEX (ʺinput_file.f90ʺ, ʺfʺ) is 7; INDEX (ʺinput_file.f90ʺ, ʺfʺ, .true.) is 12;
and INDEX (ʺinput_file.f90ʺ, ʺiʺ, BACK=.true., KIND=P) is 8 of integer kind P; INDEX
(ʺinput_file.f90ʺ, ʺptʺ) is 0 of default integer kind.
When the length of the substring is greater than the length of the string, the substring
is not present in the string; consequently, zero is returned. For example, INDEX (ʺf90ʺ,
ʺinput_file.f90ʺ) is zero. The empty string is at both ends of any string; thus, INDEX
(ʺfileʺ, ʺʺ) is 1 and INDEX (ʺfileʺ, ʺʺ, .true.) is 5.

INT (A {, KIND}) Elemental Function

Truncated integer value.

630 Appendix A

A Of type integer, real, or complex, or a BOZ literal constant.
KIND Scalar integer initialization expression whose value is an integer kind

value.
Result Characteristics. Of type integer with kind KIND if KIND is present, or other-
wise, of the kind of default integer.
Result Value. The result is the truncated value of A or of the real part of A if A is com-
plex, represented as an integer. If |A|<1, the truncated value is 0; otherwise, the trun-
cated value is the largest integral value in magnitude, smaller than or equal to A in
magnitude and with the same sign as A. If A is a BOZ literal constant, it is treated as if
it were a constant of the integer type with the largest decimal exponent range support-
ed by the processor and whose bit pattern is that given by the BOZ literal constant; the
interpretation of the bit pattern is processor dependent.
Examples. INT ((3.6,1)) is 3; INT (−3.6) is −3. INT (0.5, P) is 0 of integer kind P. INT(−5)
and INT (−5.0) are −5; INT (5.0) is 5. INT (B’101’) is 5.

IOR (I, J) Elemental Function

Logical inclusive-OR of two integers.
I, J Of type integer with the same kind.
Result Characteristics. Same as I.
Result Value. The result is the value obtained by “inclusive or-ing” corresponding bit
positions of I and J; that is, the kth bit position of the result is 1 if either one or both of
the kth bit positions in I and J are 1, and 0 otherwise.
Examples. Using the particular bit model for default integers described in 13.2.1, IOR
(24, 16) is 24; IOR (INT (B”1100”), INT (B”0110”)) is 14 which has the same value as the
BOZ literal constant B”1110”.

ISHFT (I, SHIFT) Elemental Function

Logical end-off shift of an integer.
I Of type integer.
SHIFT Of type integer. Its absolute value must be less than BIT_SIZE (I).
Result Characteristics. Same as I.
Result Value. The result is the value of I shifted left by the SHIFT bits if SHIFT is pos-
itive, or shifted right by |SHIFT| bits if SHIFT is negative. The bits shifted out are lost
and the bits shifted in are zero. No shift is performed if SHIFT is zero.
Examples. Using the particular bit model for default integers described in 13.2.1,
ISHFT (24, 2) is 96; ISHFT (24, −1) is 12; ISHFT (INT (B’0011’), 2) is 12 which has the
same value as the BOZ literal constant B’1100’.

Standard Intrinsic Procedures 631

ISHFTC (I, SHIFT {, SIZE}) Elemental Function

Logical circular shift in a field of an integer.
I Of type integer.
SHIFT Of type integer with absolute value less than or equal to the value of

SIZE.
SIZE Of type integer with a positive value less than or equal to BIT_SIZE (I).

If it is not present, it is treated as if it were present with the value
BIT_SIZE (I).

Result Characteristics. Same as I.
Result Value. The result is the rightmost SIZE bits of I circularly shifted left by SHIFT
bits if SHIFT is positive, or circularly shifted right by |SHIFT| bits if SHIFT is negative.
The bits shifted out of the field are brought in to the opposite end of the field of size
SIZE; the unshifted bits are not altered.
Examples. Using the particular bit model for default integers described in 13.2.1 with
z = 32, ISHFTC (24, 2) is 96; ISHFTC (24, −1) is 12; ISHFTC (1, −1, 10) is 512; ISHFTC
(1, −2) is 230; and ISHFTC (INT (B’10110111’), 2, 4) has the value of the BOZ literal
constant B’10111101’.

IS_IOSTAT_END (I) Elemental Function

True if a value indicates an end-of-file IOSTAT condition.
I Of type integer.
Result Characteristics. Of type default logical.
Result Value. The result is true if the value of I is the value of the IOSTAT specifier
that indicates an end-of-file condition and false otherwise.
Examples. IS_IOSTAT_END (−1) is true on some Fortran processors but
IS_IOSTAT_END (1) is always false.

IS_IOSTAT _EOR (I) Elemental Function

True if a value indicates an end-of-record IOSTAT condition.
I Of type integer.
Result Characteristics. Of type default logical.
Result Value. The result is true if the value of I is the value of the IOSTAT specifier
that indicates an end-of-record condition and false otherwise.
Examples. IS_IOSTAT_EOR (−2) is true on some Fortran processors, but
IS_IOSTAT_EOR (2) is always false.

KIND (X) Inquiry Function

Kind parameter.

632 Appendix A

X Scalar or array of any intrinsic type.
Result Characteristics. Scalar of type default integer.
Result Value. The result is the kind type parameter value of X.
Examples. If the value 1 is a supported kind value for a real entity and X is declared
by the statement:

real(kind=1) X

KIND (X) has the value 1. If 1 is also the kind value of the default real type, KIND (0.0)
is 1.

LBOUND (ARRAY {, DIM, KIND}) Inquiry Function

Lower bound(s) of an array or a dimension of an array.
ARRAY An array of any type. If it is allocatable, it must be allocated; if it is a

pointer, it must be associated.
DIM Scalar of type integer with a value in the range [1, n] where n is the

rank of ARRAY. The corresponding actual argument must not be an
optional dummy argument.

KIND Scalar integer initialization expression whose value is an integer kind
value.

Result Characteristics. Scalar or rank-one array of type integer with kind KIND if
KIND is present, or otherwise, with the kind of default integer.
Result Value. If DIM is present, the result is a scalar integer representing the lower
bound of ARRAY in the DIM dimension as defined in 5.4, 6.6, and 7.2.4. If DIM is ab-
sent, the result is a rank-one array of the lower bounds of each dimension of ARRAY.
Examples. For the following statements:

real, target :: A(2:3, 7:10)
real, pointer, dimension(:,:) :: B, C, D
B => A
C => A(:,:)
allocate (D(-3:3,-7:7))

LBOUND (A) is [2 7], LBOUND (A, DIM=2) is 7, LBOUND (B) is [2 7], LBOUND (C) is
[1 1], and LBOUND (D) is [−3 −7].

LEN (STRING {, KIND}) Inquiry Function

Length of a character string.
STRING Scalar or array of type character. If it is an unallocated allocatable or a

pointer that is not associated, it must not have a deferred length type
parameter.

KIND Scalar integer initialization expression whose value is an integer kind
value.

Standard Intrinsic Procedures 633

Result Characteristics. Scalar of type integer with kind KIND if KIND is present, or
otherwise, with the kind of default integer.
Result Value. The result value is the length of STRING as defined in 7.2.2 if STRING is
scalar, and of an element of STRING if STRING is an array.
Examples. If STR and STR_ARRAY are declared by the statement:

character(kind=1,len=25) :: STR, STR_ARRAY(10,10)

LEN (STR) and LEN (STR_ARRAY) both return the value 25. LEN (ʺABbbʺ) and LEN
(ʺABʺ // ʺCDʺ) both return the value 4.

LEN_TRIM (STRING {, KIND}) Elemental Function

Length of a string after trailing blanks have been removed.
STRING Of type character.
KIND Scalar integer initialization expression whose value is an integer kind

value.
Result Characteristics. Of type integer with kind KIND if KIND is present, or other-
wise, with the kind of default integer.
Result Value. The result is the length of STRING not counting trailing blanks.
Examples. LEN_TRIM (ʺbbinputbbbbʺ) is 7; LEN_TRIM (ʺbbinputʺ, P) is 7 with kind P;
LEN_TRIM (ʺbbbbʺ) is 0; LEN_TRIM (GREEK_ʺαβbbʺ) is 2, where GREEK is a named
integer constant whose value is the character kind value of a Greek character set if the
processor supports this character set.

LGE (STRING_A, STRING_B) Elemental Function

Greater than or equal to comparison based on the ASCII collating sequence.
STRING_A, STRING_B

Of type default character.
Result Characteristics. Of type default logical.
Result Value. The result is true if STRING_A follows or is equal to STRING_B in the
ASCII collating sequence, or otherwise, false. The shorter string is padded on the right
with blanks to the length of the longer string before the comparison is performed. The
result is processor dependent if either string contains a non-ASCII character.
Examples. LGE (ʺaʺ, ʺkʺ) is false; LGE (ʺxbʺ, ʺxʺ) is true; and LGE (ʺakʺ, ʺʺ) is true. Note
that the result is true if both STRING_A and STRING_B are of zero length.

LGT (STRING_A, STRING_B) Elemental Function

Greater than comparison based on the ASCII collating sequence.
STRING_A, STRING_B

Of type default character.

634 Appendix A

Result Characteristics. Of type default logical.
Result Value. The result is true if STRING_A follows STRING_B in the ASCII collating
sequence, or otherwise, false. The shorter string is padded on the right with blanks to
the length of the longer string before the comparison is performed. The result is pro-
cessor dependent if either string contains a non-ASCII character.
Examples. LGT (ʺaʺ, ʺkʺ) is false; LGT (ʺxbʺ, ʺxʺ) is false; and LGT (ʺakʺ, ʺʺ) is true.
Note that the result is false if both STRING_A and STRING_B are of zero length.

LLE (STRING_A, STRING_B) Elemental Function

Less than or equal to comparison based on the ASCII collating sequence.
STRING_A, STRING_B

Of type default character.
Result Characteristics. Of type default logical.
Result Value. The result is true if STRING_A precedes or is equal to STRING_B in the
ASCII collating sequence, or otherwise, false. The shorter string is padded on the right
with blanks to the length of the longer string before the comparison is performed. The
result is processor dependent if either string contains a non-ASCII character.
Examples. LLE (ʺaʺ, ʺkʺ) is true; LLE (ʺxbʺ, ʺxʺ) is true; and LLE (ʺakʺ, ʺʺ) is false. Note
that the result is true if both STRING_A and STRING_B are of zero length.

LLT (STRING_A, STRING_B) Elemental Function

Less than or equal to comparison based on the ASCII collating sequence.
STRING_A, STRING_B

Of type default character.
Result Characteristics. Of type default logical.
Result Value. The result is true if STRING_A precedes STRING_B in the ASCII collat-
ing sequence, or otherwise, false. The shorter string is padded on the right with blanks
to the length of the longer string before the comparison is performed. The result is pro-
cessor dependent if either string contains a non-ASCII character.
Examples. LLT (ʺaʺ, ʺkʺ) is true; LLT (ʺxbʺ, ʺxʺ) is false; and LLT (ʺakʺ, ʺʺ) is false. Note
that the result is false if both STRING_A and STRING_B are of zero length.

LOG (X) Elemental Function

Natural logarithm.
X Of type real or complex. If it is of type real, its value must be positive.

If it is of type complex, it must not be zero.
Result Characteristics. Same as X.

Standard Intrinsic Procedures 635

Result Value. The result is the natural logarithm of X. If X is of type complex, the re-
sult is the principal value, where the imaginary part of the result is in the range [−π, π];
if, in addition, the real part of X is negative and the imaginary part of X is zero, the
imaginary part of the result is π in magnitude, either π if the imaginary part of X is
positive zero or the processor cannot determine the sign of zero, or −π if the imaginary
part of X is negative zero.
Examples. LOG (1.0) is 0.0; LOG ((−1.0d0, 0.0)) is πi.

LOG10 (X) Elemental Function

Logarithm to the base 10.
X Of type real; it must be a positive.
Result Characteristics. Same as X.
Result Value. The result is the base 10 logarithm of X.
Examples. LOG10 (1.0) is 0.0; LOG10 (10.0d0) is 1.0 with kind double precision;
LOG10 ([1.0_Q, 10.0_Q, 100.0_Q]) is [0.0 1.0 2.0] with kind Q.

LOGICAL (L {, KIND}) Elemental Function

Logical value.
L Of logical type.
KIND Scalar integer initialization expression whose value is a logical kind

value.
Result Characteristics. Of type logical with kind KIND if KIND is present, or other-
wise, with the kind of default logical.
Result Value. The result is L.
Example. LOGICAL (.true., T) is the value true of kind T, where T is a named integer
constant with a logical kind value.

MATMUL (MATRIX_A, MATRIX_B) Transformational Function

Matrix multiplication.
MATRIX_A, MATRIX_B

Arrays of type integer, real, complex or logical of rank one or two, with
at least one of them of rank two. The last (or only) dimension of
MATRIX_A must have the same extent as the first (or only) dimension
of MATRIX_B. They must be both of numeric type or both of logical
type.

Result Characteristics. Rank-one or rank-two array of the type and kind of the expres-
sion in the column headed Value and of shape specified by the column headed Shape
of Result in the table below.

636 Appendix A

Result Value. The result is the matrix (linear algebra) product of the arguments, treat-
ed as vectors (when rank one) or matrices (when rank two). The shape and value of the
result MATMUL (A, B) is:

Examples. Let A and B be the matrices and ; let X and Y have the values

[1 2] and [1 2 3].

The result of MATMUL (A, B) is the matrix-matrix product AB with the value .

The result of MATMUL (X, A) is the vector-matrix product XA with the value [5 8 11].
The result of MATMUL (A, Y) is the matrix-vector product AY with the value [14 20].

MAX (A1, A2 {A3, ... }) Elemental Function

Maximum of specified values.
A1, A2, ... Of type integer, real, or character with all of the same type and kind

type parameter. If the arguments are of type character, they may be of
differing lengths.

Result Characteristics. Same as A1. For A1 of type character, the length of the result is
the length of the longest argument.
Result Value. The result is the maximum of all objects A1, A2, …. For type character
arguments, the comparisons are made using the intrinsic character relational operators.
If the maximum argument is shorter in character length than the longest argument, the
result is the maximum argument padded with blanks on the right to equal the length
of the longest argument.
Examples. MAX (1.0, 2.0, 30.0) is 30.0; MAX (1, 2, −3) is 2; and MAX ([−1.0d0, −10.0d0],
[−2.0d0, 20.1d0]) is [−1 20.1] with double precision kind. MAX (ʺaʺ, ʺbbʺ, ʺcʺ) is ʺcbʺ.

Shape of A Shape of B Shape of
result

Result
subscript Value of element result

Arithmetic Logical

[m n] [n p] [m p] (i, j) SUM (A(i, :)*B(:, j)) ANY (A(i, :).AND.B(:, j))

[m] [m p] [p] (j) SUM (A(:)*B(:, j)) ANY (A(:).AND.B(:, j))

[m n] [n] [m] (i) SUM (A(i, :)*B(:)) ANY (A(i, :).AND.B(:))

1 2 3
2 3 4

1 2
2 3
3 4

14 20
20 29

Standard Intrinsic Procedures 637

MAXEXPONENT (X) Inquiry Function

Maximum value of the model exponent.
X Scalar or array of type real.
Result Characteristics. Scalar of default integer type.
Result Value. The result is the integer emax for real numbers (13.2.3) of the type and
kind of X, namely the maximum exponent for model numbers of the type and kind of
X.
Examples. If emax=128 in the real model (13.2.3), MAXEXPONENT (0.0) is the value 128
of default integer kind.

MAXLOC (ARRAY, DIM {, MASK, KIND}) or Transformational Function
MAXLOC (ARRAY {, MASK, KIND})

Location of the first maximum element of an array.
ARRAY Array of type integer, real, or character.
DIM Scalar of type integer in the range [1, n] where n is the rank of ARRAY.

The corresponding actual argument must not be an optional dummy
argument.

MASK Of type logical, conformable with ARRAY.
KIND Scalar integer initialization expression whose value is an integer kind

value.
Result Characteristics. Of type integer with kind KIND if KIND is present, or other-
wise, with the kind of default integer. If DIM is absent, it is a rank-one array of size
equal to the rank n of ARRAY; if DIM is present and ARRAY is of rank one, it is a sca-
lar; otherwise, it is a rank-one array of size n−1.
Result Value. The result is:
• if MASK and DIM are not present, a rank-one array whose element values are the

subscripts of the first maximum in array element order of all elements of ARRAY
provided ARRAY is of nonzero size. The ith subscript is in the range [1, ei] where ei
is the extent of ith dimension of ARRAY. If ARRAY is zero sized, all elements of the
result are zero.

• if MASK is present and DIM is not present, a rank-one array whose element values
are the subscripts of the first maximum in array element order of all elements of
ARRAY corresponding to a true element of MASK. The ith subscript is in the range
[1, ei] where ei is the extent of ith dimension of ARRAY. If ARRAY is zero sized or
all elements of MASK are false, all elements of the result are zero.

• if DIM is present and ARRAY has rank one, MAXLOC (ARRAY[, MASK = MASK]).
If DIM is present and the rank of ARRAY is at least two, the value of the element
(, ,..., , ,...,) of the result is equal to MAXLOC (ARRAY (,

,..., , :, ,...,), DIM=1 [, MASK = MASK (, ,..., , :,
,...,)]).

s1 s2 sDIM 1– sDIM 1+ sn s1
s2 sDIM 1– sDIM 1+ sn s1 s2 sDIM 1–
sDIM 1+ sn

638 Appendix A

• If ARRAY is of type character, the comparisons to determine the maximum value
are the same as those used by the intrinsic relational operators for operands of the
same type as ARRAY.

Examples. MAXLOC ([1, 2, 4, 3]) is the rank-one array [3] of size 1; MAXLOC ([4, 2, 4,
3]) is [1]; MAXLOC ([1, 2, 4, 3], 1) is the scalar 3; MAXLOC ([1, 2, 4, 3], [.true., .true.,
.false., .true.]) is the rank-one array [4] of size 1; and MAXLOC ([1, 2, 4, 3], 1, [.true.,
.true., .false., .true.], P) is the scalar 4 of integer kind P.
Given the following statements:

logical, parameter :: T = .true., F = .false.
integer, dimension(11:12,31:33) :: a
logical, dimension(21:22,21:23) :: m
integer, dimension(2) :: r
r = maxloc(a,dim=2,mask=m)

with the values shown in Table A-2.

When executed, MAXLOC returns [2 2 3] which is the list of indices indicating the
maximum values of those being selected along the rows of a, thus indicating the 4 in
row 1, the 5 in row 2, and the 9 in row 3 of array a (indicated in bold font).

MAXVAL (ARRAY, DIM {, MASK}) or Transformational Function
MAXVAL (ARRAY {, MASK})

Maximum value of array elements.
ARRAY Array of type integer, real, or character.
DIM Scalar of type integer with a value in the range [1, n] where n is the

rank of ARRAY. The corresponding actual argument must not be an
optional dummy argument.

MASK Of type logical, conformable with ARRAY.
Result Characteristics. Same type and type parameters as ARRAY. If DIM is absent or
ARRAY has rank one, it is a scalar; otherwise, it is a rank n−1 array whose shape is that
of ARRAY with the DIM dimension removed.
Result Value. The result is:
• if MASK and DIM are not present, the maximum of all elements of ARRAY provid-

ed ARRAY is of nonzero size. If ARRAY is zero sized and is of a numeric type, the
result is the negative value of largest magnitude supported by the processor of the

Table A-2 Values for MAXLOC

a m a’s subscripts maxloc’s subscripts

1 4 7 T T F (11, 31) (11, 32) (11, 33) (1, 1) (1, 2) (1, 3)

2 5 8 F T F (12, 31) (12, 32) (12, 33) (2, 1) (2, 2) (2, 3)

3 6 9 T F T (13, 31) (13, 32) (13, 33) (3, 1) (3, 2) (3, 3)

Standard Intrinsic Procedures 639

same type and kind as ARRAY; if ARRAY is zero sized and of type character, the
result is the value of the string of the length of ARRAY, with each character equal
to CHAR (0, KIND = KIND (ARRAY)).

• if MASK is present and DIM is not present, MAXVAL (PACK (ARRAY, MASK)).
• if DIM is present and ARRAY has rank one, MAXVAL (ARRAY, MASK = MASK). If

DIM is present and the rank of ARRAY is at least two, the value of the element (,
, ..., , , ...,) is the value MAXVAL (ARRAY (, , ..., ,

:, , ...,) [, MASK = MASK (, , ..., , :, , ...,)]).
• if ARRAY is of type character, the comparisons to determine the maximum value

are the same as those used by the intrinsic relational operators for operands of the
same type as ARRAY.

Examples. MAXVAL ([−1, 5, 2]) is 5; MAXVAL (A, 1), where A = is [1 2];

MAXVAL (A, 2, M) where M = is [2 −2]; and MAXVAL (A, M) is 2.

MERGE (TSOURCE, FSOURCE, MASK) Elemental Function

Selection of values under control of a mask.
TSOURCE, FSOURCE

Of any type but with the same type and type parameters.
MASK Of type logical.
Result Characteristics. Same as TSOURCE.
Result Value. The result is TSOURCE if MASK is true and FSOURCE if MASK is false.
Examples. MERGE (1, 2, .false.) is 2; MERGE ([1, 2, 3], [4, 5, 6], .true.) is [1 2 3];

MERGE ([1, 2, 3], [4, 5, 6], [.false., .true., .false.]) is [4 2 6]; if TSOURCE is ,

FSOURCE is , and MASK is , MERGE (TSOURCE, FSOURCE,

MASK) is .

MIN (A1, A2 {A3, ... }) Elemental Function

Minimum of specified values.

s1
s2 sDIM 1– sDIM 1+ sn s1 s2 sDIM 1–

sDIM 1+ sn s1 s2 sDIM 1– sDIM 1+ sn

1 2
2– 3–

false true
true true

1 6 5
7 4 6

0 3 2
7 4 8

true false true
false false true

1 3 5
7 4 6

640 Appendix A

A1, A2, ... Of type integer, real, or character with the same type and kind type pa-
rameter. If the arguments are of type character, they may be of differ-
ing lengths.

Result Characteristics. Same as A1. For A1 of type character, the length of the result is
of the length of the longest argument.
Result Value. The result is the minimum of all objects A1, A2, .… For type character
arguments, the comparisons are made using the intrinsic character relational operators.
If the minimum argument is shorter in character length than the length of the longest
argument, the result is the minimum argument padded with blanks on the right to
equal the length of the longest argument.
Examples. MIN (1.0, 2.0, 30.0) is 1.0; MIN (1, 2, −3) is −3; and MIN ([−1.0d0, −10.0d0],
[−2.0d0, 20.1d0]) is [−2 −10] with double precision kind; MIN (ʺaʺ, ʺbbʺ, ʺcʺ) is ʺabʺ.

MINEXPONENT (X) Inquiry Function

Minimum value of the model exponent.
X Scalar or array of type real.
Result Characteristics. A scalar of default integer type.
Result Value. The result is the integer emin for real numbers (13.2.3) of the type and
kind of X, namely the minimum exponent for model numbers of the type and kind of
X.
Examples. If emin=−1021 in the integer model (13.2.3), MINEXPONENT (0.0) is the val-
ue −1021 of default integer kind.

MINLOC (ARRAY, DIM {, MASK, KIND}) or Transformational Function
MINLOC (ARRAY {, MASK, KIND})

Location of the first minimum element of an array.
ARRAY Array of type integer, real, or character.
DIM Scalar of type integer with a value in the range [1, n] where n is the

rank of ARRAY. The corresponding actual argument must not be an
optional dummy argument.

MASK Of type logical, conformable with ARRAY.
KIND Scalar integer initialization expression whose value is an integer kind

value.
Result Characteristics. Of type integer with kind KIND if KIND is present, or other-
wise, with kind of default integer. If DIM is absent, it is a rank-one array of size equal
to the rank n of ARRAY; if DIM is present and ARRAY is of rank one, it is a scalar; oth-
erwise, it is a rank-one array of size n−1.
Result Value. The result is:

Standard Intrinsic Procedures 641

• if MASK and DIM are not present, a rank-one array whose element values are the
subscripts of the first minimum in array element order of all elements of ARRAY
provided ARRAY is of nonzero size. The ith subscript is in the range [1, ei] where ei
is the extent of ith dimension of ARRAY. If ARRAY is zero sized, all elements of the
result are zero.

• if MASK is present and DIM is not present, a rank-one array whose element values
are the subscripts of the first minimum in array element order of all elements of
ARRAY corresponding to a true element of MASK. The ith subscript is in the range
[1, ei] where ei is the extent of ith dimension of ARRAY. If ARRAY is zero sized or
all elements of MASK are false, all elements of the result are zero.

