Shape

User Manual

Version 1.0

Autors:
Wolfgang Steffen
Instituto de Astronomía
Universidad Nacional Autónoma de México
Sede Ensenada, Baja California, México
wsteffen@astrosen.unam.mx
Nicholas Koning
University of Calgary

Calgary, Canada

CONTENTS

- What is Shape? ... 4
- What can Shape do for you?
- What does Shape not do?
- Non-astrophysical uses
- Have you got news for us?
- Important general information to take into account before using shape
- Citations
- Disclaimer
- General modeling strategy
- Knowledge required prior to using Shape ... 7
- Software installation
- The rendering engine of Shape
- Limitations
- Considerations on image resolution in particle based models
- USER INTERFACE ... 8
- The news panel ... 9
- THE MAIN CONTROL INTERFACE (MCI) ... 10
- WORKING WITH PROJECTS, DATA AND PARAMETER FILES
- Opening an existing project
- Creating a new project
- Export data and parameters
- Close a project
- LOOK AND FEEL
- PLUG-INS
- HELP
- BUTTON TOOL BAR
- SHAPE Button
- News Panel Button
- Convolve Color Images Button
- Convolve Grey Scale Images Button
- Model/Observation Button
- Opaque Star Button 13
- 3D Button
- PARAMETER TABBED PANELS
- Image Tabbed Panels
- Image Tab
- Slit Tab 14
- Local Rot and World Rot Tabs
- Gamma Tab
- Spectral Tabbed Panels
- Velocities Tab - Particles Tab 16
- Sequence Tab
- Seq Par Tab 17
- IMAGE DISPLAYS 18
- SPECTRAL DISPLAYS
- Raw Images and Spectra
- Convolved Images 19
- Convolved P-V diagrams 20
- Status Bar 22
- THE 3D MODULE 23
- General strategy for the usage of the 3D module
- Menu Bar 24
- File
- Groups
- View
- Help 25
- Tool Bars
- Primitives
- Transforms
- Camera
- View Panels 26
- Nodes Panel 27
- Node Attributes
- Coordinates
- Node List 28
- Particle Systems 29
- TUTORIALS 32
- How to make a channel map
- Particle system templates 34
- External VRML 3D model files 35
- Particle systems from external 3D modeling software - Model templates 36
- File Formats 37
- Known issues and bugs 38
- Some external 3D modeling systems
- Bibliography 40- CREDITS

OVERVIEW

What is Shape?

Shape is a morpho-kinematic modeling tool for astrophysical nebulae. The main application of Shape will be the direct comparison of a 3D model with data in order to assist in the interpretation of observations. Starting from a 3D model of points with velocities, it generates an image and position-velocity (pv-) diagram, channel map and one dimensional spectral line shapes based on the Doppler effect.

What can Shape do for you?

The design purpose of Shape is the analysis of the 3D structure and kinematics of spatially resolved astrophysical nebulae in a way that can be compared directly with observations of similar real objects. It is particularly suited to study expanding nebulae like planetary nebulae and other structures with clear kinematical signatures like bow-shocks or accretion disks and other streaming flows that can be studied using the Doppler-Effect.

The analysis may be applied for the interpretation of existing observations or the planning and prediction of observations based on a proposed model.

Another potential application is the modeling of complex 3D structures as initial conditions of numerical photo-ionization and hydrodynamic calculations as well as the visualization and calculation of spectral information resulting from such calculations.

The application of Shape as a teaching and learning tool for the interpretation of observations involving images, position-velocity diagrams, channel maps and spectral line profiles may help students and researchers alike become acquainted quickly with this type of data.

What does Shape not do?

Shape does not calculate the numerical hydrodynamic evolution nor radiation transfer for photoionization models. Shape does not take a set of observational data as input to automatically yield a three-dimensional model.

Non-astrophysical uses

Shape may be applied to the analysis and visualization of data and models of objects observed with Doppler radars, such as tornados and other weather phenomena. Ocean surface observations with Doppler radar can also be modeled with some 3D animation packages. The application to the analysis of other types of Doppler data may, of course, be also possible.

Have you got news for us? User publications and utilities page

A webpage for Shape displayed at startup in the main interface of the software is a direct window that takes you right to the latest info on applications of Shape in the scientific literature. The page provides access to important up-to-date information on the software as well as model templates and model data from real applications that have been supplied by their authors. You are welcome
to make comments and suggestions for future releases of Shape and to share your own results with other users. Of course, as soon as a significant number of users is established, a discussion group will allow quick exchange of questions and answers to news and problems with model building in Shape.

IMPORTANT GENERAL INFORMATION

TO TAKE INTO ACCOUNT BEFORE USING SHAPE

Citations:

In publications that include models that have been prepared with Shape, credit should be given citing the following original publication: Steffen, W., López, J.A., 2006, Morpho-kinematic modeling of gaseous nebulae with SHAPE, RevMexAA 42, 99-105.

Disclaimer

This software is provided "as is". No warranty is given for its fitness for a particular purpose. Neither the authors nor their employers can be held responsible in any way for incorrect scientific or other results that may follow from the usage and interpretation of models produced with Shape.

General modeling strategy

Given a set of one or more spectral line images and position-velocity diagrams or channel maps, a first interpretation of the data should give an approximate "educated guess" of the 3D structure and kinematics of the object. This structure is then reproduced in a suitable 3D modeling program like Blender, 3DStudioMax, Maya, or the built-in 3D module of Shape. You export the vertices or particles of the structure built in an external program, including their velocities, in a format that is readable to Shape (see below for how that may be done). From these data Shape then renders images, pv-diagrams and channel maps for different observational settings like object orientation, slit positions and slit widths, as well as different spatial and velocity resolutions.

The parameters settings for the model and observing setup may be varied automatically to produce a series of different image sets that you can view in an animated form. Viewing animations of image sequences often aids at understanding the effect of the 3D structure and orientation on the spectral information. If the model does not reproduce the observations satisfactorily in any orientation or with any other adjustment that can be made in the main interface, you go back and refine your model taking into account the differences between model and observation. Iteratively you will improve your model until you are satisfied. The process may also reach a limit when you hit the limits of your modeling software or when the assumption made in the models and their rendering do not apply to the real object (for instance optical thickness).

After arriving at a satisfactory model solution, the result may be inspected in various ways and scientific conclusions regarding the object structure, kinematics and orientation may be drawn.

