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ABSTRACT

We introduce a new method to analyze kinematic proper motion data. The method is called “criss-cross” mapping. It
emphasizes regions where proper motion vector extensions cross or converge. From a superposition of lines through
the vectors a map is generated which helps to interpret the kinematic data. The new mapping technique is applied
to the young planetary nebula BD+30 3639. The data are more than 200 internal proper motion measurements from
Li et al. From the criss-cross mapping of BD+30 3639, we conclude that the kinematic center is approximately
0.5 arcsec off-set to the southeast from the central star. The mapping also shows evidence for a non-homologous
expansion of the nebula that is consistent with a disturbance due to the bipolar molecular bullets.
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1. INTRODUCTION

The complex structure found for many (proto-) planetary neb-
ulae (PNe) has introduced considerable problems into the theory
of their formation processes. Spatially resolved spectroscopy
has shown that objects which have apparently spherically sym-
metric images may be more complex along the line of sight.
For example, bipolar nebulae seen along the line of sight mimic
spherical or elliptical ones. An example that has often been dis-
cussed as being either ellipsoidal or bipolar is the Ring Nebula
(M57) (e.g., Bryce et al. 1994; Guerrero et al. 1997; Steffen et al.
2007). High-quality reconstructions of the three-dimensional
(3D) structure of PNe are therefore an essential ingredient to
find the formation mechanisms and the nature of the central
objects. Knowledge of the 3D structure of as many nebulae as
possible can help resolve the debate over the role of single ver-
sus multiple central stars in the structure formation (Balick &
Frank 2002). Furthermore, accurate 3D models of the expanding
nebulae can improve the distance determination from angular
expansion measurements (Li et al. 2002, hereafter LHB2002).
Caveats for the distance determination from expansion paral-
laxes have been discussed by Mellema (2004) and Schönberner
et al. (2005).

Knowledge of the 3D structure of PNe is a fundamental
ingredient for the development of a consistent theory for
individual objects and the overall class of PNe. Since the
two-dimensional (2D) projected image does not provide the
full 3D structure information, additional constraints have to
be obtained for the reconstruction. For expanding objects like
PNe kinematic information may produce sufficient constraints
if a few reasonable assumptions can be made. A common
assumption is that the expansion is radial from the central star
and the magnitude of the velocity is proportional to distance,
i.e., the velocity vector is proportional to the position vector
(homologous expansion). This allows a direct mapping of the
radial velocity component to the position along the line of
sight, if the constant of proportionality can be determined
otherwise. In this case, some degree of symmetry of the
whole or part of the object is sufficient to generate a unique
mapping.

Hydrodynamic calculations and numerical simulations based
on the generalized interacting stellar wind model show that
the expansion of shell-like PNe with active winds should be
non-homologous (Steffen et al. 2009, and references therein).
In the velocity field, a nonlinear variation of the velocity
magnitude and measurable deviations from the radial direction
are expected.

Very clumpy PNe may develop an approximately homologous
expansion due to the differential acceleration of different density
components of the ambient medium into which the fast stellar
wind expands (Steffen & López 2004). In this model, the density
dependence of the terminal velocity of a clump can lead to a
considerable spread in the velocity for a given distance from
the central star. This makes a unique mapping from velocity to
position correspondingly uncertain.

Additional kinematic information can be obtained from
proper motion measurements of internal features. Such mea-
surement can potentially reveal the non-radial expansion of a
nebula. This information can then be taken into account during
3D reconstruction to correct inaccuracies introduced by assum-
ing homologous expansion (Steffen et al. 2009).

The high spatial resolution and the extended lifetime of the
Hubble Space Telescope (HST) have allowed the observation of
expanding nebulae with a time span of the order of 15 years. To
date, this has been sufficient to measure the angular expansion
of only a few PNe with sharp features like clumps or thin shells
(e.g., O’Dell et al. 2009; Meaburn et al. 2008).