• if DIM is present and ARRAY has rank one, MINLOC (ARRAY[, MASK = MASK]).
If DIM is present and the rank of ARRAY is at least two, the value of the element
(, ,..., , ,...,) of the result is equal to MINLOC (ARRAY (,

,..., , :, ,...,), DIM=1 [, MASK = MASK (, ,..., , :,
,...,)]).

• If ARRAY is of type character, the comparisons to determine the minimum value
are the same as those used by the intrinsic relational operators for operands of the
same type as ARRAY.

Examples. MINLOC ([1, 2, 4, 3]) is the rank-one array [1] of size 1; MINLOC ([4, 2, 4,
2]) is [2]; MINLOC ([1, 2, 4, 3], 1) is the scalar 1; MINLOC ([1, 2, 4, 3], [.false., .true.,
.false., .true.]) is the rank-one array [2] of size 1; and MINLOC ([1, 2, 4, 3], 1, [.false.,
.true., .false., .true.], P) is the scalar 2 of integer kind P.
Given the following statements:

logical, parameter :: T = .true., F = .false.
integer, dimension(11:12,31:33) :: a
logical, dimension(21:22,21:23) :: m
integer, dimension(2) :: r
r = minloc(a,dim=2,mask=m)

with the following values:

When executed, MINLOC returns [1 2 1] which is the list of indices indicating the min-
imum values of those being selected along the rows if a, thus indicating the 1 in row 1,
the 5 in row 2, and the 3 in row 3 of array a (indicated in bold font).

Table A-3 Values for MINLOC

a m a’s subscripts minloc’s subscripts

1 4 7 T T F (11, 31) (11, 32) (11, 33) (1, 1) (1, 2) (1, 3)

2 5 8 F T F (12, 31) (12, 32) (12, 33) (2, 1) (2, 2) (2, 3)

3 6 9 T F T (13, 31) (13, 32) (13, 33) (3, 1) (3, 2) (3, 3)

s1 s2 sDIM 1– sDIM 1+ sn s1
s2 sDIM 1– sDIM 1+ sn s1 s2 sDIM 1–
sDIM 1+ sn

642 Appendix A

MINVAL (ARRAY, DIM {, MASK}) or Transformational Function
MINVAL (ARRAY {, MASK})

Minimum value of array elements.
ARRAY Array of type integer, real, or character.
DIM Scalar of type integer with a value in the range [1, n] where n is the

rank of ARRAY. The corresponding actual argument must not be an
optional dummy argument.

MASK Of type logical and conformable with ARRAY.
Result Characteristics. Same type and type parameters as ARRAY. If DIM is absent or
ARRAY has rank one, it is a scalar; otherwise, it is a rank n−1 array whose shape is that
of ARRAY with the DIM dimension removed.
Result Value. The result is:
• if MASK and DIM are not present, the minimum of all elements of ARRAY provid-

ed ARRAY is of nonzero size. If ARRAY is zero sized and is of a numeric type, the
result is the positive value of largest magnitude supported by the processor of the
same type and kind as ARRAY; if ARRAY is zero sized and of type character, the
result is the value of the string of the length of ARRAY, with each character equal
to CHAR (n−1, KIND = KIND (ARRAY)) where n is the number of characters in the
collating sequence for characters of the kind of ARRAY.

• if MASK is present and DIM is not present, MINVAL (PACK (ARRAY, MASK)).
• if DIM is present and ARRAY has rank one, MINVAL (ARRAY, MASK = MASK). If

DIM is present and the rank of ARRAY is at least two, the value of the element (,
, ..., , , ...,) is the value MINVAL (ARRAY (, , ..., , :,

, ...,) [, MASK = MASK (, , ..., , :, , ...,)]).
• if ARRAY is of type character, the comparisons to determine the minimum value

are the same as those used by the intrinsic relational operators for operands of the
same type as ARRAY.

Examples. MINVAL ([−1, 5, 2]) is −1; MINVAL (A, 1), where A = is [−2 −3];

MINVAL (A, 2, M) where M = is [2 −3]; and MINVAL (A, M) is −3.

MOD (A, P) Elemental Function

Remainder function, having the sign of the first argument.
A, P Of type integer or real; A and P must have the same type and kind

type parameter. P must not be zero.
Result Characteristics. Same as A.

s1
s2 sDIM 1– sDIM 1+ sn s1 s2 sDIM 1–
sDIM 1+ sn s1 s2 sDIM 1– sDIM 1+ sn

1 2
2– 3–

false true
true true

Standard Intrinsic Procedures 643

Result Value. The result is the remainder of A when divided by P; that is, the result is
A−INT (A/P)*P.
Examples. MOD (5, 2) is 1; MOD (−3.1, 2.0) is −1.1; MOD (3.1, −2.0) is 1.1; and MOD
(−6.2d0, −2.1d0) is −2.0 with double precision kind.

MODULO (A, P) Elemental Function

Remainder function, having the sign of the second argument.
A, P Of type integer or real; A and P must have the same type and kind

type parameter. P must not be zero.
Result Characteristics. Same as A.
Result Value. For A of type integer, the result is the modulo R of A with respect to P;
that is, where Q is an integer, the integer result R satisfies the requirement that A =
Q×P + R where 0≤R<P if P is positive, and P<R≤0 if P is negative. For A of type real, the
result is the same as the Fortran expression A−FLOOR(A/P)∗P.
Examples. MODULO (5, 2) is 1; MODULO (−3.1, 2.0) is 0.9; MODULO (3.1, −2.0) is
−0.9; and MODULO (−6.2d0, −2.1d0) is −2.0 with double precision kind. Note that de-
spite the different forms of the definitions for real and integer values, the definitions
are consistent; for example, MODULO (−3, 2) and MODULO (−3.0, 2.0) both have the
value 1.

MOVE_ALLOC (FROM, TO) Pure Intrinsic Subroutine

Transfer an allocation from one object to another of the same type.
FROM Allocatable scalar or array of any type with INTENT (INOUT).
TO Allocatable scalar or array, type compatible with FROM, with the same

rank as FROM and with INTENT (OUT). If FROM is polymorphic, TO
must be polymorphic. Any nondeferred parameter of the declared type
of TO must have the same value as the corresponding parameter of the
declared type of FROM.

Result Value. The allocation is moved from the allocatable object FROM to the allocat-
able object TO and FROM is deallocated. If FROM is unallocated on invocation of
MOVE_ALLOC, TO becomes unallocated; otherwise, TO is allocated with the same dy-
namic type, type parameters, and array bounds, and is given the same value as FROM
had before MOVE_ALLOC was invoked; the allocation status of FROM becomes unal-
located. If TO has the TARGET attribute, any pointer associated with FROM becomes
associated with TO after MOVE_ALLOC is invoked; otherwise, any pointer associated
with FROM when MOVE_ALLOC is invoked becomes undefined.
It is expected that allocatable objects involve the use of descriptors to locate allocatable
storage. Using descriptors, MOVE_ALLOC can be implemented by transferring the de-
scriptor of FROM to that of TO and clearing the descriptor of FROM, and thus no tar-
get data will move.

644 Appendix A

Example. Suppose more data is collected than will fit into an initially allocated array.
In the following code sequence, an allocatable array TMP is allocated twice the size of
the array SYMBOLS; the value of SYMBOLS is copied to TMP, and then the array TMP
becomes SYMBOLS by using the subroutine MOVE_ALLOC; in this last step, no data
will be moved.

character(len=len(SYMBOLS)), allocatable, dimension(:) :: TMP
 . . .
allocate (TMP(2*size (SYMBOLS))
TMP(1:size (SYMBOLS)) = SYMBOLS
TMP(size(SYMBOLS)+1:) = ""
call MOVE_ALLOC (TMP, SYMBOLS)

After these statements are executed, the array SYMBOLS is now twice its original size
with the first half of it having the same values as it had originally.

MVBITS (FROM, FROMPOS, LEN, TO, TOPOS) Elemental Subroutine

Copy a sequence of bits from one integer to another.
FROM Of type integer with INTENT (IN).
FROMPOS Of type integer with INTENT (IN) in the range [0, BIT_SIZE (FROM)−

LEN].
LEN Of type integer with INTENT (IN) and with a nonnegative value.
TO Of type integer with INTENT (INOUT) and with the same kind as

FROM. It may be associated with the FROM argument. TO, starting at
position TOPOS for LEN bits, is set to LEN bits from FROM, starting at
position FROMPOS (13.2.1).

TOPOS Of type integer with INTENT (IN). It must have a nonnegative value
such that TOPOS+LEN ≤ BIT_SIZE (TO).

Example. Consider the following code segment:
integer :: T
T = 16
call MVBITS (31, 0, 2, T, 1)

Using the particular bit model for default integers described in 13.2.1, the value of T is
22 after the call to MVBITS. In place of the last two statements above, the statements

T = INT (B"10000")
call MVBITS (INT(B"11111"), 0, 2, T, 1)

sets T to the same value 22 which is the same value as the BOZ literal constant
B’10110’.

NEAREST (X, S) Elemental Function

Nearest machine-representable number in a given direction.
X Of type real.
S Of type real. It may be of a different kind than X and must not be zero.

Standard Intrinsic Procedures 645

Result Characteristics. Same as X.
Result Value. The result is the machine-representable value nearest X toward the di-
rection of the infinity of the sign of S. Note that the result is described in terms of ma-
chine-representable values rather than model numbers.
Examples. If a processor uses for its default real type values the values described by
the real model (13.2.3) with b=2, p=24, and emin=−125, the values of NEAREST (1.0, −1.0)
and NEAREST (0.0, 0.125) are 1 − 2−24 and 2−126, respectively.

NEW_LINE (A) Inquiry Function

New line character for the character kind of the argument.
A Scalar or array of type character.
Result Characteristics. Scalar of type character, length 1, and the kind of A.
Result Value. The result is the new line character for the character set specified by the
kind of A, as follows:

Example. The statements:
print "(/)"
print "(a)", NEW_LINE ("a")

will produce the same result on most systems.

NINT (A {, KIND}) Elemental Function

Real value rounded to the nearest integer.
A Of type real.
KIND Scalar integer initialization expression whose value is an integer kind

value.
Result Characteristics. Of type integer with kind KIND if KIND is present, or other-
wise, with the kind of default integer.

Kind of A Condition Result

Default ACHAR (10) is a representable character ACHAR (10)

ASCII, ISO 10646 None CHAR (10, KIND (A))

Other kinds A new line character ch in files
connected for formatted stream output
exists

No new line character in file connected
for formatted stream output exists

ch

Blank character

646 Appendix A

Result Value. The result is the nearest integer value to A; if there are two such nearest
integers, the result is the one of greater magnitude.
Examples. NINT (3.1) is 3; NINT (−3.5, P) is −4 of kind P.

NOT (I) Elemental Function

Logical complement of an integer.
I Of type integer.
Result Characteristics. Same as I.
Result Value. The result is the value obtained by complementing the bit positions of I;
that is, I is complemented bit-by-bit.

Example. Using the particular bit model for default integers described in 13.2.1, NOT
(4) has integer value represented as a bit string 11111111111111111111111111111011,
which has the first bit set to 1. For all arguments, the result value as an integer is pro-
cessor dependent because the standard does not specify the representation of negative
integers.

NULL ({MOLD}) Transformational Function

A disassociated pointer or unallocated allocatable component of a structure construc-
tor.
MOLD It must be a pointer or allocatable and may be of any type or a proce-

dure pointer. If a pointer, its association status may be associated, dis-
associated, or undefined. If it is allocatable, its allocation status may be
allocated or unallocated. Its value may be undefined.

MOLD must be present in the following cases:
• any type parameter of the contextual entity in Table A-4 is assumed.
• NULL appears as an actual argument of a generic procedure and type, type

parameters, or rank of this actual argument is needed to determine which
specific procedure is to be referenced.

• NULL appears as an actual argument corresponding to a dummy argument
with assumed character length.

• in all contexts other than those listed in Table A-4.

I NOT (I)

1 0

0 1

Standard Intrinsic Procedures 647

Result Characteristics. The results characteristics are the same as MOLD if it is
present; otherwise, the characteristics are determined by the context as specified in Ta-
ble A-4. In addition, if the contextual entity has deferred-type parameters, those type
parameters of the result are deferred.
Result Value. The result is a disassociated pointer or an unallocated allocatable entity.
Examples. If A is a pointer, NULL (A) is a disassociated pointer with the characteris-
tics of A. Consider the following code segment:

type node_type
 integer, allocatable, dimension(:) :: vals
 type(node_type), pointer :: nxt
end node type
type(node_type) :: node
 . . .
node = node_type (null (), null ())

The assignment statement with the structure constructor node_type sets the compo-
nent vals to an unallocated allocatable entity and the component nxt to a disassociated
pointer.

PACK (ARRAY, MASK {, VECTOR}) Transformational Function

Masked array packed into a vector.
Arguments.
ARRAY Array of any type.
MASK Of type logical, conformable with ARRAY.
VECTOR Rank-one array of the same type and type parameters as ARRAY. If

MASK is an array, VECTOR must have a size at least as large as the
number of true elements of MASK. If MASK is a scalar with the value
true, VECTOR must have a size at least as large as the size of ARRAY.

Table A-4 Result characteristics of NULL

Appearance of NULL () Type, type parameters, and rank of the result

Right side of a pointer assignment The pointer on the left side

Initialization of an object in a declaration The object

Default initialization for a component The component

A value in a structure constructor The corresponding component

An actual argument of a procedure The corresponding dummy argument

A data value in a DATA statement The corresponding pointer data object

648 Appendix A

Result Characteristics. Rank-one array of the type and type parameters of ARRAY. If
VECTOR is present, the result size is the size of VECTOR; otherwise, if MASK is an ar-
ray, the result size is the number of true elements in MASK. If MASK is a scalar with
the value true, the result size is the size of ARRAY; if MASK is a scalar with the value
false, the result size is zero.
Result Value. The result consists of the elements of ARRAY corresponding to the true
elements of MASK in array element order. If VECTOR is present and is larger in size
than the number of true elements in MASK, the remaining elements of the result are
the corresponding remaining elements of VECTOR.

Examples. If ARRAY is , PACK (ARRAY, .true.) is [4 3 2 1]; PACK (ARRAY,

.false., [1, 2, 3, 4, 5, 6]) is [1 2 3 4 5 6]; and if MASK is , PACK (ARRAY,

MASK, [1, 2, 3, 4, 5, 6]) is [4 1 3 4 5 6].

PRECISION (X) Inquiry Function

Decimal precision of a model number.
X Scalar or array of type real or complex.
Result Characteristics. Scalar of default integer type.
Result Value. The result is the integer part of ((p−1)×log10(b))+k for model parameters
p and b (13.2.3) for the real type of X and k is 1 if b is an integral power of 10 and 0 oth-
erwise, namely the decimal precision of real numbers of the kind of X.
Example. If a processor supports the double precision kind using the real model
(13.2.3) with p=53 and b=2, the value PRECISION (0.0d0) is 15.

PRESENT (A) Inquiry Function

True if an actual argument of a procedure is present.
A Scalar or array optional dummy argument name of any type. The actu-

al argument may be a dummy procedure or a pointer. A has no IN-
TENT attribute. The actual argument corresponding to A must be an
accessible optional dummy argument in the subprogram that invokes
the PRESENT function (12.6.2).

Result Characteristics. Scalar of type default logical.
Result Value. The result is true if A is present (12.6.2) and false otherwise.
Example. In the following code segment:

print "(es7.1)", define_small ()
print "(es7.1)", define_small (1.0e10)
contains

4 2
3 1

true false
false true

Standard Intrinsic Procedures 649

 real function define_small (x)
 real, optional :: x
 if(present(x)) then
 find_small = abs (x)*epsilon (x)
 else
 find_small = epsilon (x)
 endif
 end function define_small

the printed output might be: 1.2e−07 and 1.2e+03.

PRODUCT (ARRAY, DIM {, MASK}) or Transformational Function
PRODUCT (ARRAY {, MASK})

Product of array elements.
ARRAY Array of type integer, real, or complex.
DIM Scalar of type integer with a value in the range [1, n] where n is the

rank of ARRAY. The corresponding actual argument must not be an
optional dummy argument.

MASK Of type logical, conformable with ARRAY.
Result Characteristics. Same as ARRAY. If DIM is not present or ARRAY has rank one,
it is a scalar; otherwise, it is a rank n−1 array whose shape is that of ARRAY with the
DIM dimension removed.
Result Value. The result is:
• if MASK and DIM are not present, the product of all elements of ARRAY provided

ARRAY is of nonzero size. If ARRAY is zero sized, the result is one.
• if MASK is present and DIM does not appear, the product of the elements of AR-

RAY corresponding to the true elements of MASK and one if there are no true ele-
ments.

• if DIM is present and ARRAY has rank one, PRODUCT (ARRAY, MASK = MASK).
If DIM is present and the rank of ARRAY is at least 2, the value of the element (,

, ..., , , ...,) is equal to PRODUCT (ARRAY (, , ..., ,
:, , ...,) [, MASK = MASK (, , ..., , :, , ...,)]).

• if ARRAY is of zero size or no elements of MASK are true, the result is 1.

Examples. PRODUCT ([−1, 5 ,2]) is −10. If A = , PRODUCT (A, 1) is [−8 −6];

and if M = , PRODUCT (A, 2, M) is [2 6] and PRODUCT (A, A>0) is 8.

RADIX (X) Inquiry Function

Base of a model number.

s1
s2 sDIM 1– sDIM 1+ sn s1 s2 sDIM 1–

sDIM 1+ sn s1 s2 sDIM 1– sDIM 1+ sn

4 2
2– 3–

false true
true true

650 Appendix A

X Scalar or array of type integer or real.
Result Characteristics. Scalar of default integer type.
Result Value. The result is the value r of the integer model (13.2.2) or the value b of the
real model (13.2.3) of the type and kind of X, namely the radix of numbers of the type
and kind of X.
Examples. If r=2 in the integer model (13.2.2), RADIX (0) has the value 2 of default in-
teger kind; if b=2 in the real model (13.2.3), RADIX (0.0) has the value 2 of default inte-
ger kind.

RANDOM_NUMBER (HARVEST) Subroutine

Generate pseudorandom scalar or array of real type.
HARVEST Scalar or array of type real. It is an INTENT (OUT) argument that is as-

signed a scalar or array of uniformly distributed pseudorandom real
values in the interval [0, 1).

Examples. The code segment:
real :: S
real(kind=KIND (0.0d0)) :: D
real, dimension(3) :: A

call RANDOM_NUMBER (S)
call RANDOM_NUMBER (D)
call RANDOM_NUMBER (A)

produces a set of pseudorandom numbers, probably different for each execution of the
code segment. Upon completion of this code segment, the value for S is a scalar of type
default real, such as 0.5587673; the value of D is a real scalar with double precision
kind such as 0.2024475895811094, and the value of A is a default real rank-one array of
three numbers, such as [0.5366381 0.2763737 .012461195].

RANDOM_SEED ({SIZE, PUT, GET}) Subroutine

Retrieve or set the seed of the pseudorandom number generator.
SIZE Scalar of default integer type. If it is present, it is an INTENT (OUT) ar-

gument that is assigned the size of the array used by the processor to
hold the seed for the pseudorandom number generator.

PUT Rank-one array of default integer type. If it is present, it is an INTENT
(IN) argument that is the value used to set the seed of the pseudoran-
dom number generator.

GET Rank-one array of default integer type. If it is present, it is an INTENT
(OUT) argument that is assigned the current seed for the pseudoran-
dom number generator.

Standard Intrinsic Procedures 651

There must be zero or one argument. If no argument is present, the processor assigns a
processor-dependent value to the seed. If the PUT argument is used to set the seed
with a particular value, the same sequence of pseudorandom numbers must be gener-
ated when that particular seed is specified a second time.
Examples. Consider the following program:

real :: S
real(kind=KIND (0.0d0)) :: D
real, dimension(3) :: A
integer :: sz
integer, dimension(:), allocatable :: seed

call RANDOM_SEED (size = sz) ! Finds the size sz of the seed
allocate (seed(sz))
sz = [(i,i=1,sz)] ! Establishes a user seed
call random_seed (put = seed) ! Sets the array of seeds

call RANDOM_NUMBER (S) ! A scalar default real random number
call RANDOM_NUMBER (D) ! A scalar double precision random number
call RANDOM_NUMBER (A) ! An array of random numbers

This program segment produces a set of pseudorandom numbers, the same for each
execution of the code segment; see the similar example in the description of
RANDOM_NUMBER. and 13.3.4.1 for further discussion of the properties of the proce-
dures RANDOM_SEED and RANDOM_NUMBER.

RANGE (X) Inquiry Function

Decimal exponent range of a model number.
X Scalar or array of type integer, real, or complex.
Result Characteristics. Scalar of default integer type.
Result Value. The result value is:

for integer X INT (LOG10 (HUGE (X)))
for real X INT (MIN (LOG10 (HUGE (X)), −LOG10 (TINY(X))))
for complex X RANGE (REAL (X))

Examples. If r=2 and q=31 in the integer model (13.2.2), RANGE (0) has the value 9 of
default integer; if b=2, p=24, emin=−125, and emax=128 in the real model (13.2.3), RANGE
(0.0) has the value 37 of default integer kind.

REAL (A {, KIND}) Elemental Function

Real value.
A Scalar or array of type integer, real, or complex type, or a BOZ literal

constant.
KIND Scalar integer initialization expression whose value is a real kind value.

652 Appendix A

Result Characteristics. Of type real with kind KIND if KIND is present, or otherwise,
with the kind of default real.
Result Value. The result is A if A is of integer or real type, or of the real part of A if A
is of complex type. If A is a BOZ literal constant, the result is that value of type real
with the kind of the result whose bit pattern is that given by the BOZ literal constant;
the interpretation of the bit pattern is processor dependent.
Examples. REAL (3) is 3.0; REAL ((4.0, 1.0)) is 4.0. REAL (4.1, KIND (0.0d0)) is 4.1,
converted from real kind to double precision kind; in general, it is not equal to 4.1d0.

REPEAT (STRING, NCOPIES) Transformational Function

Concatenation of several copies of a character string.
STRING Scalar of type character.
NCOPIES Scalar of type integer. Its value must not be negative.
Result Characteristics. Scalar of the type and kind of STRING and with length NCO-
PIES∗LEN (STRING).
Result Value. The result is the string consisting of NCOPIES copies of STRING concat-
enated together.
Example. REPEAT (ʺBADbʺ, 3) is the string BADbBADbBADb; REPEAT (ʺBADbʺ, 0) is
the empty string.

RESHAPE (SOURCE, SHAPE {, PAD, ORDER}) Transformational Function

Rank-one array reshaped to an array of a specified shape.
SOURCE Array of any type. If PAD is absent or of zero size, the size of SOURCE

must be greater than or equal to PRODUCT (SHAPE).
SHAPE Rank-one array of type integer and of a positive size n less than 8. No

element may have a negative value. The size n must be determinable at
compile time; what is determinable at compile time is open to interpre-
tation.

PAD Array of the same type and type parameters as SOURCE
ORDER Rank-one array of type integer with any integer kind and of size n. It

must have a value that is a permutation of the integers from 1 to n. If it
is not present, it is as if it is present with the value [1 2 ... n].

Result Characteristics. Array of shape SHAPE with the type and type parameters of
SOURCE.
Result Value. The elements of the result, taken in permuted subscript order OR-
DER(1), ORDER(2), …, ORDER(n), are those of the array SOURCE in array element or-
der, followed, if needed to complete the elements of the result, by the elements of PAD
in array element order, followed if needed, by further copies of PAD in array element
order.

Standard Intrinsic Procedures 653

Examples. RESHAPE ([1, 2, 3, 4, 5, 6], [2, 3]) has the value .

RESHAPE ([1, 2, 3, 4, 5, 6], [2, 4], [0, 0], [2, 1]) has the value .

Consider the following program segment:
 real, dimension(2,2) :: a
 integer, dimension(2) :: shp = [size(a,1), size(a,2)]
 a = reshape([1,2,3,4], shp, order = [2,1])

a is the array .

RRSPACING (X) Elemental Function

Reciprocal of model relative spacing near a specified value.
X Of type real.
Result Characteristics. Same as X.
Result Value. The result is the value |Xb−e|bp as determined by the model for real
numbers (13.2.3). If X is an IEEE infinity or NaN, the result is zero or that NaN, respec-
tively.
Examples. If a processor uses for its default real type values the values described by
the real model (13.2.3) with b=2 and p=24, the values of RRSPACING (1.0) and
RRSPACING (0.0) are 223 and 0.0, respectively.

