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Abstract. This paper presents a new way of critically assessing and
compacting data for electron impact excitation of positive ions.
Collision strengths {2 are scaled and then plotted as functions of the
colliding electron energy, the complete range of energies being
mapped onto the interval (0, 1). The scaled 2 can then be
represented to good accuracy by a 5-point spline. Similar scaling
and spline fitting techniques enable thermally averaged collision
strengths Y to be obtained at all temperatures. Whole isoelectronic
sequences may then be treated by mapping the ion charge onto
(0, 1) and using a second 5-point spline; thus reducing Y, for the
whole sequence and all temperatures, to a 5 X 5 array. Three main
types of transition (optically allowed, forbidden and exchange) are
discussed separately and illustrated by numerical examples. Interac-
tive programs for analysing atomic data in this way have been
developed.

Key words: excitation rate coefficient — positive ions - spectros-
copy — corona — data compaction

1. Introduction

Accurate atomic data, required in the analysis of astrophysical and
laboratory plasmas, is becoming available in rapidly increasing
amounts from many diverse sources, experimental and theoretical.
For this reason, and because increasing complexity of calculation
may lead to increasing chance of systematic and random error, there
is need for simple methods to check and compare data on a uniform
basis. For the user, this mass of data then needs to be made available
in as simple and compact a form as possible, consistent with no
significant reduction in accuracy.

Many attempts have been made to parametrise rate coefficients
as functions of temperature 7. Extensive use has been made, for
example, of the fits given by Mewe (1972). Many other similar
fitting formulae which reproduce approximately the results of
collision calculations have been proposed. Of particular interest is
the 9-parameter expression based on distorted wave calculations by
Clark et al. (1982). We ought also to mention the work of Gaetz &
Salpeter (1983) in which a very simple fit to the rate coefficient is
proposed. Values of the fitting parameters are tabulated by these
authors for a wide range of transitions and ions. We shall comment
on some of these papers in later sections, but first we outline the
aims and content of the present article.

Send offprint requests to: A. Burgess

1.1. Scope of the present work

We present a method which enables collision data for excitation of
positive ions by electrons (i.e. cross sections and rate coefficients) to
be critically assessed and compared at all energies and temperatures.
The results are expressed in a compact form suitable for reduction of
the large amount of collision data which is now accumulating in
computerised data banks as well as in the literature and unpublished
reports. The rate coefficient may be evaluated at all temperature$
(which is of particular importance for rapidly evolving, non-
equilibrium plasmas), and to within a likely error which, for all the
cases we have examined, is much less than that of the original data.
Results for whole isoelectronic sequences of ions may be combined
into a single compacted form.

In the present paper we concentraté on data for ions of charge
<30 (which covers almost all ions of astrophysical interest), so that,
while magnetic interactions have to be taken into account, we do not
need to consider the full relativistic effects of Lorentz transformation
of electron velocities and this helps to simplify the formulae. Details
of the modifications caused by the latter effects will be given
elsewhere.

The method proposed here forms the basis of an interactive
computer program with graphical display which was designed to be
convenient to use not only by those working in atomic collision
theory but also by plasma physicists and astrophysicists.

1.2. Checking tabulated data for errors

From the way collision data is normally tabulated (i.e. cross sections
and collision strengths as functions of energy or, when thermally
averaged, as functions of temperature) it is often difficult to detect
mistakes such as printing errors. Data also needs to be checked for
inconsistencies; such as, for example, when insufficient partial
waves have been computed. This is particularly frequent at higher
energies and gives data with incorrect high energy or temperature
behaviour. This can also happen when physically invalid extrapola-
tion procedures are used to allow for the contribution from high
order partial waves. Our method allows such inadequacies in the
data to be casily detected.

1.3. Scaling procedures

By using suitable scaling procedures it is possible to remove the
main asymptotic energy (or temperature) dependence from the given
data. The energy (temperature) is also scaled so as to become a
dimensionless variable which ranges from O at threshold energy
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(zero temperature) to 1 at infinite energy (temperature). In this way
the whole variation of a collision strength, for example, can be
exhibited in a single graph since the energy is mapped onto the
interval (0, 1), and the collision strength onto (0, ymax) With yax
finite. Such a graph can show where more, or less, data points are
needed, so offering the possibility of economy in future calcula-
tions.

1.4. Fitting procedure

After scaling and plotting the data in the manner just described, the
next step is to interpolate it. We find that a 5-point spline is
satisfactory for collision strengths which do not have strong reso-
nances (or which have been suitably averaged over the resonances),
and for almost all rate coefficients. In this way a large number of
data points, typically ~20, can be reduced to 5. In general the spline
fit reproduces the original data to within a fraction of a percent. It is
important to note that our fitting procedure allows data to be
extrapolated correctly up to high energies or temperatures. This is
not always true of the fitting formulae which have been proposed in
the past.

The power of the present method arises from it being a smooth
join of local fits in 4 separate energy regions: low, low-medium,
medium-high and high. i

1.5. Thermal averaging

In many plasmas the free electron distribution is very close to
Maxwellian (Bohm & Aller 1947), and the excitation and de-
excitation rate coefficients may be expressed in terms of the
thermally averaged collision strength Y. Methods for carrying out
the Maxwellian integration of {2 to give Y are discussed; careful
account being taken of the high energy behaviour of (2, which
depends on the type of transition: optically allowed, optically
forbidden, exchange or weakly allowed.

1.6. Non-Maxwellian averaging

If the free electron velocity distribution differs from Maxwellian
only at high velocities (as for example in a low density plasma with
a large temperature gradient) then, provided the departure from
Maxwellian is expressed in the way suggested by Ljepojevic &
Burgess (1990), the resulting excitation rate coefficients may be
calculated with only slight modification of the above method.

1.7. Interactive programs

A first version of an interactive program implementing the methods
described here for the analysis of rate coefficients was developed by
one of us (A. B.), in collaboration with Jeff Payne, Jim Lang and
Peter McWhirter at the Rutherford-Appleton Laboratory, for the
Hewlett-Packard 45 system. A version for the Acorn BBC B,
Master and Archimedes microcomputers has been further developed
which handles both rate coefficients and collision strengths (Burgess
1992); this may also be run on the Apple MAC and IBM PC and
compatibles.

2. The collision strength {2

This dimensionless quantity was originally introduced by Hebb &
Menzel (1940) in a classic paper devoted to electron impact
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excitation of O*2. These authors remarked on the symmetry of {2
and noted that, for an electron colliding with a positive ion, it is
finite at threshold energy. The name ‘‘collision strength’ was
suggested by Seaton (1953, 1955) and is now universally used.

In the following subsections we give the relationship between (2
and the cross-section @, and then briefly discuss the overall
dependence of {2 on the ion charge and projectile energy.

2.1. Definition of

() is essentially the ratio of two areas (the cross-section and the
square of the appropriate de Broglie wavelength of relative motion),
viz.

4’71'(!),‘
Al

0= oG —j). (1)
The factor 41 is introduced for convenience, and the statistical

weight w; of level i ensures that, from detailed balance, 0, =0
Since the wave-number £ is related to the wavelength A by

2w
k= o )
we have
. , i)y
0(i—j)= m 3)

This is the usual definition of {2 and is valid for incident particles
with arbitrary mass. If Hartree’s atomic units are used then k,? is
numerically equal to the reduced mass u times the initial kinetic
energy of relative motion in Rydbergs (13.6058 eV). For electron
impact one can assume the target to be infinitely massive so that
u=m, = 1. Note that when Q is measured in may> units
(8.79735 10™'7 cm?) the factor 1 no longer appears on the right
hand side of (3).

2.2. Magnitude of (2

For electron impact, (2 is typically of the order of unity, although
this statement should not be taken too literally. In particular, we
warn against assuming, as some astrophysicists have done, that
when no data is available it is a reasonable approximation to
calculate Q from (3) with {2 = 1. The precise value of {2 depends of
course on the transition, ion and impact energy. Resonances, which
often occur at energies below the ionisation threshold, can cause (2
to vary widely from the background value. The present paper is not
concerned with handling the large amount of data required to
delineate complex resonance structures. For our purposes (2 always
refers to the averaged collision strength in such cases.

It is interesting to note that the magnitude of {2 for proton impact
is much larger (typically of the order of 10° at energies where Q is a
maximum). This is because the cross-section depends mainly on the
velocity of the incident particle and the magnitude of its charge,
irrespective of its mass m, (since the transition is usually induced by
the time-dependent electric field generated by the incident particle),
so that the denominator in Eq. (1) is proportional to m~2 for
comparable values of Q(i — j).