In most cases observational data of an astrophysical nebula are not sufficient to derive a unique solution for its 3D structure and kinematics. However, in many such cases, modeling with Shape can still help to gain new insight into the structure of the object. Objects that have relatively simple topology or some noticeable symmetry can usually be solved uniquely. It is recommendable to exploit any hint to symmetries or surface continuities, both, in the images as well as the spectral information even if such properties can be found only in local feature of a complex object.

Knowledge required prior to using Shape

In order to profitably use Shape you should have at least basic knowledge about astronomical observing techniques like imaging, spectral line profiles, position-velocity diagrams and/or channel maps. The meaning of seeing and spectral resolution should be known.

Although desirable, for simple modeling using the 3D module of Shape no previous knowledge about 3D modeling is required, since it can be based on the templates available from the repository on the Shape website. For complex modeling of objects that can not be obtained by simple modifications of the templates, you can produce your model using a 3D software that is capable of exporting your model in the VRML (Virtual Reality Markup Language) format, some other format that is available or in the native format of Shape via a script of the modeling software. Shape provides data export scripts for some 3D modeling suites (see below for details). Check the ShapeSite (http://www.astrosen.unam.mx/shape) for currently available

Software installation

See the download section of the ShapeSite for details.

The rendering engine of Shape

The rendering of images and spectral information is an integrated projection of emission from individual particles (or polygon vertices which are treated as particles) onto the image or spectral plane. Color and brightness of the particles are controlled via a special color editor module. The individual particles are treated as circular planes which always face the camera with adjustable size and internal emissivity distribution.

Limitations

In Version 1.0 of Shape the integration along the line of sight is assumed to be optically thin. Capability to model optically thick nebulae will be included in Version 2.

Considerations on image resolution in particle based models

In order to obtain models with a complex structure, the number of particles that samples these structures has to be sufficiently high. The size of the convolution with the gaussian point-spread function should be sampled with at least a few particles. Note that structures that might not be resolved in the image, might well be resolved in the spectral information, such that a similar criterion has to be applied to structures that have details in velocity space that are "larger" than the velocity resolution.

USER INTERFACE

The user interface has two main modules: the Main Control Interface (MCI) and the 3D module.
When you run Shape, the Main Control Interface opens. Initially the MCl shows the menu bar and a row of tool buttons (Button Toolbar) the large News Panel, which gives access to up-to-date information on Shape. The MCI can be resized to suit your working area on the computer monitor maintaining access to the complete interface using the scroll bar on the right.

In order to start using Shape for modeling and visualization you open a project or create a new one using the File rollout on the menu bar at the top. Now the News Panel disappears to make way for the image displays and the parameter control tabs. The top displays show the raw image (left) and the raw pvdiagram or channel map (right). Similarly, the lower displays show image information on the left hand side and spectral information on the right. In the bottom displays the images have been convolved with gaussian point-spread functions like seeing and velocity resolution.

The middle section contains the control parameters for the rendering of the images and spectral information (see below for details). This section includes parameters for the space that is covered by the image, the velocity range that is covered by the spectral information, as well as controls for the automatic rendering of sequences with varying parameters.

The news panel

Is your window to the ShapeSite, the web site with news and up-to-date information about Shape, including models, templates, tutorial and news about applications of the user community of Shape. The News Panel is displayed when you start a session with Shape. Once you start working on a project, the News Panel disappears. You can toggle between the Project Panel and the News Panel any time by pressing the News Panel Button on the tool bar at the top of the Main Control Interface (see below).

The News Panel at this stage is a limited Browser. You can only browse forward. To get back to the home page, press the Refresh button. At this time you can not download files using this page. To download templates and movies use the Internet Browser installed on your system pointed at the following Internet address:
http://www.astrosen.unam.mx/shape

Use the News Panel to learn about updates and news as well as to read the User Manual.

THE MAIN CONTROL INTERFACE (MCI)

WORKING WITH PROJECTS, DATA AND PARAMETER FILES

File View Options Plug-in Help Menu Bar

Opening an existing project:

To open a recently used project open the Open Recent Project selector in the File rollout and choose one of the four most recent projects that you have worked on. The most recent is at the bottom of the list.

Menu Bar > File > Open Recent Project
To access other existing projects use the Open Project Dialog in File rollout of the Menu Bar.
Menu Bar > File > Open Project
Creating a new project:
In order to create a new project with and existing Particle System data set open the Create New Project Dialog opening the File rollout in the Menu Bar :

Menu Bar > File > New Project

The Create New Project Dialog opens. In the first text field you enter a Project Name. In the bottom text field you enter the Project Directory path, which will be your Working Directory. The full directory path is either entered through keyboard input or by selecting the directory with the Browse to the right of the Directory text field. All the data that are created for this project are stored in the Working Directory or in a sub-directory of it. After confirming the operation pressing the OK button, the Working Directory is created in the Directory path. In the Working Directory a file is created with its name equal to the Project Name and the extension ".shp". In order to start working with an existing particle system data set, you import your correctly formatted file to the project using the File rollout

File > Import > Data.
A file selection window allows you to select the data file that you wish to import. After importing your data save the project (File >Save Project). Saving the project will include the data in the project file, including color and brightness of the particle systems in the data file. In addition, the file "shape j3d.dat" will be created, which is an identical copy of your original data file. The file shape $j 3 d$.dat will be used by the rendering engine of Shape to generate images and spectra.

Export data and parameters:

If you wish to save your particle system data file and/or the parameters of the current project in a new file for later use or backup, you open a Save dialog following

Menu Bar > File > Export > Parameters
Menu Bar > File > Export > Data
according to the file that you will save. You then choose the path and file name in the Save dialog that opens and confirm the operation with the Save button of the dialog.

Close a project:

Menu Bar > File > Close "Project name",
where "Project name" is the name of the currently open project.

LOOK AND FEEL

Every operating environment has a different "Look and Feel" (L\&F). Although an interface may have the same features and structure, the way in which windows, buttons, tabs, etc. are shown on screen depend on the operating environment that you are using. The MCI of Shape is optimized for the Windows XP environment. Some people might however, be used to a different environment and prefer to change the Look and Feel of the MCI. You can do this by choosing one of the items in the selector following:

Menu Bar > View > Look and Feel
Macintosh L\&F is not available on Windows or Linux systems. It is, however, the default on a Macintosh system.