BD+30 3639 is a young PN that has been observed in detail
with a variety of observational techniques. It shows extended
emission from radio to X-rays. The structure is, however, sub-
stantially different in the various wavelength regions. Figure 1
is a composite image that shows images taken in the different
wavelength regions within a single frame. Some of the most
striking features are as follows. First, the basic projected struc-
ture is a nearly rectangular ring, with some emission inside.
The ring is not uniform along its perimeter, but shows reduced
brightness in some directions, especially in the southwestern
region. Second, a fainter halo has been observed to go out to at
least twice the distance of the ring (Harrington et al. 1997).
The infrared continuum emission roughly traces the optical
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Figure 1. Several types of maps combined: optical (gray, from LHB2002), H2
(green contour, from Shupe et al. 1998), CO (white contour, from Bachiller et al.
2000), and the criss-cross map (red, this work).

(A color version of this figure is available in the online journal.)

rectangle and its halo. Third, molecular hydrogen emission is
distributed very unevenly in large clumps within the halo (Shupe
et al. 1998). The molecular CO lines show a pair of high-speed
bullets moving in opposite directions (Bachiller et al. 2000).
Finally, extended X-ray emission has been observed inside the
optical rectangle with a brightness gradient going roughly from
southwest to northeast (Kastner et al. 2000).

Proper motion combined with Doppler-velocity measure-
ments and an accurate 3D model of the object may help improve
the distance determination of the object. LHB2002 have used
two HST narrowband images that were observed with a sep-
aration of 5.663 years. They determined the expansion of the
nebula along many angular sectors as well as local proper mo-
tion vectors of substructure at nearly 200 positions. With their
measurements and an ellipsoidal model of BD+30 3639 they
determined a distance of 1.2 kpc.

One of their results is that the expansion seems to be
somewhat faster along position angles (P.A.s) around 40◦ and
220◦. This coincides approximately with the P.A.s of the CO
outflows (Figure 1). LHB2002 concentrate on the variation of
the magnitude of the proper motion vectors as a function of P.A.
and distance from the central star.

In this paper, we analyze their proper motion vectors with
emphasis on the direction, i.e., their deviation from the radial
direction, as a function of P.A. and distance from the central star
(Figure 2). The deviation shows systematic variations around
the flat distribution expected from a homologous expansion.
Extending the velocity vectors over the full area of the object
has led us to develop a new method of analyzing internal proper
motion data: “criss-cross mapping.”

The layout of our paper is as follows. We first describe the new
criss-cross mapping in general terms in Section 2. In Section 3,
we show examples of theoretically relevant criss-cross maps as
well as the changes introduced by structure, sampling or errors
in the observations. Finally, in Sections 4 and 5 we describe and
discuss our results for BD+30 3639, respectively.

2. CRISS-CROSS MAPPING

In order to help in the interpretation of current and future
internal proper motion measurements in expanding nebulae,

Figure 2. Angular deviation from the radial direction of the internal proper
motion vectors plotted against position angle. Data extracted from LHB2002
are in green and model values from this work are in red and blue.

(A color version of this figure is available in the online journal.)

we introduce “criss-cross mapping.” The purpose is to detect
and emphasize regions where velocity vectors converge and
intersect. A radially expanding nebula will have all its velocity
vectors intersect at the position of the central star. If there are
systematic deviations from radial expansion, the intersection
point might shift or be transformed into some extended pattern.
Such a pattern reveals helpful information. The criss-cross
mapping procedure is related to the concept of optical caustics,
where reflected or refracted light rays may define a line or
surface to which they are all tangent and adjacent rays cross.

We define the criss-cross mapping in its most basic form by
the following procedure, which is then cast in mathematical
form.

We replace every proper motion vector with a thin line that
extends over the complete area covered by the nebula. We assign
a finite constant brightness to every such line, and generate
an image by adding together all lines. Finally, the result is
convolved with a suitable kernel, for instance, a Gaussian with
a width that is larger than the average separation between the
vectors. In the regions where vectors converge, the resulting
image will increase in brightness and prominently reveal where
most velocity vectors meet. Let us first consider the theoretical
case of a continuous velocity vector field �v(x, y) projected
on the plane of the sky in Cartesian coordinates (x, y). An
actual observation will, of course, have only a sample of N
vectors over a limited field of view. This case will be treated
below.