SAME_TYPE_AS (A, B) Inquiry Function

True if two objects are of the same dynamic type.
A, B Of any extensible type. Either or both may be pointers that have a de-

fined association status.
Result Characteristics. Scalar of type default logical.
Result Value. The result is true if the dynamic type of A is the same as the dynamic
type of B. Note that the dynamic type of a disassociated pointer or unallocated allocat-
able is its declared type.
Example. Using the declarations given for the example of the intrinsic function
EXTENDS_TYPE_OF, SAME_TYPE_AS (a, line), SAME_TYPE_AS (a, divider), and
SAME_TYPE_AS (point, divider) are each false whereas SAME_TYPE_AS (line, divid-
er) is true.

1 3 5
2 4 6

1 2 3 4
5 6 0 0

1.0 2.0
3.0 4.0

654 Appendix A

SCALE (X, I) Elemental Function

Value scaled by a power of the radix.
X Of type real.
I Of type integer.
Result Characteristics. Same as X.
Result Value. The result is the value XbI as determined by the model for real numbers
(13.2.3), provided the value is in range, and otherwise, is processor dependent.
Examples. If a processor uses for its default real type values the values described by
the real model (13.2.3) with b=2, the values of SCALE (1.0, −2) and SCALE (0.0, 10) are
0.25 and 0.0, respectively.

SCAN (STRING, SET {, BACK, KIND}) Elemental Function

Position in a string of any one of a given set of characters.
STRING, SET Of type character, but both with the same kind.
BACK Of type logical.
KIND Scalar integer initialization expression whose value is an integer kind

value.
Result Characteristics. Of type integer with kind KIND if KIND is present, or other-
wise, with the kind of default integer.
Result Value. The result is the index position in STRING of a character in the string
SET, or zero if no character in SET appears in STRING. If BACK is present with the val-
ue false or is not present, the index position is that of the first occurrence in STRING of
any character in SET; otherwise, if BACK is present with the value true, the index posi-
tion is that of the last occurrence in STRING of a character in SET. If the length of
STRING or SET is zero, zero is returned.
Examples. SCAN (ʺinputbstringʺ, ʺifʺ) is 1; SCAN (ʺinputbstringʺ, ʺifʺ, .true.) is 10; and
SCAN (ʺinputbstringʺ, ʺfʺ, KIND=P) is 0 of integer kind P.

SELECTED_CHAR_KIND (NAME) Transformational Function

Kind parameter of a specified character set.
NAME Scalar of type default character.
Result Characteristics. Scalar of type default integer.
Result Value. The result is the kind parameter value of the character type whose name
is the value of NAME. If the named character type is not supported by the processor,
the value is −1. The value of NAME is interpreted without regard to case and trailing
blanks. The names used for character kinds that support the default, ASCII, and
ISO/IEC 10646-1:2000 UCS-4 character sets are the strings DEFAULT, ASCII and ISO
10646, respectively.

Standard Intrinsic Procedures 655

Examples. If a processor supports the default character and the ISO/IEC 10646-1:2000
UCS-4 character types with kind values 1 and 2, respectively, the kind values for X, Y,
and Z declared as follows:

character(kind=kind("ABC")) X
character(kind=selected_char_kind("ISO_10646")) Y
character(kind=selected_char_kind("default")) Z

are 1, 2, and 1, respectively; in this case, the first and third statements declare the same
character kind.

SELECTED_INT_KIND (R) Transformational Function

Kind parameter of an integer data type, specified by a minimum decimal range.
R Scalar of type integer.
Result Characteristics. Scalar of type default integer.
Result Value. The result is the kind parameter value of an integer type that supports
integers n in the range −10R < n < 10R. If such an integer kind does not exist, the value
is −1. If there is more than one kind available, the kind corresponding to the smallest
decimal exponent range is returned. If there are more than one of those, the smallest
kind value of those is returned.
Examples. If q=63 and r=2 in the integer model (13.2.2) for integers with kind 2,
SELECTED_INT_KIND (15) has the value 2 of default integer kind.

SELECTED_REAL_KIND ({P, R}) Transformational Function

Kind parameter of a real data type, specified by a minimum decimal precision and/or
exponent range.
P, R Scalars of type integer. At least one of them must be present. If either is

absent, it is as if it were present with the value zero.
Result Characteristics. Scalar of type default integer.
Result Value. The result is the kind parameter value of a real type that supports real
numbers x of decimal precision at least P digits and a decimal range of at least R as de-
fined by the intrinsic functions PRECISION and RANGE, respectively. If more than one
kind type parameter meets the criterion, the kind value returned is the one that has the
least decimal precision; if there is more than one of these, the one with the smallest
kind value is returned. If the processor does not support such a real kind, the values
shown in Table A-5 are returned.
Examples. If a processor supports the default real type modeled with emin=−125,
emax=128, p=24, and r=2 and a double precision real type modeled with emin=−1021,
emax=1024, p=53 and r=2 using the real model (13.2.3) with kind values 4 and 8, respec-
tively, the kind values for SELECTED_REAL_KIND (6) and SELECTED_REAL_KIND
(R=100) are 4 and 8, respectively.

656 Appendix A

See Appendix B for the requirements of the similar IEEE module procedure
IEEE_SELECTED_REAL_KIND.

To illustrate the negative returned values, consider one processor that has two real
kinds, whose precisions and ranges returned by the functions PRECISION and
RANGE are 6 and 36, and 15 and 307 respectively, and a second processor whose pre-
cisions and ranges for its two kinds are 10 and 30, and 4 and 40, respectively. Table A-6
illustrates the returned values for these two processors with various requested preci-
sions P and ranges R:

Note that the processor corresponding to the last row of Table A-6 supports two real
kinds; neither of these real kinds satisfy the requirement for at least 6 decimal digits of
precision and decimal exponent range of 37, but each satisfies one of the requirements;
thus, the value of SELECTED_REAL_KIND (6, 37) must be −4 for this processor.

SET_EXPONENT (X, I) Elemental Function

Value with its exponent set to a specified value.
X Of type real.
I Of type integer.
Result Characteristics. Same as X.
Result Value. The result is the value XbI−e as determined by the model for real num-
bers (13.2.3), provided the value is in range, and otherwise, is processor dependent. If
X is zero, the result is zero.

Table A-5 Negative values of SELECTED_REAL_KIND

Value Condition

−1 No kind with precision P, but a kind with range R

−2 No kind with range R, but a kind with precision P

−3 No kind with precision P or range R

−4 A kind with precision P and another with range R,
but not one kind that supports both

Table A-6 Returned values of SELECTED_REAL_KIND (P, R)

Processor’s two
P, R, pairs Requested P, R Returned Value

(6, 37), (15, 307) 20, 37 −1

10, 400 −2

20, 400 −3

(10, 30), (4, 40) 6, 37 −4

Standard Intrinsic Procedures 657

Examples. If a processor uses for its default real type values the values described by
the real model (13.2.3) with b=2, the values of SET_EXPONENT (1.0, 3) and
SET_EXPONENT (0.0, 120) are 4.0 and 0.0, respectively.

SHAPE (SOURCE [, KIND]) Inquiry Function

Number of elements in each dimension of an array.
SOURCE Scalar or array of any type. If it is allocatable, it must be allocated; if it

is a pointer, it must be associated. It must not be an assumed-size array.
KIND Scalar integer initialization expression whose value is an integer kind

value.
Result Characteristics. Rank-one array of integer type with kind KIND if KIND is
present, or otherwise, with the kind of default integer. Its size is equal to the rank of
SOURCE.
Result Value. The result is the shape of SOURCE. Note that if SOURCE is a scalar, the
result is a zero-sized rank-one array.
Examples. For the following code segment:

real, allocatable, dimension(:) :: vector
real, dimension(0:100, 1:1000) :: table
allocate (vector(10:20))

SHAPE (vector), SHAPE (vector(15:)), and SHAPE (table) are [11], [6,] and [101 1000],
respectively. SHAPE(3) is a rank-one array of size zero.

SIGN (A, B) Elemental Function

Value with a specified sign.
A, B Of type integer or real with the same type and kind type parameter.
Result Characteristics. Same as A.
Result Value. The result is |A| if B is positive, −|A| if B is negative. If B is positive
zero or the processor cannot distinguish the sign of zero or if B is of type integer and is
zero, the result is |A|; otherwise, the result is −|A|.
Examples. SIGN (1, −10) is −1; SIGN (10.1, 2.0) is 10.1; and SIGN (1.0d0, −0.0d0) is −1
with double precision kind on a processor that can distinguish positive and negative
zero, and 1 with double precision kind otherwise.

SIN (X) Elemental Function

Sine.
X Of type real or complex.
Result Characteristics. Same as X.
Result Value. The result is the sine of X. If X is real, X is in radians. If X is complex, the
real part of X is in radians.

658 Appendix A

Examples. SIN (0.0) is 0.0; SIN (X) where X is π/2 is 1.0; and SIN ((1.0_P, 1.0_P)) is
1.29846 + 0.63496i of kind P.

SINH (X) Elemental Function

Hyperbolic sine.
X Of type real.
Result Characteristics. Same as X.
Result Value. The result is the hyperbolic sine of X.
Examples. SINH (0.0) is 0.0; and SINH (−0.5_P) is −0.521095 of real kind P.

SIZE (ARRAY {, DIM, KIND}) Inquiry Function

Number of elements of an array or a dimension of an array.
ARRAY Array of any type. If it is allocatable, it must be allocated. If it is a

pointer, it must be associated. If it is an assumed-size array, DIM must
be present with a value that is not equal to the rank of ARRAY.

DIM Scalar of type integer with a value in the range [1, n] where n is the
rank of ARRAY.

KIND Scalar integer initialization expression whose value is an integer kind
value.

Result Characteristics. Scalar of integer type with kind KIND if KIND is present, or
otherwise, with the kind of default integer.
Result Value. If DIM is present, the result is the extent of the DIM dimension of AR-
RAY; if absent, the result is the number of elements in ARRAY
Examples. Consider the following code segment, in a subprogram with dummy argu-
ment D:

real, allocatable, dimension(:) :: vector
real, dimension(10,20,*) :: D
allocate (vector(10:20))

Table A-7 shows the values of various references to SIZE.

Note that D(:,:10) is not an assumed-size array even though D is an assumed-size array.

Table A-7 Values of SIZE

Reference Value

size(vector) 11

size(vector(15:)) 6

size(D,1) 20

size(D(:,:10)) 200

Standard Intrinsic Procedures 659

SPACING (X) Elemental Function

Model absolute spacing near a specified value.
X Of type real.
Result Characteristics. Same as X.
Result Value. The result is the value as determined by the model
for real numbers (13.2.3), provided X is neither zero, IEEE infinity, nor NaN. If X is ze-
ro, the result is TINY (X); if X is an IEEE infinity, the result is positive IEEE infinity; if
X is NaN, the result is that NaN.
Examples. If a processor uses for its default real type values the values described by
the real model (13.2.3) with b=2 and emin=−125, the values of SPACING (1.0) and SPAC-

ING (0.0) are 2−26 and , respectively, or 1.19×10−7 and 1.18×10−38, respectively.

SPREAD (SOURCE, DIM, NCOPIES) Transformational Function

Array replicated by adding a dimension.
SOURCE Scalar or array of any type. If it is an array, its rank must not exceed 6.
DIM Scalar of type integer with a value in the range [1, n+1] where n is the

rank of SOURCE.
NCOPIES Scalar of type integer.
Result Characteristics. Array of the type and type parameters of SOURCE and of rank
n+1. If SOURCE is a scalar, the shape of the result is [MAX (NCOPIES,0)]; if SOURCE
is an array, the shape of the result is [, , ..., , MAX (NCOPIES, 0), , ...,

] where [, , ...,] is the shape of SOURCE.
Result Value. If SOURCE is a scalar, every element of the result is that scalar; if
SOURCE is an array, the element (, , ...,) has the value SOURCE (, , ...,

, , ...,).
Examples. SPREAD ("A", 1, 3) is the character array [A A A]. If B is the array [1, 3, 7],

SPREAD (B, DIM=1, NCOPIES=NC) is the array if NC has the value 3 and is a zero-

sized array if NC has the value 0.

SQRT (X) Elemental Function

Square root.
X Of type real or complex. If it is of type real, its value must be nonnega-

tive.
Result Characteristics. Same as X.

b
max e p–() emin 1–(),()

2
emin 1–

d1 d2 dDIM 1– dDIM
dn d1 d2 dn

r1 r2 rn 1+ r1 r2
rDIM 1– rDIM 1+ rn 1+

1 3 7
1 3 7
1 3 7

660 Appendix A

Result Value. The result is the square root of X. If X is of type real, the result is nonne-
gative; if X is of type complex, the result is the principal value; namely, the real part is
nonnegative, and if the real part of the result is zero, the sign of the imaginary part of
the result is the sign of the imaginary part of X.
Examples. SQRT (4.0) is 2.0; SQRT ((−25.0d0, 0.0d0)) is (−3.0d0, 4.0d0) is 1+2i of double

precision kind. If A = , SQRT (A) is .

SUM (ARRAY, DIM {, MASK}) or Transformational Function
SUM (ARRAY {, MASK})

Sum of array elements.
ARRAY Array of type integer, real, or complex.
DIM Scalar of type integer with a value in the range [1, n] where n is the

rank of ARRAY. The corresponding actual argument must not be an
optional dummy argument.

MASK Of type logical, conformable with ARRAY.
Result Characteristics. Same as ARRAY. If DIM is absent or ARRAY has rank one, it is
a scalar; otherwise, it is a rank n−1 array whose shape is that of ARRAY with the DIM
dimension removed.
Result Value. The result is:
• if MASK and DIM are absent, the sum of all elements of ARRAY provided ARRAY

is of nonzero size. If ARRAY is zero sized, the result is zero.
• if MASK is present and DIM is absent, the sum of the elements of ARRAY corre-

sponding to the true elements of MASK and zero if there are no true elements.
• if DIM is present and ARRAY has rank one, SUM (ARRAY, MASK = MASK). If

DIM is present and the rank of ARRAY is at least 2, the value of the element (,
, ..., , , ...,) is equal to SUM (ARRAY (, , ..., , :,

, ...,) [, MASK = MASK (, , ..., , :, , ...,)]).

• if ARRAY is of zero size or no elements of MASK are true, the result is 0.

Examples. SUM ([−1, 5, 2]) is 6. If A = , SUM (A, 1) is [−1 −1]; and if M =

, SUM (A, 2, M) is [2 −5] and SUM (A, A>0) is 3.

SYSTEM_CLOCK ({COUNT, COUNT_RATE, COUNT_MAX}) Subroutine

Obtain data from the system clock.

1.0 9.0 25.0
4.0 16.0 36.0

1.0 3.0 5.0
2.0 4.0 6.0

s1
s2 sDIM 1– sDIM 1+ sn s1 s2 sDIM 1–
sDIM 1+ sn s1 s2 sDIM 1– sDIM 1+ sn

1 2
2– 3–

false true
true true

Standard Intrinsic Procedures 661

COUNT Scalar of type integer with INTENT (OUT). If COUNT is present,
COUNT is assigned a processor-dependent value based on the proces-
sor clock, representing time in terms of counts of the clock. The value is
in the range [0, COUNT_MAX]. If the processor clock is not available,
it is assigned −HUGE (COUNT).

COUNT_RATE Scalar of type integer or real with INTENT (OUT). If COUNT_RATE is
present, COUNT_RATE is assigned the number of clock counts per sec-
ond or zero if there is no processor clock.

COUNT_MAX Scalar of type integer with INTENT (OUT). If COUNT_MAX is present,
COUNT_MAX is assigned the maximum value of COUNT, if a proces-
sor clock is available, or otherwise, zero.

Examples. The code segment:
integer :: cnt, cnt_rate, cnt_max
call system_clock (cnt, cnt_rate, cnt_max)
print *, "clock count:", cnt
print *, "clock counts per second:", cnt_rate
print *, "maximum clock count:", cnt_max

might produce output such as:
 clock count: 50110264
 clock counts per second: 1000
 maximum clock count: 86399999

This output might be produced on a system with a 24-hour clock (8640000 is the
number of seconds in 24 hours and 5011064 is the number of seconds from when the
clock was started).

TAN (X) Elemental Function

Tangent.
X Of type real.
Result Characteristics. Same as X.
Result Value. The result is the tangent of X where X in radians.
Examples. TAN (0.0) is 0.0; TAN (X) where X is π/4 is 1.0; and TAN (0.5d0) is 0.54630
with double precision kind.

TANH (X) Elemental Function

Hyperbolic tangent.
X Of type real.
Result Characteristics. Of the type of X.
Result Value. The result is the hyperbolic tangent of X.
Examples. TANH (0.0d0) is 0.0 with double precision kind; TANH (−0.5_Q) is −0.46212
of real kind Q.

662 Appendix A

TINY (X) Inquiry Function

Smallest positive number in the real model.
X Scalar or array of type real.
Result Characteristics. Scalar of the type and kind of X.
Result Value. The result is the value (13.2.3), for real numbers of the type and
kind of X, namely the smallest positive model number of the type and kind of X.
Example. If b=2 and emin=−125 in the real model (13.2.3), the value TINY (0.0) has the
value 2−126 or 1.175×10−38 with default real kind. Note that the returned values for
TINY are defined in terms of the model and may not be the smallest number in magni-
tude nor the smallest positive number; for example, denormalized numbers, if support-
ed by the processor, are smaller than the value returned by TINY.

TRANSFER (SOURCE, MOLD [, SIZE]) Transformational Function

Value transferred from an object to the result without conversion.
SOURCE Scalar or array of any type.
MOLD Scalar or array of any type. If it is a variable, it need not be defined.
SIZE Scalar of integer type. The corresponding actual argument must not be

an optional dummy argument.
Result Characteristics. Same as MOLD. It is a scalar if SIZE is absent and MOLD is a
scalar or, if MOLD is an array and SIZE absent, it is a rank-one array of a size that is
the smallest size that is not shorter than the physical representation of SOURCE. If
SIZE is present, the result is a rank-one array of size SIZE.
Result Value. The result is a value with the physical representation of SOURCE, inter-
preted as an entity of the type and type parameters of MOLD. If the sizes of SOURCE
and the result are the same, the result is SOURCE; if the size of SOURCE is smaller
than that of the result, the leading part of the result is SOURCE and the remaining part
is processor dependent; if the size of SOURCE is larger than the size of the result, the
result is the leading part of SOURCE.
Examples. Suppose FFT is a default complex array of three elements and X is a default
real array of size six. TRANSFER (FFT, X) is a rank-one array of six elements, repre-
senting the real and imaginary components of the three elements of FFT in order, with
the elements of the odd indices of the result being the real parts and the elements with
the even indices being the imaginary parts.
Suppose STRUCTURE is a sequence derived type with five default real components.
TRANSFER (STRUCTURE, 0.0, 3) is a rank-one array of size three and type default real
consisting of the first three components of STRUCTURE, in order.
TRANSFER ([1.1, 2.2, 3.3], [(0.0,0.0)]) is a complex rank-one array of length two whose
first element has the value 1.1 + 2.2i and whose second element has a real part with val-
ue 3.3. The imaginary part of the second element is processor dependent.

b
emin 1–

Standard Intrinsic Procedures 663

TRANSPOSE (MATRIX) Transformational Function

Matrix transpose.
MATRIX A two-dimensional array of any type.
Result Characteristics. Array of the type and type parameters of MATRIX and of
shape [m n] where MATRIX has shape [n m].
Result Value. The (i, j) element of the result is MATRIX (j, i) for all 1 ≤ j ≤ m and 1 ≤ i
≤ n.

Example. If MATRIX = , TRANSPOSE (MATRIX) is .

TRIM (STRING) Transformational Function

String without trailing blanks.
STRING Scalar of type character.
Result Characteristics. Of the type and kind of STRING and length equal to the length
of STRING less the number of trailing blanks.
Result Value. The result is the value of STRING with all trailing blanks removed.
Example. TRIM (ʺbbbstringbbbʺ) is bbbstring.TRIM (ʺbbbbʺ) is the null string.

UBOUND (ARRAY {, DIM, KIND}) Inquiry Function

Upper bound(s) of an array or a dimension of an array.
ARRAY Array of any type. If it is allocatable, it must be allocated. If it is a

pointer, it must be associated. If it is an assumed-size array, DIM must
be present with a value not equal to the rank of ARRAY.

DIM Scalar of type integer with a value in the range [1, n] where n is the
rank of ARRAY. The corresponding actual argument must not be an
optional dummy argument.

KIND Scalar integer initialization expression whose value is an integer kind
value.

Result Characteristics. Scalar or rank-one array of type integer with kind KIND if
KIND is present, or otherwise, with the kind of default integer.
Result Value. If DIM is present, the result is a scalar integer representing the upper
bound of ARRAY in the DIM dimension as defined in 5.4, 6.6, and 7.2.4. If DIM is ab-
sent, the result is a rank-one array of the upper bounds of each dimension of ARRAY.

1 3
2 4

1 2
3 4

664 Appendix A

Examples. Consider the following code in a subprogram where D is a dummy argu-
ment:

real, allocatable, dimension(:) :: vector
real, dimension(0:100, -10:30) :: array
real, dimension(20,*) :: D
allocate (vector(10:20))

UBOUND (vector), UBOUND (array,1), and UBOUND (array,2) are [20], 100, and 30,
respectively; UBOUND (D,1) and UBOUND (D(:,21:35),2) are 20 and 15, respectively.

UNPACK (VECTOR, MASK, FIELD) Transformational Function

Array unpacked from a vector under mask control.
VECTOR Rank-one array of any type. Its size must be at least as large as the

number of true elements in MASK.
MASK Array of type logical.
FIELD Of the type and type parameters of VECTOR and conformable with

MASK.
Result Characteristics. Array of the type and type parameters of VECTOR with the
shape of MASK.
Result Value. The elements of the result, where MASK is true, taken in array element
order, are those of VECTOR in array element order, and where MASK is false, have the
value FIELD if FIELD is a scalar or have the value of the corresponding element of
FIELD if FIELD is an array.
Examples. Particular values may be “scattered” to particular positions in an array by

using UNPACK. If M is the array , V is the array [1 2 3], and U is the logical

mask , the result of UNPACK (V, MASK = U, FIELD = M) has the val-

ue and the result of UNPACK (V, MASK = U, FIELD = 0) has the value .

VERIFY (STRING, SET {, BACK, KIND}) Elemental Function

Position in a string of a character that is not one of a given set.
STRING Of type character.
SET Of type character of the same kind as STRING.

1 0 0
0 1 0
0 0 1

false true false
true false false
false false true

1 2 0
1 1 0
0 0 3

0 2 0
1 0 0
0 0 3

Standard Intrinsic Procedures 665

BACK Of type logical.
KIND A scalar integer initialization expression whose value is an integer kind

value.
Result Characteristics. Of type integer with kind KIND if KIND is present, or other-
wise, with the kind of default integer.
Result Value. The result is the index position in STRING of a character that is not in
the string SET. If BACK is present with the value false or is not present, the index posi-
tion is that of the first occurrence of a character not in SET; otherwise, if BACK is
present with the value true, the index position is that of the last occurrence of a charac-
ter not in SET. If all characters in SET appear in the string or the length of STRING is
zero, zero is returned.
Examples. VERIFY (ʺinputbstringʺ, ʺifʺ) is 2; VERIFY (ʺinputbstringʺ, ʺifʺ, .true.) is 12;
VERIFY (ʺinputbstringʺ, ʺxyʺ, KIND=P) is 0 of integer kind P; and VERIFY (ʺʺ,ʺabcʺ) is
0.

B IEEE Module Procedures

This appendix contains detailed specifications of the module procedures in the IEEE
intrinsic modules IEEE_ARITHMETIC and IEEE_EXCEPTIONS. The title of each de-
scription gives the name of the procedure and the names of its dummy arguments,
with an indication of which arguments are optional. On the right side of each title line,
the classification of each procedure is given; it indicates whether the procedure is an
inquiry, transformational or elemental function, or an elemental or nonelemental sub-
routine. Also, on the right side of each title line is the name of the IEEE module that
defines the module procedure.

Whether the actual argument is optional is indicated by braces { } enclosing the ar-
guments in the section titles; the braces indicate that each argument within the braces
is optional and may appear as an argument with or without the other optional argu-
ments.

Some of the procedure headings show an alternative interface which make it ap-
pear as though the last argument is optional; as explained in 14.3, the argument is not
optional in the sense of an OPTIONAL attribute for the argument; rather, there are two
distinct versions of the procedure.

If the specification for an argument specifies a type but not a kind, any acceptable
kind for that type is permitted. Sometimes the kind is required to be one for which
IEEE_SUPPORT_DATATYPE function returns true; this is a program restriction and is
indicated by the phrase “restricted kind” in the description of the arguments.