2.3. Charge dependence of (2

As the ion charge number Z increases along an isoelectronic
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sequence the collision strength for a given transition eventually
decreases. This behaviour of (2 simply reflects the ‘‘shrinkage’” of
the target as the nuclear attraction increases. Note that there may be
exceptions near the neutral end of a sequence.

Non-relativistic perturbation theory shows that for large charge
(and a given ratio of incident energy to transition energy),

D (Z+1) 2. (4)*

[* Equation (4) only applies accurately to transitions involving

valence electrons. For an inner-shell electron (Z + 1) would be

increased to some effective charge Z. seen by the electron. ]
This is clear from the work on hydrogenic ions by Goldstein (1933)
and Burgess et al. (1970) in which the Born and Coulomb-Born
approximations were used respectively.

It is interesting to record that the Z-dependence shown in (4) was
not immediately apparent to some early investigators. Aller &
Menzel (1945), for example, tentatively surmised that {2 would
increase like Z*. They did, however, stress that only further
calculations would throw light on the true Z-dependence of (2,
apparently being unaware of Goldstein’s work.

It is sometimes useful also to note that, in general for Z = 0, the
threshold value of £2 is zero.

2.4. Energy dependence of () and types of transition

For positively charged ions (2 is finite at threshold and with
increasing energy it will in general be a complicated function of
the electron energy E owing to the possibility of resonant capture of
the colliding electron by excitation of the ion to a higher state.
However, above the ionization threshold, and in particular as
E — oo, ) will tend to a simple limiting E-dependence which is
determined by the dominant target-projectile interaction and hence
by the type of transition. We now classify the transitions and give
the high energy limiting behaviour, deduced from the Bethe, Born
and Ochkur approximations:

1. Electric dipole,

2. Non electric dipole, non-exchange, (2 ~ const.

3. Exchange, Q ~ const./E>.

Type 1 is associated with a non-zero oscillator strength f; (an
optically allowed transition). For a few cases in which f;; is very
small, a slightly modified treatment may be required. These cases
are classified as type 4 (see Sects. 3.4, 5.4 and 9.2).

Type 2 includes transitions which are induced by either an
electric muitipole interaction (i.e. E2, E3, .. .) or a magnetic
multipole interaction (i.e. M1, M2, .. .). Such transitions are
optically ‘‘forbidden’’. In certain rare cases the selection rules
operate in such a way that an {2 of type 2 has a zero limiting value
(as E — ), due to vanishing of the first order Born matrix element.
These cases are classified as type 5, and will be discussed else-
where.

Type 3 involves a change in the spin of the ion (i.e. an
intersystem transition) in which magnetic interactions are negligi-
ble. Such a transition can only occur through exchange between the
incident and a bound electron. However, if magnetic effects are not
negligible, so that intermediate coupling rather than LS coupling is
required for the ion or the total system, then there will be no type 3
transitions. Thus spin-change transitions will often be of type 3 for
ions with low Z, but as the charge increases they will become more
predominantly of types 1, 2 or 4. Note that intersystem transitions
of type 1 (or 4) are often referred to as ‘‘semiforbidden’’.

{) ~ const. In(E)

For theoretical data it is clear that the type of transition, and
hence the high energy behaviour of {2, depends on whether or not
magnetic interactions are included in: (i) the Hamiltonian used to
model the ion, (ii) the collision calculation. Thus for a given
transition the high energy behaviour of collision strengths calculated
in different approximations may not be the same (and the true
behaviour, i.e. that of accurate experimental data, may be different
again). In such cases, making allowance for how well the true
physics of the ion is represented is a crucial part of the assessment of
the data.

3. Scaling of 2

It has been customary to plot or tabulate Q (or £2) as a function of
the colliding electron energy E. However, Tully (1978, 1980)
showed that for intersystem transitions it is advantageous to remove
the main E ~* dependence of Q by scaling; the scaled (or reduced)
quantity having a relatively small overall variation between
threshold and infinite energy. We extend this procedure to the other
types of transition and make it more flexible by introducing an
adjustable parameter C which is discussed in detail below. In this
way considerable data storage economy can be achieved. Furth-
ermore, by suitably scaling E, one can represent the entire variation
of Q on a single graph or table.

The notation used is as follows:
Zy nuclear charge number

z ion charge number
i— ] denotes excitation of the ion from state i to state j
E; E; colliding electron energy before, after excitation
I;, 1 ionization potential of the initial, final state
E; transition energy (>0 for excitation)
fij absorption oscillator strength
(N.B. wifjj = ~w;fji = gf)
(NE/E;;) collision strength as a function of E,/E;
x reduced energy (= E;)
y reduced collision strength (= £2,)

All energies are expressed in terms of the Rydberg energy,
I = 13.6068 eV, and all temperatures are in degrees Kelvin.

We now define the reduced variables x and y for the four types of
transition. Note that x is defined to be zero at threshold (£; = 0) and
unity when E; = o, also that £2(0) = threshold value of £2.

3.1. Type |
InC
x=1-— (5)
In —E—’ + C
0
y(x) = T (6)
In[=L + e)
(E,»,
N.B. y(0) = 0(0), )
and  y(1) = doify; (8)

E

ij

(see Burgess & Tully 1978).
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3.2. Type 2
2)
E;
x=—u ©)
£
— +C
yx) = 0. (10)

N.B. y(0) = £2(0), and y(1) can in principle be obtained accurately
by means of the Born approximation.

3.3. Type 3

Eive
E;

_(E :
y(x) = (E_ + l) 0.

iy

(1)

(12)

N.B. y(0) = £2(0), and y(1) can in principle be obtained by means
of the Ochkur approximation. g

3.4. Type 4
x = as for type 1 (13)
£
yo) = —F—"+. (14)
(2]
Inf— +C
(0)
N.B. 0) = ——, 15
y(0) n(©) (15
and  y(l) = as for type 1. (16)

4. Rate coefficient and thermally averaged collision strength
4.1. Definition of q

Let N, be the total number of free electrons per unit volume. If the
distribution of electron speeds f(v) is Maxwellian, then

2 1/2 . 3/2 2
o e ol
where
J fvmdv =1. (18)
0

The atomic i — j collision rate (i.e. transition probability per
unit time) is given by N.g(i — j) where
q(i = ) = [ f)viQi — j)dv, (19)

0
is the rate coefficient. The collision rate per unit volume is N;N.q,
where N; is the number density of ions in level i. The atomic
parameter g(i — j) is thus a measure of the frequency with which

free electrons induce the transition i — j in a plasma at temperature
T.
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4.2. Definition of Y

We now transform from v; to E;, where E; is the colliding electron
kinetic energy after excitation has occurred, and rewrite (19) as
follows:

2 lx 172 E'. Y’_
({(l g ]) = Zﬁ]/“a(,ﬁmc_’ (——) cxp(-_’) —u (20)

kT kT) w;’
where
(21
is the thermally averaged collision strength first introduced by
Seaton (1953), and 27" ?aghm. ™" = 2.1716 10 * cm* s "

The rate coefficient q(j — i) for the downward transition is
given by

, , w; Eij . ,
q(j— i) = . exp T qi — j).
j

4.3. Temperature dependence of Y and types of transition

(22)

It follows from (21) that, when T — 0, Y — (2(0), for all types of
transition.

The high temperature limiting behaviour of Y follows from (21)
and the energy dependence of (2 specified in Sect. 2.4. It depends
on the type of transition as follows:

Type 1 (or 4) Y ~ const. In(T)
Type 2 Y ~ const.
Type 3 Y ~ const./T

4.4. Charge dependence of Y

From Sect. 2.3 it is clear that, for a given transition and a given
value of kT/E,;, the quantity (Z + 1)*Y will in general vary only
slowly along an isoelectronic sequence, and will vanish when Z and
T are both zero. This can be very useful when comparing,
interpolating and compacting excitation data for whole sequences of
ions; two examples are given in Sects. 7.5 and 8.2.

5. Scaling of Y

Taking into account the behaviour of Y as a function of T described
in Sect. 4.4, reduced variables (analogous to those introduced in
Sect. 3 for (2 as a function of E) may be used to map the whole
variation of Y and T onto a finite range. Thus we now define x as the
reduced temperature (=T,), and y as the reduced Y (=Y,), for the 4
types of transition; again incorporating an adjustable parameter C,
which is not necessarily equal to that in Sect. 3. Note the x is
defined to be zero when T = 0 and unity when T = oo.