For a simple mathematical formulation of criss-cross map-
ping, for every velocity vector we add a thin line through it
that extends over the whole image plane. Such a line can be de-
scribed as a Dirac delta distribution δ(d) perpendicular to it with
a constant weight number w (Figure 3, left). All the added vec-
tor lines together constitute the raw criss-cross map. The weight
w of each line can be related to the error in the measurement
of the velocity vector, the velocity magnitude, or some other
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Figure 3. Geometrical elements for the two criss-cross mapping procedures, I and Ic, on the left and right, respectively. For I, a single vector line defined by the
velocity vector V(x, y) has a distance d to the mapping position (x, y). For Ic the distances from two vector lines are used to determine whether the mapping point
(x, y) is in the crossing region (hence the subscript c) of the vector lines around (x12, y12).

quantity that might provide additional information to the map.
Before convolution with a kernel, the raw map intensity I(x, y)
is then given by

I (x, y) =
∫∫

w(xv,yv)δ(d(x,y;xv,yv))dxvdyv. (1)

The distance d(x, y; xv, yv) from a point (x, y) to the line
through a vector �v(xv, yv) can be expressed as

d(x, y; xv, yv) =
∣∣∣vxv

v
(yv − y) − vyv

v
(xv − x)

∣∣∣ , (2)

where vxv and vyv are the components of the velocity vector.
The mapping prescription above takes into account and adds
together the full lines.

A more restricted version is to consider only the crossing
points of the lines. Then the points can be selected using two
Dirac delta distributions (Figure 3, right) with a raw point map
Ic(x, y) given by

Ic(x, y) =
∫∫∫∫

w1(xv1,yv1)δ(d(x,y;xv1,yv1))

× w2(xv,yv)δ(d(x,y;xv2,yv2))dxv1dyv1dxv2dyv2. (3)

The final map If (x, y) is then obtained by convolution of I(x, y),
or Ic(x, y), with a suitable smoothing kernel κ(u, v):

If (x, y) =
∫∫

I (x − u, y − v)κ(u, v)dudv. (4)

2.1. Basic Analytic Examples

We will now discuss theoretical criss-cross maps for two
continuous velocity vector fields that produce point-like Ic maps:
radial expansion and radial expansion with a constant additive
component.

For the radial expansion, the criss-cross vectors are obviously
expected to meet at the center. This can be shown using
Equation (2). Without loss of generality, consider the two-
dimensional case in the (x, y)-plane for a 3D configuration
that is cylindrically symmetric around the z-coordinate. Take
two vectors at positions (x1, y1) and (x2, y2). The homologous
velocity field is given by �v = k �r , where k is a constant and
�r is the position vector (x, y). We look for the position (x, y)
where the two lines through the velocity vectors at (x1, y1) and

(x2, y2) meet. This is the position where the distance given by
Equation (2) vanishes for both vectors, i.e., d1 = d2 = 0.
Inserting the homologous velocity law leads to

x

y
= x1

y1
= x2

y2
. (5)

The only solutions are identical lines along the same radial
direction, i.e., lines with the same slope, or non-parallel lines
that meet at the origin (x, y) = (0, 0). Since the positions of
the vectors (x1, y1) and (x2, y2) have not been restricted, the
solution is true for all vectors. This is, of course, the expected
result. This solution corresponds to the single point of non-zero
emission in the raw point map from Equation (3).

For a homologous expansion �v = k �r plus a constant
component, we consider a constant component along the
z-axis, vz = vc. A similar calculation to the one above shows
that again there is a single crossing point, but now at the position
(vc/k, 0). If the cylindrical distribution is bipolar, i.e., vz = vc

for z > 0 and vz = −vc for z < 0, then there will be two conver-
gence points on the symmetry axis at (vc/k, 0) and (−vc/k, 0),
respectively.