For inquiry functions, the arguments need not have defined values, pointer argu-
ments need not have a defined association status, and allocatable arguments need not
be allocated. For all functions, their arguments have intent IN but this intent is not stat-
ed explicitly. If a function returns an array, the array has lower bounds of 1 and strides
of 1 in each dimension. For all subroutines, the intent of each dummy argument is
specified in the description; if those arguments have intent OUT or INOUT, the value
returned by the subroutine is specified in the description of the argument.

In all examples, it is assumed that, unless otherwise stated, USE statements refer-
ring to the appropriate IEEE modules appear in the scoping unit of the example codes,
and IEEE_SUPPORT_STANDARD (0.0) is true; note that if this support standard func-
tion is true for default real, it implies that it IEEE_SUPPORT_HALTING and
IEEE_SUPPORT_ROUNDING are true for any valid exception flag and rounding
mode.

IEEE_CLASS (X) Elemental Function

IEEE_ARITHMETIC

The IEEE class of the argument.
X Of type real with restricted kind.

668 Appendix B

Result Characteristics. Of type IEEE_CLASS_TYPE.
Result Value. The result value is:
• IEEE_SIGNALING_NAN or IEEE_QUIET_NAN if IEEE_SUPPORT_NAN (X) is

true and X is a signaling or quiet NaN, respectively;
• IEEE_NEGATIVE_INF or IEEE_POSITIVE_INF if IEEE_SUPPORT_INF (X) is true

and X is a negative or positive infinity, respectively;
• IEEE_NEGATIVE_DENORMAL or IEEE_POSITIVE_DENORMAL if IEEE_

SUPPORT_DENORMAL (X) is true and X is a negative or positive denormal value,
respectively;

• IEEE_NEGATIVE_NORMAL, IEEE_POSITIVE_NORMAL, IEEE_NEGATIVE_
ZERO, or IEEE_POSITIVE_ZERO if X is a negative normal, positive normal, nega-
tive zero, or positive zero value, respectively; or otherwise,

• IEEE_OTHER_VALUE; this value is provided for processors that support the IEEE
arithmetic in some partial way and need to specify a value that can be created but
is not supported. For example, a processor may write in an unformatted file a de-
normalized number when gradual underflow mode is enabled but when the file is
read, the underflow mode is abrupt in which case denormalized numbers are not
supported.

The invocation of this function never raises an exception, even if X is a signaling NaN.
Example. IEEE_CLASS (−TINY(1.0)/4.0) is the value IEEE_NEGATIVE_DENORMAL.

IEEE_COPY_SIGN (X, Y) Elemental Function

IEEE_ARITHMETIC

Value with specified sign.
X, Y Of type real with restricted kind.
Result Characteristics. Same as X.
Result Value. The result is the value of X with the sign of Y. This is true even if X is a
exceptional value, provided the processor supports the particular exceptional value.
Examples. IEEE_COPY_SIGN (X, 1.0) is |X|; IEEE_COPY_SIGN (X, −1.0) is −|X| for X
of type default real; these references are standard conforming giving the specified re-
sults even if X is an exceptional value, such as an infinity or NaN.

IEEE_GET_FLAG (FLAG, FLAG_VALUE) Elemental Subroutine

IEEE_EXCEPTIONS

Obtain a specified exception flag.
FLAG Of type IEEE_FLAG_TYPE with INTENT (IN). It specifies an excep-

tion, which may be IEEE_INVALID, IEEE_OVERFLOW, IEEE_
DIVIDE_BY_ZERO, IEEE_UNDERFLOW, or IEEE_INEXACT.

IEEE Module Procedures 669

FLAG_VALUE
Of type default logical with INTENT (OUT). The value is true if the
corresponding IEEE exception is signaling, or false otherwise.

Example. The following program segment determines the current condition of the
overflow exception flag, clears the flag, performs a computation that possibly raises the
overflow exception flag, and then restores it to its initial value:

logical :: initial_fv, computation_fv
call IEEE_GET_FLAG (IEEE_OVERFLOW, initial_fv)
call IEEE_SET_FLAG (IEEE_OVERFLOW, .false.)
! Perform some computation.
 . . .
call IEEE_GET_FLAG (IEEE_OVERFLOW, computation_fv)
if(computation_fv) then
 ! Fix up the computation to address the overflow.
 . . .
endif
! Restore the initial overflow flag value.
call IEEE_SET_FLAG (IEEE_OVERFLOW, initial_fv)

IEEE_GET_HALTING_MODE (FLAG, HALTING) Elemental Subroutine

IEEE_EXCEPTIONS

Obtain the halting mode for a specified exception.
FLAG Of type IEEE_FLAG_TYPE with INTENT (IN). It specifies the excep-

tion, which may be IEEE_INVALID, IEEE_OVERFLOW,
IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, or IEEE_INEXACT.

HALTING Of type default logical with INTENT (OUT). The value is true if an
IEEE exception corresponding to FLAG will cause halting, or false oth-
erwise.

Example. The following program segment determines the current condition of the
halting mode for a divide-by-zero exception, sets the halting mode for divide-by-zero
to the “continue computation” mode, performs a computation that possibly raises this
exception, and then restores it to its initial value:

logical :: initial_dv_halting, computation_dv
call IEEE_GET_HALTING_MODE (IEEE_DIVIDE_BY_ZERO, initial_dv_halting)
call IEEE_SET_HALTING_MODE (IEEE_DIVIDE_BY_ZERO, .false.)
! Perform some computation.
 . . .
call IEEE_GET_FLAG (IEEE_DIVIDE_BY_ZERO, computation_dv)
if(computation_dv) then
 ! Fix up the computation to address the divide-by-zero.
 . . .
endif
! Restore the initial overflow flag value.
call IEEE_SET_HALTING_MODE (IEEE_DIVIDE_BY_ZERO, initial_dv_halting)

670 Appendix B

IEEE_GET_ROUNDING_MODE (ROUND_VALUE) Subroutine

IEEE_ARITHMETIC

Obtain the IEEE rounding mode.
Argument.
ROUND_VALUE

Scalar of type IEEE_ROUND_TYPE with INTENT (OUT). The value is
the current IEEE rounding mode, which is either IEEE_NEAREST,
IEEE_TO_ZERO, IEEE_UP, IEEE_DOWN, or IEEE_OTHER.

Example. The following program segment determines the current rounding mode, sets
the rounding mode to round up, performs some computation where all floating-point
results are rounded up, and then restores the rounding mode to its initial value:

type (IEEE_ROUND_TYPE) :: initial_rnd_value
call IEEE_GET_ROUNDING_MODE (initial_rnd_value)
call IEEE_SET_ROUNDING_MODE (IEEE_UP)
! Perform some computation, rounding all floating-point
! computations up.
 . . .
! Restore the initial rounding mode.
call IEEE_SET_ROUNDING_MODE (initial_rnd_value)

IEEE_GET_STATUS (STATUS_VALUE) Subroutine

IEEE_EXCEPTIONS

Obtain the processor’s IEEE floating-point status.
STATUS_VALUE

Scalar of type IEEE_STATUS_TYPE with INTENT (OUT). The value is
the IEEE floating-point status.

Example. Assume a module my_status_module has established a floating-point status
that has the desired modes and exception flags set; this has been saved in a variable
clean_status of type IEEE_STATUS_TYPE. The following program segment determines
the current floating-point status, sets the status to the “clean” status, performs some
computation where the three modes may be changed or floating-point exceptions may
be signaled, and then restores the floating-point status to its initial value:

use my_status_module, only: clean_status
type (IEEE_STATUS_TYPE) :: initial_status
call IEEE_GET_STATUS (initial_status)
call IEEE_SET_STATUS (clean_status)
! Perform some computation, for which any of the three modes
! may be set or any of the exceptions may be raised.
 . . .
! Restore the initial status.
call IEEE_SET_STATUS (initial_status)

IEEE Module Procedures 671

IEEE_GET_UNDERFLOW_MODE (GRADUAL) Subroutine

IEEE_ARITHMETIC

Obtain the IEEE underflow mode.
GRADUAL Scalar of type default logical with INTENT (OUT). The value is true if

the underflow mode is gradual underflow or false if the underflow
mode is abrupt underflow.

Example. The following program segment determines the current underflow mode,
sets the underflow mode to gradual underflow, performs some computation where
gradual underflow is used to maintain some accuracy involving small values, and then
restores the underflow mode to its initial value:

logical :: initial_underflow_mode
call IEEE_GET_UNDERFLOW_MODE (initial_underflow_mode)
call IEEE_SET_UNDERFLOW_MODE (.true.)
! Perform some computation, using gradual underflow.
 . . .
! Restore the initial underflow mode.
call IEEE_SET_UNDERFLOW_MODE (initial_underflow_mode)

IEEE_IS_FINITE (X) Elemental Function

IEEE_ARITHMETIC

True if a value is finite.
X Of type real with restricted kind.
Result Characteristics. Of type default logical.
Result Value. The result is true if X is finite; that is, X is a positive or negative zero,
normal value, or denormal value.
Examples. IEEE_IS_FINITE (1.0) is true; IEEE_IS_FINITE (1.0/0.0) is false.

IEEE_IS_NAN (X) Elemental Function

IEEE_ARITHMETIC

True if a value is a NaN.
X Of type real with IEEE_SUPPORT_NAN (X) being true.
Result Characteristics. Of type default logical.
Result Value. The result is true if X is a quiet or signaling NaN.
Examples. IEEE_IS_NAN (SQRT (−1.0)) is true whereas IEEE_IS_NAN (SQRT (1.0)) is
false.

672 Appendix B

IEEE_IS_NEGATIVE (X) Elemental Function

IEEE_ARITHMETIC

True if a value is negative.
Argument.
X Of type real with restricted kind.
Result Characteristics. Of type default logical.
Result Value. The result is true if X is a negative infinity, negative normal (including
negative zero), or negative denormal value.
Examples. IEEE_IS_NEGATIVE (−1.0) and IEEE_IS_NEGATIVE (−0.0) are true where-
as IEEE_IS_NEGATIVE (1.0) is false.

IEEE_IS_NORMAL (X) Elemental Function

IEEE_ARITHMETIC

True if a value is a normal number.
X Of type real with restricted kind.
Result Characteristics. Of type default logical.
Result Value. The result is true if X is a negative or positive normal value (including
either zero).
Examples. IEEE_IS_NORMAL (3.14159) and IEEE_IS_NORMAL (−0.0) are true where-
as IEEE_IS_NORMAL (1.0/0.0) is false.

IEEE_LOGB (X) Elemental Function

IEEE_ARITHMETIC

Unbiased exponent (14.2.1) in the IEEE format.
X Of type real with restricted kind.
Result Characteristics. Same as X.
Result Value. If X has a nonzero finite normal value, the result is the unbiased IEEE
exponent e of X, namely EXPONENT (X)−1 if the real model in 13.2.3 is used; if X is ze-
ro, the result is −inf if IEEE_SUPPORT_INF (X) is true and −HUGE (X) otherwise. If X
is zero, the divide-by-zero and inexact exceptions are raised. If X is positive or negative
infinity, the result is positive infinity with no exception raised. If X is a NaN, the result
is a NaN with no exception raised.
Example. IEEE_LOGB (2.1) is 1.

IEEE Module Procedures 673

IEEE_NEXT_AFTER (X, Y) Elemental Function

IEEE_ARITHMETIC

The next representable neighbor toward a specified value.
X, Y Of type real with restricted kind.
Result Characteristics. Same as X.
Result Value. If X equals Y, the result is X and no exception is signaled. Otherwise, the
result is the nearest representable neighbor of X toward Y. If X is zero and Y is not ze-
ro, the result is nonzero. The result may be a denormalized number in which case both
the underflow and inexact exceptions are raised. The result may be an infinity if X is fi-
nite in which case both the overflow and inexact exceptions are raised.
Examples. IEEE_NEXT_AFTER (1.0, 2.0) is 1 + EPSILON (1.0) with no exceptions
raised and IEEE_NEXT_AFTER (HUGE (0.0), IEEE_VALUE (1.0, IEEE_POSITIVE_INF))
is positive infinity with the overflow and inexact exceptions raised. If the underflow
mode is gradual, IEEE_NEXT_AFTER (0.0, 2.0) is the smallest denormalized positive
number with the underflow and inexact exceptions raised; if the underflow mode is
abrupt, IEEE_NEXT_AFTER (0.0, 2.0) is TINY (0.0) with only the inexact exception
raised.

IEEE_REM (X, Y) Elemental Function

IEEE_ARITHMETIC

IEEE remainder.
X, Y Of type real with restricted kind.
Result Characteristics. Real with the kind of the argument with the largest precision.
Result Value. For all rounding modes, the result is exactly X − Y×N where N is the
nearest whole number to the exact quotient X/Y; if there are two nearest whole num-
bers (that is, |X/Y − N| = 1/2), N is chosen to be even. If the result is zero, it has the
sign of X.
Examples. IEEE_REM (−2.1, 1.05) is −0; IEEE_REM (2.0, 1.05) is +0; and IEEE_REM
(4.1, −2.0) is 0.1.

IEEE_RINT (X) Elemental Function

IEEE_ARITHMETIC

A value rounded to a whole number using the current IEEE rounding mode.
X Of type real with restricted kind.
Result Characteristics. Same as X.
Result Value. The result is the value of X rounded to the whole number determined
by the current rounding mode. If the result is zero, it has the sign of X.

674 Appendix B

Examples. Table B-1 gives the value of IEEE_RINT (X) where X is given in column 1
for the four rounding modes IEEE_NEAREST, IEEE_TO_ZERO, IEEE_UP, and
IEEE_DOWN.

IEEE_SCALB (X, I) Elemental Function

IEEE_ARITHMETIC

A value scaled by a specified power of 2.
X Of type real with restricted kind.
I Of type integer.
Result Characteristics. Same as X.
Result Value. The result is X x 2I if the result is representable and a normal number. If
X is finite and X x 2I is too large, the overflow and inexact exceptions are raised; the re-
sult is infinity of the sign of X if IEEE_SUPPORT_INF (X) is true, or is SIGN (HUGE(X),
X) otherwise. If X x 2I is too small to be a normal number and there is a loss of accuracy
to represent it, the underflow and inexact exceptions are raised; the result is the nearest
representable value to |X x 2I | of the same sign as X. If X is infinite, the result is the in-
finity of the same sign as X with no exceptions raised.
Examples. IEEE_SCALB (1.0, 2) is 4.0; on a processor that uses IEEE single precision
and supports the IEEE standard, IEEE_SCALB (1.0, 200) is positive infinity with both
the inexact and overflow exceptions signaled; on a processor that supports the IEEE
standard and gradual underflow, IEEE_SCALB (1.0, −130) is the denormalized number
2−130 with the underflow but not the inexact exception signaled.

IEEE_SELECTED_REAL_KIND ({P, R}) Transformational Function

IEEE_ARITHMETIC

Kind parameter of an IEEE real data type, specified by a minimum decimal precision
and minimum exponent range.
P, R Scalars of type integer. At least one of P or R must be present. If P or R

is absent, it is as if they were present with the value 0.
Result Characteristics. Scalar of type default integer.

Table B-1 IEEE_RINT (X)

X NEAREST TO_ZERO UP DOWN

0.9 1 0 1 0

0.1 0 0 1 0

−0.1 −0 −0 −0 −1

−0.9 −1 −0 −0 −1

IEEE Module Procedures 675

Result Value. The result is a kind parameter value that specifies an IEEE real type
whose precision, as measured by the intrinsic function PRECISION, is at least as large
as P, and whose decimal range, as measured by the intrinsic function RANGE, is at
least as large as R. This kind value K will have the property that IEEE_
SUPPORT_DATATYPE (1.0_K) is true. If there is more than one kind that satisfies this
requirement, the one of least precision is returned; if there is more than one with the
same precision, the one with the smallest kind value is selected. If no such kind is
available, the result is −1 if the requested precision is not available, −2 if the requested
range is not available, or −3 if both the requested precision and range are not available.
Example. IEEE_SELECTED_REAL_KIND (15, 200) gives the same kind as KIND
(0.0d0) on a processor that supports the IEEE 64-bit format as the double precision
type.

IEEE_SET_FLAG (FLAG, FLAG_VALUE) Pure Subroutine

IEEE_EXCEPTIONS

Assign a value to a specified exception flag.
FLAG Scalar or array of type IEEE_FLAG_TYPE with INTENT (IN). A value

is set to one of the exceptions IEEE_INVALID, IEEE_OVERFLOW,
IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, or IEEE_INEXACT. No
two elements of FLAG may have the same value.

FLAG_VALUE
Scalar or array of type default logical, conformable with FLAG, and
with INTENT (IN). The exception in FLAG corresponding to any true
element of FLAG_VALUE is set to signaling, and otherwise is set to
quiet.

Example. CALL IEEE_SET_FLAG (IEEE_DIVIDE_BY_ZERO, .true.) sets the IEEE
divide-by-zero flag to signaling.

IEEE_SET_HALTING_MODE (FLAG, HALTING) Pure Subroutine

IEEE_EXCEPTIONS

Assign a value to a specified halting mode.
FLAG Scalar or array of type IEEE_FLAG_TYPE with INTENT (IN). A value

is set to one of the exceptions IEEE_INVALID, IEEE_OVERFLOW,
IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, or IEEE_INEXACT. No
two elements of FLAG may have the same value. This procedure must
not be invoked if IEEE_SUPPORT_HALTING (FLAG) is false.

HALTING Scalar or array of type default logical, conformable with FLAG, and
with INTENT (IN). The halting mode of the exception in FLAG corre-
sponding to any true element of HALTING is set to cause halting, and
otherwise is set to continue execution, when the exception is signaled.

676 Appendix B

Although the exact point where the execution halts is processor depen-
dent, it is expected to be close to where the exception occurred.

IEEE_SET_HALTING_MODE (FLAG, HALTING) must not be invoked unless
IEEE_SUPPORT_HALTING (FLAG) is true.
Example. CALL IEEE_SET_HALTING_MODE (IEEE_ALL, .true.) sets the halting
mode for all exceptions so that the processor halts subsequent to the signaling of any
of the IEEE exceptions. At program startup, the halting mode is processor dependent.
The halting of the processor may occur at any point convenient for the processor after
the particular exception has been signaled but the point in the execution sequence
where the processor halts is expected to be near to the place where the exception oc-
curred.

IEEE_SET_ROUNDING_MODE (ROUND_VALUE) Subroutine

IEEE_ARITHMETIC

Assign a value to the rounding mode.
ROUND_VALUE

Scalar of type IEEE_ROUND_TYPE with INTENT (IN). The value is an
IEEE rounding mode, which is either IEEE_NEAREST,
IEEE_TO_ZERO, IEEE_UP, IEEE_DOWN, or IEEE_OTHER. The round-
ing mode is set to the value of ROUND_VALUE.
This procedure must not be invoked unless IEEE_SUPPORT_
ROUNDING_MODE (ROUND_VALUE, X) is true for some X for
which IEEE_SUPPORT_DATATYPE (X) is true.

Examples. CALL IEEE_SET_ROUNDING_MODE (IEEE_DOWN) sets the processor’s
rounding mode to round down all floating-point operations, except for formatted in-
put/output conversion. The initial rounding mode is processor-dependent. See the de-
scription of IEEE_GET_ROUNDING_MODE for another example of the use of this
subroutine.

IEEE_SET_STATUS (STATUS_VALUE) Subroutine

IEEE_EXCEPTIONS

Assign a value to the floating-point status.
STATUS_VALUE

Scalar of type IEEE_STATUS_TYPE with INTENT (IN). Its value must
be an IEEE floating-point status obtained from a previous invocation of
the procedure IEEE_GET_STATUS. The current IEEE floating-point sta-
tus is set to the value of STATUS_VALUE.

Examples. See IEEE_GET_STATUS for an example of the use of this subroutine.

IEEE Module Procedures 677

IEEE_SET_UNDERFLOW_MODE (GRADUAL) Subroutine

IEEE_ARITHMETIC

Assign a value to the underflow mode.
GRADUAL Scalar of type default logical with INTENT (IN). If the value is true, the

current underflow mode is set to gradual underflow, or if it is false, the
current underflow mode is set to abrupt underflow. This procedure
must not be invoked unless IEEE_SUPPORT_UNDERFLOW_
CONTROL (X) is true for some X.

Examples. CALL IEEE_SET_UNDERFLOW_MODE (.false.) sets the processor’s under-
flow mode so that underflow is abrupt. See IEEE_GET_UNDERFLOW_MODE for an-
other example of the use of this subroutine.

IEEE_SUPPORT_DATATYPE () or Inquiry Function
 IEEE_SUPPORT_DATATYPE (X)

IEEE_ARITHMETIC

True if the processor supports IEEE arithmetic.
X Scalar or array of type real.
Result Characteristics. Scalar of type default logical.
Result Value. The result is true if the processor supports IEEE arithmetic for all real
types if X does not appear, or for the real data type of the kind of X if X appears. Sup-
porting IEEE arithmetic is defined in 14.1.
Example. Consider a processor that supports IEEE arithmetic but for the underflow
mode, supports only gradual underflow in single precision, supports only abrupt un-
derflow in the double precision type, and there are no other real kinds. For such a pro-
cessor, IEEE_SUPPORT_DATATYPE () is true.

IEEE_SUPPORT_DENORMAL () or Inquiry Function
IEEE_SUPPORT_DENORMAL (X)

IEEE_ARITHMETIC

True if the processor supports denormalized numbers.
X Scalar or array of type real.
Result Characteristics. Scalar of type default logical.
Result Value. The result is true if the processor supports arithmetic operations with
denormalized values and assignment of denormalized values for all real types if X
does not appear, or for the real data type of the kind of X if X appears. Denormalized
numbers are defined in 14.1.

678 Appendix B

Examples. For the processor described in the example for IEEE_SUPPORT_
DATATYPE, IEEE_SUPPORT_DENORMAL () and IEEE_SUPPORT_DENORMAL
(1.0d0) are false whereas IEEE_SUPPORT_DENORMAL (1.0) is true. Because
IEEE_SUPPORT_DENORMAL (1.0d0) is false, there must be some operation where the
processor should return a denormalized value but does not.

IEEE_SUPPORT_DIVIDE () or IEEE_SUPPORT_DIVIDE (X) Inquiry Function

IEEE_ARITHMETIC

True if the processor supports the IEEE divide.
X Scalar or array of type real.
Result Characteristics. Scalar of type default logical.
Result Value. The result is true if the processor supports the accuracy specified by the
IEEE standard [13] for the divide operation for all real types if X does not appear, or
for the real data type of the kind of X if X appears. See 14.1 for a specification of sup-
porting the IEEE divide operation.
Example. IEEE_SUPPORT_DIVIDE () is true for a processor that provides the correct-
ly rounded result for a divide operation for all rounding modes and signals
IEEE_DIVIDE_BY_ZERO returning the correctly signed infinite value for a division by
zero if the dividend is finite and nonzero.

IEEE_SUPPORT_FLAG (FLAG) or Inquiry Function
IEEE_SUPPORT_FLAG (FLAG, X)

IEEE_EXCEPTIONS

True if the processor supports the specified exception.
FLAG Scalar of type IEEE_FLAG_TYPE. Its value is one of the exceptions

IEEE_INVALID, IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_
UNDERFLOW, or IEEE_INEXACT.

X Scalar or array of type real.
Result Characteristics. Scalar of type default logical.
Result Value. The result is true if the processor supports the detection of the exception
specified by FLAG for all real types if X does not appear, or for the real data type of the
kind of X if X appears.
Example. IEEE_SUPPORT_FLAG (IEEE_INVALID) is true if the processor supports
the invalid exception for all real kinds.

IEEE_SUPPORT_HALTING (FLAG) Inquiry Function

IEEE_EXCEPTIONS

True if the processor supports the halting mode for a specified exception.

IEEE Module Procedures 679

FLAG Scalar of type IEEE_FLAG_TYPE. Its value is one of the exceptions
IEEE_INVALID, IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_
UNDERFLOW, or IEEE_INEXACT.

Result Characteristics. Scalar of type default logical.
Result Value. The result is true if the processor supports the ability to specify the halt-
ing mode for the exception specified by FLAG, by invoking the procedure
IEEE_SET_HALTING_MODE.
Example. IEEE_SUPPORT_HALTING (IEEE_OVERFLOW) is false for a processor that
does not permit the continue mode after an overflow exception is raised.

IEEE_SUPPORT_INF () or IEEE_SUPPORT_INF (X) Inquiry Function

IEEE_ARITHMETIC

True if the processor supports IEEE infinities.
X Scalar or array of type real.
Result Characteristics. Scalar of type default logical.
Result Value. The result is true if the processor supports positive and negative infini-
ties for all real types if X does not appear, or for the real data type of the kind of X if X
appears.
Example. IEEE_SUPPORT_INF () is true if the processor supports infinities for all real
kinds.