PLUG-INS

The Plug-in Menu Bar item may contain a selection of modules that operate in windows that are separate from the MCI. In Version 1.0 of Shape the only plug-in that is available is the 3D Module (see below). Selecting the Shape3D item of the Plug-in rollout opens the 3D Module. This selection has the same effect as pressing the 3D Button on the Button Toolbar (see below).

HELP

The Help item on the Menu Bar gives access to information about Shape. Selecting the item Contents opens this User Manual in your default web browser.

Menu Bar > Help > Contents

For quick access to versioning, authoring and copyright information of Shape choose the About item of the Help rollout.

Menu Bar > Help > About

BUTTON TOOL BAR

SHAPE Button

SHAPE

The SHAPE Button is the large button labeled SHAPE on the left side of the Button Toolbar. You press this button to invoke the rendering of images and spectra with the Shape Rendering Engine. Doing this produces a series of events. These events include saving the current parameters of the MCI, saving the parameters and data from the 3D Module (if open), running the Rendering Engine and displaying the results in the MCI.

News Panel Button

The News Panel Button toggles between the News Panel (see above) and the modeling panel.

Convolve Color Images Button

Selecting the Convolve Color Images Button tells the Shape Rendering Engine to render the convolved color images and spectra. It does also control which images are replayed during replay of a sequence using the corresponding features in the Sequence Tab (see Sequence Tab below).

Convolve Grey Scale Images Button

Selecting the Convolve Grey Images Button tells the Shape Rendering Engine to render the convolved grey-scale images and spectra.

Model / Observation Button

4 The Model / Observation Button toggles between the display of the convolved color image and spectrum and a corresponding observed image. This allows a comparison of observation and model by quickly "blinking" between them in the same display. The observed image should be in the working directory and have the name "shape.obs.image.jpg" and
"shape.obs.spec.jpg" for the image and spectrum, respectively. Note that the centering and extension of these images should match those of the parameters used in the displays (or viceversa).

Opaque Star Button

The Opaque Star Button allows to render a rotating or expanding opaque star. When selected all particles on the far side of the star are set to zero brightness. This allows to simulate the spectral information of a rotating star with surface structure. Using a sequence of a rotation of the star produces a Doppler-tomogram of 1D Spectra in the corresponding image (see below).

3D Button

Pressing the 3D Button on the Button Toolbar opens the 3D Module. The 3D Button has the same function as the Shape3D item in the Plug-in rollout in the Menu Bar.

PARAMETER TABBED PANELS

Parameter values may either be entered in the corresponding text field using keyboard input or by pressing the up or down arrows of the "spinners" located to the right of the text fields. Briefly pressing the spinners will change the value by a given amount, which may be different for different parameters. Keeping the spinner pressed will continuously increase or decrease the number in the text field. Some parameters may also be changed by moving the mouse in the corresponding display.

Image Tabbed Panels

Image Tab:

Controls the parameters of the window into the World Coordinate System that is seen in the image displays.
X Center, Y Center: The coordinates of the image center in the model world space. Horizontal tick- marks show the x-coordinate system. The y-coordinate values can be found using the cursor on the PV-diagram. Tick-marks, slit and cursor are only shown, if Show Slit in the Slit Tab is selected (see below).
$X Y$ Range: The size of the image from the center to each border.

Seeing: The Full-Width Half-Maximum (FWHM) of the gaussian convolution kernel for the simulation of the blurring effect ("seeing") of the terrestrial atmosphere on optical images of astronomical objects. If the Convolve Images Buttons (see above) are selected, the spatial dimensions of the images and spectra are convolved with this kernel.

Size: The pixel size of the rendered images is $2^{\text {size }}$. The images are then scaled to the $2^{8}(256)$ pixel size of the displays in the MCI . Reducing the image size results in a faster computing time, which may be significant if convolution of the images is performed and resolution is not important, e.g. during testing and quick parameters searches. Larger images sizes to result in slower performance, but higher resolution.

Slit Tab:

Controls the position and width of the simulated spectrograph slit in the world coordinate system.

Position: The position of the slit center along the x -coordinate of the world coordinate system. The values can either be introduced manually or my positioning and clicking the cursor on the image.

Width: The width of the slit center along the x-coordinate of the world coordinate system. The values can either be introduced manually or by scrolling the mouse-wheel if available.

Show Slit: Choose whether to show the image slit and the scales on the images and pvdiagrams. Deselecting this check-box is useful to improve performance and visibility while replaying image sequences.

Save Slit: Choose whether to show the image slit on the rendered images that have been saved to disk.

Local Rot and World Rot Tabs

These tabs control the orientation of the object with respect to the observer in the Local and the World Coordinate System. Values given are rotations in Degrees around the corresponding axis.

x-axis: horizontal increasing towards the right
y-axis: vertical increasing upwards
z-axis: perpendicular to the screen, increasing into the screen
With all the parameters at " 0 ", both coordinate system are identical. However, if the the parameters of the rotation in the World System are changed, the whole Local System rotates. Changes to the Local System are applied after the World System. Note that rotations can not be performed in arbitrary order.

Gamma Tab

The Gamma Tab controls the Gamma Correction value applied to the images.

The Gamma Correction performs the operation pixelvalue^(1/Gamma), where pixelvalue is the intensity of the any picture element. Increasing Gamma values enhances the relative brightness of low surface brightness features.

Image Gamma: Gamma value applied to all image displays Spectrum Gamma: Gamma value applied to all spectral displays

Spectral Tabbed Panels

Controls the parameters of the spatial and radial velocity coordinates that are seen in the spectral displays.

Velocities Tab

Center: The velocity at the center of any P-V diagram. Velocity is horizontal in the P-V diagrams Range: The range of velocity from the center of any $\mathrm{P}-\mathrm{V}$ diagram to the left and right edges Resol: The FWHM of the gaussian velocity convolution kernel. This convolution simulates the velocity resolution due to natural and instrumental effects.

Cur Y: The y-position of the cursor in the p-v diagram in world coordinates.
Cur Vel: The velocity at the position of the cursor in a display with horizontal velocity axis ($\mathrm{P}-\mathrm{V}$ diagram or 1-D spectral line profile).

Rainbow CT: Selecting this checkbox will enable the Shape Renderer to apply a Rainbow Color Table to the radial velocity color coding in the P-V diagrams, instead of a simple red-blue coding which only shows whether a particle is approaching of receding. The rainbow color table allows a differentiation of the actual radial velocity.