The criss-cross maps of more complex velocity fields can
be considered as the composition of elemental fields that
produce such point-like maps. Any spatial distribution can be
divided into regions of vectors that meet at a single point. The
trivial and worst case would be regions of only two vectors.
For example, the case of a homologous field plus a linearly
increasing magnitude can be considered as a field with sectors
of cylindrical components that depend on the position along the
axis, vc (z) = gz, where g is a constant. The meeting point of the
vector lines is therefore spread along the axis. In this case, there
are two crossing points that are off-axis leading to “side-lobe”
structures (see Section 3).

In the following sections, we discuss and apply the numerical
implementation of the full line mapping of Equation (1) and
show criss-cross maps of a few basic velocity fields, including
that of a homologous expansion with a bipolar component that
increases linearly with distance along the axis to reveal the off-
axis components.

2.2. Numerical Implementation

In practice, the number of integrals involved in the criss-
cross mapping process makes the calculation of a continuous
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Figure 4. Fundamental criss-cross map for a radially expanding sphere with 20,000 vectors that have been randomly distributed in the sphere. On the left is the full
resolution version where every line has a thickness of 1 pixel (image size is 256 × 256 pixels). This image has been convolved with a Gaussian kernel of 14 pixel
FWHM (middle image). On the right is the log–log brightness profile along a slit starting at the center of the smoothed criss-cross map. The slit has a constant width
similar to the width of the Gaussian kernel (the brightness is normalized to 255). The step structure at large distances is due to the limited dynamical range of the
image.

(A color version of this figure is available in the online journal.)

vector field very time consuming. Fortunately, in terms of
computing effort, the number of vectors available in a real
set of observations is rather small, at best a few hundred. For
the case of BD+30 3639, as measured by LHB2002, there are
approximately 200 vectors available. Our numerical scheme
determines whether an image pixel (i,j) is on a line going through
the vector indexed k. If so, then the weight value wk is added
to the pixel. We use a discrete version of Equation (1) in the
following form:

Id i,j =
nk∑
k=1

wkδ(di,j ; k,s), (6)

where i, j are the indices of the image pixels, k is the velocity
vector index, and the total number of velocity vectors is nk .
The distance of the image pixel i, j to the vector line k is
d i, j . In Equation (6), δ(d) is a top-hat function with a value
of 0 or 1. The total width of the top-hat function—which
represents the line width—is s. In practice, δ(d) can also be
some other smoother function than a step function, including a
Gaussian.

We have implemented this simple procedure in the morpho-
kinematic 3D modeling software Shape (Steffen et al. 2011;
Shape is available from http://www.astrosen.unam.mx/shape).
It allows one to generate criss-cross maps from observations
and models. In our implementation, the weight wk = 1/nk

normalizes the raw image to the maximum value obtained
for a radially expanding velocity field, i.e., when all vector
lines merge at a single point. The resulting raw image is then
convolved with a Gaussian kernel. The final image can then be
normalized to a suitable value for the output device and further
processed, e.g., with an appropriate lookup table to emphasize
the features of the map.

3. EXAMPLES OF CRISS-CROSS MAPS

We now discuss a few basic examples that illustrate some of
the general properties of criss-cross mapping.

3.1. Deviations from Homologous Expansion

Our primary scientific goal in this research is to establish
whether there are non-radial deviations from a homologous

Figure 5. Criss-cross map for a homologous + constant bipolar velocity field.
It shows the characteristic double peak at each side of the center. As shown on
the right, for this map we have used 1000 randomly distributed velocity vectors
in a spherical volume.

(A color version of this figure is available in the online journal.)

expansion in a PN. Therefore we take the criss-cross map of
a homologously expanding and uniformly filled sphere as a
reference. Figure 4 shows the criss-cross map for this case.
We used 20,000 individual vectors in order to obtain a quasi-
continuous distribution (Figure 4, left and middle). A plot
of the brightness profile of the smoothed map is also shown
(Figure 4, right). Such brightness profiles might produce useful
additional information if sufficient velocity vectors are available.
As expected, the criss-cross lines converge at the center and
produce a single peak. The first examples in this section are
all oriented with the symmetry axis perpendicular to the line of
sight and in the vertical direction. Examples of deviations from
this orientation will also be discussed below.