5.1. Type 1
y=]_—MC 23)
(£ <)
Inf[—+ C
E;
Y
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N.B. y(0) = 2(0), (25)
and  y(1) = 22y (26)
5.2. Type 2
KT
Ey 27
xX=——"
oL .
yx) =Y. (28)
N.B. y(0) = 0(0), (29)
and  y(1) = high energy limit of (2. (30)
5.3. Type 3
)
- 31
x %G e 3D
y(x) = (E + l) Y. 32)
N.B. y(0) = 0(0), (33)
and (1) = [ nd(ﬁ). (34)
0 Eij
5.4. Type 4
x = as for type 1 (35)
Y
yx) = (kT ) (36)
Inf—+ C
£(0)
N.B. =—"
B. y(0) InC)’ (37
and  y(l1) = as for type 1. (38)

6. Evaluation of Y

In the past, {2 has usually been fitted to functional forms chosen so
that (21) can be evaluated analytically in terms of tabulated
functions (exponential integrals etc.). When using a microcomputer,
that approach is no longer of any real advantage since the evaluation
of the analytic functions is often no quicker than numerical
integration in (21). In contrast, our approach has been to aim first for
the most efficient fitting of 2 (effectively precluding analytic
evaluation of (21)), then to use numerical integration methods,
carefully chosen so as not to lose any significant amount of the
accuracy of the original data, and applicable for the whole range of
T. We now discuss these numerical integration methods.

6.1. Trapezoidal rule

This is the method which has often been adopted in the past by those

using the RMATRX package of Berrington et al. (1978). In the
region of resonances (2 is evaluated at a large number of energies
(typically several hundred) in order to delineate its complicated
energy dependence. The aim is to use a sufficiently small steplength
so that all resonances are accounted for. For convenience we now
omit the subscript j from E; so that E denotes the free electron
energy after excitation. The contribution to Y from the interval
Ey < E < E, is then evaluated using the trapezoidal rule

b A

f e “du = (E) (.Qoe—“ + Q|e—b) . (39)
where u = E/kT, a = Eo/kT, b = E,/kTand A = b — a.

The first interval (Ey = 0) contributes the amount

a A

J Qe “du = (5) (2o + D178, (40)
0

and this is the dominant contribution to Y when T — 0. Since
(E| — Ey) is chosen independently of the temperature, it is seen that
the trapezoidal approximation leads to a non-physical divergence in
Y when T — 0 (A — ). The method is therefore unsuitable at low
temperatures.

6.2. Linear interpolation

Alternatively one can use linear interpolation to estimate {2 within
an interval Ey < E < E, and then evaluate the contribution to Y by
analytic integration, i.e.

(E — Eo)

D=0+ (2, -0
o+ (£, 0)(E|—E0)

(41)

and

b
J Qe du= [0 — Qe = (2 — 2))(1 = e74)/Ale ™.

(42)
In this case the integral over the first interval (E, = 0) contributes
the following amount:
A
(j)'!)e_“du =~y — e — (2 — 2)1 — e )/A. 43)

This, unlike (40), tends to the correct limit as T — 0 (A — ),
namely (2.

6.3. Gauss-Laguerre

The collision strength 2 is basically a function of E;/E;;, so that
(21) is of the form

o0

Y= [e“Qu)du,
0
where t = kT/E;; and u = E;/kT.

The Gauss-Laguerre method is ideally suited to this type of
integral, provided (2 varies not too rapidly relative to the exponen-
tial term (so that £2 may be approximated by a polynomial in u).
Thus it is the method we adopt for evaluating the non-resonance
contributions to Y.

It can be applied in a straightforward manner, except perhaps
when ¢ becomes large. In this limit, the G-L points at which {2 is
evaluated are all for (E;/E;;) — . This does not matter for type 2,
since £2 ~ const. for large E;/E;;. Neither is it of much importance

(44)
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for types 1 and 4 since, for large E;/E;, {2 increases like
log(E;/E;; + const.), which, although not a polynomial, is slowly
varying, so that the G-L method gives reasonable results for
integrals of this type. For example, comparison with analytic
evaluation shows that a 10-point G-L gives better than 1% accuracy
when applied to

©

J e “log(tu + e)du,

0

no matter how large the value of ¢ (the maximum error occurs for
t ~ 1000). This is of course less accuracy than one would usually
expect from the method (e.g. for r < 2, about 6-figure accuracy
obtains), but it is adequate for the purpose, as we normally use 20
points with 5-, 10- and 15-point spot checks to assess the accuracy.

For type 3, however,
E: -2 E.

Do =L+ for large —~, (45)
so that, in (44), when T is large, {2 varies more rapidly than the

exponential term (and not approximately as a polynomial); in fact,
the G-L value for

-8/

tends to zero instead of f d (ETI) .
0

i

(46)

To allow for this, we write (for type 3 only)

_ 7 _(E\t+ G _E E;
tY {exp[ (EU) C) ]{Qexp(C.E,-,)}d<E_,~j)’ @7)

where C, is a positive constant to be chosen. Applying the G-L
procedure now gives results which tend uniformly (as T — ) to a

non-zero limiting value for Y. Ideally this should be [ 2d (—i) ,
0 ij
i.e. Y (T, = 1), which we achieve as follows:

1 1\ E
Put v={-4+—|—, (48)

t (o Eij

“ vt

th Y= +1t/Cy)" ' [e"{N dv, 49
en (1 +1/C) {e { eXP[t+CI]} v (49)
where (for the moment) C, = C,, and {2 is evaluated with
Ej vCt
== = 50
E,'j t+ C, (50)

This is now suitable for using G-L to calculate Y, at any tempera-
ture, including 7=0 and T— «. N.B. For T = 0, Eq. (49)
correctly gives Y, = £2(0), which is independent of C,, while for
T — =, Eq. (49) gives

Y =C, [e{QC e }dv. (51
[}
We thus need to adjust C,, C, by trial and error until
Cy [ e {020 C)e"}dv = fﬂd(—’) (52)
0 0 E;
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is satisfied as near as required, where G-L is used to evaluate the
integral on the lhs, and any suitable method (usually a Newton-
Cotes formula; Simpson, Boole, etc) used to evaluate the rhs. The
latter is most conveniently done by first writing it in the form

1
[ yl(€ = Dx + 1172dx, (53)
0
g = (E)/(E
where x = E, (Eij) / (EU + C) (54)
E; 2
and y=40, = (—j+ l) 0. (55)

If C, = C, is maintained when making this adjustment, then a
precise solution to (52) cannot usually be found, because the lhs
reaches a maximum value slightly less than the rhs. We therefore
relax the condition C, = C, use (52) to evaluate C, for any chosen
C,, then vary C, (with typical starting values for C, = 0.67N'/?,
where N is the number of G-L points used) until C,/C is as close to
1 as required. These optimal values of C,, C, are then used in (49)
for all required T. In effect, the method uses G-L for small 7, and
goes smoothly over to N-C at large T. Accuracy checks, carried out
by varying the number of G-L points used and comparing with
analytic results, again indicate that better than 1% accuracy is
achieved no matter how large the value of ¢ (the maximum error
occurs for ¢t ~ 100, and of course very much more accurate values
obtain for ¢t ~ 1).

6.4. Non-Maxwellian excitation rates

If the velocity distribution function may be expressed in the form
suggested in the treatment developed by Ljepojevic & Burgess
(1990), then, at a given point in the plasma where T is the
temperature of the bulk of electrons,
Y = [e “Qtu)du, (56)
0
where g(u) at that point is a given function (monotonic in u and
asymptotic to unity for small «), which is obtained by solution of the

Landau-Fokker-Planck equation.
Writing v = ug, we have

ot du
Y —_ -V
= {e <_dv) .Q(tu)dv,

so that the above integration methods may be used after obtaining
u(v) and u'(v) by inverse interpolation of the given v(u). A
convenient method of doing this is to input g, as a tabulated function
of v, into the procedure described in Sect. 7.2, to obtain g as a cubic
spline in V. = v/(v + C) with C chosen to optimise the fit.