CT Range: The range of radial velocities around the Center Velocity that will be coded with the Rainbow CT. All velocities outside this range will be grey, with values of 0.3 times the original, in order not to be outshining the color coded regions. This functions helps to visually extract regions of a particular range of radial velocities in the images.

Particles Tab

These parameters control the size and internal brightness distribution of the particles in the raw images.

Velocities	Particles	Sequence
	Sequence Parameters	
Size	$0.1 \hat{\imath}$	R
Type	$1 \hat{\imath}$	

Size: The radius of a particle in units of the World Coordinate System.
Type: Currently only one internal brightness distribution is implemented. It is a bright central spot with a weaker halo reaching out to the Size from the center of the particle. Note that in the convolved images and spectra the internal structure of the particles is erased, since the convolution kernel is (should be) larger than the size of a single particle.

R-Button: Restores the default size for the particles, which is 10 percent of the $x y$-Range of the Image.

Sequence Tab

The Sequence Tab controls the calculations of a sequence of images and spectra varying one or more parameters of the MCI.

Velocities	Particles	Sequence	Sequence Parameters		
Start Frame		$0 \hat{8}$	Step Size	$1.406 \hat{*}$	Enable \square
Num Steps		$256 \hat{*}$	Image \#	250 ล	
sequence					

The parameters to vary are chosen in the Seq Par Tab (see below). The resulting images are written into a sub-directory of the Working Directory. The name of the sub-directory is given in the text field at the bottom of the Sequence Tab. Each image of the sequence has the sequence name and an image number included in its filename.

Enable Checkbox: Enables the rendering of an image sequence

Start Value: This value is added initially to all the parameters that vary in the sequence. The final start value is the sum of this value and that shown by the particular parameter text field.

Num Steps: The sequence will have this number of steps.
Step Size: The amount by which each parameter will be increased in every step. The value may be negative, such the parameter decreases during the sequence.

Image \#: The current image number that was rendered or that is being displayed at playback of the sequence.

Sequence name: The text field at the bottom of the Sequence Parameter Tab contains the name of the sequence. When you start rendering a sub-directory will be created with this name. This name and an image number will be included in every image frame that is written in this directory.

Playback control: Press the left and right arrow icons to set the playback direction of the sequence. The sequence can be played back either by repeatedly pressing one of the playback icons or by pressing any keyboard key. Keeping the keyboard key pressed will automatically advance the playback. However, depending on the computing and disc reading speed, playback may not be continuous, but jump more than one image.

Seq Par Tab

In the Seq Par Tab you select which parameters will be varied in a sequence.

One or more variables may be varied simultaneously. The step size of the variation is the same for all. The initial value may be different for each of them and is given by the value displayed in the text field of the corresponding parameter plus the Start Value in the Sequence Tab (see above).

IMAGE DISPLAYS

Spatial projections of the model object and observations are shown in the displays on the left hand side of the MCI. Invisible images are accessed by clicking on the corresponding tab.

The image displays by default show the simulated spectrograph slit as a pair of lines. In the spectral renderings, only particles which are located within the slit are processed. You change the position of the slit using the mouse on the display or by typing the corresponding numbers in the Slit Tab. Similarly, the width of the slit is changed by scrolling the mouse wheel or typing the numbers in the corresponding text field in the Slit Tab. The horizontal line that connects the edges of the slit, indicates the vertical position of the cursor in the P-V diagram on the right to the image. This helps to locate corresponding features in the different displays. The plane of the image is given by the " x " and " y " coordinates of the World Coordinate System in the horizontal and vertical direction, respectively. The "z" coordinate is perpendicular to the image and increases into the image. Tick marks at the top of the display show the x-coordinates in the World Coordinate System.

Note: Since the rendering of the images is not a real-time process, once you change the Parameters, the images do not correspond to this parameter set until you re-run the rendering clicking on the Shape Button in the Tool Bar.

SPECTRAL DISPLAYS

Spectral information is shown in the right hand side displays. Invisible spectra are accessed by clicking on the corresponding tab.

The horizontal axis in these images measures the radial Doppler velocity as shown by the scale at the top of the display. The vertical axis is the position along the simulated spectrograph slit as shown in the image displays on the left. Only in the 1DSpec Tab the vertical axis is not space, but the sequence number. A mouse cursor shows the current y-position and velocity. The elliptic part of the cursor is a visual cue for the size and shape of the convolution kernel applied to the convolved images. The horizontal width of the ellipse is the same as velocity resolution (Resol) in the Velocities Tab. The vertical size of the ellipse corresponds to the Seeing kernel applied to the images. For the scale and the cursor to be visible the Show Slit Checkbox in the Slit Tab must be checked.

Raw Images and Spectra

Raw images and spectra show the rendered object unconvolved with seeing or velocity resolution kernels.

They are shown in the top displays. If the number and size of the particles is not too large, the individual particles can be seen in these images.

Convolved Images

Images in this display have been convolved with a circular gaussian kernel of FWHM equal to the Seeing Parameter in the Image Parameters Tab.

Color: Image with color coding according to the colors given to individual sub-objects. You can change the colors of the sub-objects from within the 3D Module. The 3D Module opens by pressing the 3D Button in the BUTTON TOOL BAR.

Obs: Observed image to be used as a reference during modeling. You prepare this image in such that the orientation of the spectrograph slit used for acquisition of the $\mathrm{P}-\mathrm{V}$ diagram on the right display is vertical. The file of the observed image is "shape.obs.image.jpg" and is located in the Working Directory.

Grey: The grey-scale image. Otherwise the same as the color image. No distinction is made between sub-objects.

RB Shift: This image is color coded according to the Doppler-Shift of the particles in the model.
There are two different modes for the color coding. The red-blue shift (RB-mode) renders a particle red when it is red-shifted and blue when it is blue-shifted weighted by their brightness. If the Doppler-shift is zero, the color is white. Whenever there is a superposition of red and blueshifted particles, the color is a mixture of red and blue, weighted by their corresponding brightness.