As discussed in Section 2.1, adding a constant velocity
component to the homologous field will shift the peak position
and an added bipolar cylindrical component will produce a
double peak in opposite directions. Figure 5 shows the 3D vector
field and criss-cross maps of this case, confirming the double
peak structure. A secondary crossing pattern, or “side lobes,” is
also apparent.

When the cylindrical component increases linearly with
distance along the axis, the bright region of the criss-cross map
is smeared out into a linear feature, since the vc/k is now a
function of z (Figure 6, left). Side lobes have a caustic-like
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Figure 6. Criss-cross maps for a filled sphere with a velocity field of homologous expansion plus a component that increases linearly along the z-axis
(0 < vc(z)/k < 0.5). The circle marks the outer radius of the sphere. The inclination of the symmetry angle with respect to the line of sight changes from
90◦ to 0◦ from left to right, respectively.

Figure 7. Criss-cross maps for different degrees of bipolarity but the same
velocity field (radial expansion with a bipolar constant component along
the vertical axis in the image). The primary structure of the map remains the
same for all with the peaks at the same positions. However, the secondary
structure changes with the distribution of velocity vectors.

(A color version of this figure is available in the online journal.)

structure, the size of which is determined by the maximum of
vc (z)/k as described in Section 2.1.

Figure 6 shows how the cross pattern changes with inclination
angle of the object. The bright horizontal section of the cross
becomes diffuse and at high inclination angles disappears. The
side lobes become very diffuse. The length of the axial bright line
becomes smaller as the projection of the cylindrical component
on the image plane shrinks. When the object is viewed along
the axis, the cylindrical component vanishes and the criss-cross
map is point like.

3.2. Effects of Sampling and Object Structure

The quality of a criss-cross map will vary with the number,
distribution, and precision of the proper motion measurements
within an object. Careful consideration of the effects of sampling
and measuring errors has to be made in order not to overinterpret
the derived criss-cross map. In this section, we show how
the mapping changes with the number of sampling points and
measuring errors.

Figure 7 shows how a change from spherical to bipolar
structure with a fixed velocity field affects the criss-cross
mapping. The primary structure and position of a bright double
peak is conserved, but the side lobes change considerably. Also
the brightness ratio between the primary peaks and the side
lobes changes with the distribution of the velocity vectors. The
reason is that the number of vectors passing through the main

Figure 8. Criss-cross maps for a distorted and partial bipolar nebula with
a homologous + linearly increasing bipolar component along the axis. The
object is seen at three different inclination angles (0◦, 45◦, and 80◦, left to
right, respectively). Maps with two different Gaussian convolutions kernels are
displayed to show the influence of the resolution. Note that at 80◦ inclination
the double peak in the map can still be distinguished at the higher resolution.

(A color version of this figure is available in the online journal.)

peaks is practically the same, while the secondary crossings are
spread out over a larger area in the spherical than in the bipolar
distribution.

The behavior with changing viewing angle for a non-spherical
structure and velocity field can be followed in Figure 8. For
two different smoothing kernels (top and middle), the structure
rotates with its axis from perpendicular to the line of sight (left)
to near alignment with the viewing direction (right). The non-
homologous nature of this cylindrically symmetric velocity field
can be better appreciated with a larger angle between the axis
and the line of sight. When the object is nearly aligned with the
viewing direction, the non-homologous nature of the velocity
field can only be derived with higher resolution, i.e., a small
smoothing kernel. It is important to choose an adequate kernel
for a particular purpose, since large kernels reduce noise, but
high resolution may be necessary to identify small features that
can very well be real.
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Figure 9. Simple model of a multi-polar nebula. A main ellipsoidal section
(red) has been deformed by an oblique bipolar outflow (green). Along its axis
the bipolar outflow adds a linearly increasing velocity component to the overall
homologous expansion. The top left shows the projected velocity vectors used
to produce the criss-cross map in the other images. The positions of the vectors
are superimposed on the map. One hundred vectors were used for each region.
In the criss-cross maps heir positions are marked with colored dots.