(57)

7. The microcomputer program OMEUPS

This is an interactive program with graphics for visually assessing
and conveniently compacting collision strength data. It is easy to use
even by non-specialists in atomic physics. The present version is in
BBC BASIC and was written by one of us (A.B.) for ACORN
microcomputers; viz. BBC models B, B+, M and Archimedes.
With suitable emulators* it can also be run on the Apple MAC and
IBM type micros.
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[* Available respectively from: Human-Computer Interface Li-
mited, 25 City Road, Cambridge CB1 1DP; and M-Tec Computer
Services, The Market Place, Reepham, Norfolk NR10 4JJ.]
OMEUPS has two branches labelled OMEGA and UPSILON.
As the names suggest, OMEGA is for analysing energy-dependent
collision strengths, while UPSILON deals with their thermally
averaged counterparts. The compacting of data is done by a spline
fitting technique which is outlined in the following section.

7.1. Spline fitting of the scaled data

We approximate y(x), i.e. £2; or Y;, over the domain 0 < x < 1,
by a cubic spline y¢(x), with knots at x = 0, 1/4, 1/2, 3/4 and 1.
The functional form of the resulting interpolating spline is given in
the Appendix. The values of y, at the knots are determined either by
means of a least-squares fit to the data or by visual adjustment with
computer graphics.

7.2. OMEGA branch

After inputting the data (i.e. E; and £2;;) and an initial estimate for
C, the collision strength is transformed to £, and displayed as a
function of E,. By modifying the value of C one can change the
distribution of data points on the plot so as to obtain a reasonably
even distribution in x (increasing C pushes the points to lower x, and
vice versa).

The least-squares spline curve is then drawn on the screen and
can be compared with the original data points. The possibility exists
of adjusting the spline curve manually, by moving a cursor on the
screen, to change one or more of the five knot-values y (x;)
(i =1, ...5). This may be necessary if there are insufficient data
points, or if some of the data points are assessed as of low accuracy
(as an alternative such points may be given reduced weight in the
least-squares calculation).

The rms error of the fit, together with the nodal values y,(x;)
(i=1,...5) appear on the screen. Finally, by altering C and
repeating the least-square fit, it is possible to minimise the rms error.
This is typically found to be less than 1%.

The fitted £2 may then be averaged over the distribution
function, to produce the corresponding Y, using the methods
described in Sect. 6.

7.3. UPSILON branch

If £2 shows complicated resonance structure then it cannot be treated
by OMEUPS in its present form. However the thermally averaged
collision strength Y will in general be a smoothly varying function
of T, and for this the present fitting procedure is ideally suited. The
scaled quantity Y, is plotted against the reduced temperature T, and
then approximated by an interpolating 5-point cubic spline in
exactly the same way as {2,. By varying the parameter C and
minimising the rms error one can optimise the fit.

7.4. Treatment of pseudo resonances

Close coupling codes such as RMATRX often produce spurious
“‘pseudo’” resonances in 2 if pseudo orbitals are included in the
calculation. These fluctuations usually occur at energies above the
region of true resonances, and our method provides a simple means
of removing their effect.

We illustrate this by considering the type 2 transition
3s2!S — 3s3d'D in Si*?, for which Dufton has performed a
12-state close coupling calculation (Dufton, private communication
1982; see also Dufton et al. 1983; Dufton & Kingston 1989).
Dufton’s results have now replaced those of Baluja et al. (1980,
1981b) in the atomic data bank at The Queen’s University of
Belfast.

Energy-averaged collision strengths for some of the transitions,
in the range 0 < E; < 1, are given in Dufton & Kingston (1989).
This is a useful way of compacting collision data which, because of
resonance structure, is very voluminous. The averaging was carried
out in 10 contiguous energy intervals ranging from (0, 0.05) to
(0.7, 1.0). We have corrected a misprint in their Table 4, where the
last interval is given as (0.7, 10.0). Only the first two energy bins lie
within the region of true resonances (E; < 0.0974), and above this
their collision strength varies smoothly. In Fig. 1 we plot (2, at the
midpoint of each bin; we also include 19 additional data points
corresponding to values of {2 from the QUB data bank at energies in
the range 0.8894 < E; < 8.4894, and the high energy limit value
.(1) = 1.646. This was obtained using the Born approximation,
and details of our calculation will be given elsewhere.

By making a spline fit we are able to remove the effect of the
large pseudo resonance at E, ~ 0.6. This is shown in Fig. 2, where
the original collision strength is plotted as a function of E; together
with a curve generated by the spline fit. The present technique is
seen to be a convenient way of correcting the unphysical fluctuation
in 0.

It also averages over the jump in {2 at low energies (E, ~ 0.1)
which is caused by real resonances. In order to check whether this
introduces any substantial error, we used the (2, spline to calculate
Y, and compared with the values of Y given by Dufton & Kingston
(1989) for the range 3.8 < log T < 5.2. Agreement to within 3%
was found.

It is interesting to compare the data bank results shown in
Figs. 1 and 2 with the high energy limiting value. The close
coupling calculation included only partial waves with L < 12, and
this is insufficient to ensure convergence at the highest energies
considered. The data bank has a program for approximating the high
order partial wave contributions which uses the same method for
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Fig. 1. Si*?(3s? 'S — 3s3d'D). RMATRX data showing pseudo resonance
near £, = 0.6. * Born limit. C = 0.55
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Fig. 2. OMEUPS averaging out of pseudo resonances, from data points
shown in Fig. 1

allowed and forbidden transitions i.e. it assumes that
0,/ ~ constant as L — o, While there is no theoretical
justification why this should apply to type 2 transitions, one can see
from Fig. 1 that in the present case it does appear to work
remarkably well, although there is some indication that it slightly
overestimates at the highest energies.

Finally, on spline fitting Y} with C = 1 and knot values 0.884,
1.236, 1.449, 1.629 and 1.652, we find that Y for this transition can
be obtained with no significant error above that of the original data.

7.5. Treatment of isoelectronic sequences of ions

Suppose that the above procedures have been used to obtain the
spline knot values of Y.(T;), (T, =0, 1/4, 1/2, 3/4, 1), for a
particular transition in isoelectronic ions of varying charge Z. From
Sect. 4.4, we see that the values of (Z + 1)2Y,, for each given T,
should vary smoothly with Z and stay finite for all Z, so that they
may again be interpolated and fitted, this time to a reduced Z
variable of the form

_z
Z+C’

r (58)
Note that, if we include the neutral atom case (but not negative
ions), the range of the reduced independent variable is again (0, 1),
and that the adjustable constant C may be different from that used in
the first fitting (to T, see Sect. 5).

Thus, defining

Yo(Te, Z)) = (Z + 1)’YA(T)), (59)

we see that the overall procedure is a two dimensional spline fit to
the surface Y\, over the unit square 0 < 7, < 1,0 < Z, < 1. This
gives a 5 X 5 set of spline knot values for Y, from which, in
principle, the rate coefficient may be obtained for all temperatures
and all charges.

As an example, in this section we consider Li-like ions, for
which there is a good set of data (see e.g. Cochrane & McWhirter
1983), limiting ourselves to ion charges such that full relativistic
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effects may be neglected (see Sect. 1.1.). In Sect. 8.2, a further
worked example is given for Be-like ions, and applied in detail to
N*3.

7.5.1. 2s-2p transitions in Li-like ions

We consider data for the isoelectronic ions Be ", C*3, 0%3, Mg*?,
Ar*!5 and Fe*?, taken from: Hayes et al. (1977); Merts et al.
(1980); Cochrane & McWhirter (1983); Gallagher & Pradhan
(1985); Burgess et al. (1988, 1989); Zhang et al. (1990). On using
OMEUPS, the data appeared to contain no inconsistencies or
discrepancies.

For this range of ion charge we need only fit

0(2s, 2p) = (2812, 2p12) + 22512, 2p3/2) (60)
since, to a good approximation,
(2172, 2p3/2) = 200281 /2, 2p1/2) - (61

To obtain the spline fit to (2, (as described in Sect. 7.2), a
common value of C = 4 was taken which, although not quite
optimal for each ion, gave very good fits to the data; the rms errors
being 0.87%, 0.58%, 0.90%, 0.18%, 0.32% and 0.29% respec-
tively.

These fits to £2, were used to calculate the Y, which were in turn
used (see Sect. 7.3) to obtain the spline fit to Y, for each of the ions.
Again, a common value of C = 4 was found to give very accurate
fits to the Y; the rms errors being 0.20%, 0.45%, 0.40%, 0.59%,
0.72% and 0.77% respectively.

The spline knot values of Y, = (Z + 1)?Y thus obtained were
then fitted (as a function of Z, = Z/(Z + 4), separately for each
value of T, (=0, 1/4, 1/2, 3/4, 1). Again a common value of
C = 4 gave a very good fit; the rms errors being 0.42%, 0.18%,
0.25%, 0.23% and 0.97% respectively.