IEEE_SUPPORT_IO () or IEEE_SUPPORT_IO (X) Inquiry Function

IEEE_ARITHMETIC

True if the processor supports the IEEE base conversion rounding during formatted in-
put/output.
X Scalar or array of type real.
Result Characteristics. Scalar of type default logical.
Result Value. The result is true if the processor supports IEEE input and output as
specified in 14.1 for all real types if X does not appear, or for the real data type of the
kind of X if X appears.
Example. IEEE_SUPPORT_IO (1.0) is true if the processor supports IEEE base conver-
sion for the default real data type.

IEEE_SUPPORT_NAN () or IEEE_SUPPORT_NAN (X) Inquiry Function

IEEE_ARITHMETIC

True if the processor supports IEEE NaNs.
X Scalar or array of type real.
Result Characteristics. Scalar of type default logical.

680 Appendix B

Result Value. The result is true if the processor supports IEEE NaNs for all real types
if X does not appear, or for the real data type of the kind of X if X appears.
Example. IEEE_SUPPORT_NAN () is false if the processor does not support NaNs for
the real type of kind double precision.

IEEE_SUPPORT_ROUNDING (ROUND_VALUE) or Inquiry Function
IEEE_SUPPORT_ROUNDING (ROUND_VALUE, X)

IEEE_ARITHMETIC

True if the processors supports the specified IEEE rounding.
ROUND_VALUE

Scalar or array of type IEEE_ROUND_TYPE. The value is an IEEE
rounding mode, which is either IEEE_NEAREST, IEEE_TO_ZERO,
IEEE_UP, IEEE_DOWN, or IEEE_OTHER.

X Scalar or array of type real.
Result Characteristics. Scalar of type default logical.
Result Value. The result is true if the processor supports the rounding mode specified
by the ROUND_VALUE for all real types if X does not appear, or for the real data type
of the kind of X if X appears. If the result is true, support includes the ability to specify
and change the rounding mode using the procedure IEEE_SET_ROUNDING_MODE.
Example. IEEE_SUPPORT_ROUNDING (IEEE_NEAREST, 1.0) is true if the processor
supports the nearest rounding mode for default real type.

IEEE_SUPPORT_SQRT () or IEEE_SUPPORT_SQRT (X) Inquiry Function

IEEE_ARITHMETIC

True if the processor’s intrinsic SQRT satisfies the IEEE square root specification.
X Scalar or array of type real.
Result Characteristics. Scalar of type default logical.
Result Value. The result is true if the processor supports the IEEE specification of the
square root operation for all real types if X does not appear, or for the real data type of
the kind of X if X appears. See 14.1 for the specification of supporting the IEEE square
root operation.
Example. IEEE_SUPPORT_SQRT () is false if the square root intrinsic function SQRT
aborts when it is given the negative argument −1.0.

IEEE_SUPPORT_STANDARD () or Inquiry Function
IEEE_SUPPORT_STANDARD (X)

IEEE_ARITHMETIC

True if the processor supports the IEEE facilities specified in the Fortran 2003 standard.

IEEE Module Procedures 681

X Scalar or array of type real.
Result Characteristics. Scalar of type default logical.
Result Value. The result is true if the functions:
• IEEE_SUPPORT_DATATYPE (),
• IEEE_SUPPORT_DENORMAL (),
• IEEE_SUPPORT_DIVIDE (),
• IEEE_SUPPORT_FLAG (FLAG) for a valid FLAG,
• IEEE_SUPPORT_HALTING (FLAG) for a valid FLAG,
• IEEE_SUPPORT_INF (),
• IEEE_SUPPORT_NAN (),
• IEEE_SUPPORT_ROUNDING (ROUND_VALUE) for a valid ROUND_VALUE,

and
• IEEE_SUPPORT_SQRT ()

are all true for all real types if X does not appear, or for the real data type of the kind
of X if X appears.
Example. IEEE_SUPPORT_STANDARD () is false if the processor supports both IEEE
and non-IEEE real types.

IEEE_SUPPORT_UNDERFLOW_CONTROL () or Inquiry Function
IEEE_SUPPORT_UNDERFLOW_CONTROL (X)

IEEE_ARITHMETIC

True if the processor supports the IEEE underflow control during execution.
X Scalar or array of type real.
Result Characteristics. Scalar of type default logical.
Result Value. The result is true if the processor supports the control of the underflow
modes gradual and abrupt for all real types if X does not appear, or for the real data
type of the kind of X if X appears. Such control is exercised by invoking the procedure
IEEE_SET_UNDERFLOW_MODE.
Example. IEEE_SUPPORT_UNDERFLOW_CONTROL (0.0) is true if the processor
supports the control of the underflow mode for the default real type.

IEEE_UNORDERED (X, Y) Elemental Function

IEEE_ARITHMETIC

True if the arguments are unordered.
X, Y Of type real with restricted kind.
Result Characteristics. Of type default logical.

682 Appendix B

Result Value. The result is true if either X or Y or both are NaNs.
Example. IEEE_UNORDERED (SQRT (−1.0), 1.0) is true.

‘IEEE_VALUE (X, CLASS) Elemental Function

A value of a specified type from a specified class. IEEE_ARITHMETIC

X Of type real with restricted kind.
CLASS Of type IEEE_CLASS_TYPE. Its value is one of:

•IEEE_SIGNALING_NAN if IEEE_SUPPORT_NAN (X) is true;
•IEEE_QUIET_NAN if IEEE_SUPPORT_NAN (X) is true;
•IEEE_NEGATIVE_INF if IEEE_SUPPORT_INF (X) is true;
•IEEE_POSITIVE_INF if IEEE_SUPPORT_INF (X) is true;
•IEEE_NEGATIVE_DENORMAL if IEEE_SUPPORT_DENORMAL

(X) is true;
•IEEE_POSITIVE_DENORMAL if IEEE_SUPPORT_DENORMAL (X)

is true;
•IEEE_NEGATIVE_NORMAL;
•IEEE_NEGATIVE_ZERO;
•IEEE_POSITIVE_ZERO; or
•IEEE_POSITIVE_NORMAL.

Note that CLASS cannot have the value IEEE_OTHER_VALUE.
Result Characteristics. Same as X.
Result Value. The result is an IEEE value as specified by class. The value in general is
processor dependent except that the processor must produce the same value in all con-
texts for the same kind type parameter specified by X.
Examples. IEEE_VALUE (0.0, IEEE_POSITIVE_NORMAL) and IEEE_VALUE (2.0,
IEEE_POSITIVE_NORMAL) must be the same value in all contexts; the value may be
1.0, for example.

C Language Evolution

New features are defined in each standard revision cycle. These features sometimes re-
place those that have become archaic in the language and rarely used. In order to alert
the user to redundant and seldom used features, they are declared obsolescent. Fea-
tures from the obsolescent list of a current standard are candidates for deletion in a fu-
ture revision. There are three classes of features that determine the language evolution
of Fortran.

1. New

2. Obsolescent

3. Deleted

Compilers must implement all new and obsolescent features. They are not required
to implement deleted features, but most do in order to be able to process existing pro-
grams.

C.1 New Features

The following is a summary of the major new features of Fortran 2003. They are de-
scribed throughout this book.

1. Derived-type enhancements, such as parameterized derived types and mixed ac-
cessibility

2. Features for object-oriented programming, such as extensible types (inheritance),
polymorphic variables, type-bound procedures, and pointers to functions

3. Interoperability with the C programming language

4. Support for IEEE arithmetic and exceptions

5. User control of derived-type input/output

6. Stream and asynchronous input/output

7. Environment inquiries and command line arguments

8. Support for international usage, for example, character sets and decimal symbol
usage

684 Appendix C

C.2 Obsolescent Features

The obsolescent features are those features of Fortran 95 that are redundant and for
which better methods are available in Fortran 2003. The first three items on the follow-
ing list were obsolescent in Fortran 90 and remain so. Six items were added to the list
in Fortran 95. No new obsolescent features were added in Fortran 2003. These features
are candidates for deletion in the next revision of the standard and their use is discour-
aged. The obsolescent features in Fortran 2003 are:

1. Arithmetic IF statement(8.8.4)

2. Some forms of DO termination (8.7.5)

3. Alternate return (12.6.9)

4. Computed GO TO statement (8.8.5)

5. Statement function (12.4.4)

6. DATA statement among executable statements (2.6)

7. Assumed-length character function (4.3.5.1(4d))

8. Fixed form source (3.3.2)

9. CHARACTER∗ form for a character declaration (4.3.5.1)

C.2.1 Arithmetic IF Statement
The arithmetic IF statement is redundant. The functionality of the arithmetic IF state-
ment is achieved with the IF statement or IF construct.

C.2.2 DO Termination
Shared DO termination or DO termination with other than an END DO or CONTINUE
statement is potentially confusing and error prone. It is safer and better programming
practice to use a block DO construct with an unlabeled END DO statement.

C.2.3 Alternate Return
The effect of an alternate return can be achieved with a return code that is used in a
CASE construct after returning. For example,

CALL SUBR_NAME (X, Y, Z, *100, *200, *300)

may be replaced by

CALL SUBR_NAME (X, Y, Z, RETURN_CODE)
SELECT CASE (RETURN_CODE)

CASE (1)
...

CASE (2)
...

Language Evolution 685

CASE (3)
...

CASE DEFAULT
...

END SELECT

C.2.4 Computed GO TO Statement
The CASE construct is a more general facility than the computed GO TO statement; a
case selector may be of type character or logical, as well as integer. Use of the CASE
construct produces more structured code and is more readable.

C.2.5 Statement Functions
An internal function is a more general replacement for a statement function. A state-
ment function statement is easily confused with an assignment statement.

C.2.6 DATA Statements among Executable Constructs
When a DATA statement appears in the execution part, it gives the impression that a
DATA statement causes assignment during program execution rather than initializa-
tion before execution.

C.2.7 Assumed-Length Character Functions
The assumed-length character function is an irregularity in the language; it requires
the declaration of the function length in the calling program. Instead, a function with
an explicit interface or an automatic character length can be used.

C.2.8 Fixed-Form Source
Fixed-form source was dependent on the card column restrictions of punched card in-
put. It has been replaced by a free-form source.

C.2.9 CHARACTER∗ Form of Syntax in Declarations
Declarations that use CHARACTER* are irregular. There are several other ways to de-
clare character length, such as:

CHARACTER (LEN=17) :: C1, C2*6

C.3 Deleted Features

The deleted features are those features of earlier versions of Fortran that are redundant
and considered largely unused. The list of deleted features for Fortran 90 was empty;
there were none. The following obsolescent features of Fortran 90 were deleted from
Fortran 95 and are not features of either Fortran 95 or Fortran 2003:

1. Real and double precision DO variables

2. Branching to an END IF from outside the block

3. PAUSE statement

686

4. ASSIGN statement, assigned GO TO statement, and related features

5. nH edit descriptor

There are no deleted features in Fortran 2003.

C.4 Other Compatibility Issues

All standard Fortran 95 programs are standard Fortran 2003 programs. However, there
are some cases where the program might be interpreted slightly differently.

1. Fortran 95 had the concept of printing (9.4.6) and the character printed in column
one might (or might not) be interpreted to control the printer carriage. There is no
such concept in Fortran 2003. However, some devices may still interpret the char-
acter in column one to control the printer carriage.

2. The list-directed and namelist output format for real zero values is different from
Fortran 95 in Fortran 2003 (10.10.2, 10.11.2.1).

3. If a processor can distinguish between positive and negative zero, the result of
ATAN2 (Y, X) when X < 0 and Y is negative real zero is different from that of
Fortran 95. The result of LOG (X) and SQRT (X) when X is complex, REAL (X) < 0,
and the imaginary part of X is negative zero is different from that of Fortran 95.

Appendix C

A
abstract interface 244, 472
accessibility 85, 145
aliasing

argument 489
allocatable array

preservation of value 196
allocatable array allocation 20
ALLOCATABLE attribute 131
ALLOCATE statement 191

with SOURCE 191
with type specifier 191

ALLOCATED intrinsic function 192
allocation

array 195
pointer 197
polymorphic array 192
status 191

alternate entry 453
alternate return 441, 487
argument

aliasing 489
target 485

array assignment 234
array component declaration 87
array constructor 113
array declaration 18, 181
array element 185
array parent 185
array section 182, 185
array sequence association 480
array shape 181
assignment 231, 232

indexed parallel 250
masked array 244

assignment interface 441, 471
assignment with overlapping elements 234
ASSOCIATE construct 260
association of types 92
assumed-shape array 126
assumed-size array 128
ASYNCHRONOUS attribute 142
attribute-oriented declaration 117
automatic array 21
avoiding overflow 554

B
BACKSPACE statement 361
binary constant 44, 71

binary operator 202
BIND attribute 149
binding

generic 98
procedure 96

blank editing 401
blanks in source form 51
block construct 258
block data program unit 434
block DO construct 272
BN edit descriptor 401
BOZ literal constant 71
BZ edit descriptor 401

C
C global data 572
C variable number of arguments 575
CALL statement 441
CASE construct 265
CASE construct with character selector 267
CASE construct with integer selector 267
case index of type character 265
character array sequence association 481
character constant 80
character declaration 78
character editing 394
character expression as a format specification 369,

370
character interoperation 578
character string 177

format specification 371
character string edit descriptor 403
CLOSE statement 345
colon edit descriptor 398
command line 624
comment line 52
commentary 52
common block 167, 168, 431
complex constant 75
complex declaration 74
complex editing 392
computed GO TO statement 283
constant

literal 48
continuation line 50
CONTINUE statement 282
CYCLE statement 278

Index of Examples

688 Index of Examples

D
data abstraction 432
DATA statement 139
deallocation

array 195
declaration

attribute-oriented 117
entity-oriented 117

declaration statement 48
default initialization 91
deferred-shape array 126
defined assignment 237, 441
defined input/output 336
defined operator 108, 203, 212, 432, 446
delimiters 47
derived type 65, 175, 431
derived-type declaration 84
derived-type definition 80
designator 175, 179
DIMENSION attribute 129
DO construct 272, 273
DO construct with iteration count 275
DO construct with no loop control 276
DO statement with iteration count 274
DO WHILE construct 276
dot product 559

E
edit descriptor 372
elapsed time 616
elemental function 492
ENDFILE statement 361
entity-oriented declaration 117
enumeration 114
equivalence 165
error processing

input/output 342
executable construct 258
EXIT statement 277, 278
explicit initialization 136
explicit-shape array 125
EXTERNAL attribute 156

F
F edit descriptor 385
file positioning statement 360
finalization 100
fixed and free source form 57
fixed source form 51, 57
flag

IEEE 669
FLUSH statement 362
FORALL construct 253

FORALL statement 256
format reversion 376
format specification

empty 375
FORMAT statement 369
free source form 50, 55
function reference 444, 445
function side effect that is not valid 222, 447
function side effect that is valid 222
FUNCTION statement 443

G
generalized editing 390
generic binding 98
generic distinguishability 466
generic procedure name 464
global data 430
global data module 425
GO TO statement 282

H
halting

IEEE 669
hexadecimal constant 44, 71

I
IEEE flag 669
IEEE halting 669
IEEE overflow 557, 559
IEEE rounding 670
IEEE status 670
IEEE_ARITHMETIC 554, 557
IEEE_EXCEPTIONS 557
IEEE_FEATURES 554, 557
IF construct 263
IF statement 264
IMPLICIT statement 124
implicit typing and host association 123
INCLUDE line 58, 59
indexed parallel assignment 250
inheriting and overriding a binding 105
input/output

defined 336
nonadvancing 375

input/output error processing 342
INQUIRE statement 348
integer declaration 69
integer editing 381
integer literal constant 70
INTENT attribute 152
interface

abstract 244, 472
interface block 212, 463, 469, 471, 472

Index of Examples 689

interoperable array 569
interoperable derived type 567
interoperation

character 578
procedure pointer 578

INTRINSIC attribute 157

K
keyword argument 475, 499

L
linked list 91, 193
list-directed input 404, 408
list-directed output 410
literal constant 48
logical constant 76
logical declaration 75
logical editing 392, 393

M
masked array assignment 244, 248, 249
merging generics 463
module 425
module name conflict 429

N
name conflict in modules 429
named constant 135
named construct 258
namelist editing 411
namelist input 412, 416
namelist input using structure values 414
namelist output 418
NAMELIST statement 162
names 48
nonadvancing input/output 375
nonblock DO 272, 280
nondefault character string 52
null value in list-directed formatting 408

O
octal constant 71
OPEN statement 310
operator

user-defined 108, 432
operator interface 213, 218, 469
optional argument 154
OPTIONAL attribute 153
overflow 559
overflow handling 557

P
PARAMETER attribute 135
parent

array 185
scalar 185

passed-object dummy argument 89
pointer

data 241
procedure 244, 578

pointer allocation 197
pointer array allocation 20
pointer array bounds 484
pointer assignment 19, 241, 242
POINTER attribute 133
pointer component declaration 87
polymorphic assignment 238
polymorphism 121
PRESENT intrinsic function 477
PRIVATE statement 145
procedure binding 96
procedure component 88
procedure declaration statement 159
procedure pointer 244
procedure pointer interoperation 578
procedure resolution 494
program 41

simplest 423
program in fixed/free source form 57
program units 12
PROTECTED attribute 147
PUBLIC statement 145
pure procedure 491

Q
quote delimited format specification 371

R
random number 507
READ statement 324
real declaration 72
real editing 388
real literal constant 73
recursive function 444
reference 172
renaming via USE 429
RESHAPE function 113
resolution

procedure 494
REWIND statement 361
rounding

IEEE 670

690 Index of Examples

S
SAVE attribute 141
scalar parent 185
scale factor 400
scale factor with G editing 400
section

array 182
SELECT TYPE construct 269
sequence association

array 480
character array 481

sequence type 93
sign editing 399
signed integer literal constant 71
signed real literal constant 73
simplest program 423
slash edit descriptor 398
SP edit descriptor 399
specification function 227
statement

declaration 48
statement continuation 52
statement function 452
statement label 50
statement separator 53
status

allocation 191
IEEE 670

STOP statement 284
storage association 597
structure constructor 110, 111
subroutine reference 441
SUBROUTINE statement 439
substring 177
sum of cubes 41

T
tab edit descriptor 397
target

argument 485

TARGET attribute 133
time

elapsed 616
type

derived 65
sequence 93
user-defined 65

type association 92
type declaration statement 120
type declaration with parameters 18
type definition 65
type embedding 102
type extension 102
type from scratch 101
type parameter 82

inquiry 176
type specifier 67

U
unary operator 202
USE ONLY statement 429
USE statement 428
user-defined operator 108, 432
user-defined type 65, 175, 431
user-defined type definition 80

V
VALUE attribute 153
vector subscript 184
VOLATILE attribute 143

W
WHERE construct 246
WHERE statement 249

Z
zero-length string as output list item 378
zero-sized array as output list item 378

Symbols
- 70, 73, 74, 202, 211, 216
% 178
& 52
(⁄ 111
* 70, 73, 74, 202, 211, 216
** 70, 73, 74, 202, 211, 216
+ 70, 73, 74, 202, 211, 216
... 6
.AND. 76, 202, 211, 216
.EQ. 70, 73, 74, 79, 202, 211, 216
.EQV. 76, 202, 211, 216
.FALSE. 76
.GE. 70, 73, 79, 202, 211, 216
.GT. 70, 73, 79, 202, 211, 216
.LE. 70, 73, 79, 202, 211, 216
.LT. 70, 73, 79, 202, 211, 216
.NE. 70, 73, 74, 79, 202, 211, 216
.NEQV. 76, 202, 211, 216
.NOT. 76, 202, 211, 216
.OR. 76, 202, 211, 216
.TRUE. 76
/ 70, 73, 74, 202, 211, 216
/ edit descriptor 397
// 79, 202, 211, 216
/= 70, 73, 74, 79, 202, 211, 216
: edit descriptor 398
; 53, 56
< 70, 73, 79, 202, 211, 216
<= 70, 73, 79, 202, 211, 216
== 70, 73, 74, 79, 202, 211, 216
> 70, 73, 79, 202, 211, 216
>= 70, 73, 79, 202, 211, 216
[111
] 111
⁄) 111

A
A edit descriptor 393, 394
abrupt underflow 531
absolute value 506, 606
abstract interface 158, 457, 472
abstract interface block 472
ABSTRACT INTERFACE statement 472
abstract type 104
access

direct 295
file 294–297, 356

host association 589
IMPORT statement 460
input/output 311
sequential 295
stream 296, 394
use association 589

access statement 426
accessibility 21, 84, 144

namelist 162
accessibility statement 144
access-id 144
ac-implied-do 112
action statement 37, 264, 279
actual argument 472
Ada 562
Adams, Jeanne xii
adjust string

left 508, 607
right 508, 607

advancing input/output 293, 318, 330
aliasing

argument 484, 488
allocatable argument 478, 486, 489
allocatable array 126

assignment 235
resizing 172

ALLOCATABLE attribute 130, 187
allocatable component 107
ALLOCATABLE statement 130
allocatable variable 187–197

allocation 191
assignment 235
unsaved 192

ALLOCATE statement 188–193
allocation 20

allocatable variable 191
automatic 235
by assignment 187
error condition 190
move 643
pointer 193
polymorphic object 190
status 23, 189, 505, 608

alternate entry 452
alternate return 447, 487, 488
alternative interface 667
ampersand 52

continuation 52
in character constant 53

and
of arrays 510, 608
of bits 509, 627

Index

692 Index

angle 507, 612
ANSI 2
approximation

real value 8
arc cosine 506, 607
arc sine 506, 609
arc tangent 507, 611
argument

actual 472
aliasing 484, 488
allocatable 478, 486, 489
array 479
association 473, 589
assumed-shape 125, 480
assumed-size 127, 480
copy-in/copy-out 488
correspondence 474

keyword 474
positional 474

dummy 439, 472
explicit-shape 124, 480
IEEE module procedure 536
intent 150, 500
keyword 474, 499
optional 153, 476, 499, 605
passed-object 89
passed-object dummy 96, 475
pointer 478, 483, 489
polymorphic 478
presence 505
procedure 486
target 484
type parameter 478

arguments
conformable 491

arithmetic IF statement 283
arithmetic operator 73
array 18, 27, 124–131, 173, 180–187

allocatable 126
argument 479
assignment 234, 249–256

masked 244–249
assumed-shape 125
assumed-size 127
bound 124, 214
C 568
conformable 18
construction function 510
constructor 111–113
contiguous 186
deferred-shape 126
dimension 180
element 19, 173, 181, 479–481
element order 186
explicit-shape 124
extent 180
function 509

construction 510
DIM argument 510
location 510

manipulation 510
MASK argument 510

indexed assignment 249–256
inquiry function 504
location function 510
lower bound 125, 127, 181, 214
manipulation function 510
masked assignment 244–249
multiplication 511
name 181
noncontiguous 482
pack 647
parent 182
portion 19
rank 18, 124, 179, 180
reshape 511, 652
resizing 172, 235
section 19, 173, 182–186
shape 18, 180, 657
size 18, 127, 180, 504, 658
specification 124
stride 182, 183
structure 18, 178
subscript 182, 183
sum 511, 660
transpose 511, 663
unpack 511, 664
upper bound 125, 127, 181, 214
whole 128, 181
zero-size 23

ASA 2
ASCII 78, 79
assignment 68, 200, 231–256

allocatable variable 235
array 234
data

pointer 239
defined 236, 469
derived-type 236
indexed parallel 249–256
intrinsic 232–236
masked array 244–249
pointer 239
polymorphic 237
procedure pointer 243
type conversion 233

ASSIGNMENT (=) 236, 469
ASSIGNMENT interface 107, 469
assignment statement 232–244
ASSOCIATE construct 38, 259
associate name 259
ASSOCIATE statement 259
associated

data objects 596
association 24, 30, 131, 588–599

argument 473, 589
construct 30, 592
establishing 598
host 13, 589

Index 693

inheritance 30, 598
linkage 30, 592
name 588–593
pointer 238, 593–595
sequence 479–481, 589
status 131, 505, 610

pointer 23, 187
pointer association 593

storage 162–169, 595–598
storage sequence 596
use 13, 14, 419, 426, 429

assumed type parameter 18, 67
assumed-shape argument 125, 480
assumed-shape array 125
assumed-size argument 127, 480
assumed-size array 127
asterisk 67, 297

character length 77
ASYNCHRONOUS attribute 141, 430
asynchronous input/output 23, 286, 302, 312, 319,