(A color version of this figure is available in the online journal.)

Some objects might have regions that disturb an otherwise
homologously expanding object. To test whether this effect can
be detected with criss-cross maps, we made a multi-polar model
with an overall homologous expansion. However, two opposite
bumps have an additional increasing velocity component along
their axes (Figure 9). If the disturbance is sufficiently large,
the criss-cross map reveals which of the bumps has the non-
homologous velocity component by showing a linear extension
in their direction (Figure 9, top right). In the projection drawn
in Figure 9, the four bump regions are spatially distinct and can
be analyzed separately. The separated bumps are shown in the
lower part of the same figure where the difference in the velocity
field can be clearly appreciated from the individual criss-cross
maps.

When the viewing angle is not as favorable, the two regions
can be superimposed in projection. In that case, criss-cross
mapping may still reveal the presence of a non-homologous
velocity component. Figure 10 shows the vectors (top) and the
criss-cross map for the same object as the previous multi-polar
case, but seen from a different viewing angle. The disturbing
bipolar ejection can still be detected as an extended linear
feature.

An important observational problem is the number of sam-
pling points from which the transverse velocity can be reliably
determined. The number of sampling points that can be obtained
depends strongly on the object structure. Smooth distributions
are very difficult and highly structured objects with many local-
ized small-scale brightness maxima are best suited. In Figure 11,
we show how a criss-cross map may change with the number
of available sampling points, between 2000 and 50 vectors. It
is found that the key structure of the map does not change very
much and the double peak nature of the criss-cross map is al-
most as clear in the case of 50 as in that of 2000 vectors. This
shows that the number of vectors can be quite modest and still

Figure 10. Same model as the one from Figure 9 but from a different viewing
angle where the bipolar outflow is projected in the same area as the main nebula
and cannot be separated spatially. If features from each section can be identified
to separate their velocity vectors, the presence of the non-homologous bipolar
outflow can be detected as such from the criss-cross map.

(A color version of this figure is available in the online journal.)

yield clear information that is very helpful in the interpretation
of the velocity field.

The distribution of velocity vectors that can be measured on an
object is strongly dependent on the distribution of brightness. In
smooth low brightness regions, the proper motion measurements
will be much more difficult if possible at all, compared to regions
with high-contrast bright and knotty structures. Within the
regions that allow proper motion measurements, the distribution
of proper motion vectors that can be measured on an object
is likely to be irregular. Therefore, in Figure 12 we study
how the random distribution of the sampling positions can
modify the criss-cross map. In this model, the exact position
of a vector is random, with a uniform average distribution per
area of the nebula shell. Each map has the same 3D velocity
field and structure. The difference is only in the individual
position of the 200 or 50 vectors on the object (left and right,
respectively).

For a test object with 200 vectors the overall structure of the
criss-cross map is quite consistent, with significant changes only
in the relative brightness of the main peaks and minor changes
in the secondary structure. The differences are more pronounced
for the case of 50 vectors, but the overall pattern is still clearly
recognizable.

Finally, in Figure 13 we study how a random velocity
component on a fixed background alters the maps. Such a
random component could physically be caused by turbulent
motion or by measuring errors for the proper motion vectors. In
our test example, we have increased the random component from
map to map. Until the random component becomes comparable
to the systematic velocity field, the overall disturbance to the
maps is rather small and still allows clear conclusions. However,
when the random component becomes similar to the systematic
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Figure 11. Criss-cross maps for different numbers of velocity vectors on a
distorted bipolar shell structure with a homologous + poloidal velocity field.
The poloidal component is zero at the equator and the poles and increases and
decreases linearly with latitudinal angle with a maximum at 60◦ and 40◦ on
either side. From top to bottom, there are 2000, 500, 200, and 50 vectors in a
map. We also include the 3D mesh with the particles and the projected vectors
to illustrate the distributions.