Figure 3 shows the original data for Y,.(T;, Z.), the first spline
curve fit to it for each of the 6 ions, and the final double spline
surface fit to all of the data.

The final result is that excitation rate coefficients for all 23 ions
(Be* to Fe*23) may be obtained at all temperatures, with negligible
error additional to that of the original data, from the following
expression:

0.0 0.5 1.0
Tr

Fig. 3. Li-like ions (25 — 2p). Plot of Y., against reduced temperature T’
and reduced ion charge Z,
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Y(2s,2p) = (Z + 1) 2 In (kET + e)

'Spline(Pl’PZ’P37P47P57Tr)7 (62)
where
Pn = Spline(sln’ Sva S3nv S4n’ SSrn Zr) (l sns 5)7 (63)
In(4
T=1-—02@ (64)
kT
ln(——+4)
E
V4
Z,=——, 65
Z+4 (65)

the function spline (a, b, c, d, e, x) is given in the Appendix, E is
the 2s — 2p excitation energy of the ion, and the S, are as in
Table 1.

With modifications to include full relativistic effects and depar-
ture from approximation (61), the above fit is extendable to cover
the whole range 1 < Z < 89. This will be detailed elsewhere.

8. Comparison with other fits

Previous fitting techniques have often been based on simple global
analytic expressions, with adjustable parameters determined by the
method of least squares. Such fits are useful for interpolating
collision strengths that vary slowly with energy or temperature.
However, unlike the present approach, they may not be suitable for
extrapolating beyond the range in which the original data was
calculated. This drawback is apparent in the examples which follow.

8.1. An Q(E) fit

A functional form that is widely used for fitting collision strengths
which have no resonance structure is the following:

N

D=3 CyX"+DhnXx
N=0

where X = E;/E;;.
The integration in (21) can be performed analytically to give

(66)

Nmax
Y=Cy+ {NZI YCnEn(y) + DEI()’)} e’ 67)
where y = E;;/kT and En(y) is the exponential integral of order N
(see Abramowitz & Stegun 1964).

As an example we consider the 2-state close coupling calculation
by Ho & Henry (1983) for the 2p*S — 2p23s*P type 1 transition in
O™. These authors give the collision strength graphically over the
range 0.86 < E; < 6. They were able to fit their results to within

Table 1. Spline knot values S, for use in (63) to give Y(2s, 2p) in
all Li-like ions of charges 1 to 23

m/n 1 2 3 4 5

1 0.000 21.88 45.01 51.99 44.40
2 67.89 68.12 68.88 68.23 57.26
3 167.8 124.4 97.79 83.27 64.47
4 234.6 162.1 118.5 97.00 68.81
5 284.2 186.8 130.2 107.0 70.76

Qr: /

5% by the expression (66), with Ny, =2, Co= —2.173,
C, =4.090, C, = —1.510 and D = 1.465. We have used this to
evaluate (2 at 10 energies and the results for (2, are shown in Fig. 4.
Also shown is our spline fit to these values of 2, which, it should
be noted, do not tend towards the true high energy limit. C = 1.7
gave a minimum rms error of 0.20%. We then used OMEUPS to
calculate Y at 10 temperatures and made an optimised spline fit to
the reduced data points by choosing C = 3.8 (rms = 0.25%, see
Fig. 5). Table 2 compares values of Y from (67) and from
OMEUPS; they are seen to differ by not more than 3%.

Ho & Henry (1983) state that (67) should not be used for
T > 10°. The reason for this is that while (66) has the correct high
energy dependence (namely o< In X), the value 1.465 for the
coefficient D differs from the Bethe limit value 4gf/E;; = 0.800. In
Fig. 6 we retain only the data points from Fig. 4 which correspond
to energies E; < 6 and, when making the spline fit, include the
correct high energy limit point. This corresponds to f = 0.086,
which is the dipole length oscillator strength given by Ho & Henry.
The spline curve in Fig. 6 bridges the gap between the low energy
data points and the Bethe limit and we surmise that the resulting fit
to Y; shown in Fig. 7 (with C = 3.8 and knot values 0.4070,
0.4089, 0.4619, 0.5806, 0.8014) should allow one to make reliable
estimates of Y at all temperatures.

8.2. Fits for Y(T)

Numerical integration is used to calculate Y when (2 contains
resonance structure or if it has not been approximated by an analytic
expression. Y is a slowly varying function of temperature and

| A N LA N L |

15

1.03— / *

¥

/ %

/
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L // 1
0.3 /L/ —
_;_,__————q——ﬁ_q‘_%i___ﬁ_'___’___‘/., ?
n‘n....l...,l..J.l...é.I L
0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 4. O+ (2p“S — 2p?3s*P). Optimised fit to 2, data points generated
by the simple functional form of Ho & Henry (1983). N. B. The data do not
tend to the Bethe limit *

Table 2. Y for O*(2p**S — 2p?3s*P). Calculated; (a) analytical-
ly from (67), (b) using OMEUPS

log(T) 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Y(a) 0.408 0.411 0419 0.434 0.462 0.551 0.874
Y(®b) 0.408 0.409 0.412 0.421 0.451 0.553 0.873
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Fig. 6. As in Fig. 4, but omitting data points at energies E; > 6 and
including the limit point (2,(1) = 0.800. To match Fig. 4, C = 1.7 was
used, which gives a not quite optimal rms of 0.17%

therefore amenable to analytic approximation. It is customary to use
a fit that is valid only in a restricted temperature range centred on the
temperature at which the ion has maximum abundance under
conditions of ionisation equilibrium.

We consider the 2'S — 2'P transition in N*3 which raises a
number of interesting points related to the interpolation of data, not
only in temperature, but also in atomic number. Since this ion has
not been the object of detailed quantal calculations we estimate Y’
for it by interpolating the data available for other ions in the Be-like
isoelectronic sequence, namely C*2, O*4, Ne*® and Si*'°.

Berrington et al. (1981) used the close coupling and Coulomb
Born approximations for 29 transitions in these ions. Later they
extended their calculations of {2 to higher energies and gave reliable

Fig. 7. As in Fig. 5, but with data points generated from the curve in
Fig. 6. To match Fig. 5, C = 3.8 was used, which gives a not quite optimal
rms of 0.4%

fits for the optically allowed transitions, including the one we are
interested in (Berrington et al. 1985a). They also performed thermal
averaging and tabulated the resulting Y at temperatures in the range
log(T,) * 0.8, where log(T,,) = 4.9, 5.3, 5.8 and 6.2 for C*2,
O**, Ne*® and Si*' respectively. These values for Ty, are taken
from Jordan (1969).

Keenan et al. (1986) used a quadratic in Z, to fit the data for
C*2, 0%, Ne*®and Si*'%. More precisely, their procedure was to
fit, to a quadratic in Z,, the values of Y for temperatures

T = CIPZ() N (68)

where /p is the ionisation potential (in €V) and c is a constant chosen
so that log(7) lies in the range used by Berrington et al. (1985a). In
this way Keenan et al. were able to interpolate along the isoelectro-
nic sequence and obtain Y for each of the 29 transitions considered
by Berrington et al. (1985a). Finally, they used the following cubic
polynomial to fit their data for transitions in N*3 and other ions in
the sequence:

Y(T) =ag + at+ aztz + a3t3, (69)

where ¢ = log(T). The values of the coefficients a; for
N*3(2!s, 2'P) are: ao = 20.09, a; = —7.490, a, = 0.83727 and
as = 0.

Gaetz & Salpeter (1983) adopted quite a different fitting formu-
la, namely

T\P
Y(T) = a(T—m) .

They thermally averaged the collision strengths given by Berrington
et al. (1981), and then used (70) to fit their results. By graphical
interpolation of a and B for Z = 2, 4, 6 and 10, we find @ = 3.85
and B = 0.092 for N*3(2'S, 2'P). These values differ from those
given by Gaetz & Salpeter (& = 4.03 and 8 = 0.157) suggesting
that they used a different way of interpolating along the isoelectronic
sequence. We note that their tabulated B is not a smoothly varying
function of Z as it presumably ought to be.

(70)
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In order to compare our fitting procedure with the aforemen-
tioned methods, we proceeded as follows. The Y(2!S, 2'P) data
from Berrington et al. (1985a) for Z = 2, 4, 6 and 10 were fitted by
UPSILON to give the spline knot values of Y.(7,) shown in
Table 3. It was clearly simpler to use the same value of C for the
different ions, but in all cases this was very close to the optimal
value. The maximum rms error was 0.29%.