330, 343, 349, 353
ID specifier 353
identifier 351

ASYNCHRONOUS statement 142
attribute

ALLOCATABLE 130, 187
ASYNCHRONOUS 141, 430
BIND 148, 158, 162, 561, 572
compatibility 159
DIMENSION 129, 180
EXTERNAL 154, 493
INTENT 150
INTRINSIC 156
OPTIONAL 153
PARAMETER 134
POINTER 132, 187, 239–244
PRIVATE 144, 426
PROTECTED 146, 164, 426
PUBLIC 144, 426
SAVE 139, 425, 492
specification 118
TARGET 133, 164, 239–244, 489
VALUE 152
VOLATILE 142, 430

attribute specification 34
attribute-oriented declaration 117
automatic allocation 235
automatic data object 20
automatic variable 117, 120, 125

B
B edit descriptor 380
BACKSPACE statement 357, 360
backspacing 357
base

model 504, 649
object 174
type 65

binary constant 71
binary operation 202
binary operator 201, 467
BIND attribute 148, 158, 162, 561, 572
BIND statement 148
bind type 93, 565
binding

final 98
generic 97
procedure

deferred 104
overriding 103

specific 95
type

procedure 95
binding label 562, 572
binding name 95
binding specification 32
bit

and 509, 627
circular shift 509, 631
clear 509, 627
complement 509, 646
computation procedure 509
copy 509
end-off shift 509, 630
exclusive or 509, 628
extraction 509, 627
inclusive or 509, 630
inquiry function 503
model 500
move 644
set 509, 628
size 503, 509, 612
test 509, 612

blank
character 46, 78
common 165
editing 374, 401
fixed source form 56
format specification 372, 374
free source form 54
in format 372
in numeric field 306, 312, 349
interpretation 401

edit descriptor 374
line

fixed source form 56
free source form 52

padding 46, 235, 307, 320, 353, 393
separator 54
significance

fixed source form 56
free source form 51

block 258–259
common 116

block construct 257–259

694 Index

block data 434
initialization 420
program unit 15, 434–435

block data program unit 32
BLOCK DATA statement 434
BN edit descriptor 306, 401
bound 124, 214

array 181
default lower 181
lower 214, 632
upper 214, 663

bounds
remapping 241
specifier 241

BOZ constant 44, 68, 71, 509
BOZ edit descriptor 44, 379, 380
BOZ editing 380
brace 605, 667
braces 6
branch statement 22, 280
branch target statement 280
byte

control 287
BZ edit descriptor 306, 401

C
C 561–578

array 568
binding module 519, 563
data pointer 570, 571
data type 564
enum type 113
function 573

interoperable 575
function pointer 571
global data 572
identifier 562
interoperability 12, 561
pointer 565, 569

association status 571
prototype 574
string 569
struct type 567
type 564

C++ 562
CALL statement 440
carriage control 326
case

index 264
range 265
value 265

CASE construct 38, 264–267
case selector 265
CASE statement 264
ceiling 507, 613
changeable connection specifier 305

character 418
ASCII 79
ASCII position 626
by position in a character set 613
by position in ASCII character set 506, 606
by position in character set 506
constant 79
context 51
control 43, 44, 46
default 76
delimiter 407, 418
edit descriptor 374, 403
editing 393, 403
encoding 312, 350
expression

format specification 370
graphic 44–46
greater than 633
greater than or equal 633
inquiry function 503
ISO 10646 79
kind 503, 654
kind parameter 64
length 77, 503, 632
less than 634
less than or equal 634
new line 290, 394, 645
not permitted 5
operator 79
padding 46, 217
repetition 652
representable 46
selector 77
sequence type 94
special 46
storage unit 76, 595
tab 46
trim 663
trim length 633

character computation procedure 508
character edit descriptor 393, 403
character selector 33
character set 44–46

default 46
extended 44
Fortran 44, 78
nondefault 44, 46
processor 44, 46

character string 176
deferred length 178
edit descriptor 374
length 177, 508
trimmed 508
trimmed length 508
undelimited 407
variable length 235
zero-length 23, 177

character type 76–80
kind 78
length 67, 78

Index 695

representation 78
specifier 76

characteristic
procedure 457

child data transfer statement 305, 332, 396
circular shift 510, 616
class 65, 118, 120

IEEE 667
local identifier 585

CLASS statement 118
clear

bit 509, 627
clock

system 511, 660
close specifier 344
CLOSE statement 344–346
collating sequence 78
colon 67

edit descriptor 398
editing 398

comma
in format 372
in input/output data 306, 402

command line 512, 623
argument 512, 624
argument count 512, 614

command line manipulation procedure 511
comment line 52

fixed source form 56
free source form 52

commentary
fixed source form 56
free source form 52

common
blank 165

common block 140, 165
continuation 166
data sharing 165
initialization 434
named 165
size 168

COMMON statement 162, 165
companion processor 12, 30, 562
compilation

independent 15
separate 15

complex conjugate 614
complex constant 75
complex constructor 75
complex double precision 74
complex editing 383, 391, 402
complex kind parameter 64
complex type 74–75

operator 74
specifier 74
value 74

complex value 506, 613

component
allocatable 107
parent 101
pointer 107
private 21
structure 178–180
value 107

component declaration 36
component definition statement 36, 85
computed GO TO statement 283
concatenation 79
condition

allocate error 190
deallocate error 195
end-of-file 341
end-of-record 294, 341
input/output error 292, 340–342

conformable arguments 491
conformable array 18
conformance

processor 5
program 5
shape 213

conjugate 506
conjunction 76
connection

file 298, 309
specifier 309–315

changeable 305
unit 298

constant 25, 48, 173
binary 71
BOZ 44, 68, 71, 509
character 79
complex 75
derived-type 108
hexadecimal 71
integer 70
literal 25, 44, 48, 68
logical 76
named 25, 48
octal 71
real 73
signed integer 70
signed real 73
subobject of 25, 173

constraints
syntax 8

construct 29
ASSOCIATE 259
association 30, 592
block 257–259
CASE 264–267
control 23
DO 271–279
executable 22, 29, 258–259
FORALL 249–256
identifier 587
IF 262

696 Index

name 258
SELECT TYPE 267–271
WHERE 244–249

construction function
array 510

constructor
array 111–113
complex 75
derived-type 108
structure 108, 464

CONTAINS statement 31, 35, 420
contiguous array 186
continuation

ampersand 52
END statement 56
fixed source form 56
free source form 52

continuation line
maximum number of 52

CONTINUE statement 282
label 282

control
byte 287
character 43, 44, 46
construct 23
edit descriptor 368, 373, 395–403
specifier 316
transfer of 280

conversion
assignment 233
function 505
input/output 367

copy
bit 509

copy-in/copy-out
argument 488

cosine 507
count of true values 510, 615
creation

file 292
CS symbol 306, 350, 403
current record 379
CYCLE statement 277

D
D edit descriptor 383, 386
data

abstraction 432
dynamic 19
edit descriptor 368, 372
entity 25
environment 17
item list

effective 376
object 25, 172
objects

associated 596

pointer 19
assignment 239
C 570

record 287
structure 17
transfer 328–338

data edit descriptor 372
data object 172

automatic 20
dynamic 19
namelist 162

DATA statement 137–139
data transfer statement 316–326
data type 17, 26, 66–111

derived 61, 80–111
intrinsic 68–80

data-implied do 137
date 511, 617
DC edit descriptor 306
deallocate

message 194
DEALLOCATE statement 194
deallocation

allocatable variable 196
pointer 197

decimal edit descriptor 374, 402
decimal edit mode 402
decimal editing 374, 402
decimal symbol 306, 350, 402
declaration 27

attribute-oriented 117
entity-oriented 117

declaration construct 33
declaration type specification 33, 118
declared type 120, 209
default character 76
default character set 46
default initialization 91, 109
default input/output unit 297
default lower bound 181
default real type 71
deferred length parameter 178
deferred procedure binding 104
deferred specific binding 96
deferred type parameter 18, 67
deferred-shape array 126
defined assignment 236, 469
defined editing 395
defined input/output 331, 395, 442, 471
defined object 172
defined operation 203, 445, 467

value 218
defined operator 49, 201, 432
defined variable 23, 599

Index 697

definition 23, 28, 599–604
derived type 80
status 23, 206

pointer 595
definition context

variable 599
deleted feature 685
delimiter 46, 47, 418

character 306, 350, 407
denormal

IEEE 677
denormalized number 523, 525, 541
derived type 26, 61, 80–111

assignment 236
definition 80
global 431
interoperable 566
operator 107

derived-type constant 108
derived-type constructor 108
derived-type definition 35
derived-type input/output 331
derived-type specification 34
derived-type specifier 83
derived-type statement 81
descriptor 132
designator 27, 173–175, 204

rank 179
difference 619
difference of values 507
digit 44
digits

model 504, 619
DIM argument 510
DIMENSION attribute 124, 129, 180
DIMENSION statement 129
dimensionality 18
direct access inut/output 295
disjunction 76
distinguishable arguments 465, 587
divide

IEEE 526, 678
divide by zero 523
division

integer 215
DO 274

nonblock 272, 279
WHILE 275

DO construct 39, 271–279
simple 276

DO statement 272
DO WHILE construct 275
dot product 507, 510, 619
double precision 63
double precision complex 74
double precision product 507, 620

double precision real type 71
double precision value 506, 618
DP edit descriptor 306
DT edit descriptor 395
dummy argument 439, 472

passed-object 475
dynamic array 172
dynamic data 19
dynamic data object 19
dynamic properties

inquiry 504
dynamic type 19, 120, 209, 267
dynamic variable 117, 172

E
E edit descriptor 383, 386
edit descriptor 368

ʺtextʺ 403
/ 397
: 398
’text’ 403
A 393
B 380
blank interpretation 374, 401
BN 306, 401
BOZ 44, 379, 380
BZ 306, 401
character 374, 393, 403
colon 398
control 368, 373, 395–403
D 383, 386
data 368, 372
DC 306
decimal 374, 402
DP 306
DT 395
E 383, 386
EN 383, 386
ES 383, 386
F 383, 384
G 380, 383, 388, 392, 393
L 392
O 380
P 399
position 374, 395
RC 308, 402
RD 308
real 383
RN 308, 402
round 374, 402
RP 308, 402
RU 308, 402
RZ 308, 402
S 308, 398
sign 308, 374, 398
slash 397
SP 308, 398
SS 308, 398

698 Index

string 368
T 395
TL 395
TR 395
X 395
Z 380

editing
blank 374, 401
BOZ 380
character 393, 403
colon 398
complex 383, 391
decimal 374, 402
defined 395
generalized 388
integer 380
logical 392
numeric 379–392
position 395
real 383–391
round 307, 402
sign 308, 398
string 393, 403
user-defined derived-type 395

edures 499
effective data item list 376
effective item 328, 376
element

array 19, 173, 181, 479–481
elemental function 214
elemental intrinsic procedure 499
elemental operation 214
elemental procedure 491, 605
ellipses 6
empty record 288
EN edit descriptor 383, 386
encapsulation 21
END statement 447, 448

continuation 56
ENDFILE statement 359, 361
end-off shift 510, 620
end-of-file condition 341
end-of-file record 287, 289, 357, 360
end-of-file test 511, 631
end-of-record condition 294, 341
end-of-record test 511, 631
entity 25

declaration 118
pre-existing 598

entity declaration 34
entity-oriented declaration 117
entry

alternate 452
ENTRY statement 452
ENUM statement 114
enumeration 113
enumeration definition 37

enumerator 113
environment

procedure 511
variable 512, 625

equivalence
type 92

EQUIVALENCE statement 162, 163
equivalent expression 219
error

condition 190, 195, 304, 340
specifier 304

ES edit descriptor 383, 386
establishing association 598
evaluation

expression 219–223
order 220
parenthesis 220
partial 222

exception 526–534
divide by zero 523
inexact 523
invalid 524
overflow 523
specifier 304
underflow 523

exceptional value 390, 523
exclamation mark 52
exclusive or 509, 628
executable construct 22, 29, 37, 258–259
executable program 12
executable statement 11, 37–39
execution

first construct 22
execution part 37
execution part construct 37
execution sequence

alteration by branching 280
normal 261

existence
file 291, 345, 346, 351
unit 298, 351

EXIT statement 276
explicit formatting 368–403
explicit initialization 135, 140
explicit interface 155, 158, 456
explicit-shape argument 124, 480
explicit-shape array 124
exponent 505

IEEE 672
largest 637
letter 73
model 621
set 505, 656
smallest 640

exponent range 72
exponential 507, 621
exponentiation 217

Index 699

expression 25, 199–231
equivalent 219
evaluation 219–223
extent 214
file name 313
formation 200–206
general specification 226
grammar 204
initialization 66, 223, 228
interpretation 200, 206–219
logical array 245
parentheses 220
restricted 225
semantics 200
shape 213
specification 119, 124, 223, 225, 228, 490
syntax 200
type 209
type parameter 209

extended character set 44
extended intrinsic operator 209
extended type 100
extensible type 100
extension

type 65, 100, 505, 622
extent

array 180
EXTERNAL attribute 154, 493
external file 291
external input/output 291
external procedure 448
EXTERNAL statement 155
external subprogram 15, 434, 448
external unit 303
extract bit 627

F
F edit descriptor 383, 384
file

access 294–297, 356
connection 298, 309, 344, 353
creation 292
existence 291, 315, 345, 346, 351
external 291
initial point 292
initial position 314
inquiry 346
internal 291, 337
name 352
position 291, 292, 338–339, 354, 357–361

format control 379
preconnection 291, 299
property 287
record 286, 287
reference 299
scratch 315
size 356

storage unit 286, 289, 595
stream 286, 289

position 296
terminal point 292
Unicode 325

file name expression 313
file position 360
file positioning statement 357–361
FILE specifier 313
file storage unit

position number 290
final binding 98
final subroutine 98
finalizable type 98
finalization 22, 99, 442
finite

IEEE 671
fixed and free source form 57
fixed source form 44, 55–58

blank 56
blank line 56
blank significance 56
commentary 56
continuation 56
label 56
line length 56
statement separator 56

flag
IEEE 668, 675, 678

floor 507
floor value 622
FLUSH statement 362
FORALL body 250
FORALL construct 39, 249–256
FORALL header 250
FORALL statement 256, 490
format

blank in 372
comma in 372
explicit 368–403
implicit 404–418
item 371
reversion 375
specifier 317

format specification 317, 368, 370–374
character expression 370
empty 374
nesting level 375
parentheses 375
string delimiter 371

FORMAT statement 370
error 371

formatted data transfer 330
formatted input/output 374–379
formatted record 288

length 288

700 Index

formatting
explicit 369–403
list-directed 404–410
namelist 411–418

Fortran
character set 44, 78
environment module

named constant 519
first compiler 1
history 1–3
standardization 1

Fortran 2003
deleted feature 685
new feature 683
obsolescent feature 684
standard 4–6

Fortran 66 2
Fortran 77 2
Fortran 90 2
Fortran 95 3
Fortran II 1
fraction 505

model 623
free source form 44, 51–55

blank 54
blank line 52
blank significance 51
commentary 52
continuation 52
label 54
line length 52

function 437, 442–447
array 509
bit inquiry 503
C 573
character inquiry 503
conversion 505
elemental 214
inquiry 503
intrinsic

inquiry 499
transformational 499

numeric inquiry 502
numeric manipulation 502, 505
recursive 442, 443
reduction 509
reference 25, 445
side effect 446
specification 228
statement 449

FUNCTION statement 442

G
G edit descriptor 380, 383, 388, 392, 393
general specification expression 226
generalized editing 388
generic binding 97
generic identifier 586

generic interface block 461
generic intrinsic procedure 499
generic procedure 15, 16, 461

name 464
generic specification 37, 144
global data

C 572
global identifier 582
global user-defined type 431
GO TO statement 282
gradual underflow 525, 531
grammar

expression 204
graphic 44–46
greater than

ASCII character 508
greater than or equal

ASCII character 508
group

namelist 162

H
halting

IEEE 669, 675, 678
hexadecimal constant 71
hiding

information 21
host 449

IMPORT statement 460
internal subprogram 589
module subprogram 589

host association 13, 419, 589
huge 523
hyperbolic cosine 507, 615
hyperbolic sine 507, 658
hyperbolic tangent 507, 661

I
identifier 582

C 562
class of local 585
construct 587
generic 586
global 582
local 583–587
statement 587

ideographic language 18
IEEE 521, 534

arithmetic 524–534
class 667
comparison 525
denormal 677
divide 526, 678
entering a procedure 551
exception 526–534
exceptional value 390

Index 701

exponent 672
finite 671
flag 668, 675, 678
floating-point format 521, 528
floating-point status 534
halting 669, 675, 678
infinity 390, 679
input/output 526, 679
interoperability 553
intrinsic module 534–550
leaving a procedure 551
mode 524

halting 534
rounding 534

module
intrinsic 534–550
optionality 522, 525, 553–556

module procedure 667–682
argument 536

NaN 390, 671, 679
nearest 546, 673
negative 672
next after 673
normal 672
real kind 547, 550, 674
remainder 526, 546, 673
representation 501
rounding 307, 389, 670, 673, 676, 680
scaling 674
sign 546, 668
signaling 526
sqrt 525
square root 526, 680
standard 526, 680
status 670, 676
type 677
underflow 671, 677, 681
unordered 525, 681
value 682

IEEE module 519
IEEE_ARITHMETIC module 541, 667–682
IEEE_CLASS 549
IEEE_CLASS_TYPE 541
IEEE_COPY_SIGN 546
IEEE_EXCEPTIONS module 538, 667–682
IEEE_FEATURES module 536
IEEE_LOGB 546, 549
IEEE_NEXT_AFTER 546, 550
IEEE_REM 546
IEEE_RINT 547
IEEE_ROUND_TYPE 542
IEEE_SCALB 547, 550
IEEE_SELECTED_REAL_KIND 547, 550
IF construct 39, 262
IF statement 263
imaginary part 607
imaginary value 506
implicit formatting 404–418

implicit interface 158, 451, 456
IMPLICIT NONE 123
IMPLICIT statement 122
implicit typing 122–124, 591
implied-do

array constructor 112
data 137
input/output 323

implied-do object
input/output 323

IMPORT statement 460
INCITS/PL22.3 2
INCLUDE line 44, 58–59
inclusive or 509, 630
independent compilation 15
index

case 264
indexed 249–256
indexed parallel assignment 249–256
inexact 523
infinity 522, 525, 541

IEEE 679
information hiding 21
inheritance 27

association 30, 598
type 100

iniput/output
internal 291

initial line 56
initial point 292
initialization 135, 572

common block 434
default 91, 109
explicit 135, 140
expression 66, 78, 223, 228

inner product 619
input/output 285–418

access 311
advancing 293, 318, 330
asynchronous 23, 286, 302, 319, 330, 343, 349, 353
control specifier 316
conversion 367
defined 331, 395, 442, 471
derived-type 331
direct 295
error condition 292, 304, 340–342
external 291
formatted 330, 374–379
IEEE 679
implied-do 323
implied-do object 323
internal 303, 337
item list 322
list-directed 404–410
message 304
namelist 161, 411–418
nonadvancing 293, 318, 330
recursive 301, 332, 364

702 Index

restriction 363
sequential 295
specifier 316

changeable 305
close 344
connection 309–315
control 316
data transfer 316
error and exception 304
file position 360
flush 362
inquiry 347
open 309–315
unit 302
wait 343

status 304
stream 290, 296
synchronous 286, 319
termination 339
unformatted 329
unit 297

default 297
input/output statement 286, 299
input/output unit 297
inquire

by file 349
by output list 357
by unit 348

INQUIRE statement 346–357
inquiry

by file 346
by output list 346, 357
by unit 346
dynamic properties 504
specification 228
specifier 346

inquiry function 503
array 504
bit 503
character 503
kind 503
numeric 504

inquiry intrinsic function 499
integer

operator 70
integer constant 70
integer division 215
integer editing 380
integer kind 504, 655
integer kind parameter 64
integer model 501
integer type 69–71

specifier 69
integer value 506
intent

argument 150, 500
INTENT attribute 150
INTENT statement 151

interface
abstract 158, 457, 472
alternative 667
body 459
explicit 155, 158, 456
implicit 158, 451, 456
interoperable 573, 574
procedure 13, 16, 29, 454, 456, 491

interface block 37
abstract 472
generic 461
procedure 16
specific 461

interface body 122
INTERFACE statement 461
internal file 291, 337
internal input/output 303
internal procedure 16, 21, 449
internal subprogram 31, 449
International Standards Organization 2
interoperability 561

C 12
IEEE 553
type 563

interoperable C function 575
interoperable C++ function 575
interoperable derived type 566
interoperable interface 573, 574
interoperable procedure 573
interpretation

expression 200
intrinsic operation 215

intrinsic 29
intrinsic assignment 232–236
INTRINSIC attribute 156
intrinsic function

see also intrinsic procedure
inquiry 499
transformational 499

intrinsic module 14, 498
C binding 498, 563
Fortran environment 498
IEEE exceptions and arithmetic 498
IEEE features 498
standard 519

intrinsic operation 202
intrinsic operator 201, 202, 445
intrinsic procedure 438, 497–518, 605–665

see also intrinsic function
elemental 499
generic 499
nonstandard 497
pure 499
specific 499
specific name 512–514

INTRINSIC statement 157
intrinsic subroutine

see also intrinsic procedure

Index 703

intrinsic type 61, 68–80
invalid 524
involved in asynchronous input/output 319
ISO 2
ISO Fortran environment module 519
ISO_10646 78, 79, 233
ISO_C_BINDING module 563
ISO_FORTRAN_ENV module 498
item

defined input/output 333
format 371

iteration 274
iteration count 274

J
J3 2

K
keyword

argument 474, 499
correspondence 474

statement 28, 47
kind 63

character 503, 654
IEEE real 674
integer 504, 655
real 504, 655
restricted 667

kind inquiry function 503
kind parameter 63, 503, 631

character type 78
kind parameter argument 606
kind selector 33
kind type parameter 17, 66
kind value 67

not supported 5

L
L edit descriptor 392
label

binding 95, 562, 572
fixed source form 56
free source form 54
statement 49, 282

largest
location of 510

largest exponent 504, 637
largest value 504, 507, 508, 510, 626, 636, 638

location 637
LBOUND 214
left tabbing limit 396
length

character 503, 632
character string 177, 508

trimmed 508

character type 78
formatted record 288
record 314
unformatted record 289

length type parameter 17, 66
less than

ASCII character 508
less than or equal

ASCII character 508
letter

exponent 73
lowercase 44

lexical token 43, 47
separator 51

library procedure 433
line

blank 52, 56
comment 52, 56
INCLUDE 58–59
initial 56
length 52, 56

linkage association 30, 592
linked list 193
list keyword 28
list-directed formatting 404–410
list-directed input/output 404–410
literal constant 25, 48, 68

BOZ 44
local identifier 583–587
local variable 25, 140
location

largest 510, 637
smallest 510, 640
substring 629

location function
array 510

logarithm
decimal 507, 635
natural 507, 634

logical and 509, 510, 608
logical complement 646
logical constant 76
logical editing 392
logical equivalence operator 76
logical exclusive or 509
logical inclusive or 509
logical kind parameter 64
logical literal constant 76
logical mask argument 606
logical not 509
logical operator 76
logical or 510, 609
logical type 75–76
logical type specifier 75
logical value 506, 635
loop

control 272

704 Index

lower bound 125, 127, 181, 214, 504, 632
lowercase letter 44

M
main program 13, 31, 422
manipulation function

array 510
marker

record 297
MASK argument 510
masked array assignment 244–249
matrix

multiplication 507, 510, 635
transpose 663

memory leak 239
merge 510, 639
message

allocate 189
input/output 304

mode
underflow

mode 534
model 500

base 504, 649
bit 500
exponent 621
fraction 623
integer 501
precision 648
real 501

module 14, 21, 31, 423–434
C binding 519
IEEE 519
intrinsic 14, 498
ISO Fortran environment 519
nature 426, 498
nonintrinsic 426
operator extension 432
procedure 14
procedure argument 536
program unit 420
specification part 424
standard intrinsic 519
subprogram 14, 425, 448
user-defined 498

MODULE statement 423
module subprogram 31
modulus 642, 643
move allocation 643

allocation
move 506

move bit 644
multiplication 511, 649

N
name 25, 48

array 181

associate 259
binding 95
construct 258
file 352
number of characters 48
type 66

name association 588–593
NAME= specifier

uppercase/lowercase 44
named common block 165
named constant 25, 48, 134
named entity 25
namelist

accessibility 162
character delimiter 418
comment 415
data object 162
formatting 411–418

group object list 417
group 162
group name 318
input

array element order 414
blank 416
slash 414

input/output 161, 411–418
output

ampersand 417
separator 415
specifier 317

NAMELIST statement 161–162
NaN 525, 541

IEEE 390, 671, 679
quiet 533

nearest
IEEE 673

nearest value 505, 546, 644
negative

IEEE 672
new line character 290, 394, 503, 645
next effective input/output item 328
next record 292
NON_OVERRIDABLE 95, 104
nonadvancing input/output 293, 318, 330
nonblock DO 272, 279
noncontiguous array 482
nondefault character set 44, 46
nondefault type 18
nondeferred specific binding 95
nonexecutable statement 11
nonpolymorphic 120, 478
NOPASS attribute 89
normal