(A color version of this figure is available in the online journal.)

field, the structure is lost and the criss-cross map basically fills
out the area covered by the vectors.

3.3. Limitations and Potential Extensions

The main limitation of criss-cross mapping is ambiguity, i.e.,
there might always be several velocity fields combined within a
given structure that produce the same result. Combining other
types of data, such as spatially resolved spectroscopy, and using

Figure 12. Criss-cross maps for different random distributions of the sampling
positions on an otherwise identical object for 200 and 50 vectors on the left
and right, respectively. At the bottom, a representative distribution of vectors is
shown for each vertical set.

(A color version of this figure is available in the online journal.)

symmetry considerations, may resolve these shortcomings. This
mapping technique is therefore to be considered as a constraint
and diagnostic tool that complements other methods in order to
resolve ambiguities that those techniques might suffer.

The amount and quality of proper motion data obtainable
for an object depends strongly on the nature of its projected
distribution of emission. Best suited are those with sharp small-
scale structures for which a magnitude and direction of motion
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Figure 13. Influence of turbulence or measuring errors in a sequence of
criss-cross maps. With a total of 200 vectors, we add an increasing random
velocity component in Cartesian coordinates of equal average magnitude in each
direction. The projected vectors are also shown for the first and last examples.

(A color version of this figure is available in the online journal.)

can be measured with precision. Diffuse or very elongated
structures without much substructure are less suitable. Further
research of the general properties should reveal more limitations,
as well as other potential benefits and applications.

Possible extensions of the method described here could be
in a more differentiated use of the weighting of the individual
lines. These could include information on the measuring errors,
the velocity magnitude, the brightness in the image, or the radial
velocity measured from spectroscopy. The brightness of the line
could also vary with distance from the position of the vector,
providing information about spatial correlation. The potential
benefits from these types of extensions to the current basic
scheme will be explored in a future paper.

4. THE DIRECTION OF PROPER MOTION
VECTORS IN BD+30 3639

Currently only very few objects have sufficient internal proper
motion measurements to favorably apply criss-cross mapping.
It is hoped that, future analysis of new and existing observations
with criss-cross mapping in mind might yield new suitable data
sets and new information about these objects. In this section, we
apply the criss-cross mapping technique to BD+30 3639, with
approximately 200 internal proper motion vectors published by
LHB2002.

From Figures 3 and 4 of LHB2002, we determined the P.A.s
and deviation δ from the radial direction by direct measurement
from the expanded image of the original paper using good old-
fashioned ruler and protractor, since the numerical data were
unavailable. The center for the angular measurement was in
the middle of the central star image. We estimate the error
in the measurement to be of the order of 2◦ in P.A. and δ.
The robustness of the criss-cross mapping procedure as shown
in the previous section leads us to conclude that the results
and conclusions for BD+30 3639 would not have changed
if original numerical proper motion vector data had been
available.

The distribution of δ as a function of P.A. is plotted in Figure 2.
We find that the distribution is not random around zero, as
would be expected for a radial expansion with some random
measurement errors. Instead, the deviation from radial direction
follows approximately a sinusoidal pattern.

We have used the 3D morpho-kinematic modeling
and reconstruction software Shape (Steffen et al. 2011;
http://www.astrosen.unam.mx/shape) to reconstruct the 3D
structure of BD+30 3639 based on the available imaging and
internal proper motion from LHB2002 and P–V diagrams from
Bryce & Mellema (1999). For this initial reconstruction, we
only used the [N ii] data as a reference, since they are expected
to be more like a thin shell structure, rather than span a signifi-
cant range in distance for every given direction from the central
star. Working with thin shells reduces ambiguities in the recon-
structions. A detailed morpho-kinematic model of BD+30 3639
based also on additional spectroscopic data will be published
elsewhere (W. Steffen et al. 2011, in preparation).