As in Sect. 7.5, we then fitted the scaled quantities
(Z + 1D)2YL(T,) to S-point splines in Z, = Z/(Z + C), for each
value of T, so the Y(2'S, 2'P) can now be obtained for any Be-like
ion with charge in the range 2 < Z < 10, from

kT
Y=Z+ 1)? 1n(E + e) spline(P,, P,, P3, P4, Ps, T,),(71)

where
Pn = SPline(Sln, SZn’ S3n5 S4n, SSn; Zr) (1 sns< 5), (72)
In(2.2
T,=1- % 3)
In (— + 2.2)
E
V4
Z, = —, 7.4
Z+4 a4

E is the 2'S — 2'P excitation energy of the ion, the function
spline(a, b, c, d, e, x) is given in the Appendix and the S ,,, are as in
Table 4.

In particular, for N+3, by using (72) with Z = 3, we obtain for
the P, (i.e. the spline knot values of 16Y(T})), the values 51.65,
49.54, 45.30, 40.54 and 33.04 corresponding to 7, = 0, 1/4, 1/2,
3/4 and 1 respectively. These can then be used in (71) to determine
Y for N*3 for arbitrary T. In Fig. 8 we plot Y, calculated in this
way, as a function of log(T'). Also shown are the values of Y given
by the fitting formulae (69) and (70). While there is reasonable
agreement (better than 10%) for temperatures in the range
4.4 < logT < 6.0, only the present method provides a reliable
means of estimating Y(T') for arbitrarily small or large values of 7.

Table 3. Be-like ions: Spline fit to Y(2'S, 2'P) with C = 2.2. (Z
is the ion charge)

z Y:(0) Y. (1/4) Y.(1/2) Y.(3/4) Y.(1)
2 3.869 3.952 3.890 3.804 3.303
4 2.657 2.452 2.152 1.815 1.417
6 1.839 1.625 1.366 1.070 0.7909

10 0.9926 0.8570 0.6905 0.5006 0.3502

Table 4. Spline knot values S,,, for use in (72) to give Y(2'S, 2'P)
in all Be-like ions of charge 2 to 10

m/n 1 2 3 4 5

1 0.000 3.506 7.012 10.52 14.02
2 22.67 25.05 26.90 28.66 26.51
3 66.43 61.30 53.80 45.37 35.43
4 129.8 112.0 89.06 63.06 43.42
5 199.7 181.8 131.5 78.85 49.13

logT

Fig. 8. N*3(2s?'S — 2s2p'P). Comparison of fitting techniques. K,
Keenan et al. (1986); G, Gaetz & Salpeter (1983); B present method. Only B
is correct over the whole range of log T

9. Further examples of the method

So far we have concentrated attention on type 1 and type 2
transitions. For completeness we now analyse cases of type 3 and
type 4 transitions. Together with the previous examples these
highlight certain features of the OMEUPS program. They show, for
example, that a knowledge of the high-energy limit point greatly
enhances confidence in the fit. However, it appears from the
numerous cases we have tested so far that, even when the limiting
value is unknown, the present method provides physically meaning-
ful results at all energies and temperatures.

9.1. A type 3 transition

We consider the transition 1s?'S — 1s2p3P in O*®. Figure 9 is a
plot of 2.(E,) based on the tabulated data from Sampson et al.
(1983), who used the Coulomb Born Oppenheimer (CBO) approx-
imation (see Burgess et al. 1970), so consequently their collision
strength (2 is a smoothly varying function of energy.

When making the spline fit shown in Fig. 9 (C = 3.6,
rms = 0.18%), we took account of the Ochkur high energy limit
E2( = 43.0. (Tully 1980). We then used the program to
calculate Y(T) at 10 temperatures, as described in Sect. 6.3,
with 20 G-L integration points. The resulting graph of Y (T,)
is shown in Fig. 10. The program automatically evaluates the

integral f (2dE; and obtained the value 1.204. This determines
0

the high temperature limit point (see Eq. (34)), which is denoted
by an asterix in Fig. 10. The value of C was varied in order to
optimise the spline fit (C = 2.4, rms = 0.39%).

Finally, we show how OMEUPS can be used to compare these
values of Y with those given by Tayal & Kingston (1984). The latter
used the RMATRX package of Berrington et al. (1978) to calculate
(X(E), then by numerical integration obtained Y at temperatures in
the range 6 10 < T < 6 10°. Figure 11 shows the RMATRX
values of Y, together with CBO points generated from the spline fit
in Fig. 10. Note that a value of C (=0.2) much smaller than in
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Fig. 9. O*%(1s2'S — 1s2p>P). CBO data from Sampson et al. (1983);
Ochkur high energy limit from Tully (1980). C = 3.6 with knot values
0.02342, 0.03059, 0.03186, 0.03021, 0.02463
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Fig. 10. O*°(1s%'S — 1s2p°P). Data for T, < 1 from OMEUPS using the
0, spline fit of Fig. 9. C = 2.4 with knot values 0.02338, 0.02143,
0.02265, 0.02443, 0.02875

Fig. 10 was chosen in order to display the data points spread across
the whole of the figure.

There is reasonable (~25%) overall agreement between the
CBO and RMATRX results. At low temperatures the close coupling
data points lie above those of the weak coupling approximation.
This shows how the contribution from resonances raises the colli-
sion strength above its background value. As a consequence (since it
is the overall integral of (2), one would expect the RMATRX limit
Y,(1) to be greater than the CBO value. However, the reverse seems
to be the case, and this raises some doubt about the high temperature
fall off of the RMATRX values.
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Fig. 11. O*°(1s2'S — 1s2p*P). Comparison of Y, data from: + the fit in
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Fig. 12. Si*?(3s2'S — 3s4p'P). Transition with a small oscillator
strength, treated as type 1. Data from parametric fit given in Dufton and
Kingston (1989). * Bethe limit. C = 1.2

9.2. A type 4 transition

We use the parametric fit from Dufton & Kingston (1989) to obtain
Y(T) for the 3s2'S — 3sdp 'P transition in Si*2. This is an optically
allowed transition with the small gf value of 0.0117 (Baluja &
Hibbert 1980) and so is a candidate for type 4.

For comparison, we first treat it as type 1 and plot it as such in
Fig. 12. Here something appears to be amiss since the data points do
not tend towards the Bethe limit at T, = 1. Unfortunately we cannot
explore the region 0.75 < T, < 1 with Dufton & Kingston’s fit
since it has a limited range of validity.

We therefore make a type 4 plot in Fig. 13 and here the data
points line up satisfactorily with the high temperature limit which is,
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Fig. 13. As in Fig. 12, but treated as type 4. C = 1.2 with knot values
1.327, 1.008, 0.7305, 0.4269, 0.02939

cases, it is able to improve existing data which has been shown to be
deficient.

10.1. Tabulation errors

We show how the method may be used of detect two different types
of tabulation error.

Individual entries may be incorrect or misprinted. An apparent
case of this occurs in the 11-state RMATRX calculation of the rate
coefficient for excitation of He (Table 6 of Berrington et al. 1985b).
A plot of Y, for the 2°S — 23P transition is shown in Fig. 15, and
one sees immediately that one of the data points (corresponding to
T = 20,000) deviates from the general trend of the others. Dr. K.
A. Berrington (1987, private communication) has informed us that
the correct value of ¢(23S — 2°P) at this temperature is
4.8 1077 cm® s™' (i.e. Y, = 32). Although the program OMEUPS
in its present form is not intended for the spline fitting of neutral
target data, it can be used for visually checking the validity of such
data, as this example shows.