The second mode is enabled by selecting the Rainbow CT Checkbox in the Velocities Parameters Tab (see above). It color codes the Doppler-shift in the colors of the visible spectrum, from blue to red, with the intensity proportional to the brightness. This color table is applied to the velocity range given in the CT Range Parameter to either side of the velocity center set in the Center Parameter of the Velocities Parameters Tab. Velocities outside this range are rendered in a brightness grey-scale. The Rainbow CT image and the RB-coded image are not available simultaneously. In order to obtain the image of the color coding that is not visible, change the Rainbow CT Checkbox and press the SHAPE Button to render the model again.

Chan Map: In this display the channel map is shown. Only particles of the model are included that have radial velocities (Doppler-shifts) within the Range Parameter center around the Center Parameter in the Velocities Parameters Tab. These are the same particles that are color coded with the Rainbow $C T$ feature.

Convolved P-V diagrams

Color: P-V diagram with color coding according to the colors given to individual sub-objects.
Obs: Observed P-V diagram to be used as a reference during modeling. The file of the observed image is "shape.obs.spec.jpg" and is located in the Working Directory.

Grey: The grey-scale P-V diagram. Otherwise the same as the color P-V diagram. No distinction is made between sub-objects.

RB Shift:

This image is color coded according to the Doppler-Shift of the particles in the model. For further comments see the RB Shift section in the Convolved Images section above.

1DSpec:

In this tab the 1D spectrum is shown. It is normalized to the height of the display, i.e. the maximum peak is always at the top edge of the display. If a sequence was run, the sequence of 1 D -spectra is shown as a color image. Each row of pixels contains the 1D spectrum with the intensity coding the value of the spectrum and the color codes the mixture of colors from the colors of the sub-objects. Colors that are not actually present in the model indicate a strong mixing of the sub-objects in the spectra. If the process that generated the sequence had the convolution enabled, then the line spectrum is also convolved. Otherwise, the raw spectrum is used. The velocity and the sequence number of a particular 1D Spectrum can be read by pointing with the cursor and reading the numbers in the status bar (see below).

Status Bar

$\mathrm{x}: 4 \mathrm{y}$ y: $45.7 \mathrm{pX}: 328 \mathrm{pY}: 81 \quad$ Current Image: \quad shape.spec.grey.pnm

The status bar at the bottom of the MCI provides information about the current cursor position on the images in World Coordinates and velocity (x, y) as well as pixel coordinates of the corresponding image (pX, pY). On the right side of the status bar the filename of the Current Image is given at which the cursor is pointing.

THE 3D MODULE

The 3D Module has the function to control some properties of an object and its sub-sections. Among others, these properties include their position, size, orientation, color, brightness and, very importantly, their velocity structure. In this module, objects can be changed in their shape, like stretching them in a particular direction. For complex structural manipulation it is recommended to employ an external 3D modeling software and them import the data in a suitable format into Shape.

General strategy for the usage of the 3D module

Any imported dataset is visible in the 3D module, situated in the World with its associated World Coordinate System. The data may either be in the form of a Particle System (PS) imported from the shape j3d.dat file or e.g. in the form of the Virtual Reality Markup Language (VRML) format. Some simple primitives like spheres and tori can be created directly from the 3D Module. These primitives can be combined or deformed to yield disks, ellipsoids or other more complex structures. Any non-particle system objects (also called nodes) must then be converted to a particle system. After that you assign color, brightness and velocities. Orientation and any other transformations can either be applied before or after converting the node into a PS. Now you can render the complete object in the Main Control Interface (MCI).

WARNING: It is very much recommended to premeditate every operation that you will perform to an object. At this time there is NO GENERAL UNDO function available. All backward changes have to be done manually at this stage.

Menu Bar

File Groups View Help
File
Menu Bar > File > New
In order to start a new object from an empty World you select New. This will erase all previously existing sub-objects. WARNING: At this time this operation can not be undone directly and completely. There are three ways of recovering some or all of the information. If you have saved the World in this File Menu then you can open it again selecting Menu Bar > File > Open.
Secondly, you can use the File > Import > Data in the MCI to reload the particle system data that have been saved when you last rendered the object. Third, you can reload the project from the MCI using Menu Bar > File > Open Recent Project.

Menu Bar > File > Open
Menu Bar > File > Save
Menu Bar > File > Import > VRML
Import a VRML object file. This will add the objects contained in the VRML file to the current World.

Menu Bar > File > Export > VRML

Export any VRML objects in the scene. VRML objects which have been converted to Particle Systems can not be exported in VRML format.

Menu Bar > File > Exit

Exit the 3D module.

Groups

Create and Remove Group

Create joins all selected sub-objects into a single group. Transformations like moving and scaling are performed to all sub-objects in the group simultaneously. Remove opens a group and separates sub-objects from a group.

Create and Remove Particles System

Creates a Particle System from the selected VRML objects. Destroys and removes the object from the world.

View

Select which sections of the Tool Bar are displayed. The available tools are Primitives, Transforms, Camera and Node Information (see below). The Primitives, Transforms and

Camera tool bar buttons are located above the View Panel where the objects are shown from different Camera directions. The Node Information Panel is located to the right of the View Panel.

Help

Opens this document.

Tool Bars

Primitives

Buttons to create new sub-objects in the form of simple geometric shapes (primitives). The currently available primitives are Sphere, Cone and Torus.

To create a new primitive select the desired button and press the mouse in any of the View Panels (see below). Keep the mouse pressed and drag to the right and up to increase the width and height, respectively.

Transforms

Use this tool bar to Move, Scale and Rotate objects.
To apply any transform, you first select the object. Selection of an object can be achieved by either activating the Select Button and then clicking on some part of the object or by clicking on the object in the Node List of the Node Information Panel. To actually perform the Transform you activate the corresponding Transform Button (Move, Scale or Rotate) and finally move the object by dragging the mouse or introducing the transform values in the Coordinates Panel of the Node Information Panel.

To restrict a transform along a particular axis drag the mouse while pressing the x, y or z key of your keyboard. Choose the Coordinate System in which to perform the transform by selecting one of the radio buttons (World, Local) in the Rotation Panel (Node Information Panel > Coordinates > Rotation).

Camera

The Camera Tool Bar allows you to Zoom or Pan the viewpoint in all the View Panels. The Perspective Panel does also allow to Rotate the viewpoint around the origin of the World Coordinate System.