The criss-cross mapping shows that the kinematic center is
not located at the central star. Figure 1 (left) contains the criss-
cross map superimposed on an observational composite image.
There are well-defined peaks at approximately 0.5 arcsec from
the central star. This map shows that the kinematic center of the
expanding nebula is not located at the position of the central star.
Figure 14 (right) is a model map which includes a 0.5 arcsec
shift of the velocity field in the direction as deduced from the
observed criss-cross map (Figure 14, middle). The structure is
a simple elongated tri-axial ellipsoid aligned with the assumed
direction of the molecular outflows. In addition to a homologous
velocity component, there is a random noise in the velocity
vector components of 4 km s−1 in each Cartesian direction, as
well as a cylindrical velocity component of 12 km s−1 along the
direction of the molecular outflows. The cylindrical component
grows linearly from zero starting at half-way to the ends of the
elongated ellipsoid, i.e., the cylindrical component is suppressed
near the bright equatorial region. The detailed structure is not
relevant. The structure and position of the model map is similar
to the observed one, showing that the interpretation of an off-set
kinematic center and a velocity disturbance due to the jets is
a possible explanation for the observations. See Figure 2 for
a comparison of the model and observations in terms of the
directions of the vectors.

5. DISCUSSION AND CONCLUSIONS

We have introduced a new technique, criss-cross mapping,
for the analysis of the internal proper motion field measured
in astrophysical nebulae. Criss-cross mapping was designed to
easily detect deviations from radial expansion. Since a radial
expansion produces a well-defined point-like structure at the
projected position of the center of expansion, deviations from
such an expansion produce characteristic patterns that can help
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Figure 14. Straight lines overlaid on all proper motion vectors of Figure 3 from LHB2002 (left). The resulting line image has then been convolved with a Gaussian
kernel to produce the criss-cross map in the middle, which is also shown in red in Figure 1 of this work. On the right is the corresponding criss-cross map from our
Shape model.

(A color version of this figure is available in the online journal.)

to interpret the data and find effects that otherwise might have
gone undetected.

We have identified some limitations of the method. The maps
cannot be uniquely attributed to a particular velocity field. There
may however be extensions to the current scheme that might
improve this situation. Applying additional information to the
weighting of the criss-cross lines will be investigated as a po-
tential extension of the current method. Used as an additional
constraint in modeling along with images and spatially resolved
spectroscopy, criss-cross mapping can provide important addi-
tional information about the velocity field in an object.

Velocity vector data coverage on an object is important for
the quality of a map, although the number of vectors needed for
the key patterns to emerge is quite low. For this basic version of
criss-cross mapping to work, only the direction of proper motion
is needed. Special care should be given to the determination of
the direction, not only to the magnitude. To our knowledge,
the best current measurement of the internal proper motion
vectors of PNe is for BD+30 3639. We have therefore used
these measurements by LHB2002 as the first application of
criss-cross mapping.

The application to BD+30 3639 leads us to conclude that
the kinematic center is offset from the central star. The lines
connecting the molecular outflow with the central star and the
peaks of the criss-cross map suggest that the tails of the outflows
might be directed toward the newly deduced kinematic center
(Figure 1). This conclusion does require confirmation, since the
elliptical beam of the molecular map is approximately aligned
with the direction between the southern outflow and the peak
and structure of the criss-cross map. This problem does not,
however, occur for the northern component, which shows a
similar alignment with the criss-cross structure.

Reasons for the offset of the kinematic center could be motion
of the central star within the nebula. There is, however, no
evidence for that, since the star appears to be well centered on

the optical image of the nebula. Another option is the presence
of a secondary object that is responsible for the ejection of the
bipolar molecular outflow. The distance of the object would be
600 AU or more from the central star. The molecular outflow
might have distorted the velocity field producing the observed
offset and deviations from a homologous expansion.

This work has been supported by grants from CONACYT
49447 and UNAM PAPIIT IN100410. N.K. received additional
support from the Natural Sciences and Engineering Council of
Canada (NSERC) and from the Killam Trusts.
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