Our second example is concerned with the Y data for Si*?
obtained by Baluja et al. (1980, 1981b) from a 12-state close
coupling calculation with the RMATRX code, using the target wave
functions of Baluja & Hibbert (1980) who give the relevant
oscillator strengths and term energies. Unfortunately, some of the Y’

L L B 1 results are unreliable since the collision code contained a program-
Yr | 1  ming error (see Dufton & Kingston 1989). While our method for
0.25 - 1  analysing data cannot explain the basic cause of these errors, it is of
f L+ ++ + o+ — . . o .
i o+ + + 1  interest to demonstrate its capability for detecting them.
+ ] Consider the pair of type 1 transitions linking 3s3p'P to the
0.0 - .\ 1 terms 3p?'D and 3s3d 'D. After processing the data by UPSILON,
[ 1  we obtained Figs. 16 and 17, which suggest that the Y data sets for
i 1 the two transitions have been inadvertently interchanged, since
015 A y3aT) > yao(D) and ys 0(T) — y34(1), where y; (T,) denotes
] Y (T,) for the i — j transition, and the target terms are labelled by
i + ] indices as in Baluja et al. (1981b).
0.10 - - Corrected results for Si*? given by Dufton & Kingston (1989)
] have now confirmed this conclusion, although the numerical values
I 1 are slightly altered.
0.05 - =
] ¥ oW T j
e T o] %
0.0 0.2 0.4 0.6 0.8 1o Yr ]
Tr i ]
60 - —
Fig. 14. As in Fig. 12, but with additional data points from the spline fit in t .
Fig. 13.C = 1.2 |
F + ]
of course, almost zero. The spline fit is excellent 40 + -
(C = 1.2, rms = 0.08%) and it allows us to generate Y(T') over an [ + |
infinitely wide range of temperatures. In this way we were able to
augment the data set shown in Fig. 12 and replot as a type 1 L ]
transition in Fig. 14, which shows that very high temperatures must 20 + —
be reached before the data points turn towards the Bethe limit. This r + b
example clearly demonstrates the advantage of treating such a + + *
transition as type 4. | +
S I S T R B I .
0.0 0.2 0.4 0.6 0.8 1.0

10. Detection of errors and data analysis

In this section we give a selection of examples which show how the
OMEUPS program can be used to detect errors and how, in some

Tr

Fig. 15. He(Is2sS — 1s2p®P). Tabulation error detection; data from Ber-
rington et al. (1985). C = 1.45
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Fig. 16. Si*?(3s3p'P — 3p?'D). Tabulation error detection; data from
Baluja et al. (1981). gf = 0.1242 from Baluja & Hibbert (1980). C = 1.3
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energy, and ignore the effect of higher partial waves altogether. This
may result in Y being inaccurate at high temperatures owing to {2
falling off too fast with energy as £ — 0.

As an example we show in Fig. 18 an optimised least squares
spline fit to 16 data points of Baluja et al. (198la) for the
2p?'D — 2p?!S transition in O*2. The fit has an rms error of
0.56%, but does not tend to the Born limit 0.597 (see Tully &
Baluja 1981) at T, = 1, since the partial wave expansion was
limited to L < 3. In Fig. 19 we have altered the 3rd, 4th and 5th
knot values so that the spline no longer drops as T, — 1 but tends to
the Born limit.

A second example is given in Fig. 20 where we plot {2, for the
transition 3s*'S — 3s3d'D in Fe*'4. The lower set of data points
corresponds to the distorted wave calculation by Christensen et al.
(1985) in which the partial wave expansion was summed up to
L = 11. The data points do not tend to the Born limit 0.290 which
we have calculated, and this suggests that the partial wave expan-
sion has not converged. The lack of convergence was pointed out to
Christensen et al. by J. B. Mann. A comment on this appears in their
paper as a note added in proof, and the upper set of data points in
Fig. 20 allows for the correction they give.

10.3. Invalid extrapolations

Wr—————— 77— - Most authors, when fitting £2 (or Y) data for type 1 transitions, use
Yr jé analytic expressions having the correct high energy (or temperature)
L 1 functional form. However, sometimes the coefficient of the domi-
n- 7] nant logarithmic term is treated as one of the free parameters in the
fitting, instead of ensuring that its value is correctly related to the g f
3 1 value (see (8) and (26)). In this case, it is unlikely that any
0 ] extrapolation of the fit will be valid.
[ ] As an example we consider the Y data of Pradhan et al. (1981b)
50 1 for the 1s2s'S — 1s2p'P transition in Fe*?*, which they calculated
b 1 by Maxwell integration of the 2 data of Pradhan et al. (1981a).
L 1 Especially for the higher tabulated temperatures, some extrapolation
10 L ] of the £ was needed in order to complete the integrations.
I 1  Unfortunately, the coefficient of the logarithmic term was treated as
3 a free parameter, and this resulted in its value being too large by a
s + o+ o+ o+ ]
+++++++ +++++ \[ I""l""l""l ]
I BN NI R ] i A ]
b 0.2 0.4 0.6 0.8 1.0 061 4/( T F
Tr I / -+\+
- f+2 1 1 : : Yr A /’F \
Fig. 17. Si™?(3s3p 'P — 3s3d 'D). Tabulation error detection; data from L / \+\
Baluja et al. (1981). gf = 5.253 from Baluja & Hibbert (1980). C = 1.3 i / w ]
I W«
0.4~ / T

It is interesting to note also that the data show signs of falling off
at high temperatures due to omission of high angular momentum
contributions; which effect is discussed in the next section.

10.2. Insufficient partial waves

{1 is obtained by summing partial collision strengths and sufficient
of these-should be included to ensure convergence. It is generally
well known that, for type 1 transitions, distant encounters can make
especially important contributions, which fortunately can be
allowed for through the existence of a sum rule (Burgess 1974).
However, for other transitions, many researchers truncate the
expansion at an arbitrary value of L, which is independent of

0.2 — ?

0.0 : NI B ER SR P R N S
0.0 0.2 0.4 0.6 0.8 1.0
Tr

Fig. 18. O*?(2p?'D — 2p2'S). Insufficient partial waves in data from
Baluja et al. (1981). * Born limit from Tully & Baluja (1981). C = 1
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Fig. 19. As in Fig. 18, but with spline adjusted to allow for contribution
from high angular momentum partial waves. C = 1 with knot values
0.2784, 0.6239, 0.6265, 0.5960, 0.5960
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Fig. 20. Fe*'4(3s?'S — 3s3d 'D). Showing the importance of high partial
waves. Data from Christensen et al. (1985): + summation over
0 < L < 11; © summation over 0 < L < 50. * Born limit. C = 5.2

factor ~1.6. The effect of this is clearly shown in Fig. 21 where we
plot Y.(T,). The Y data of Pradhan et al. (1981b) for the corres-
ponding transition in Be*? and Ne*? is similarly affected.

10.4. Data compacting

Results for £2(E) and Y(T) are usually presented in tabular form. Y,
for example, is often given at several values of T spanning a region
of arbitrary size centred on T = T, (see Sect. 8.2). There is no
universally accepted way of laying out the table, and intervals in T
may be regular or irregular. By transforming from Y(T) to Y(T,)

Tr

Fig. 21. Fe*?*(1s2s'S — 1s2p'P). Effect of using an unsatisfactory high
energy extrapolation. Y, data from Pradhan et al. (1981b), g f = 0.020 from
Pradhan et al. (1981a). * Bethe limit. C = 8

one may show if the original tabulation is too sparse in some regions
of T. Conversely it can often suffer from an overabundance of
information.

We illustrate this with an example taken from Mohan &
Le Dourneuf (1990) who use a constant tabulation step AT =
510* to span 10° < T < 10° The transition we consider is
2p°?P — 2p*(*P)3p?D in Si**. Figure 22 underlines the point we
are making, for more than half of the 19 data points are clustered
into a small region on the rhs of the graph where the variation is
almost linear. In this case it would have been preferable to use a
constant step in log (T), say 0.1, thereby economizing 8 data
points. Our procedure is even more economical since only 6
numbers are needed to reproduce the entire data set and extrapolate
ittoT=0and T = oo,

We have calculated the high temperature limit (0.063) with the
Born approximation and this is shown in Fig. 22. Mohan & Le
Dourneuf’s data points are in excellent agreement with the Born
limit even though they truncated the partial wave expansion at
L = 12. The optimised spline fit (C = 0.19, rms = 0.10%) is
shown in Fig. 22.

10.5. Data comparison

Three independent calculations of the collision strength 2 for the
3s?'S — 3s3d'D transition in S** have been reported; Feldman
et al. (1981), Dufton & Kingston (1984), and Christensen et al.
(1986). The published results are compared in Fig. 23, where we
also give our spline fit to Christensen et al. The latter gave only 3 of
their 6 calculated data points; however, further information about
the full data set may be inferred, since Pradhan (1988) used an
analytical fit to it in order to calculate Y. We therefore chose our
spline fit to {2 so as to yield Y values in good agreement with those
tabulated by Pradhan, while also fitting to the 3 values of {2 given in
Christensen et al.; overall agreement to within ~2% was achieved.