IEEE 672
normal execution sequence 261
normal number 522
normal termination 23, 284

Index 705

normal value 541
Not-a-Number 522

see also NaN
NULL intrinsic function 194, 646
null value 408, 413
NULLIFY statement 194
number of characters read 321
numeric computation procedure 506
numeric editing 379–392
numeric inquiry function 502, 504
numeric manipulation function 502, 505
numeric sequence type 94
numeric storage unit 595

O
O edit descriptor 380
object

data 172
polymorphic 19
reference 172
unlimited polymorphic 19

obsolescent feature 5, 684
octal constant 71
only list 426
ONLY option 428
OPEN statement 309–315

connection specifier 310–315
operation 202

binary 202
defined 203, 467

value 218
elemental 214
intrinsic 202
type 67
unary 202
value 215

operator 29, 49, 67
arithmetic 73
binary 201, 467
character 79
complex 74
defined 49, 201, 432
derived type 107
extended intrinsic 209
integer type 70
intrinsic 201, 445
logical 76
overloaded 209
precedence 201, 207
real 73
unary 201, 467
user-defined 49, 201, 432

OPERATOR interface 107
optional argument 153, 476, 499, 605
OPTIONAL attribute 153
OPTIONAL statement 153

or
exclusive 76
inclulsive 76
of arrays 510, 609
of bits

exclusive 509, 628
inclusive 509, 630

order
statement 39

overflow 523
overloaded operator 209
overloaded procedure

see generic procedure
overriding procedure binding 103

P
P edit descriptor 399
pack array 647
pack values 511
packaging 21
padding

blank 46, 307, 320, 393
character 46, 78, 217

parallel processing 490
parameter

see also named constant
type 81, 172

PARAMETER attribute 134
PARAMETER statement 134
parent 172

array 182
component 101
string 176
type 100

parent data transfer statement 303, 332
parentheses in format 375
parenthesis 220
partial evaluation 222
PASS attribute 89
passed-object dummy argument 89, 475
pending input/output

storage sequence affector 319
pending input/output storage sequence 319
permissive standard 6
plus sign

optional 308, 315, 321, 356, 398
pointer 131–133, 187–197

allocation 193
argument 478, 483, 489
assignment 239

data 239
procedure 243

association 238, 593–595
association status 23, 187, 593
C 569, 570

association status 571
C data 571

706 Index

C function 571
component 107
data 19
deallocation 197
definition

status 595
linked list 193
procedure 19, 492
target definition 23
undefinition 594

POINTER attribute 132, 187, 239–244
POINTER statement 132
polymorphic

unlimited 120
polymorphic argument 17, 478
polymorphic assignment 237
polymorphic object 19

allocation 190
unlimited 19

polymorphism 27, 101, 120
portability 6
position

character 628
character in string 654
character not in string 508, 664
edit descriptor 374, 395
editing 395
file 292, 354, 357–361
in ASCII character set 506
in character set 506
number

file storage unit 290
stream file 296
substring 508, 629

position edit descriptor 395
positional argument correspondence 474
positionLcharacter in string 508
precedence

operator 201, 207
preceding record 292
precision 72, 504, 648
preconnection

file 291
unit 299

pre-existing entity 598
presence 502, 648

argument 505
primary 203

shape 213
type and type parameter 209
value 215

PRINT statement 301, 316
printing 326
PRIVATE attribute 144, 426
private component 21
PRIVATE statement 426
procedure 15, 29, 154–157, 437–496

argument 486

characteristic 457
command line 511
component

attribute 87
declaration 87

computation 506–511
declaration 455
declaration statement 157
defined by another langauge 16
elemental 491, 605
environment 511
external 448
generic 15, 16, 461
interface 13, 16, 29, 454, 456, 491
interface block 16, 454
internal 16, 21, 449
interoperable 573
intrinsic 438, 497–518, 605–665
library 433
module 14
name

generic 464
pointer 19, 492
pointer assignment 243
pure 489
recursive 492
reference 437
resolution 493
type binding 95
type-bound 21, 95

procedure attribute specification 35
procedure component attribute specification 36
procedure declaration 35
procedure interface 35
PROCEDURE statement 95
processor 5

character set 44, 46
companion 12, 30, 562
date 511
time 511, 616

product 511, 649
double precision 620

program 11, 30, 43, 50
executable 12
execution 22
main 13, 422
organization 12–16
portable 6
unit 12

PROGRAM statement 422
program unit 12, 31, 419–435

block data 15, 420, 434
main program 422
module 420
subprogram 420

PROTECTED attribute 146, 164, 426
PROTECTED statement 147
prototype

C 574

Index 707

PUBLIC attribute 144, 426
PUBLIC statement 426
pure intrinsic procedure 499
pure procedure 489

Q
quiet NaN 522, 533

R
random number 507, 650

seed 507, 650
range 69, 72, 504, 651

case 265
rank 18, 124, 179, 180

array 180
RC edit descriptor 308, 402
RD edit descriptor 308, 402
READ statement 316
real

operator 73
real constant 73
real edit descriptor 383
real editing 383–391
real kind 504, 655

IEEE 547, 550, 674
real kind parameter 63
real literal constant 73
real model 501
real type 71–74

precision 72
real type specifier 72
real value 506, 651
reciprocal relative spacing 505, 653
record

current 292, 379
data 287
empty 288
end-of-file 287, 289, 341, 357, 360
file 286, 287
formatted 288

length 288
length 295, 314, 355
marker 297
next 292
preceding 292
unformatted 289

length 289
record number 321

next 352
recursive 140
recursive function 442, 443
recursive input/output 301, 332, 364
recursive procedure 492
recursive subroutine 439
reduction function 509

reference 29
function 25, 445
object 172

remainder 507, 642, 643
IEEE 526, 546, 673

rename list 426
repeat factor 371
repeated value 408, 413
repetition

array values 511, 659
character values 508, 652

representable character 46, 78
representation 500

character type 78
model 500

RESHAPE 113
reshape 511, 652
resizing allocatable array 172, 235
resolution

procedure 493
restricted expression 225
restricted kind 667
result variable 444
RETURN statement 447
reversion

format 375
REWIND statement 359, 361
rewinding 357
RN edit descriptor 308, 402
round edit descriptor 374, 402
round editing 307, 402
rounded value 506, 609, 645
rounding

IEEE 670, 673, 676, 680
rounding mode 307, 315, 321, 355, 374, 389, 402, 534,

542
RP edit descriptor 308, 402
RU edit descriptor 308, 402
RZ edit descriptor 308, 402

S
S edit descriptor 308, 398
same type 505
SAVE attribute 139, 425, 492

implied 140
SAVE statement 140
SC22 2
scalar 18, 27
scale 654
scale factor 387, 399
scaling

IEEE 674
scope 5, 24, 581
scoping unit 30
scratch file 315

708 Index

section
array 19, 173, 182–186

SELECT TYPE construct 39, 267–271
selector 267

SELECT TYPE statement 267
selector 27

in ASSOCIATE construct 259
in CASE construct 265
in SELECT TYPE construct 267

semantics
expression 200

separate compilation 15
sequence 28

association 479–481, 589
derived type 92
storage 595
type 92

SEQUENCE statement 81, 162
sequence type

character 94
numeric 94

sequential access input/output 295
set exponent 505
shape 214, 504, 657

array 18, 180
conformance 213
expression 213

shift
circular 510, 616

bit 509, 631
end-off 510, 620

bit 509, 630
side effect 221, 364, 489

function 446
sign 507, 657

edit descriptor 308, 374
editing 398
IEEE 546, 668
mode 398
optional plus 308, 374

sign edit descriptor 398
sign editing 308
signaling NaN 522
signed integer constant 70
signed real constant 73
signed zero 522, 657
sine 507, 657
size

array 18, 127, 180, 504, 658
bit 503, 509, 612
common block 168
file 356
file storage unit 315
ISO constant 519

slash edit descriptor 397
small relative to 1 504, 621

smallest
location of 510

smallest exponent 504, 640
smallest value 504, 507, 508, 510, 639, 642, 662

location 640
source form 44, 50–58

fixed 44, 55–58
fixed and free 57
free 44, 51–55
illegal 5

SP edit descriptor 308, 398
spacing 505

reciprocal relative 505
relative 653

spacing of values 659
special character 46
specific binding 95
specific interface block 461
specific intrinsic procedure 499
specific name

intrinsic procedure 512–514
specification

expression 223, 225, 228, 490
format 368, 370–374
function 228

specification expression 119, 124
specification inquiry 228
specification part 32
specification statement 32–??, 34, ??–37
specifier

connection 309–315
control 316
input/output 360

changeable 305
close 344
connection 309–315
control 316
data transfer 316
error and exception 304
flush 362
inquiry 347
open 309–315
unit 302
wait 343

input/output control 316
unit 317

square root 507, 659
IEEE 526, 680

SS edit descriptor 308, 398
standard

IEEE 680
permissive 6

standard error unit 298
standard input/output unit 298
standard intrinsic module 519
standardization of Fortran 1

Index 709

statement
ABSTRACT INTERFACE 472
access 426
accessibility 144
action 37, 264, 279
ALLOCATABLE 130
ALLOCATE 188–193
arithmetic IF 283
assignment 232–244
ASSOCIATE 259
ASYNCHRONOUS 142
BACKSPACE 357, 360
BIND 148
BLOCK DATA 434
branch 22, 280
branch target 280
CALL 440
CASE 264
CLASS 118
CLOSE 344–346
COMMON 162, 165
component definition 85
computed GO TO 283
CONTAINS 31, 35, 420
CONTINUE 282
CYCLE 277
DATA 137–139
data transfer 316–326
DEALLOCATE 194
derived-type 81
DIMENSION 129
DO 272
END 447, 448
ENDFILE 359, 361
ENTRY 452
ENUM 114
EQUIVALENCE 162, 163
executable 11, 37–39
EXIT 276
EXTERNAL 155
file positioning 357–361
FLUSH 362
FORALL 256, 490
FORMAT 370
FUNCTION 442
GO TO 282
identifier 587
IF 263
IMPLICIT 122
IMPORT 460
INCLUDE 58
input/output 286, 299
INQUIRE 346–357
INTENT 151
INTERFACE 461
INTRINSIC 157
keyword 28, 47
label 49, 282
MODULE 423
NAMELIST 161–162
nonexecutable 11

NULLIFY 194
OPEN 309–315
OPTIONAL 153
order 39
PARAMETER 134
POINTER 132
PRINT 301, 316
PRIVATE 426
PROCEDURE 95
procedure declaration 157
PROGRAM 422
PROTECTED 147
PUBLIC 426
READ 316
RETURN 447
REWIND 359, 361
SAVE 140
SELECT TYPE 267
SEQUENCE 81, 162
specification 32–37
statement function 449
STOP 284
SUBROUTINE 438
TARGET 133
TYPE 33, 35
type declaration 118
USE 426, 428
USE ONLY 428
VALUE 152
VOLATILE 143
WAIT 343
WHERE 248
WRITE 316

statement function 16, 449
statement function statement 449
statement separator 53

fixed source form 56
free source form 53

status
IEEE 670, 676

stop code 284
STOP statement 284
storage 595

association 94, 162–169, 595–598
sequence 164, 167, 595

assocation 596
partially associated 596
totally associated 596

unit 595
file 286, 289

stream access 394
stream access input/output 296
stream file 286, 289
stride 182, 183
string 176

C 569
character 176
edit descriptor 368
editing 393

710 Index

parent 176
zero-length 23

string delimiter
format specification 371

string editing 403
structure 17, 65

see also derived type
array 18, 178
component 178–180
constructor 108, 464
data 17

subcomponent 599
subobject 27, 172
subobject of a constant 25, 173
subprogram 420, 438

block data 434
external 15, 434, 448
internal 449
module 425, 448

subprogram ending 32
subprogram heading 31
subroutine 437, 438–442

final 98
recursive 439
reference 440

SUBROUTINE statement 438
subscript 182, 183

list 182
order value 186
triplet 183

declared bounds 183
vector 184

subscript triplet 182
substring 173, 176
sum 511, 660
synchronous input/output 286, 319
syntax

expression 200
low-level 47
nonstandard 5

syntax constraints 8
syntax forms

high-level 30–39
system

clock 660
environment procedure 511

T
T edit descriptor 395
tab character 46
tabbing 395
tabbing limit 396
tangent 507, 661
target 23, 131, 238

argument 484
TARGET attribute 133, 164, 239–244, 489
TARGET statement 133

terminal point 292
termination

input/output 339
normal 23, 284

test
bit 612

time 511, 617
computer 616
processor 616
system 660

tiny 504, 523, 662
TL edit descriptor 395
token

lexical 43, 47
TR edit descriptor 395
transfer sign 657
transfer value 506, 662
transformational intrinsic function 499
transpose 511, 663
trim 663
trim length 633
trimmed character string 508
triplet

FORALL 251
notation 252
subscript 182, 183

truncated value 506, 608, 629
type 17, 66–111

abstract 104
attribute 81
base 65
bind 93
binding

procedure 95
C 564
C pointer 565
C struct 567
character 76–80
compatible 120
complex 74–75
conversion

assignment 233
data 66–111
declared 120, 209
default real 71
defined input/output transfer 334
derived 61, 80–111

interoperable 566
double precision real 71
dynamic 19, 120, 209, 267
embedding 102
equivalence 92
expression 209
extended 100
extensible 100
extension 65, 100, 505, 622, 653
finalizable 98
guard 267
IEEE 677

Index 711

inheritance 100
integer 69–71
interoperability 563
intrinsic 61, 68–80
kind parameter 63
length parameter 66
logical 75–76
name 66
nondefault 18
operation 67
parameter 81, 172

inquiry 175, 176
value 67

parent 100
real 71–74
same 505, 653
sequence 92
specifier 67

integer 69
unsigned 564
user-defined 17

type declaration statement 118
type parameter 26, 66

argument 478
assumed 18, 67
deferred 18, 67
expression 209
inquiry 172
kind 17, 66
length 17, 66

type parameter declaration 36
type parameter definition statement 36
type parameter specification 34
TYPE statement 33, 35
type-bound procedure 21, 95
typing

implicit 122–124, 591

U
UBOUND 214
ultimate component 26
unary operation 202
unary operator 201, 467
undefined pointer 131
undefined variable 23, 140, 599
undefinition 23, 599
undelimited character string 407
underflow 523

abrupt 531
gradual 525, 531
IEEE 671, 677, 681
mode 531

underscore 45
unformatted data transfer 329
unformatted record 289

length 289

Unicode file 325
unit

connection 298, 353
default 298
existence 298, 351
external 303
Fortran program 12
input/output 297
internal 303
number 353

defined input/output 334
preconnection 299
scoping 30
specifier 302, 317
standard error 298
standard input/output 298

unlimited polymorphic 120
unlimited polymorphic object 19
unordered

IEEE 681
unpack

array 664
unpack values 511
unsigned type 564
unspecified storage unit 595
upper bound 125, 127, 181, 214, 504, 663
use association 13, 14, 419, 426, 429
USE ONLY statement 428
USE statement 32, 426, 428
user-defined derived-type editing 395
user-defined derived-type input/output 331
user-defined module 498
user-defined operator 49, 201, 432
user-defined type 17

global 431

V
value

defined operation 218
IEEE 682
operation 215
primary 215

VALUE attribute 152
value separator 405
VALUE statement 152
variable 25, 173

definition context 599
dynamic 172
initialization 23
local 25
undefined 599

variable length character string 235
vector subscript 184
VOLATILE attribute 142, 430
VOLATILE statement 143

712 Index

W
wait

operation 344
specifier 343

WAIT statement 343
WG5 2
WHERE construct 39, 244–249
WHERE statement 248
whole array 128, 181
WRITE statement 316

X
X edit descriptor 395
X3J3 2
xecution 134

Z
Z edit descrptor 380
zero 541

signed 522, 657
zero value 70, 72
zero-length character string 23, 177, 376
zero-size array 23, 376

	Contents
	Preface
	Target Audience
	Organization
	Style of the Programming Examples
	Jeanne Adams

	1 Introduction
	1.1 History
	1.1.1 Initial Development of Fortran
	1.1.2 Standardization
	1.1.2.1 Fortran 66
	1.1.2.2 Fortran 77
	1.1.2.3 Fortran 90
	1.1.2.4 Fortran 95
	1.1.2.5 Fortran 2003

	1.2 The Fortran 2003 Language Standard
	1.2.1 Program Conformance to the Standard
	1.2.2 Processor Conformance to the Standard
	1.2.3 Portability
	1.2.4 A Permissive Standard

	1.3 Notation Used in this Book
	1.4 Approximations to Real and Complex Values
	1.5 References

	2 Fortran Concepts and Terms
	2.1 Program Organization
	2.1.1 Program Units
	2.1.1.1 Main Program
	2.1.1.2 Module
	2.1.1.3 External Subprogram
	2.1.1.4 Block Data Program Unit
	2.1.1.5 Compilation

	2.1.2 Procedures
	2.1.2.1 Internal Procedures
	2.1.2.2 Procedure Interfaces
	2.1.2.3 Generic Procedures
	2.1.2.4 Procedures Defined by Other Languages

	2.2 Data Environment
	2.2.1 Data Type
	2.2.2 Type Parameters
	2.2.3 Dimensionality
	2.2.4 Dynamic Data
	2.2.5 Packaging and Encapsulation

	2.3 Program Execution
	2.3.1 Execution Sequence
	2.3.2 Definition and Undefinition
	2.3.3 Scope
	2.3.4 Association

	2.4 Terms
	2.5 High-Level Syntax Forms
	2.5.1 Fortran Program Units
	2.5.2 The Specification Part
	2.5.3 The Execution Part

	2.6 Ordering Requirements
	2.7 Example Fortran Program

	3 Language Elements and Source Form
	3.1 The Processor Character Set
	3.1.1 The Fortran Character Set
	3.1.2 Other Characters
	3.1.3 The Tab Character

	3.2 Lexical Tokens
	3.2.1 Statement Keywords
	3.2.2 Names
	3.2.3 Constants
	3.2.4 Operators
	3.2.5 Statement Labels

	3.3 Source Form
	3.3.1 Free Source Form
	3.3.1.1 Blanks as Separators
	3.3.1.2 Sample Program, Free Source Form

	3.3.2 Fixed Source Form
	3.3.2.1 Sample Program, Fixed Source Form

	3.3.3 Rules for Fixed/Free Source Form
	3.3.3.1 Sample Program, Use with Either Source Form

	3.4 The INCLUDE Line

	4 Data Types
	4.1 Data Type Selection
	4.1.1 Kinds of Intrinsic Types
	4.1.2 Derived Types
	4.1.3 Classes

	4.2 What Is Meant by “Type” in Fortran?
	4.2.1 Type Names
	4.2.2 Type Parameters
	4.2.3 Type Specifier
	4.2.4 Type Values
	4.2.5 Type Operations and Procedures
	4.2.6 Forms for Constants

	4.3 Intrinsic Types
	4.3.1 Integer Type
	4.3.1.1 Name, Type Parameters, and Type Specifier
	4.3.1.2 Values
	4.3.1.3 Operators
	4.3.1.4 Form for Constant Values

	4.3.2 Real Type
	4.3.2.1 Name, Type Parameters, and Type Specifier
	4.3.2.2 Values
	4.3.2.3 Operators
	4.3.2.4 Forms for Constants

	4.3.3 Complex Type
	4.3.3.1 Name, Type Parameters, and Type Specifier
	4.3.3.2 Values
	4.3.3.3 Operators
	4.3.3.4 Form for Constants

	4.3.4 Logical Type
	4.3.4.1 Name, Type Parameters, and Type Specifier
	4.3.4.2 Values
	4.3.4.3 Operators
	4.3.4.4 Form for Constants

	4.3.5 Character Type
	4.3.5.1 Name, Type Parameters, and Type Specifier
	4.3.5.2 Values
	4.3.5.3 Collating Sequence
	4.3.5.4 Operators
	4.3.5.5 Form for Constants

	4.4 Derived Types
	4.4.1 A Simple Example of a Derived-Type Definition
	4.4.2 Derived-Type Definition Overview
	4.4.3 Type Parameters
	4.4.4 Type Specifier
	4.4.5 Accessibility
	4.4.6 Data Component Definition
	4.4.7 Procedure Component Definition
	4.4.8 The Passed-Object Dummy Argument
	4.4.9 Default Initialization
	4.4.10 Sequence Types and Type Equivalence
	4.4.11 Procedure Type Bindings
	4.4.11.1 Specific Bindings
	4.4.11.2 Generic Bindings
	4.4.11.3 Final Bindings

	4.4.12 Type Extension and Inheritance
	4.4.12.1 Type Extension Versus its Alternatives
	4.4.12.2 Overriding Procedure Bindings
	4.4.12.3 Abstract Types and Deferred Procedure Bindings
	4.4.12.4 Example of Inheriting and Overriding Bindings

	4.4.13 Values
	4.4.14 Operators
	4.4.15 Structure Constructor

	4.5 Array Constructors
	4.6 Enumerations

	5 Declarations
	5.1 Type Declaration Statements
	5.2 Polymorphism
	5.3 Implicit Typing
	5.4 Array Properties
	5.4.1 Array Specifications
	5.4.1.1 Explicit-Shape Arrays
	5.4.1.2 Assumed-Shape Arrays
	5.4.1.3 Deferred-Shape Arrays
	5.4.1.4 Assumed-Size Arrays
	5.4.1.5 Limitations on Whole Arrays

	5.4.2 The DIMENSION Attribute

	5.5 The ALLOCATABLE Attribute
	5.6 Pointer Properties
	5.6.1 The POINTER Attribute
	5.6.2 The TARGET Attribute

	5.7 Value Definition Properties
	5.7.1 The PARAMETER Attribute
	5.7.2 Explicit Initialization
	5.7.3 The DATA Statement
	5.7.4 The SAVE Attribute
	5.7.5 The ASYNCHRONOUS Attribute
	5.7.6 The VOLATILE Attribute

	5.8 Module Entity Properties
	5.8.1 PUBLIC and PRIVATE Accessibility
	5.8.2 The PROTECTED Attribute
	5.8.3 The BIND Attribute

	5.9 Dummy Argument Properties
	5.9.1 The INTENT Attribute
	5.9.2 The VALUE Attribute
	5.9.3 The OPTIONAL Attribute

	5.10 Procedure Properties
	5.10.1 The EXTERNAL Attribute
	5.10.2 The INTRINSIC Attribute

	5.11 The Procedure Declaration Statement
	5.12 Attribute Compatibility
	5.13 The NAMELIST Statement
	5.14 Storage Association
	5.14.1 The EQUIVALENCE Statement
	5.14.2 The COMMON Statement

	6 Using Data
	6.1 Constants and Variables
	6.2 Designators
	6.3 Type Parameter Inquiry
	6.4 Substrings
	6.5 Structure Components
	6.6 Arrays
	6.6.1 Array Terminology
	6.6.2 Whole Arrays
	6.6.3 Array Elements
	6.6.4 Array Sections
	6.6.4.1 Subscripts
	6.6.4.2 Subscript Triplets
	6.6.4.3 Vector Subscripts

	6.6.5 Examples of Array Elements and Array Sections
	6.6.6 Array Element Order

	6.7 Pointers and Allocatable Variables
	6.7.1 ALLOCATE Statement
	6.7.1.1 Allocation of Allocatable Variables
	6.7.1.2 Allocation of Pointers

	6.7.2 NULLIFY Statement
	6.7.3 DEALLOCATE Statement
	6.7.3.1 Deallocation of Allocatable Variables
	6.7.3.2 Deallocation of Pointers

	7 Expressions and Assignment
	7.1 Formation of Expressions
	7.1.1 Operators and Operations
	7.1.1.1 Operators
	7.1.1.2 Operations

	7.1.2 Rules for Forming Expressions

	7.2 Interpretation of Expressions
	7.2.1 Precedence of Operators
	7.2.2 Data Type and Type Parameters of an Expression
	7.2.2.1 Data Type and Type Parameters of a Primary
	7.2.2.2 Data Type and Type Parameters of an Operation

	7.2.3 Shape of an Expression
	7.2.4 Bounds of an Expression
	7.2.5 Elemental Operations and Functions
	7.2.6 Value of a Primary
	7.2.7 Value of an Operation
	7.2.7.1 Value of Intrinsic Operations
	7.2.7.2 Value of Defined Operations