View Panels

The View Panels show the World from different directions, Top, Front, Left, Perspective and Shape view. The Top view looks along the y-axis, the Front view along the z-axis and the Left view is a projection of the World along the x-axis. At start-up the Perspective view looks along the z-axis and is the same as the Front view. In the Shape view the observer looks at the same scene as in the images in the MCI. It communicates directly with the values in the Image Parameters Tab.

Right-clicking with the cursor on the frame of a view panel opens a menu from which you can choose a different viewing direction. In some viewing directions, it does also allow to quickly adjust the size of the view panel to the size of the model objects. Right-clicking and dragging on the view panel directly invokes panning, i.e. moving the camera. Using the mouse wheel on the view panel allows to interactively zoom in or out.

Shape view: This view panel gives a preview for the rendered image of the MCI. It can be used to adjust the viewing direction applying the Camera Transformations of the Tool Bar. The values of the Image Parameter Tab are reproduced in the Shape Camera Panel of the Nodes Panel. They can be changed either in the MCI or in the Shape View Panel.

Nodes Panel

In the Nodes Panel you manage the model objects and it's parts. It is located to the right of the View Panels. There are four collapsible main panels: the Node Attributes,
Coordinates, Node List and Particle Systems.

Node Attributes

The Node Attributes include the Name, Type, Polygon type and Color.

Name: displays the name of the node. It can be changed in the corresponding text field.

- Node Attributes

| Name | PF Source 01 |
| :--- | :--- | :--- |
| Type | [Particle System] |
| | |
| Polygon | Points |
| | |

+ Coordinates
+ Node List
+ Particle Systems

Type: shows whether the node is a Particle System or a Polygon Surface.

Polygon: select how a polygon surface is to be displayed, as points, wire frame or a shaded surface. This selection has no effect on Particle Systems, including surface objects which have been converted to Particle Systems.

Color: The color swatch shows the current color of the node. You can change the color by clicking on this swatch. The color chooser will open and allow you to set the color.

Coordinates

The Coordinates Panel holds the information on the Position, Rotation (orientation) and Scaling of the nodes.

Position

The Position Panel displays the x, y and z coordinates in the World Coordinate System. The values may be changed directly in the corresponding text fields. This allows precise placement of each node.
$\mathbf{x}, \mathbf{y}, \mathbf{z}$: The World Coordinates of the Node.

Show Gizmo: A checkbox to show or hide the axes (gizmo) of the local coordinate system associated with the Node.

Scale: The scaling of the Gizmo.

Rotation

The Rotation determines the orientation of the object with respect to the various Coordinate Systems and hence with respect to the observer. The Rotation can be changed with respect to two Coordinate Systems, the World

Coordinates

- Position

x	y	z
000.00	000.00	000.00

Show gizmo

- Rotation

World Axes
Local Axes

- Scale

System and the Local System. Rotation about the axes of the Local System is important e.g. to rotate the object around some symmetry axis.
$\mathbf{x}, \mathrm{y}, \mathrm{z}$
There are two rows of values for rotations. The top row indicates the rotation around the respective axes in the World Coordinate System while the bottom row shows the rotation in the Local Coordinate System. Which one of them is the active system is determined by the selection of the radio buttons below with the exclusive options of World or Local Axes.

Scale
You change the size of an object or sub-object by Scaling it. The scaling is performed in the local Coordinate System.
$\mathbf{x}, \mathrm{y}, \mathrm{z}$
The values of the scaling of the objects or sub-objects that have been applied after they have been created or imported. The values indicate the scaling along each of the axes of the Local Coordinate System.

Node List

The Node List shows the names and some of the attributes of the node. The Remove Button allows a node to be deleted. Before finally deletion of a node a confirmation dialog is opened. Note that after confirmation this operation can not be undone.

Particle Systems

In the Particle System Panel you manage the some properties of the Particle System that you have imported or created in the 3D Module. One important function of the Particle System Panel is to set the velocities that the Particles will have. For Particle Systems that have been imported as such these velocities may already be included. However, with these may be overridden using the parametric velocity field applied here. The parametric velocities will be applied only if the Calculate Velocities Checkbox is set.

Properties

The Properties Sub-Panel shows the Brightness, Flux, Color, Number of Particles and the Velocity Parameters.

Brightness

The Brightness is a relative measure of the brightness of an individual Particle. Its function in the model is that of the emissivity in a gaseous nebula.

Flux

The Flux is the total emission coming from this Particle System. It is the product of the Brightness and the Number of Particles (\# Particles).

Color

The color of the Particle System.

\# Particles

\square Calculate Velocity

A	B	C	
1.0	1.0	1.0	1.0

```
Fiducial Distance 1.0
```

Velocity Field
Radial Expansion \vee

The number of Particles in the Particle System.

Calculate Velocity

Check this tick box if you wish that the velocities of the Particles are to be calculated as a function of the position vector of the Particle in the World Coordinate System. If this tick box is unchecked the velocities are either zero (for Particle System created in the 3D Module) or they are the velocities that have been imported with the external Particle System.

There are three different types of velocity field from which you can choose using the drop-down list: RADIAL EXPANSION, DISK ROTATION and SOLID BODY ROTATION.

RADIAL EXPANSION

The velocity vector $\overrightarrow{\mathrm{v}}$ is always directed along the position vector in the local coordinate system and obeys the following formula:

$$
\vec{v}=\hat{p}\left[A+B p / r+C(p / r)^{0}\right]
$$

where $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} are the coefficients. p is the particle distance from the origin of the local coordinate system (length of the position vector) and r is a reference distance.

Using suitable combinations of these coefficients, a large variety of velocity fields can be generated. Some particularly important examples are the following:

Constant radial velocity:

$\mathrm{A}=$ velocity
$B=C=D=0$
"Hubble type" flow (i.e. velocity vector is proportional to the position vector):
$\mathrm{A}=\mathrm{C}=\mathrm{D}=0$
$B=$ velocity at reference distance r
If you are unfamiliar with power-law functions, you might want to use an external plotting program to plot the velocity and adjust the coefficients before introducing them in Shape.

DISK ROTATION

The velocity vector $\overrightarrow{\mathrm{v}}$ is always perpendicular to the position vector and the z -direction of the local coordinate system. It obeys the following formula:

$$
\vec{v}=\hat{p}_{v p}\left[A+B p / r+C(p / r)^{0}\right] \times \hat{z}
$$

where $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} are the coefficients. p is the particle distance from the origin of the local coordinate system (length of the position vector) and r is a reference distance. $\hat{\mathrm{P}}_{\text {wis }}$ the unit position vector of the particle in the xy-plane of the local coordinate system. Note that the rotation axis of the rotator is restricted to the z-axis of the local coordinate system.