Using the Born approximation and wave functions similar to
those of Dufton & Kingston (1984), we obtain the high energy
limiting value £2,(1) = 1.3. As shown in Fig. 23, this is slightly
higher than the Pradhan (1988) limiting value.
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Fig. 22. Si**(2p>?P — 2p*3pD). Compacting data from Mohan & Le
Dourneuf (1990). * Born limit. C = 0.19 with knot values 0.2304, 0.1490,
0.1062, 0.08325, 0.06346
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Fig. 23. S*%(3s?'S — 3s3d 'D). Comparison of data:
® Dufton & Kingston (1984); X Feldman et al. (1981); © Christensen et al.
(1986). * Born limit. — spline fit to Christensen et al.

Feldman et al. (1981) retained partial waves only up to L = 6,
which explains why their collision strength (calculated in a distorted
wave approximation) falls off with increasing energy. Christensen et
al. (1986) also used a distorted wave approximation but, in contrast
to Feldman et al. (1981), they evaluated the contribution from all
partial waves up to L ~ 50. It is therefore puzzling that their low
energy results apparently lie below those of Feldman et al., and they
lie even further below the point given by Dufton & Kingston.

On this evidence, a linear fit to the latter point and the £2.(1)
Born limit point is probably as good a representation of £2.(E,) as
any, particularly since this also gives a reasonable fit to the 3

1.0
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original data points given in Christensen et al., as is shown in
Fig. 23. We therefore adopted this, to obtain the following spline fit
to Y, for this transition: C = 2.4 with knot values 0.8823, 1.014,
1.102, 1.185, 1.306.

11. Adaptation of the method for very strong resonances

Resonances make large rapidly varying contributions to {2 for many
transitions, but the resulting thermally averaged Y can usually be
handled satisfactorily by our method, as examples above show.
However, one occasionally encounters a case where the effect of a
bunch of resonances is so large that our usual 5-point spline fit to Y,
gives insufficient accuracy. In such cases, one can split the
temperature range into two or more intervals and make separate
5-point fits for each interval, and our final example illustrates this.

We consider the type 2 transition 2p°>?Ps/; — 2p°?P;; in
Nit!o, using collision data from Mohan et al. (1990), shown in
Fig. 24. Large resonance contributions cause the bump near
log T = 4.7. Accurate fits can be made by dividing the entire range
of T into two intervals.

Figure 25 shows the data corresponding to 0 < T < 10° (in-
cluding a value Y = 0.042 at T = O estimated from Fig. 1 of
Mohan et al.), and our optimised 5-point spline fit for this interval.
With C = 0.18 and knot values 0.04197, 0.05557, 0.1027,
0.09552, 0.07339, this gives an rms error of 0.59%.

The data points for T = 10° are shown in Fig. 26, with the high
temperature limit value 0.0157 taken from Tully (1986). For this
interval, the optimum fit (C = 21 and knot values 0.07455,
0.07661, 0.06778, 0.03791, 0.01570) gives an rms error of 0.19%.

For astrophysical applications, it should be noted that at
T = 10° the ionization balance population of Ni*'® is a factor
~10722 below its maximum value (which occurs at T ~ 6 10°).
Hence, if the ionization is maintained by electron collisions (e.g.
coronal type plasmas) only the second of these fits is needed.
However, if the ionization is maintained by non-local high energy
photons (e.g. nebular plasmas) the first fit may be required.
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Fig. 24. Ni*'°(2?P;,, — 2?P,;,). Y data from Mohan et al. (1990)
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Fig. 25. Ni*'%(22P,,, — 2?P,,,). Fit to Y, data for 0 < T < 10°

0.08 ——————

0.06 B -
L

0.04 - \ =

gl

0.0 0.2 0.4 0.6 0.8 1.0
Tr

Fig. 26. Ni*'°(2?P,/, — 2%P,,). Fit to Y, data for T = 10°
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Appendix

Here we define our 5-point spline function, by means of a
FORTRAN listing, and give other FORTRAN functions which may
be of help in using our method.

FUNCTION SPLINE(PL,P2,P3,P4,P5,X)
C S-point spline interpolation of Y(X), for X in the range (0,1).
C Input:
C Knot values Pl=Y(0), P2=Y(l/4), P3=Y(1l/2), P4=Y(3/4), P5=Y(l)
c and X.
C Output:
¢  SPLINE=Y(X).
c Code:
8=1.0/30.0
82=32.0%8%(19.0%P1-43,0%P2+30.0*P3-7.0*%P4+P5)
83=160.0%8*(-P1l+7.0%P2-12.0%P3+7,0*P4-P5)
84=32,0%38*%(P1-7.0%P2+30.0*P3-43.0*P4+19,0%P5)
IF(X.GT.0.25) GO TO 1
X0=X-0.125
T3=0.0
T2=0,5%82
Tl=4.0%(P2-Pl)
T0=0.5%(P1+P2)-0.015625%T2
GO TO 4
1 IF(X.GT.0.5) GO TO 2
X0=X-0.375
T3=20.0%8%(83-82)
T2=0.25%(82+83)
T1=4.0%(P3-P2)-0.015625*T3
T0=0.5%(P2+P3)-0.015625*T2
GO TO 4
2 IF(X.GT.0.75) GO TO 3
X0=X-0.625
T3=20.0*8*%(84-83)
T2=0.25%(83+84)
T1=4.0%(P4-P3)-0.015625%T3
T0=0.5%(P3+P4)-0,.015625%T2
GO TO 4
3 X0=X-0.875
T3=0.0
T2=0.5%84
T1=4.0%(P5-P4)
T0=0.5%(P4+P5)-0.015625%T2
4 SPLINE=TO+X0*(T1+X0%(T2+X0*T3))
RETURN
END

FUNCTION OMEGA(K,EIJ,C,Pl,P2,P3,P4,P5,EJ)
Collision strength, Omega.
Input:
K=transition type,
EIJ=transition energy (Ryd.),
C=abscissa scale parameter,
P1,P2,P3,P4,P5=spline knot values,
EJ=colliding electron energy after excitation (Ryd.).
Output:
OMEGA=Omega.
Code:
E=ABS(EJ/E1J)
IF ((K.EQ.l).OR.(K.EQ.4)) X=LOG((E+C)/C)/LOG(E+C)
IF ((K.EQ.2).OR.(K.EQ.3)) X=E/(E+C)
Y=SPLINE(P1,P2,P3,P4,P5,X)
IF (K.EQ.l) Y=Y*LOG(E+2.71828)
IF (K.EQ.3) Y=Y/((E+l)*(E+l))
IF (K.EQ.4) Y=Y*LOG(E+C)
OMEGA=Y
RETURN
END

[eNeNeNeNeNoNoNoNoNe]

FUNCTION UPSIL(K,EIJ,C,Pl,P2,P3,P4,P5,T)
Maxwell averaged collision strength, Upsilon.
Input:

Kstransition type,

EIJ=transition energy (Ryd.),

C=abscissa scale parameter,

Pl1,P2,P3,P4,P5=8pline knot values,

T=electron temperature (Kelvin).

Output:
UPSIL=Upsilon.
Code:
E=ABS(T/(1.57888ES5S*EIJ))
IF ((K.EQ.1).OR.(K.EQ.4)) X=LOG((E+C)/C)/LOG(E+C)
IF ((K.EQ.2).0R.(K.EQ.3)) X=E/(E+C)
Y=8PLINE(P1,P2,P3,P4,P5,X)
IF (K.EQ.l) Y=Y*LOG(E+2.71828)
IF (K.EQ.3) Y=Y/(E+l)
IF (K.EQ.4) Y=sY*LOG(E+C)
UPSIL=Y
RETURN
END

[eNeNeoNoNoRoNoRoWe Ko
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FUNCTION RATE(K,E1J, WI,C,Pl,P2,P3,P4,P5,T) )
Rate coeff. for excitation or de-excitation by electron impact.
Input:
K=transition type,
EIJ=transition energy (Ryd.), (+ve for exc., -ve for de-exc.)
WI=initial statistical weight,
C=abscissa scale parameter (from Upsilon fit), .
Pl,P2,P3,P4,P5=8pline knot values (from Upsilon fit),
T=electron temperature (Kelvin).
Output:
RATE=rate coefficient (cm**3/sec).
Code:
R=1
IF (EIJ.LE.0.0) GO TO 1

[eXeNeNeNeNeRoNoNoNoNe)

R=0

IF (T.GE.1000.0*EIJ) R=EXP(-EIJ*1.57888E5/T)
1 8=1E70

IF (T.GE.lE-70) 8=8QRT(1.57888E5/T)

U=UPSIL(K,EIJ,C,Pl,P2,P3,P4,P5,T)

RATE=2.1716E-8*8*R*U/WI

RETURN

END
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