	7.3 Evaluation of Expressions
	7.3.1 Equivalent Expressions
	7.3.2 Side Effects and Partial Evaluation

	7.4 Special Expressions
	7.4.1 Initialization Expressions
	7.4.2 Specification Expressions
	7.4.2.1 Specification Inquiry
	7.4.2.2 Specification Functions

	7.4.3 Differences Between Specification and Initialization Expressions
	7.4.4 Uses of Specification and Initialization Expressions

	7.5 Assignment
	7.5.1 The Assignment Statement
	7.5.2 Intrinsic Assignment
	7.5.3 Defined Assignment
	7.5.4 Polymorphic Assignment
	7.5.5 Pointer Assignment
	7.5.5.1 Data Pointer Assignment
	7.5.5.2 Procedure Pointer Assignment

	7.5.6 Masked Array Assignment-WHERE
	7.5.6.1 Form of the WHERE Construct
	7.5.6.2 Execution of a WHERE Construct
	7.5.6.3 WHERE Statement

	7.5.7 Indexed Parallel Array Assignment-FORALL
	7.5.7.1 Form of the FORALL Construct
	7.5.7.2 Execution of a FORALL Construct
	7.5.7.3 FORALL Statement

	8 Block Constructs and Execution Control
	8.1 Blocks and Construct Names
	8.2 The ASSOCIATE Construct
	8.2.1 Form of the ASSOCIATE Construct
	8.2.2 Execution of the ASSOCIATE Construct

	8.3 Controlling Execution
	8.4 The IF Construct and the IF Statement
	8.4.1 The IF Construct
	8.4.1.1 Form of the IF Construct
	8.4.1.2 Execution of the IF Construct

	8.4.2 The IF Statement
	8.4.2.1 Form of the IF Statement
	8.4.2.2 Execution of the IF Statement

	8.5 The CASE Construct
	8.5.1 Form of the CASE Construct
	8.5.2 Execution of the CASE Construct

	8.6 The SELECT TYPE Construct
	8.6.1 Form of the SELECT TYPE Construct
	8.6.2 Execution of the SELECT TYPE Construct

	8.7 The DO Construct
	8.7.1 Form of the Block DO Construct
	8.7.2 Execution of DO Constructs
	8.7.2.1 Execution of the DO Construct with an Iteration Count
	8.7.2.2 Execution of the DO Construct with WHILE Control
	8.7.2.3 Execution of the Simple DO Construct

	8.7.3 Altering the Execution Sequence within the DO Block
	8.7.3.1 The EXIT Statement
	8.7.3.2 The CYCLE Statement

	8.7.4 Terminating a DO Construct
	8.7.5 Form of the Nonblock DO
	8.7.6 Conversion from the Nonblock to the Block Form

	8.8 Branching
	8.8.1 Use of Labels in Branching
	8.8.2 The GO TO Statement
	8.8.2.1 Form of the GO TO Statement
	8.8.2.2 Execution of the GO TO Statement

	8.8.3 The CONTINUE Statement
	8.8.4 The Arithmetic IF Statement
	8.8.5 The Computed GO TO Statement

	8.9 The STOP Statement

	9 Input and Output Processing
	9.1 Basic Input/Output Concepts
	9.1.1 Record Files
	9.1.2 Stream Files
	9.1.3 External and Internal Files
	9.1.3.1 External Files
	9.1.3.2 Internal Files
	9.1.3.3 Existence of Files

	9.1.4 File Position
	9.1.5 File Access Methods
	9.1.5.1 Sequential Access
	9.1.5.2 Direct Access
	9.1.5.3 Stream Access

	9.1.6 Units
	9.1.6.1 Unit Existence
	9.1.6.2 Establishing a Connection to a Unit

	9.2 Input/Output Statement Specifier Lists
	9.2.1 General form of an Input/Output Statement
	9.2.1.1 Abbreviated Form of Input/Output Statements
	9.2.1.2 Recursive Input/Output Statements

	9.2.2 The UNIT Specifier
	9.2.3 Error and Exception Handling Specifiers
	9.2.4 Changeable Connection Mode Specifiers

	9.3 The OPEN Statement
	9.3.1 Connecting a File to a Unit
	9.3.2 Form of the OPEN Statement
	9.3.3 The Connection Specifiers

	9.4 Data Transfer Statements
	9.4.1 General Form for Data Transfer Statements
	9.4.2 The Input/Output Control Specifiers
	9.4.3 Specifiers for Data Transfer Statements
	9.4.4 The Input/Output Item List
	9.4.5 General Data Transfer Restrictions
	9.4.6 Printing of Formatted Records

	9.5 Execution Model for Data Transfer Statements
	9.5.1 Data Transfer
	9.5.1.1 Unformatted Data Transfer
	9.5.1.2 Formatted Data Transfer
	9.5.1.3 Asynchronous Data Transfer
	9.5.1.4 Defined Input/Output
	9.5.1.5 Transfer on Internal Files

	9.5.2 File Position Prior to Data Transfer
	9.5.3 File Position After Data Transfer
	9.5.4 Termination of Data Transfer

	9.6 Error and Other Conditions in Input/Output Statements
	9.6.1 Error Conditions
	9.6.2 End-of-File Condition
	9.6.3 End-of-Record Condition

	9.7 The WAIT Statement
	9.7.1 The WAIT Operation

	9.8 The CLOSE Statement
	9.8.1 The CLOSE Specifiers

	9.9 The INQUIRE Statement
	9.9.1 Inquire by File or Unit
	9.9.2 Specifiers for Inquiry by Unit or File Name
	9.9.3 Inquire by Output List
	9.9.4 Table of Values Assigned by the INQUIRE Statement

	9.10 File Positioning Statements
	9.10.1 Specifiers for File Position Statements
	9.10.2 The BACKSPACE Statement
	9.10.3 The REWIND Statement
	9.10.4 The ENDFILE Statement

	9.11 The FLUSH Statement
	9.11.1 Form of the FLUSH Statement
	9.11.2 Specifiers for the FLUSH Statement
	9.11.3 Execution of the FLUSH Statement

	9.12 Restrictions on Input/Output Specifiers, List Items, and Statements

	10 Input and Output Editing
	10.1 Explicit Formatting
	10.1.1 The FORMAT Statement
	10.1.2 Character Expression Format Specifications

	10.2 Format Specifications
	10.2.1 Data Edit Descriptor Form
	10.2.2 Control Edit Descriptor Form
	10.2.3 Character String Edit Descriptor Form

	10.3 Formatted Data Transfer
	10.3.1 Parentheses Usage
	10.3.2 Correspondence between a Data-Edit Descriptor and a List Item

	10.4 File Positioning by Format Control
	10.5 Numeric Editing
	10.5.1 Integer Editing
	10.5.2 Real Editing
	10.5.2.1 F Editing
	10.5.2.2 E, EN, ES, and D Editing
	10.5.2.3 Generalized Editing of Real Data
	10.5.2.4 IEEE Exceptional Values

	10.5.3 Complex Editing

	10.6 Logical Editing
	10.7 Character Editing
	10.8 Defined Editing
	10.9 Control Edit Descriptors
	10.9.1 Position Editing
	10.9.2 Slash Editing
	10.9.3 Colon Editing
	10.9.4 Sign Editing
	10.9.5 Scale Factors
	10.9.6 Blanks in Numeric Fields
	10.9.7 Round Edit Descriptors
	10.9.8 Decimal Edit Descriptors
	10.9.9 Character String Edit Descriptors

	10.10 List-Directed Formatting
	10.10.1 List-Directed Input
	10.10.1.1 Value Separators
	10.10.1.2 Values
	10.10.1.3 Undelimited Character Strings
	10.10.1.4 Null Values
	10.10.1.5 Repeated Values

	10.10.2 List-Directed Output

	10.11 Namelist Formatting
	10.11.1 Namelist Input
	10.11.1.1 Names in Name=Value Pairs
	10.11.1.2 Values in Name=Value Pairs
	10.11.1.3 Separators
	10.11.1.4 Namelist Comments
	10.11.1.5 Blanks
	10.11.1.6 Use of Namelist Input

	10.11.2 Namelist Output
	10.11.2.1 Form of Namelist Output
	10.11.2.2 DELIM Specifier for Character Values

	11 Program Units
	11.1 Overview
	11.1.1 The Specification Part
	11.1.2 The Execution Part
	11.1.3 The Subprogram Part
	11.1.4 Example Program

	11.2 Fortran Main Program
	11.3 Modules
	11.3.1 The Form of a Module
	11.3.2 The Specification Part
	11.3.3 Module Subprograms
	11.3.4 Identifiers in a Module
	11.3.5 Accessibility
	11.3.6 The PROTECTED Attribute
	11.3.7 The USE Statement
	11.3.7.1 Form of the USE Statement
	11.3.7.2 Accessing All Public Entities in a Module
	11.3.7.3 Accessing Only Some of the Public Entities
	11.3.7.4 Name Conflicts When Using Modules

	11.3.8 Use Association
	11.3.9 Typical Applications of Modules
	11.3.9.1 Global Data
	11.3.9.2 User-Defined Types
	11.3.9.3 User-Defined Operators
	11.3.9.4 Data Abstraction
	11.3.9.5 Procedure Libraries

	11.4 External Subprograms
	11.5 Block Data Program Units

	12 Using Procedures
	12.1 Subroutines
	12.1.1 Subroutine Subprograms
	12.1.2 Subroutine References

	12.2 Functions
	12.2.1 Function Subprograms
	12.2.2 Result Variable
	12.2.3 Function References
	12.2.4 Function Side Effects

	12.3 RETURN Statement
	12.4 Procedure Definition
	12.4.1 External Procedures
	12.4.2 Module Procedures
	12.4.3 Internal Procedures
	12.4.4 Statement Functions
	12.4.5 Alternate Entries

	12.5 Procedure Declaration
	12.5.1 Implicit and Explicit Interfaces
	12.5.1.1 Interface Properties
	12.5.1.2 Where an Explicit Interface is Required

	12.5.2 Interface Bodies
	12.5.3 Specific Interface Blocks
	12.5.4 Generic Interface Blocks
	12.5.4.1 Generic Procedure Names
	12.5.4.2 Defined Operations
	12.5.4.3 Defined Assignments
	12.5.4.4 Defined Input/Output

	12.5.5 Abstract Interface Blocks

	12.6 Argument Association
	12.6.1 Argument Correspondence
	12.6.2 Optional Arguments
	12.6.3 Type and Type Parameters
	12.6.4 Array Arguments
	12.6.4.1 Sequence Association
	12.6.4.2 Noncontiguous Arrays

	12.6.5 Pointer Arguments
	12.6.6 Target Arguments
	12.6.7 Allocatable Arguments
	12.6.8 Procedure Arguments
	12.6.9 Alternate Returns
	12.6.10 Argument Aliasing

	12.7 Special Categories of Procedures
	12.7.1 Pure Procedures
	12.7.2 Elemental Procedures
	12.7.3 Recursive Procedures
	12.7.4 Procedure Pointers

	12.8 Resolving Procedure References
	12.8.1 Resolving Generic Name References
	12.8.2 Resolving Specific Name References

	12.9 Procedure Properties

	13 Intrinsic Procedures and Modules
	13.1 Properties of Intrinsic Procedures
	13.2 Representation Models
	13.2.1 The Bit Model
	13.2.2 The Integer Number System Model
	13.2.3 The Real Number System Model

	13.3 Intrinsic Procedures
	13.3.1 Inquiry Functions
	13.3.1.1 Character and Bit Inquiry Functions
	13.3.1.2 Kind Functions
	13.3.1.3 Numeric Inquiry Functions
	13.3.1.4 Array Inquiry Functions
	13.3.1.5 Inquiry of Dynamic Properties

	13.3.2 Numeric Manipulation Functions
	13.3.3 Conversion Functions
	13.3.3.1 NULL and Transfer Procedures

	13.3.4 Computation Procedures
	13.3.4.1 Numeric Computation Procedures
	13.3.4.2 Character Computation Functions
	13.3.4.3 Bit Computation Procedures
	13.3.4.4 Array Functions

	13.3.5 System Environment Procedures
	13.3.5.1 Time and Date Subroutines
	13.3.5.2 Testing Input/Output Status
	13.3.5.3 Command Line Manipulation Procedures

	13.4 Specific Names for Generic Intrinsic Procedures
	13.5 Alphabetical List of All Intrinsic Procedures
	13.6 Standard Intrinsic Modules
	13.6.1 The Fortran Environment Module

	14 IEEE Exceptions and Arithmetic
	14.1 Terms and Concepts
	14.2 IEEE Arithmetic and Exceptions-an Introduction
	14.2.1 Floating-Point Formats
	14.2.2 Floating-Point Exceptions
	14.2.3 IEEE Arithmetic
	14.2.4 Quiet and Signaling NaNs
	14.2.5 The Programming Approach for the IEEE Standard
	14.2.6 What If the Processor Is Not Compliant with the IEEE Standard?
	14.2.7 The Processor’s Floating-Point Status
	14.2.8 The Modes of the Floating-Point Processor

	14.3 Descriptions of the Three Intrinsic Modules
	14.3.1 The Intrinsic Module IEEE_FEATURES
	14.3.2 The Intrinsic Module IEEE_EXCEPTIONS
	14.3.2.1 Raising Exceptions from Operations Not To Be Executed

	14.3.3 The Intrinsic Module IEEE_ARITHMETIC
	14.3.3.1 Module Function IEEE_COPY_SIGN Versus Intrinsic Function SIGN
	14.3.3.2 Module Function IEEE_LOGB Versus Intrinsic Function EXPONENT
	14.3.3.3 Module Function IEEE_NEXT_AFTER Versus Intrinsic Function NEAREST
	14.3.3.4 Module Function IEEE_REM Versus Intrinsic Functions MODULO or MOD
	14.3.3.5 Module Function IEEE_RINT Versus Intrinsic Functions AINT or ANINT
	14.3.3.6 Module Function IEEE_SCALB Versus Intrinsic Function SCALE
	14.3.3.7 Module Function IEEE_SELECTED_REAL_KIND Versus Intrinsic Function SELECTED_REAL_KIND
	14.3.3.8 Details of Returned Results for Module Function IEEE_CLASS
	14.3.3.9 Details of Returned Results for Module Function IEEE_LOGB
	14.3.3.10 Details of Returned Results for Module Function IEEE_NEXT_AFTER
	14.3.3.11 Details of Returned Results for Module Function IEEE_SCALB
	14.3.3.12 Details of Returned Results for Module Function IEEE_SELECTED_REAL_KIND

	14.4 Initial and Final Status Requirements Entering and Leaving Any Procedure
	14.5 Interoperability Issues for IEEE Arithmetic and Exceptions
	14.6 A Summary of the Optional Features
	14.7 Examples of the Use of IEEE Features, Arithmetic, and Exceptions Modules
	14.7.1 Discussion of the Simple Example
	14.7.2 Computing a Dot Product Carefully

	15 Interoperability with C
	15.1 Companion Processors
	15.2 Binding Labels
	15.3 The ISO_C_BINDING Intrinsic Module
	15.4 Interoperability of Types
	15.4.1 Intrinsic Types
	15.4.2 C Enum Types
	15.4.3 C Pointer Types
	15.4.4 Derived Types

	15.5 Interoperation of Data
	15.5.1 Scalar Variables
	15.5.2 Array Variables
	15.5.3 Character Data
	15.5.4 Pointers
	C_LOC (X) Inquiry Function
	C_FUNLOC (X) Inquiry Function
	C_F_POINTER (CPTR, FPTR [, SHAPE]) Subroutine
	C_F_PROCPOINTER (CPTR, FPTR) Subroutine
	C_ASSOCIATED (C_PTR_1 [, C_PTR_2]) Inquiry Function

	15.5.5 Global Data

	15.6 Interoperation of Procedures
	15.6.1 Interoperable Fortran Procedures and Interfaces
	15.6.2 Interoperability of Fortran Interfaces and C Prototypes
	15.6.3 Interoperable C Functions
	15.6.4 Restrictions on C Functions
	15.6.5 Connecting Fortran Procedures and C Functions

	15.7 Examples of Interoperation

	16 Scope, Association, and Definition
	16.1 Scope
	16.1.1 Global Identifiers
	16.1.2 Local Identifiers
	16.1.2.1 Classes of Local Identifiers
	16.1.2.2 Resolution of Generic Identifiers

	16.1.3 Statement and Construct Identifiers

	16.2 Association
	16.2.1 Name Association
	16.2.1.1 Argument Association
	16.2.1.2 Use Association
	16.2.1.3 Host Association
	16.2.1.4 Linkage Association
	16.2.1.5 Construct Association

	16.2.2 Pointer Association
	16.2.2.1 Pointer Association Status
	16.2.2.2 Pointer Definition Status

	16.2.3 Storage Association
	16.2.3.1 Storage Sequence
	16.2.3.2 Association of Storage Sequences
	16.2.3.3 Examples of Storage Association

	16.2.4 Inheritance Association
	16.2.5 Establishing Associations

	16.3 Definition
	16.3.1 Variable Definition Contexts
	16.3.2 Events that Cause Variables to Become Defined
	16.3.3 Events that Cause Variables to Become Undefined

	A Standard Intrinsic Procedures
	ABS (A) Elemental Function
	ACHAR (I {, KIND}) Elemental Function
	ACOS (X) Elemental Function
	ADJUSTL (STRING) Elemental Function
	ADJUSTR (STRING) Elemental Function
	AIMAG (Z) Elemental Function
	AINT (A {, KIND}) Elemental Function
	ALL (MASK {, DIM}) Transformational Function
	ALLOCATED (ARRAY) or ALLOCATED (SCALAR) Inquiry Function
	ANINT (A {, KIND}) Elemental Function
	ANY (MASK {, DIM}) Transformational Function
	ASIN (X) Elemental Function
	ASSOCIATED (POINTER{, TARGET}) Inquiry Function
	ATAN (X) Elemental Function
	ATAN2 (Y, X) Elemental Function
	BIT_SIZE (I) Inquiry Function
	BTEST (I, POS) Elemental Function
	CEILING (A {, KIND}) Elemental Function
	CHAR (I {, KIND}) Elemental Function
	CMPLX (X {, Y, KIND}) Elemental Function
	COMMAND_ARGUMENT_COUNT () Inquiry Function
	CONJG (Z) Elemental Function
	COS (X) Elemental Function
	COSH (X) Elemental Function
	COUNT (MASK {, DIM, KIND}) Transformational Function
	CPU_TIME (TIME) Subroutine
	CSHIFT (ARRAY, SHIFT {, DIM}) Transformational Function
	DATE_AND_TIME ({DATE, TIME, ZONE, VALUES}) Subroutine
	DBLE (A) Elemental Function
	DIGITS (X) Inquiry Function
	DIM (X, Y) Elemental Function
	DOT_PRODUCT (VECTOR_A, VECTOR_B) Transformational Function
	DPROD (X, Y) Elemental Function
	EOSHIFT (ARRAY, SHIFT {, BOUNDARY, DIM}) Transformational Function
	EPSILON (X) Inquiry Function
	EXP (X) Elemental Function
	EXPONENT (X) Elemental Function
	EXTENDS_TYPE_OF (A, MOLD) Inquiry Function
	FLOOR (A {, KIND}) Elemental Function
	FRACTION (X) Elemental Function
	GET_COMMAND ({COMMAND, LENGTH, STATUS}) Subroutine
	GET_COMMAND_ARGUMENT Subroutine (NUMBER {, VALUE, LENGTH, STATUS})
	GET_ENVIRONMENT_VARIABLE Subroutine (NAME {, VALUE, LENGTH, STATUS, TRIM_NAME})
	HUGE (X) Inquiry Function
	IACHAR (C {, KIND}) Elemental Function
	IAND (I, J) Elemental Function
	IBCLR (I, POS) Elemental Function
	IBITS (I, POS, LEN) Elemental Function
	IBSET (I, POS) Elemental Function
	ICHAR (C {, KIND}) Elemental Function
	IEOR (I, J) Elemental Function
	INDEX (STRING, SUBSTRING {, BACK, KIND}) Elemental Function
	INT (A {, KIND}) Elemental Function
	IOR (I, J) Elemental Function
	ISHFT (I, SHIFT) Elemental Function
	ISHFTC (I, SHIFT {, SIZE}) Elemental Function
	IS_IOSTAT_END (I) Elemental Function
	IS_IOSTAT _EOR (I) Elemental Function
	KIND (X) Inquiry Function
	LBOUND (ARRAY {, DIM, KIND}) Inquiry Function
	LEN (STRING {, KIND}) Inquiry Function
	LEN_TRIM (STRING {, KIND}) Elemental Function
	LGE (STRING_A, STRING_B) Elemental Function
	LGT (STRING_A, STRING_B) Elemental Function
	LLE (STRING_A, STRING_B) Elemental Function
	LLT (STRING_A, STRING_B) Elemental Function
	LOG (X) Elemental Function
	LOG10 (X) Elemental Function
	LOGICAL (L {, KIND}) Elemental Function
	MATMUL (MATRIX_A, MATRIX_B) Transformational Function
	MAX (A1, A2 {A3, ... }) Elemental Function
	MAXEXPONENT (X) Inquiry Function
	MAXLOC (ARRAY, DIM {, MASK, KIND}) or Transformational Function MAXLOC (ARRAY {, MASK, KIND})
	MAXVAL (ARRAY, DIM {, MASK}) or Transformational Function MAXVAL (ARRAY {, MASK})
	MERGE (TSOURCE, FSOURCE, MASK) Elemental Function
	MIN (A1, A2 {A3, ... }) Elemental Function
	MINEXPONENT (X) Inquiry Function
	MINLOC (ARRAY, DIM {, MASK, KIND}) or Transformational Function MINLOC (ARRAY {, MASK, KIND})
	MINVAL (ARRAY, DIM {, MASK}) or Transformational Function MINVAL (ARRAY {, MASK})
	MOD (A, P) Elemental Function
	MODULO (A, P) Elemental Function
	MOVE_ALLOC (FROM, TO) Pure Intrinsic Subroutine
	MVBITS (FROM, FROMPOS, LEN, TO, TOPOS) Elemental Subroutine
	NEAREST (X, S) Elemental Function
	NEW_LINE (A) Inquiry Function
	NINT (A {, KIND}) Elemental Function
	NOT (I) Elemental Function
	NULL ({MOLD}) Transformational Function
	PACK (ARRAY, MASK {, VECTOR}) Transformational Function
	PRECISION (X) Inquiry Function
	PRESENT (A) Inquiry Function
	PRODUCT (ARRAY, DIM {, MASK}) or Transformational Function PRODUCT (ARRAY {, MASK})
	RADIX (X) Inquiry Function
	RANDOM_NUMBER (HARVEST) Subroutine
	RANDOM_SEED ({SIZE, PUT, GET}) Subroutine
	RANGE (X) Inquiry Function
	REAL (A {, KIND}) Elemental Function
	REPEAT (STRING, NCOPIES) Transformational Function
	RESHAPE (SOURCE, SHAPE {, PAD, ORDER}) Transformational Function
	RRSPACING (X) Elemental Function
	SAME_TYPE_AS (A, B) Inquiry Function
	SCALE (X, I) Elemental Function
	SCAN (STRING, SET {, BACK, KIND}) Elemental Function
	SELECTED_CHAR_KIND (NAME) Transformational Function
	SELECTED_INT_KIND (R) Transformational Function
	SELECTED_REAL_KIND ({P, R}) Transformational Function
	SET_EXPONENT (X, I) Elemental Function
	SHAPE (SOURCE [, KIND]) Inquiry Function
	SIGN (A, B) Elemental Function
	SIN (X) Elemental Function
	SINH (X) Elemental Function
	SIZE (ARRAY {, DIM, KIND}) Inquiry Function
	SPACING (X) Elemental Function
	SPREAD (SOURCE, DIM, NCOPIES) Transformational Function
	SQRT (X) Elemental Function
	SUM (ARRAY, DIM {, MASK}) or Transformational Function SUM (ARRAY {, MASK})
	SYSTEM_CLOCK ({COUNT, COUNT_RATE, COUNT_MAX}) Subroutine
	TAN (X) Elemental Function
	TANH (X) Elemental Function
	TINY (X) Inquiry Function
	TRANSFER (SOURCE, MOLD [, SIZE]) Transformational Function
	TRANSPOSE (MATRIX) Transformational Function
	TRIM (STRING) Transformational Function
	UBOUND (ARRAY {, DIM, KIND}) Inquiry Function
	UNPACK (VECTOR, MASK, FIELD) Transformational Function
	VERIFY (STRING, SET {, BACK, KIND}) Elemental Function