Using suitable combinations of these coefficients, a large variety of velocity fields can be generated. Some particularly important examples are the following:

Keplerian disk:

$A=B=0$
$\mathrm{D}=$ velocity at the reference distance r
$D=-0.5$
If you are unfamiliar with power-law functions, you might want to use an external plotting program to plot the velocity and adjust the coefficients before introducing them in Shape.

SOLID BODY ROTATION

The velocity vector $\overrightarrow{\mathrm{v}}$ is always perpendicular to the position vector and the z -direction of the local coordinate system.

For the solid body rotation only coefficient \mathbf{A} is used and it corresponds to the velocity at the reference distance r . Note that the rotation axis of the rotator is restricted to the z-axis of the local coordinate system.

TUTORIALS

How to make channel maps

A channel map is an image which includes only those regions of a nebula which have a radial velocity (Doppler-shift) within a given range. If the range of velocities in a channel map is small compared to the whole range of velocities that are present in the nebula, these maps allow to "dissect" the nebula along the line of sight. However, similar to the case of position-velocity diagrams this is only a good view of the spatial dimension, if there is a reasonably regular relation between the spatial and the velocity domain. However, even if there is no such relation, the channel map still conveys important information on the structure and kinematics of the object.

To produce a channel map centered at a velocity of -5 and a range of 0.3 on both sides of the velocity center, follow these steps:

1. In the Velocities Parameter Tab set the Center to -5 and the Range to 0.3.
2. It is convenient to enable the Rainbow $C T$ and set the $C T$ Range to the same as the velocity Range, i.e. 0.3. This allows to visualize the channel map not only in the Chan Map image, but also in the RB Shift image. The Rainbow $C T$ will mark the regions selected by the channel map in the grey-scale version of the full image. In some models this allows a clearer insight in the location of the selected region within the whole object.

3. Choose any other parameter according to you needs.

4. If you wish to produce a sequence of channel maps stepping through the full range of the object, do the following in addition to the previous steps:

- Select the Enable Checkbox in the Sequence Parameter Tab.
- Set the Center value to the initial velocity of the sequence (typically the same as the highest blue-shift that is present in the object, which can be read from the pv-diagram using the cursor).
- In the Sequence Parameter Tab set the Start Frame $=0$
- Set the Step Size to the difference between the Center velocities of adjacent velocity channels.
- The Num Steps parameter should be the difference between the highest and lowest radial velocities divided by the Step Size.
- Set the Image \# to 0.
- Type a suitable Sequence Name in the text field at the bottom of the Sequence Parameter Tab. The results of this sequence will be written into a sub-directory with the same name. From these image sequences, animations can be assembled using external movie editing programs. For a simple playback of the sequence, choose the playback direction and press any keyboard key or repeatedly click on the playback button in the Sequence Parameter Tab.

Particle system templates

In this tutorial you will learn how to use Shape starting with a particle system template that you download from the ShapeSite.

You go to the Templates area of the ShapeSite using your favorite Internet browser and download to your working directory the particle system template you wish to use. If compressed and packed, unpack the downloaded file. A sub-directory is created with several files, which at least contain the files "shape j3d.dat", "shape j3d.inp" and an info file with the extension ".txt", which contains some information on the object model and how to use the template. Some template packages may contain the original model files from the external 3D modeling software. This allows you to modify the template data as needed. Some changes can be done directly in the 3D Module of Shape. The information in the info file may be as follows:

1. Download and unpack the zip-file in a directory of your choice

2. Start Shape

3. Start a new Project:

File > New Project

Insert a project name and path.
4. Import the particle system data:

File $>$ Import $>$ Data

With the Open Dialog navigate to the directory where you unpacked the template. Select the file shape j3d.dat. Verify that the data have been imported correctly. Open the 3D Interface using the 3D button on the tool bar. If the particle system is visible, the data have been imported properly.
5. Import the project parameters:

File $>$ Import $>$ Parameters

With the Open Dialog navigate to the directory where you unpacked the template. Select the file shape j3d.inp. The parameters on the Parameter Tabs should have changed. To verify, run Shape by clicking on the Shape Button on the Tool Bar. The rendering dialog should open and after finishing the render the image panels should show the rendered image and spectral information.
6. You can now manipulate the observing parameters for the object in the Parameters Tabs and/or manipulate the data using the $3 D$ Module.
7. If you wish to modify the original data, you may use 3DStudio Max to open and modify the file bipolar sym 1.max. To export the result to shape j 3 d .dat use the export script Sh out j3d.ms.

External VRML and .obj 3D model files

The Virtual Reality Markup Language (VRML) format is a common scene description format. It can be used to import objects created in external 3D modeling software into Shape via the 3D Module. Note that velocity information is not included in the VRML format at must be generated with the 3D Module options that are available for this purpose. Let us assume that you already have a file with your object in the VRML format called "object.wrl" (wrl is the typical file extension for VRML files). To import the file go to the menu bar of the 3D Module. Choose

File > Import > VRML
Now a file selection dialog opens. Go to the directory in which your "object.wrl" file is located and select the file. Confirm the selection by clicking on the Open button of the dialog. Your object should now be visible in the viewports of the 3D Module as a shaded surface. In order to be renderable in Shape, this surface object must be converted into a particle system. To do this select the object node in the Node List and then go to the menu bar of the 3D Module and choose

Groups > Create particle system

The shaded surface has now turned into a collection of points, one at each vertex of the original surface object. You may now change the color and velocity structure of the particle system in the corresponding panels on the right of the 3D Module. You can also apply any of the Transformations available on the Tool Bar. Now you can render the object choosing suitable parameters in the MCl and by clicking on the Shape Button.

A similar procedure can be followed to import .obj files.

Particle systems from external 3D modeling software

Modeling with Shape is most detailed harnessing the powerful particle systems that come with some external 3D modeling suites. ParticleFlow in 3DStudio Max or similar systems in other modeling suites can be controlled in detail either interactively or, most precisely, via script programming. A script for exporting ParticleFlow data in the Shape particle data format (see below) is provided in the download area of the ShapeSite. Check the corresponding download area for export scripts for other 3D modeling packages.

Once you have exported your particle data file, it can be imported into Shape. This is done via the Menu Bar in the MCI. From the Menu Bar choose

File $>$ Import > Data
Now the file selection dialog opens. Select and confirm the import of the file. If the 3D Module is open, the particle system should be visible in the viewports and the Nodes Panel. It can now be further processed (changing color, brightness, particle distribution, velocity field, etc.) in the 3D

Panel or directly rendered with the Shape Button of the MCI. Before the data are rendered, they are written to the shape $j 3 d$.dat file, which is read by the renderer. If you save the project, the imported data are saved with the project.

Model templates

See the latest instructions on the News Panel at startup of Shape.

FILE FORMATS

The ASCII data formats of the particle system data and parameter files "shape j3d.dat" and "shape j3d.inp" are described. This allows users to write export scripts or programs for external modeling software. An example script for 3DStudio Max which produces the file "shape j3d.dat" from selected particle systems of type Particle Flow can be downloaded from the 3DStudio Max section of the link "External 3D modelers" on the ShapeSite. The file "shape j3d.inp" controls the parameters of the Parameter Tabs of the MCl. The file "shape j3d.inp" is written by the $\mathrm{MC} /$ when you render the object by clicking on the Shape Button. The data from both files are included in the project file when you save the project. Generally there is no need to externally modify the parameter file "shape j3d.inp". It's content in directly controlled via the Parameters Tab. However, note that the parameters are written to file only when you render or save the project.

Note: These file formats are subject to change with mayor new releases of Shape. Secondary releases will conserve these formats.

General format of the file "shape j3d.dat":

- Main header
- First particle system header
- Particle data of first particle system
- Headers and particle data of any further particle systems

Details of file format (example):
Lines starting with "\#" denote comments and are not read by the rendering engine. The two particle systems in the data file contain two particles each. The number of particle systems or particles per system is not restricted a priory. However, the rendering time is roughly proportional to the number of particles in the system.

```
# Multi-object particle positions for SHAPE
# Number of Systems:
2
# TIME:
0.
# Particle System ID:
PF Source 01
# Position of PS in World Coord:
0.00.00.0
# Color of PSystem (RGB Alpha)
0255153255
# Number of Particles:
2
# N Part X Y Z VX VY VZ SIZE AGE AX AY AZ
11.10329 67.0187-57.5515 0.158115 9.60459-8.24782 1.0 5.0 0.0 0.0 0.0
2 -51.5906 18.4107-42.7453-7.39355 2.63847-6.12592 1.0 5.0 0.0 0.0 0.0
# Particle System ID:
PF Source 02
# Position of PS in World Coord:
0.0 0.0 0.0
# Color of PSystem (RGB Alpha)
0 225 53255
# Number of Particles:
2
# N Part X Y Z VX VY VZ SIZE AGE AX AY AZ
11.10329 67.0187-57.5515 0.158115 9.60459-8.24782 1.0 5.0 0.0 0.0 0.0
2-51.5906 18.4107-42.7453-7.39355 2.63847-6.12592 1.0 5.0 0.0 0.0 0.0
```

The detailed format of the "shape $j 3 d$ dinp" file is as follows:

```
Project name
#Check boxes: Conv Grey, Conv Color, VelShift, Logscale, Verbose, Show Slit, Vel Slice, Opaque Star
true true false false false false false false
#ImCenterX ImRangeX
0.0 300.0
#ImCenterY ImRangeY
0.0 300.0
#VelCenter VeIRange ColorTabRange
0.0 500.0 50.0 true
#Seeing VelResol
20.0 25.0
#gammaim gammaspec
1.52.5
#ImSizeSp.value
8
#SlitPosCenter SlitWidth SlitIntense
0.0 39.375 1.0
false false
#WorldRotX WorldRotY WorldRotZ
20.0 0.0 0.0
false false false
#LocalRotX LocalRotY LocalRotZ
0.0 0.0 0.0
false false false
#ParticleRadius PSType
20.0 1.0
#Do Sequence? Step Num Steps
false 0 10.0
```


Known issues and bugs

- If using a multi-monitor system, currently you can not change the viewpoint of a view panel while the 3D Module is displayed on a secondary monitor. The work around is to move the 3D Module to the main monitor and do the change there. Now you can move the 3D Module back and the new view will work.
- The Shape View Panel does not Zoom Extent on selecting the corresponding option from the right-click pop-up list.

Some external 3D Modeling Systems

This is only a small selection of commercial and free 3D modeling system around. Please feel free to find the one you like most. However, please note that in order to work with Shape the system needs at least capability to export to VRML format. It is highly desirable to have a good Particle System tool in combination with a scripting language that allows you to export particle positions and velocities in the format that Shape can read.

3DStudio Max - Data export script (MaxScript) for Shape is available at the ShapeSite. 3D Studio Max is a commercial 3D modeling suite. The Particle Flow system has been used extensively for modeling with Shape. Surface structures can be exported in VRML format, which can be imported into Shape and then converted into a Particle System.

Blender - Free 3D modeling suite that is included in some Linux distributions. Scripting language is Python. Currently there is no Particle System export script available (please write one and share it with the Shape user community).

Maya - Commercial 3D modeling suite. Free educational version is available with limited capabilities. However, these are not very restrictive and very well suited for usage with Shape. There is currently no export script (Me/Script) available for Particle Systems (please write one and share it with the Shape user community).

Bibliography

Steffen, W., López, J.A., 2006, Morpho-kinematic modeling of gaseous nebulae with SHAPE, RevMexAA 42, 99-105

CREDITS:

Principal Investigator: Wolfgang Steffen
(Instituto de Astronomía, Universidad Nacional Autónoma de México (UNAM), Ensenada, BC, México)

Programming:

Wolfgang Steffen
Nicholas Koning (University of Calgary, Calgary, Canada)
User Manual: Wolfgang Steffen

Financial Support:

Universidad Nacional Autónoma de México, DGAPA, PAPIIT
Grants: IN108506, IN111803, IN112103
Consejo Nacional de Ciencia y Tecnología (CONACYT), México
Grants: 49447, 33660-E
University of Calgary, Calgary, Canada
Grant: Natural Sciences and Engineering Council of Canada awarded to Sun Kwok
Other scientific contributors:
José Alberto López García
(Instituto de Astronomía, Universidad Nacional Autónoma de México (UNAM), Ensenada, BC, México)

